
Optimization Letters (2022) 16:667–680

https://doi.org/10.1007/s11590-021-01746-9

ORIG INAL PAPER

Approximation algorithm for minimum partial multi-cover
under a geometric setting

Yingli Ran1 · Xiaohui Huang2 · Zhao Zhang1 · Ding-Zhu Du3

Received: 2 February 2021 / Accepted: 5 May 2021 / Published online: 18 May 2021

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

In a minimum partial set multi-cover problem (MinPSMC), given an element set X ,

a collection of subsets S ⊆ 2X , a cost cS on each set S ∈ S, a covering requirement

rx for each element x ∈ X , and an integer k, the goal is to find a sub-collection

F ⊆ S to fully cover at least k elements such that the cost of F is as small as possible,

where element x is fully covered by F if it belongs to at least rx sets of F . Recently,

it was proved that MinPSMC is at least as hard as the densest k-subgraph problem.

The question is: how about the problem in some geometric settings? In this paper,

we consider the MinPSMC problem in which X is a set of points on the plane and

S is a set of unit squares (MinPSMC-US). Under the assumption that rx = fx for

every x ∈ X , where fx = |{S ∈ S : x ∈ S}| is the number of sets containing element

x , we design an approximation algorithm achieving approximation ratio (1 + ε) for

MinPSMC-US.

Keywords Partial set multi-cover · Unit square · Approximation algorithm

B Zhao Zhang

hxhzz@sina.com

B Ding-Zhu Du

dzdu@utdallas.edu

Yingli Ran

ranyingli@zjnu.eud.cn

Xiaohui Huang

xdhqjt@sina.com

1 College of Mathematics and Computer Sciences, Zhejiang Normal University, Jinhua 321004,

Zhejiang, China

2 Library and Information Center, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

3 Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-021-01746-9&domain=pdf

668 Y. Ran et al.

1 Introduction

In this paper, we study the minimum partial set multi-cover problem (MinPSMC) in a

geometric setting. Given an element set X of order n, a collection of subsets S ⊆ 2X ,

a cost cS on each set S ∈ S, a covering requirement rx for each element x ∈ X , and

an integer k, the goal of MinPSMC is to find a sub-collection F ⊆ S to fully cover

at least k elements such that the cost of F is as small as possible, where an element

x is fully covered by F if it belongs to at least rx sets of F , and the cost of F is

c(F) =
∑

S∈F
cS .

This problem was motivated by a monitoring problem in a wireless sensor network

and an information propagation problem in a social network [22,23]. Speaking from the

theoretical point of view, MinPSMC contains the minimum k union (MinkU) problem,

which was proposed by Chlamtáč et al. [6]. Furthermore, it is a combination of the

minimum set (full) multi-cover problem (MinSMC in which k = n) and the minimum

partial set (single-)cover problem (MinPSC in which r ≡ 1), which are important

variants of the classic set cover problem.

Although both MinSMC and MinPSC admit approximation algorithms achiev-

ing tight ratios matching those for the set cover problem, it was proved in [18] that

MinPSMC cannot be approximated within factor O(n
1

2(log log n)c) for some constant

c under the ETH assumption. Then a natural question arises: can we obtain better

approximation when considering geometric setting? In a geometric setting, the ele-

ment set is a set of points on the plane, denoted as P . Given a set of objects O on the

plane, the collection of subsets is S = {P ∩ O : O ∈ O} where P ∩ O is the set of

points contained in object O ∈ O.

In this paper, we consider the MinPSMC problem in which the objects are unit

squares. Denote the corresponding problem as MinPSMC-US. As a starting step, we

study the case when rp = f p for every p ∈ P , where f p = |{S ∈ S : p ∈ S}| is the

number of objects containing point p. Call this a constrainted MinPSMC problem.

Notice that such an constraint is not too artificial since it is equivalent with a geometric

MinkU problem (this will be explained in the Related Work section).

1.1 Related works

MinPSMC was formally proposed in [16] to study the minimum partial positive dom-

ination set problem, which has its background in information propagation of social

network. A greedy algorithm was proposed in [16], and a local ratio algorithm was

given in [17]. The MinPSMC problem is a combination of the minimum set (full)

multi-cover problem (MinSMC) and the minimum partial set (single-)cover problem

(MinPSC). Despite the fact that greedy strategy and local ratio method can achieve tight

approximations for MinSMC and MinPSC [1,15], the approximation ratios obtained

by employing them on the MinPSMC problem are very large, which indicates the

difficulty of the MinPSMC problem. Such an indication was confirmed by Ran et

al. [18]. They showed that if MinPSMC admits a γ -approximation, then the famous

densest k-subgraph problem (DkS) will have a 2γ 2-approximation. As a corollary

of the hardness result of Manurangsi [14] for DkS, MinPSMC cannot be approxi-

123

Approximation algorithm for minimum partial multi-cover… 669

mated within factor O(n
1

2(log log n)c) for some constant c under the ETH assumption.

Denote rmax = maxx∈X rx . Assuming that rmax has a constant upper bound, some

polynomial time approximation algorithms were proposed in [18,20,21,24]. The bar-

rier of assumption on rmax was finally dropped off by Ran et al. [19] in which a

(4 log2 n ln k + 2 log n
√

n)-approximation algorithm was presented.

The minimum k union problem (MinkU) was first proposed by Chlamtáč et al. [6].

Given a hypergraph G with vertex set V and hyperedge set H, together with an integer

1 ≤ k ≤ m where m is the number of hyperedges, the goal of MinkU is to select

k hyperedges such that the number of vertices in their union is as small as possible.

A 2
√

m-approximation algorithm was given in [6], which was further improved to

O(m1/4+ε) in [8]. MinkU is a generalization of the smallest k-edge subgraph problem

[7] to hypergraphs, which is a dual problem of the densest k-subgraph problem.

It was proved in [19] that a MinkU instance (V ,H, k) can be viewed as a MinPSMC

instance (X ,S, c, r , k) with X = H, S = V , c ≡ 1, and rx = fx for every x ∈ X ,

where fx = |{S ∈ S : x ∈ S}| is the number of sets containing element x (called

frequency of x). So our constrained MinPSMC-US problem can be viewed as a special

MinkU problem by taking every vertex to be a unit square, and every hyperedge to be

the set of unit squares containing a common point.

Geometric set cover problem (GSC) is an extensively studied topic in computa-

tional geometry [10]. For the geometric partial set cover problem (GPSC), Gandhi

et al. [9] gave a PTAS in the setting that the objects are unit disks and can be

replaced anywhere on the plane. Inamdar and Varadarajan [13] showed that a fea-

sible solution to the the standard linear program for set cover can be rounded to a

(2β + 2)-approximation for MinPSC, where β is the integrality gap for the set cover

LP. Combining this with the result in [3], the minimum weight disk partial cover

problem admits a constant-approximation. Inamdar [12] established a local search

framework for GPSC, obtaining PTAS for many GPSC problems including partial

covering points by halfspaces in R
3, partial covering points by r -admissible regions in

R
2, etc. There are also a lot of works on geometric (full) multi-cover problems (see for

example [2,5]). But we have not seen works on geometric cover problem combining

both partial cover requirement and multi-cover requirement.

1.2 Our contributions

Since the MinPSMC problem in a general setting is very difficult, we study the geo-

metric MinPSMC problem in which objects are unit squares, and present a PTAS

under the assumption that rp = f p for every p ∈ P .

The algorithm employs a strategy of shifted-grids combined with a dynamic pro-

gramming. First, the whole problem is divided into subproblems on blocks of a

grid-partition. For each subproblem, a dynamic programming is designed to obtain

an exact local solution in polynomial time. Assembling the local solutions yields

a feasible solution to the original problem. Shifting is used to control the error of

assembling.

The most challenging part is to design an exact algorithm for the subproblem on a

block. The mod-one technique proposed by Chan and Hu in [4] is employed. However,

123

670 Y. Ran et al.

a straightforward employment of this technique on our problem only works for the

case when rmax = max{rp : p ∈ P} is upper bounded by a constant, because due to

the multi-cover requirement, one has to “guess” the depth-one, depth-two, up to depth-

rmax envelope-square-sets of a solution, and thus the running time contains a factor

of nrmax . To overcome such a difficulty, we exploit the speciality of the considered

problem. The idea is that under the assumption that rp = f p for every p ∈ P , no

square in the optimal solution O∗ can be completely contained in the envelope of

O\O∗. So, instead of “guessing” O∗, we guess the envelope of O\O∗, which is why

the the running time can be brought down.

The paper is organized as follows. Section 2 obtains a PTAS for this constrained

MinPSMC-US problem. Section 3 concludes the paper with some discussions.

2 A PTAS for MinPSMC-US

In this section, we give a PTAS for the constrained MinPSMC-US problem, in which

the set of objects O consists of unit squares on the plane.

2.1 Outline of themethod and some preliminaries

The strategy used in this paper is shifted grids combined with dynamic programming.

The whole problem is divided into subproblems on blocks of constant side-length.

The crucial step is to design an exact algorithm for the subproblem on a block. For this

purpose, we further divide the block into grids with side-length 1. The algorithm will

“guess” the envelope of O\O∗ for each grid point, and then assemble these guesses

by a dynamic programming.

First, we introduce some terminologies used in the design and analysis of the

algorithm. For a subset of unit squares O′ ⊆ O, denote by O′
g the subset of unit

squares in O′ containing grid point g, and denote by U (O′) the union of those unit

squares in O′.

Definition 2.1 (envelope-set) For a set of unit squares O′ containing a common grid

point g, the subset of unit squares appearing on the boundary of U (O′) is called the

envelope-set of O′.

An illustration is given in Fig. 1. The crossing point of the two lines is grid point

g, and O′′ = {s1, s2, s3, s4} is the envelope-set of O′ = {s1, s2, s3, s4, s5}.
For convenience of statement, we call the right-upper corner of unit square s as its

position. Notice that a unit square is uniquely determined by its position.

Definition 2.2 (monotone-set [4]) Let O′ = {s1, . . . , st } be a set of unit squares

containing a common grid point g, where s1, . . . , st are arranged in increasing

x-coordinates of their positions. If the positions of s1, . . . , st are in increasing y-

coordinates, then we say that O′ forms a monotone-set for the 2-nd and the 4-th

quadrant; if the positions of s1, . . . , st are in decreasing y-coordinates, then we say

that O′ forms a monotone-set for the 1-st and the 3-rd quadrant.

123

Approximation algorithm for minimum partial multi-cover… 671

Fig. 1 An illustration of

envelope-set

g

s1

s2

s3

s4

s5

Fig. 2 An illustration for

mod-one mapping.

Observe that an envelope-set O′′ associated with grid point g can be decomposed

into four monotone-sets: for i = 1, 2, 3, 4, the set of unit squares which appear on

the boundary of U (O′′) in the i-th quadrant form a monotone-set. For example, the

envelope-set O′′ = {s1, s2, s3, s4} in Fig. 1 can be decomposed into monotone-sets

O′′
1 = {s2, s1}, O′′

2 = {s2}, O′′
3 = {s2, s3, s4}, and O′′

4 = {s4, s1}.

Definition 2.3 (mod-one mapping [4]) For a real number z, let (z mod 1) = z −
z�.

Define mod-one mapping ψ : R
2 �→ R

2 as ψ(x, y) =
(

(x mod 1), (y mod 1)
)

.

Figure 2 is an illustration of mod-one mapping. The blackened unit square s on the

left hand is mapped onto the right-hand unit square, where grid point g is mapped to

g′ = (0, 0), points q1, q2 are mapped to q ′
1, q ′

2, the four rectangles 1, 2, 3, 4 are mapped

to 1′, 2′, 3′, 4′, and the four corners p1, p2, p3, p4 are mapped to a same point p′

(which we call as mod-one-position of s). The advantage of mod-one operation is that

it can fold a set of unit squares onto one unit square and deal with them simultaneously.

Furthermore, since the four corners of unit square s are identified, the left boundary

of s coincides with the right boundary of s, which we call as mod-one-boundary of

s. So, if we move a vertical sweep line from left to right, then the entering time of s

and the leaving time of s are the same (namely when the sweep line goes through the

mod-one-boundary of s), and thus there is no need to remember a square using both

of its entering time and leaving time, which may avoid repetition in counting a square.

123

672 Y. Ran et al.

2.2 Dynamic programming for MinPSMC-US in a block

Suppose a block is of size q × q. Assume, without loss of generality, that q is an

integer. Divide the block into grids of side-length 1. We assume that the unit squares

are in a generic position in the sense that every unit square contains exactly one grid

point and no unit squares have the same mod-one-position. The following observation

is crucial to the validity of our algorithm.

Observation 2.4 The union of unit squares in O\O∗ consists of a collection of

envelope-sets for the grid points. No point lying in the union of these envelope-sets

is fully covered by O∗, and O∗ is composed of all those unit squares which are not

completely contained in the union of these envelope-sets.

The reason for the validity of this observation is as follows: under the assumption that

rp = f p for every p ∈ P , if point p is fully covered by O∗, then all unit squares

containing p must be included in O∗, hence no unit square in O\O∗ can contain

p. Notice that p belongs to some unit square in O\O∗ if and only if it lies in the

union of some envelope-set (O\O∗)g for some grid point g. Then the first part of

the observation follows. Also notice that any square s ∈ O∗ must cover some point

outside of U (O\O∗), since otherwise s is useless and can be removed from O∗. This

leads to the second part of the observation.

Remark 2.5 Observation 2.4 can be restated as follows: a unit square s belongs to O∗ if

and only if s is not completely contained in the union of the envelope-set of (O\O∗)g ,

where g is the unique gird point contained in s.

This remark seems to be stronger than Observation 2.4, because one may ask:

is it possible that s is not completely contained in the union of the envelope-set of

(O\O∗)g (which is only one envelope-set) but it is completely contained in the union

of the envelope-sets of O\O∗ (with respect to all grid points)? The answer is no. In

fact, if s is completely contained in the union of the envelope-sets of O\O∗, then s

is useless for coverage and thus belongs to O\O∗, which implies that s is completely

contained in the union of the envelope-set of (O\O∗)g where g is the unique grid

point contained in s.

By Remark 2.5, to find out O∗, it suffices to guess for every grid point g the

envelope-set of (O\O∗)g and find out all those unit squares of Og which are not

completely contained in the union of this envelope-set.

Notice that the number of guesses for the envelope-set at a grid point g is exponential

in the number of unit squares containing g. In order that the algorithm can be executed

in polynomial time, they should not be guessed once for all. Instead, we track the

guesses by a path in an auxiliary acyclic digraph (DAG). The idea is that each vertex

of the DAG corresponds to a configuration in which only a constant number of guesses

is stored at each grid point, and walking along a path in the DAG can recover all these

unit squares. Each configuration will consist of at most four guessed monotone sets

at each grid point. Because there are (q + 1)2 grid points, the number of guessed unit

squares for each configuration is O(q2), which is a constant since q is a constant.

Assume that there are m unit squares having non-empty intersection with the block

under consideration. Let s0 and sm+1 be two virtual unit squares whose positions can

123

Approximation algorithm for minimum partial multi-cover… 673

(a) (b) (c)

Fig. 3 An illustration for the monotone-sets with virtual unit squares. Also an illustration for the transition

of configurations. In (b), the left-bottom shaded area indicates the monotone-set in the 1st quadrant, the

right-upper shaded area indicates the monotone-set in the 3rd quadrant. In (b, c), the denser dotted lines

indicate s5 and the sparser dotted lines indicate s7

be regarded at any of the four corners of the mod-one unit square, and can be placed

suitably to form monotone-sets of the four quadrants. See Fig. 3 for an example,

the four blackened unit squares s1, s2, s4, s6 in (a) are folded into the mod-one unit

square in (b), and the four monotone-sets are depicted in (c), with the real unit squares

indicated by blackened lines and the two virtual unit squares indicated by blackened

dashed lines.

For a unit square s, denote by x(s) and y(s) the x-coordinate and the y-coordinate

of the mod-one position of s.

Definition 2.6 (Configuration) A configuration consists of a 3-tuple (S, k̃, �), where

S =
⋃

g S(g) with g running over all grid points, S(g) =
⋃4

i=1 Si (g) with Si (g) =
(si

prev(g), si
curr (g)) being a 2-tuple of unit squares in Og ∪ {s0, sm+1} which form a

sub-monotone-set in the i-th quadrant at grid point g; � is a vertical line whose mod-

one x-coordinate satisfies x(si
prev(g)) ≤ x(�) < x(si

curr (g)) for every g and every i ,

and x(�) = x(si
prev(g)) for some g and some i ; and k̃ is an integer no larger than the

number of points whose mod-one x-coordinates are smaller than x(�).

An intuition of how we track the envelope-set of O\O∗ is given in Fig. 3 (for a

clearer understanding of the idea, we only consider one grid point and temporarily

ignore mod-one operation). Suppose O∗ = {s5, s7}. Then O\O∗ = {s1, s2, s3, s4, s6}.
Notice that s3 is not on the boundary of U (O\O∗) and thus is redundant in

detecting O∗, so what we need to discover the envelope-set of O\O∗, which is

{s1, s2, s4, s5} (the blackened unit squares). By following a sequence of 2-tuples

(s0, s1), (s1, s4), (s4, s6), (s6, sm+1), we can discover the monotone-set {s1, s4, s6} in

the first quadrant; by following (s0, s1), (s1, s2), (s2, s6), (s6, sm+1), we can discover

the monotone-set {s1, s2, s6} in the third quadrant; similarly, we can discover the

monotone-set {s1} in the second quadrant by following (s0, s1), (s1, sm+1), and dis-

cover the monotone-set {s6} in the fourth quadrant by following (s0, s6), (s6, sm+1).

The union of these four monotone-sets is the envelope-set of O\O∗. In realizing such

an idea, instead of following these sequences of 2-tuples separately, we follow their

combinations, which is the idea underlying the definition of 2-tuples in configurations.

123

674 Y. Ran et al.

Fig. 4 An illustration of detectable unit squares

The ultimate goal is to detect O∗ during the tacking. By Remark 2.5, every unit

square s ∈ O∗ protrudes out of the boundary of the envelope-set of (O\O∗)g , where g

is the unique grid point contained in s. If it protrudes out in the i-quadrant, then it can

be detected when tracking the monotone-set in the i-the quadrant. For example, unit

square s5 in Fig. 3 can be detected when moving from s4 to s6 in the first quadrant.

It can also be detected when moving from s2 to s6 in the third quadrant. When a unit

square in O∗ is detected, its weight is counted. A question is: if a unit square of O∗

can be detected multiple times, how to guarantee that its weight is counted only once?

This is where mod-one trick comes in. As to the integer k̃ and the vertical line � in

each configuration, they are used to help counting the number of fully-covered points.

The details will be clearer after we introduce some notations and how the DAG is

constructed.

Define the detectable region of 2-tuple (si
prev(g), si

curr (g)) to be

DR(si
prev(g), si

curr (g))

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{(x, y) : x(s1
prev(g)) < x < 1, y(s1

curr (g)) < y < 1}, if i = 1,

{(x, y) : 0 < x < x(s2
curr (g)), y(s2

prev(g)) < y < 1}, if i = 2,

{(x, y) : 0 < x < x(s3
curr (g)), 0 < y < y(s3

prev(g))}, if i = 3,

{(x, y) : x(s4
prev(g)) < x < 1, 0 < y < y(s4

curr (g))}, if i = 4.

A unit square s is detectable by (si
prev(g), si

curr (g)) if (x(s), y(s)) falls into the

detectable region of (si
prev(g), si

curr (g)). Denote by DS(si
prev(g), si

curr (g)) the set

of unit squares detectable by (si
prev(g), si

curr (g)). In the first figure of Fig. 4,

the blackened solid lines indicate s1
prev(g) and s1

curr (g) in the first quadrant. The

right-upper dashed box indicates the detectable region DR(s1
prev(g), s1

curr (g)), and

DS(s1
prev(g), s1

curr (g)) = {s2, s3, s4, s5}. The dashed boxes in the latter three figures

of Fig. 4 indicate DR(si
prev(g), si

curr (g)) for i = 2, 3, 4, respectively.

For a configuration v = (Sv, k̃v, �v), let Ov be the set of unit squares in those

2-tuples of Sv , Ov
g = Ov ∩ Og , DSv

g =
⋃4

i=1 DS(si
prev(g), si

curr (g)), and DSv =
⋃

g DSv
g . The DAG with parameter kb restricted to a block b is constructed as follows

and some explanations are given after the construction.

Definition 2.7 (DAG) The vertex set of the auxiliary digraph Gb,kb
in block b with

parameter kb consists of all configurations, a source vertex usrc, and a sink vertex

usink . The arcs in Gb,kb
are as follows.

123

Approximation algorithm for minimum partial multi-cover… 675

Table 1 A source-sink path in the DAG for the example in Fig. 3

� k̃ (s1
prev, s1

curr) (s2
prev, s2

curr) (s3
prev, s3

curr) (s4
prev, s4

curr) DS

u0 �0 0 (s0, s1) (s0, s1) (s0, s1) (s0, s6) ∅
u1 �1 0 (s1, s4) (s1, sm+1) (s1, s2) (s0, s6) {s7}
u2 �2 0 (s1, s4) (s1, sm+1) (s2, s6) (s0, s6) {s5, s7}
u4 �4 0 (s4, s6) (s1, sm+1) (s2, s6) (s0, s6) {s5, s7}
u6 �6 2 (s6, sm+1) (s1, sm+1) (s6, sm+1) (s6, sm+1) {s7}

(Arc between two configurations) For two configurations u = (Su, k̃u, �u) and

v = (Sv, k̃v, �v), there is an arc (u, v) in Gb,kb
if only if the following conditions

hold:

(i) x(�v) = x(s′) where x(s′) = ming,i {x(s
u,i
curr (g))}. By the definition of config-

urations, x(�u) < x(s
u,i
curr (g)) for all g and i . So, �v can be viewed as a sweep line

moving from �u to the right until it touches the first mod-one position of {su,i
curr (g)}g,i .

Let g′ be the unique grid point contained in s′ and I ′ = {i : s
u,i
curr (g

′) = s′}.
(i i) Su and Sv differ in exactly one grid point, namely g′, and for each i ∈ I ′,

s
v,i
prev(g

′) = s′ (that is, s
v,i
prev(g

′) = s
u,i
curr (g

′)). All the other 2-tuples are the same.

(i i i) k̃v is the sum of k̃u and the number of points between �u and �v which are

covered by
⋃

g U (DSu
g) and not covered by

⋃

g U (Ou
g).

The weight on arc (u, v) is set to be w(u, v) =
∑

d∈DSv\DSu cd .

(Arcs from source vertex to configurations) Let �0 be the sweep line with x(�0) = 0.

The source vertex sscr is linked to every vertex u = (Su, 0, �0) whose 2-tuples all have

the form (s0, si
curr (g)). The weight on such an arc is w(sscr , u) =

∑

d∈DSu cd .

(Arcs from configurations to sink vertex) Let �m+1 be the sweep line with x(�m+1) =
1. A vertex v = (Sv, k̃v, �v) whose 2-tuples all have the form (si

prev(g), sm+1) is

linked to the sink vertex ssink only when the sum of k̃v and the number of points

between sweep lines �v and �m+1 which are covered by
⋃

g U (DSv
g) and not covered

by
⋃

g U (Ov
g) is kb, and the weight on such an arc is set to be w(v, ssink) = 0.

As an illustration, the following is a source-sink path in the DAG for the example

in Fig. 3 with kb = 3: uscr u0u1u2u4u6usink

In this table, � j is the sweep line going through the mod-one position of s j . The

arcs have weights w(u0, u1) = cs7 , w(u1, u2) = cs5
, and w(uscr , u0) = w(u2, u4) =

w(u4, u6) = w(u6, usink) = 0. The weight of this path is cs5
+ cs7 which equals the

cost of the optimal solution. When the sweep line moves from �4 to �6, the two points

covered by DSu4 are counted, resulting in k̃u6 = 2. When the sweep line moves from

�6 to �m+1, the point covered by DSu6 is counted. Adding this point onto k̃u6 results

in 3 points fully covered, which is exactly the total covering requirement kb = 3, and

thus arc (u6, usink) exists.

The following lemma shows that any source-sink path in G corresponds to a feasible

solution of the MinPSMC-US instance whose cost is at most the weight of the path.

123

676 Y. Ran et al.

Lemma 2.8 Let Q = uscr u1 . . . ut usink be a source-sink path in Gb,kb
. Then the

set of unit squares O′ =
⋃t

i=1 DSui fully covers exactly kb points. Furthermore,

w(Q) ≥ c(O′).

Proof The first half of the lemma follows from the observation that the existence

of arc ut usink implies (by the definition of the DAG) that the set of unit squares

O′ =
⋃t

i=1 DSui fully covers exactly kb points. Also by the definition of the DAG,

w(ui−1, ui) =
∑

s∈DSui \DSui−1 cs for i = 1, . . . , t and w(ut , usink) = 0. So w(Q) =
∑t

i=1

(

∑

s∈DSui \DSui−1 cs

)

. Because the cost of every unit-square in O′ is counted in

the summation, the second half of the lemma is proved. ��

The next lemma shows that the optimal solution of the MinPSMC-US instance

corresponds to a source-sink path in G whose weight is equal to the cost of the

solution.

Lemma 2.9 Suppose O∗ is an optimal solution to MinPSMC-US restricted to block

b. Assume O∗ fully covers kb points of block b. Then there is a source-sink path Q in

Gb,kb
with c(O∗) = w(Q).

Proof The desired path Q will be constructed by tracking the envelope-sets

of {(O\O∗)g}g . Order the unit squares in the envelope-sets of {(O\O∗)g}g as

s1, s2, . . . , sT such that x(s1) < x(s2) < · · · < x(sT). For each grid point g, the

envelope-set of (O\O∗)g can be decomposed into four monotone-sets {M Sg,i }4
i=1.

Recall that virtual unit squares s0 and sm+1 can be regarded as belonging to every

monotone-set. Order unit squares in M Sg,i as {s(g,i),1, . . . , s(g,i),t(g,i)
}, where 0 =

x(s0) < x(s(g,i),1) < · · · x(s(g,i),t(g,i)
) < 1 = x(sm+1).

We construct a source-sink path Q = uscr u0u1 . . . uT usink as follows, where every

u j has the form (Su j , k̃u j , � j) and � j is the sweep line going through x(s j) for j =
0, 1, . . . , T (the idea is to track the envelope-sets by moving the sweep line step by

step along the mod-one positions of s0, s1, . . . , sT , sm+1). Referring to Table 1 for

the example in Fig. 3 might be helpful in understanding the construction. Let u0 =
(Su0 , 0, �0), where every 2-tuple in Su0 has the form (s0, s(g,i),1). Then (uscr , u0) is an

arc in G. Suppose by inductive hypothesis that we have found a path uscr u0 . . . u j−1 in

G. Let u j = (Su j , k̃u j , � j) be the configuration with the following structure. Suppose

g j is the unique grid point contained in s j . Let I j = {i : s
u j−1,i
curr (g j) = s j }. Since � j

immediately follows � j−1 and because s j ∈ M Sg j ,i for some i , we have I j �= ∅. For

every i ∈ I j , suppose s j is s(g,i),z , let (s
u j ,i
prev(g j), s

u j ,i
curr (g j)) = (s j , s(g,i),z+1). All the

other 2-tuples of Su j remain the same as in Su j−1 . Let k̃u j equal the sum of k̃u j−1 and

the number of points covered by
⋃

g U (DS
u j−1
g) and not covered by

⋃

g U (O
u j−1
g).

By Definitions 2.6 and 2.7, u j is a valid configuration and (u j−1, u j) is an arc in G.

Continuing in this way, we could find a path uscr u0u1 . . . uT , and for vertex uT , every

2-tuple in SuT has the form of (s(g,i),t(g,i)
, sm+1). We have observed that every unit

square in O∗ protrudes out of some monotone-set, so it belongs to some detectable

set of some configuration along the path. Since O∗ fully covers kb points, (uT , usink)

exists in G.

123

Approximation algorithm for minimum partial multi-cover… 677

When a unit square enters a detectable set, its weight is counted. Notice that a

unit square s can only enter a detectable set associated with the unique grid point

contained in s. A crucial observation is that due to the mod-one mapping, when

s enters a detectable set, it remains in the collection of detectable sets until it no

longer protrudes out of any of the four monotone-sets. So, any unit square in the

envelope-set O∗ is counted exactly once, namely when it first enters a detectable set.

So, w(Q) = c(O∗). ��

Combining Lemmas 2.8 and 2.9, we have the following result

Theorem 2.10 A shortest source-sink path in the auxiliary digraph Gb,kb
corresponds

to an optimal solution of the MinPSMC-US instance which fully covers exactly kb

points of block b.

2.3 Assembling local solutions

The algorithm for the original region implements the shifting and partition technique

which was first proposed by Hochbaum and Maass [11]. Assume that Q is a square

containing all the n points of P . Suppose that Q is of size q0 × q0 and

Q = {(x, y) : 0 ≤ x ≤ q0, 0 ≤ y ≤ q0},

For a constant q which will be determined later, let N = �q0/q�. Extend Q into square

Q0 = {(x, y) : − q ≤ x ≤ Nq,−q ≤ y ≤ Nq}.

Partition Q0 into (N + 1)2 blocks of size q × q. We denote this partition of Q0 by

P0. Note that the lower-left corner of P0 is (−q,−q). For integer a ∈ {0, . . . , q − 1},
construct a partition Pa for square Qa = {(x, y) : − q + a ≤ x ≤ Nq + a,−q + a ≤
y ≤ Nq +a} by shifting P0 by a vector (a, a). Notice that every Qa contains all points

of P . For each partition Pa , the extended square Qa is partitioned into (q +1)2 blocks.

We have to guess the number of points to be fully covered in each block. This can be

done by first ordering the nontrivial blocks as b1, b2, . . . , bt (a block is nontrivial if it

contains some point) and then processing them sequentially using the following status

transition formulae: let

B
k0

0 =
{

∅, k0 = 0.

null, otherwise,

and for i = 1, 2, . . . , t ,

B
ki

i = arg min{c(U (Rbi ,ki −k′
i
) ∪ B

k′
i

i−1) : 0 ≤ k′
i ≤ ki }. (1)

where Rb,kb
is a shortest source-sink path in Gb,kb

(if such a path does not exist, then

Rb,kb
= null and the cost of null is ∞). By induction, if B

k′
i

i−1 is a feasible solution to

the MinPSMC-US problem confined to the first i − 1 blocks fully covering k′
i points,

123

678 Y. Ran et al.

and if there exists a source-sink path in Gbi ,ki −k′
i
, then U (Rbi ,ki −k′

i
)∪ B

k′
i

i−1 is a feasible

solution to the MinPSMC-US problem confined to the first i blocks fully covering ki

points. By guessing k′
i which is the number of points to be fully covered in the previous

i − 1 blocks, operation (1) chooses B
ki

i to be the best one obtained in the above way.

Finally, let

Oa = arg min{c(B
kt
t) : kt ≥ k}

be the solution computed for partition Pa . The algorithm will output

arg min{c(Oa) : a = 0, 1, . . . , q − 1}.

The following theorem shows the performance of the algorithm.

Theorem 2.11 The dynamic programming computes a feasible solution for the

MinPSMC-US problem whose cost is at most (1 + ε) times the optimal value and

runs in time O(1
ε
n3mO(1/ε2)) by choosing q = �3/ε�.

Proof Let O∗ be an optimal solution to the MinPSMC-US instance. For any index

a = 0, 1, . . . , q − 1, and for any block b in Pa , let O∗
a,b be the set of unit squares in

O∗ which have nonempty intersections with b. Then O∗
a,b covers all points in b. By

Lemma 2.9, w(Ra,b) ≤ c(O∗
a,b). By Lemma 2.8, c(Ra,b) ≤ w(Ra,b). Hence

c(Oa) ≤
∑

block b of Qa

c(Ra,b) ≤
∑

block b of Qa

w(Ra,b) ≤
∑

block b of Qa

c(O∗
a,b). (2)

Let Ha (resp. Va) be the set of unit squares in O∗ which intersect some horizontal

(resp. vertical) grid lines of Pa . Observe that a unit square can intersect at most four

blocks of Pa . So,

∑

block b of Qa

c(O∗
a,b) ≤ c(O∗) + c(Ha) + 2c(Va). (3)

For two different partitions Pa and Pb, notice that a unit square can not be in both Ha

and Hb for a �= b. Hence
q−1
∑

a=0

c(Ha) ≤ c(O∗). (4)

Similarly,
q−1
∑

a=0

c(Va) ≤ c(O∗). (5)

123

Approximation algorithm for minimum partial multi-cover… 679

Summing both sides of (2) for a = 0, 1, . . . , q − 1, making use of (3), (4), (5), and

because c(O′) = mina=0,1,...,q−1 c(Oa), we have

q · c(O′) ≤
q−1
∑

a=0

c(Oa) ≤ q · c(O∗) +
q−1
∑

a=0

c(Ha) + 2

q−1
∑

a=0

c(Va) ≤ (q + 3)c(O∗).

It follows that

c(O′) ≤ (1 + 3/q)c(O∗) ≤ (1 + ε)c(O∗).

The approximation ratio is proved.

For the time complexity, notice that for each partition and for each block, there are

O(nmO(q2)) configurations, where the factor n comes from the number of choices

for k̃. So, the time needed to compute a shortest path in a DAG is now O(n2mO(q2)).

Furthermore, since we have to guess the number of points to be fully covered in

each block, the number of shortest paths computed for each block is O(n). Since we

consider the partitions P0, . . . , Pq−1, the combined time complexity is O(qn3mO(q2)).

Substituting q = �3/ε� into the expression, the running time is O(1
ε
n3mO(1/ε2)). ��

3 Conclusion and discussion

In this paper, for the geometric MinPSMC problem in which objects are unit squares,

under the assumption that rp = f p for all p ∈ P , we obtain a PTAS for MinPSMC-US.

Dropping out the assumption rp = f p (∀p ∈ P), we can modify the above algorithm

to yield a (1+ε)-approximation for MinPSMC-US the running time of which is related

with nO(rmax), where rmax = max{rp : p ∈ P} is the maximum covering requirement.

So, when rmax is upper bounded by a constant, it is a PTAS. How to obtain a PTAS (or

less ambitious, a constant approximation) for MinPSMC-US without any restriction

on rp is an interesting topic. Notice that mod-one operation can only be used for unit

square case. New techniques have to be further explored for the geometric MinPSMC

problem with other objects such as unit disks.

Acknowledgements This research work is supported in part by NSFC (11901533, U20A2068, 11771013),

ZJNSFC (LD19A010001), and NSF (1907472).

References

1. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algo-

rithms 39, 137–144 (2001)

2. Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sampling. ESA LNCS

7501, 145–156 (2012)

3. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set

cover via improved quasi-uniform sampling. In: Proceedings of the Twenty-Third Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, pp. 1576–1585 (2012)

123

680 Y. Ran et al.

4. Chan, T.M., Hu, N.: Geometric red-blue set cover for unit squares and related problems. Comput.

Geom. 48(5), 380–385 (2015)

5. Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multi-cover problem in geometric settings. ACM

Trans. Algorithms 9(1), Article 9 (2012)

6. Chlamtáč, E., Dinitz, M., Konrad, C., Kortsarz, G.: The densest k-subhypergraph problem. SIAM J.

Discrete Math. 32(2), 1458–1477 (2018)

7. Chlamtáč, E., Dinitz, M., Krauthgamer, R.: Everywhere-sparse spanners via dense subgraphs. In: 53rd

Annual IEEE Symposium on Foundations of Computer Science, FOCS2012, New Brunswick, NJ,

USA, pp. 758–767 (212)

8. Chlamtáč, E., Dinitz, M., Makarychev, Y.: Minimizing the union: tight approximations for small set

bipartite vertex expansion. In: SODA’17, pp. 881–899

9. Gandhi, R., Khuller, S., Aravind, S.: Approximation algorithms for partial covering problems. J. Algo-

rithms 53(1), 55–84 (2004)

10. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical Society, Providence

(2011)

11. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image

processing and VLSI. J. ACM 32, 130–136 (1985)

12. Inamdar, T.: Local search for geometric partial covering problems. In: CCCG2019, Edmonton, pp.

Canada, 242–249 (2019)

13. Inamdar, T., Varadarajan. K.R.: On partial covering for geometric set systems. In: 34th International

Symposium on Computational Geometry, pp. 47:1–47:14 (2018)

14. Manurangsi, P.: Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph.

STOC2017, Montreal, PQ, Canada, June 19–23, pp. 954–961

15. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

16. Ran, Y., Zhang, Z., Du, H., Zhu, Y.: Approximation algorithm for partial positive influence problem

in social network. J. Comb. Optim. 33, 791–802 (2017)

17. Ran, Y., Shi, Y., Zhang, Z.: Local ratio method on partial set multi-cover. J. Comb. Optim. 34(1),

302–313 (2017)

18. Ran, Y., Shi, Y., Tang, C., Zhang, Z.: A primal-dual algorithm for the minimum partial set multi-cover

problem. J. Comb. Optim. 39(3), 725–746 (2020). A preliminary version appeared in COCOA’18,

Atlanta, GA, USA, December 15–17, LNCS, vol. 11346, pp. 372–385

19. Ran, Y., Zhang, Z., Tang, S., Du, D.-Z.: Breaking the rmax barrier: enhanced approximation algorithms

for partial set multi-cover problem. Informs J. Comput. (2020). https://doi.org/10.1287/ijoc.2020.0975

20. Shi, Y., Ran, Y., Zhang, Z., Willson, J., Tong, G., Du, D.-Z.: Approximation algorithm for the partial

set multi-cover problem. J. Glob. Optim. 75, 1133–1146 (2019)

21. Shi, Y., Ran, Y., Zhang, Z., Du, D.-Z.: A bicriteria algorithm for the minimum submodular cost partial

set multi-cover problem. Theor. Comput. Sci. 803, 1–9 (2020). A preliminary version appeared in

AAIM2018, Dallas, TX, USA, December 3–4, LNCS, vol. 11343, pp. 62–73

22. Wang, F., Camacho, E., Xu, K.: Positive influence dominating set in online social networks. In:

COCOA’09, LNCS, vol. 5573, pp. 313–321 (2009)

23. Wang, F., Du, H., Camacho, E., Xu, K., Lee, W., Shi, Y., Shan, S.: On positive influence dominating

sets in social networks. Theor. Comput. Sci. 412, 265–269 (2011)

24. Zhang, Z., Shi, Y., Willson, J., Du, D.-Z., Tong, G.: Viral marketing with positive influence. In:

INFOCOM2017, Atlanta, GA, USA, May 1–4, pp. 1–8

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

https://doi.org/10.1287/ijoc.2020.0975

	Approximation algorithm for minimum partial multi-cover under a geometric setting
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Our contributions

	2 A PTAS for MinPSMC-US
	2.1 Outline of the method and some preliminaries
	2.2 Dynamic programming for MinPSMC-US in a block
	2.3 Assembling local solutions

	3 Conclusion and discussion
	Acknowledgements
	References

