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ARTICLE INFO ABSTRACT

Keywords: Parameter optimization or “data fitting” is a computational process that identifies a set of parameter values that
Optimization best describe an experimental data set. Parameter optimization is commonly carried out using a computer
D_ata ﬁtting program utilizing a non-linear least squares (NLLS) algorithm. These algorithms work by continuously refining a
?L‘ler::: dynamics user supplied initial guess resulting in a systematic increase in the goodness of fit. A well-understood problem
with this class of algorithms is that in the case of models with correlated parameters the optimized output pa-
rameters are initial guess dependent. This dependency can potentially introduce user bias into the resultant
analysis. While many optimization programs exist, few address this dilemma. Here we present a data analysis
tool, MENOTR, that is capable of overcoming the initial guess dependence in parameter optimization. Several
case studies with published experimental data are presented to demonstrate the capabilities of this tool. The
results presented here demonstrate how to effectively overcome the initial guess dependence of NLLS leading to
greater confidence that the resultant optimized parameters are the best possible set of parameters to describe an
experimental data set. While the optimization strategies implemented within MENOTR are not entirely novel, the
application of these strategies to optimize parameters in kinetic and thermodynamic biochemical models is
uncommon. MENOTR was designed to require minimal modification to accommodate a new model making it
immediately accessible to researchers with a limited programming background. We anticipate that this toolbox
can be used in a wide variety of data analysis applications. Prototype versions of this toolbox have been used in a
number of published investigations already, as well as ongoing work with chemical-quenched flow, stopped-
flow, and molecular tweezers data sets.
Statement of significance: Non-linear least squares (NLLS) is a common form of parameter optimization in
biochemistry kinetic and thermodynamic investigations These algorithms are used to fit experimental data sets
and report corresponding parameter values. The algorithms are fast and able to provide good quality solutions
for models involving few parameters. However, initial guess dependence is a well-known drawback of this
optimization strategy that can introduce user bias. An alternative method of parameter optimization are genetic
algorithms (GA). Genetic algorithms do not have an initial guess dependence but are slow at arriving at the best
set of fit parameters. Here, we present MENOTR, a parameter optimization toolbox utilizing a hybrid GA/NLLS
algorithm. The toolbox maximizes the strength of each strategy while minimizing the inherent drawbacks.

1. Introduction fluorescence [1-9], absorbance [10-12], heat [3,13], force [14,15], or
pixel density [16-19] to name only a few. The first task of the parameter

Parameter optimization, or more commonly ‘data fitting’, is a pro- optimization process is to determine a mathematical model that relates
cess by which the parameters for a model are optimized to best describe the experimental observable to an experimentally adjustable indepen-
the experimental observations. In the context of biochemical kinetics dent variable, i.e. time, concentration, etc. The set of parameters that are
and thermodynamics, experimental observables are often changes in sought to be determined with the mathematical model could be kinetic
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rate constants, equilibrium constants, enthalpy, etc. The objective is to
find a set of parameters that when applied to the model best describe the
experimental observables. Once a set of parameters are found, the sec-
ond task is to evaluate how well these parameters are determined. This
task includes examining the uncertainty on each of the optimized
parameter values as well as the error space around the parameter. The
last task, and arguably the primary goal, is to discern the meaning of the
parameters in the context of a given system being investigated.

Since the 1980s, nonlinear least squares (NLLS) analysis has been the
standard method for performing parameter optimization by biochemists
[20-24]. While this analysis strategy is easy to use and robust in
reasonably simple models, difficulties are encountered with complex
models especially ones involving correlated parameters [1,5,25,26]. As
the systems being investigated become increasingly more complex, more
advanced analysis tools and strategies are vital. However, to our
knowledge, little has been done to apply more sophisticated optimiza-
tion methods to biochemical kinetic and thermodynamic investigations.
This observation is likely a consequence of more advanced optimization
methods requiring additional programming expertise. Additionally,
NLLS does not lend itself to exploiting available advantages of parallel
processing. Consequently, little has been done to capitalize on modern
computational power.

Numerous programs use NLLS to optimize parameters in a user
defined model. A few examples of common programs used by bio-
chemists are are KaleidaGraph (Synergy Software, Reading PA),
Graphical Analysis (Vernier, Beaverton OR), Scientist (Micromath, Saint
Louis MO), Origin (OriginLab, Northampton, MA), and KinTek Explorer
(KinTek Corporation, Austin TX). A general overview of the mathe-
matical details of NLLS algorithms and a great initial start for re-
searchers from a chemistry or molecular biology background is Chapter
6 from Data Analysis in Biochemistry and Biophysics and Michael L.
Johnson’s methods chapter on using least-squares techniques in
biochemistry [22]. Many of the limitations of the technique are
described there. However, few solutions to the limitations were offered.

A number of characteristics are conserved across all NLLS tech-
niques. These algorithms require an initial guess of the parameter
values. For simple models, less certainty on the guess is required for
convergence on the best answer. However, for models that are more
complicated the guess must be reasonably close to expect convergence.
The algorithm will iteratively improve the initial set of parameters until
there is no longer a significant difference between the preceding set of
parameters and the resultant improved parameters [27]. An analogy of
this process is a ball placed on a curved surface as illustrated in Fig. 1 a.
In this analogy, the ball represents the current set of parameters while
the surface is the goodness of the fit parameters, e.g. chi-squared. The
ball will roll down the surface until the ball arrives at the minimum chi-
squared value. The bottom of the surface corresponds to the best esti-
mate of the given parameters, since it yields the lowest chi-squared.
NLLS is classified as a deterministic method because if the algorithm is
started at the same starting point it will always arrive at the same result.
The NLLS algorithm does not contain any randomness.

It is important to point out that simple NLLS routines always go
downhill as illustrated in Fig. 1a. That is to say, the routine seeks lower
and lower values of the chi-squared starting from the initial guess. This
immediately leads to a dependence of the results on the initial user
provided guess [28,29]. If the error contour does not have local minima,
then NLLS will arrive at the same global minimum irrespective of initial
guess as illustrated by Fig. 1a. However, consider the case where a local
minimum is present as illustrated in Fig. 1b. If one always chooses initial
guesses from the right-hand side of the curve, then a NLLS routine will
always find the minimum on the right. Whereas, if initial guesses are
chosen on the left-hand side, then the NLLS optimization will always
find the minimum on the left, which, in this example is the lowest. This
type of emergence of local minima often occurs with correlated pa-
rameters. Moderately difficult mathematical strategies to overcome
correlated parameters include the use of orthogonal polynomials and
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Fig. 1. Illustration outlining deterministic, random, and hybrid algorithms
approach to finding minima in error contour. a) NLLS, a deterministic method
will quickly converge on solution. If one minimum is present, the algorithm will
converge on identical position irrespective of starting point. b) NLLS has well
known initial guess bias in cases involving multiple minima in error contour.
Different starting points will result in different optimized parameters. c¢) The
genetic algorithm will randomly probe the error space at different parameter
values. This algorithm overcomes local minima but has difficulty in finding the
absolute minimum. d) MENOTR, a hybrid NLLS-genetic algorithm, takes
advantage of the strengths of both approaches while minimizing the weak-
nesses. The genetic algorithm component of MENOTR escapes local minima and
the NLLS quickly converges on a solution.

Fourier series analysis [25,30].

One way a user can overcome local minima problems is by starting
NLLS routines with multiple initial guesses and tabulating the resulting
optimized parameters with the corresponding goodness of fit. The
tabulated values are then ranked based on their respective goodness of
fit, and the minimum value is assumed to be the global minimum. A
reasonable question naturally arises: when have enough different initial
guesses been investigated to conclude that the lowest goodness of fit
score has yielded the best parameter values achievable? The answer is as
many as possible. However, this process is both tedious and laborious.
Moreover, the answer will not be the same for every model. The
researcher may also be tempted to only use initial guesses, which yield
successful convergence onto a result. This is because making large
changes in the initial guesses can often lead to divergence or “crashing”
of the software, both of which are often interpreted as evidence of a bad
model. However, failure of code should not be interpreted as failure of
the model. Thus, the method of manually testing many different initial
guesses is not only a laborious task but also one that can easily introduce
user bias.

Here we sought to develop a method that overcomes this initial guess
dependence. On the surface, this sounds trivial; code a computer to give
many starting points to a NLLS routine. However, the problem with that
solution is what was articulated above. If initial guesses that are too far
from a local minimum or the best fit are given to a NLLS routine, then the
routine is likely to fail and failure of the routine cannot be used to rule
out a set of parameters.

Metaheuristics are “upper-level methodologies” (meta) that work “to
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discover” (heuristic) solutions to a problem. Metaheuristics have been
an avenue of active research for nearly four decades and have yielded
good results in solving high-level optimization problems across a variety
of fields [31-33]. Examples include simulated annealing, ant colony
optimization, particle swarm optimization, bees algorithm, and the ge-
netic algorithm [34-39]. As might be obvious from the names, these
methods are often nature-inspired and utilize ideas like mutation,
fitness, gene crossover, and natural selection to solve optimization
problems [40]. The underlying characteristic of these methods that
lends itself to solving such problems is the stochastic nature of these
processes.

The genetic algorithm (GA) is a well-established optimization
method. This method mimics the principles of biological evolution to
arrive at the best solution or to identify the parameter that best describes
the experimental data. A number of books are available to explain the
details concerning GAs, but here we will discuss some general features
[40-42].

Consider the simplest case involving a one parameter model, y =
m*x, where the slope, m, is the parameter to be optimized. An initial
value for m is provided by the user and is used to randomly generate
many unique initial guesses. This set of initial guesses is referred to as a
population matrix. For each of the experimental x and y pairs, a simu-
lated set of x and y pairs are generated from each of the initial guesses in
the population matrix, and a corresponding chi-squared is calculated.
The example in Fig. 1 uses chi-squared to quantify goodness of fit but
other metrics, like root mean squared deviation (RMSD) or variance
could be used. Each arrow in Fig. 1 c illustrates how different parameter
values result in different chi-squared values. The sampling of the
parameter values to generate the population is a stochastic process
meaning the sampling is discreet and random. The resultant chi-squared
values are ranked and the parameters with the lowest chi-squared are
considered the best. Unlike NLLS methods, which are trying to find the
best parameters by systematically minimizing the chi-squared value of
the fit, the GA is significantly less likely to be trapped in local minima.
Equally important, the calculation of chi-squared is a simple mathe-
matical operation and the code is unlikely to fail at this stage. This is in
stark contrast to NLLS where the hunt for the minimum is often a failing
point of the code because the code is trying to find a minimum by
executing the first derivative of the fitting function, setting it equal to
zero, and then finding solutions. In the last step of the GA, a new pop-
ulation matrix is formed with values centered around the ‘best fit’
parameter value from the previous population. This process is per-
formed iteratively until the user defined stopping criteria are met. In
effect, this strategy results in thousands of initial guesses. While genetic
algorithms do not get stuck in local minima all GAs have difficulty in
resolving the absolute minimum. This is a direct consequence of the
stochastic nature of GAs. The only way to reach the absolute minimum
in a GA is for the optimal parameters to be randomly selected in the
population, which is inherently unlikely.

Here we report the development of MENOTR, a hybrid algorithm
that balances the strengths of NLLS and GAs to offset their corresponding
limitations. MENOTR, Multi-start Evolutionary Nonlinear OpTimizeR
was developed from the MATLAB (MathWorks, Inc., Natick MA) scripts
used in our previous kinetic data analysis and was designed to address
NLLS’s dependence on initial guesses through an easy to use MATLAB
toolbox [17,19]. MENOTR was designed to give researchers with a
limited coding background access to a more advanced optimization tool
for the analysis of complex kinetic and thermodynamic models.
MENOTR is a hybrid NLLS-genetic algorithm in which the GA portion of
the code ranks thousands of initial guesses before performing NLLS
optimization. This process is repeated multiple times, further refining
the parameters to achieve a lower chi-squared until the global minimum
is reached. This approach eliminates the optimization routine’s depen-
dence on the user provided initial guesses and overall minimizes user
bias. In addition, MENOTR provides a greater search of the possible
parameter values compared to what one could achieve by manually
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varying the initial guesses, thus giving greater confidence that the
resultant optimized parameter values are “the best”. Fig. 2 outlines a
sampling of the features present in MENOTR. MENOTR is capable of
accommodating a number of different types of models describing
experimental data. Such examples are systems of ordinary differential
equations describing chemical kinetics and closed form expressions
involving both simple and complex mathematical expressions (addition,
subtraction, Laplace transform, inverse Laplace transform, Fourier
transform, etc.). In addition, MENOTR can globally optimize parameters
present in equations describing different experimental observables. An
example is shared parameters used to simultaneously describe changes
in both fluorescence and anisotropy [43].

MENOTR has additional functionalities that are of immediate use-
fulness. MENOTR contains two methods for calculating parameter un-
certainty. The first utilizes Monte Carlo simulations and reflects how
reproducible fit parameters would be if a large number of replicates
were performed [44]. The second method, grid search analysis, iden-
tifies confidence regions for each parameter. These regions correspond
to parameter values that describe the experimental data. These methods
allow a user to identify parameters that are correlated and aids in
identifying unconstrained parameters. Additionally, MENOTR’s ability
to run independently of user input makes it ideal for being run on high-
performance computing clusters (HPC). Many parameter optimization
programs do not have the ability to run independently of user input and
doing so increases user productivity by allowing multiple models to be
optimized simultaneously.

Here we present three case studies to demonstrate MENOTR’s
parameter optimization capabilities. The first case study contains pub-
lished data describing DNA unwinding by the helicase RecBCD, the
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Fig. 2. Functionalities of the MENOTR toolbox. MENOTR can optimize pa-
rameters describing floating or static models in addition to closed form ex-
pressions. Errors on resultant parameters may be ascertained using Monte Carlo
or grid search analysis. The toolbox can be run with minimal user intervention,
making it ideal for being launched on a node of a high-performance com-
puter cluster.

Ideal for running
on computer clusters




Z.M. Ingram et al.

second presents published data describing polypeptide unfolding/
translocation catalyzed by the AAA+ chaperone ClpA, and the last study
uses simulated data describing three classic thermodynamic ligand
binding models. The first two examples were chosen because the data
were previously published, and the models used in the analysis are
mathematically challenging. The equations used are first derived in the
Laplace domain. The numerical inverse Laplace transform is then
necessary to simulate time courses in the time domain. Additionally,
several parameters are correlated making the optimization extremely
challenging. The third example was chosen because it requires the use of
implicit fitting, which again results in a non-trivial optimization prob-
lem. Implicit equations emerge in even simple thermodynamic models
describing ligand binding. Finally, two simple examples with simulated
data described by a line and kinetic model are present in the supple-
mental as a resource for training new users.

2. Results & discussion

Genetic algorithms are unlikely to get stuck in local minima, but they
do have difficulty converging on the absolute minimum. In contrast,
NLLS will easily find the absolute minimum if an initial guess is provided
that is close to that minimum. Thus, we hypothesized that by combining
the two we could overcome the limitations of both. After many iterations
of the GA, a set of parameters could be provided to the NLLS routine that
could be confidently assumed to be close to the absolute minimum. In
addition, a third algorithm is used that we refer to as a multi-start
routine. The initial user provided guess is first coarsely refined by the
GA before being further refined by NLLS. This process is setup in a cyclic
form where the output of the NLLS algorithm is passed back to the GA
and the process is repeated until an optimal value is achieved. The
outcome is a survey of the error surface illustrated in Fig. 1a—d. This idea
is not novel, several research fields have implemented variations of this
optimization strategy including mathematics [45,46], engineering
[47,48], computer science [49], and systems biology. However, to our
knowledge no readily accessible analysis tool is available to optimize
parameters in the complex kinetic and thermodynamic models that we
will be presenting here. Moreover, we did not find any available tools
that were easily adaptable to the unique challenges presented by tran-
sient state kinetic data and the statistical thermodynamic models
required to describe the thermodynamics of ligand binding.

2.1. Overview of how MENOTR optimizes parameters

MENOTR, Multi-start Evolutionary NLLS OpTimizeR, is a custom-
built MATLAB toolbox used to optimize parameters that requires mini-
mal user intervention. A general explanation of how MENOTR optimizes
parameters is shown below while a more nuanced description can be
found in the supporting material and throughout the source code.

Like all optimization algorithms, MENOTR requires a set of user
supplied initial guesses as a first step, depicted at the top of Fig. 3. While
the exact values are unknown, typically a user will have reasonable
guesses for each parameter value. Preferably within one or two orders of
magnitude of the optimal value. Initial guesses closer to that of the true
answer result in faster optimizations. In MENOTR, these initial guesses
are used to generate a search area of different parameter values. It is
often advantageous to establish a parameter search area encompassing
values spanning several orders of magnitude. MENOTR uses the log; of
each parameter value to establish the order of magnitude of the initial
guesses. A population of different parameter values is then generated for
each initial guess. The generated population values are a Gaussian dis-
tribution centered on the log;o of the initial guess while the standard
deviation is held constant at 1.The standard deviation value of 1 was
chosen to create a population encompassing parameter values one order
of magnitude above and below the initial guess. For example, consider
an initial guess for a parameter, k;, is 100 s~L. MENOTR first takes the
log of this value, log,0(100) = 2. A gaussian distribution of parameter
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Fig. 3. Flow diagram overview illustrating how MENOTR optimizes parame-
ters. In the first step, an initial guess is passed to three different optimization
routines. The parameters are optimized individually and then pooled together.
The pooled parameters are then compared to see if they are different. If they are
different, then the best set of parameters is used as the new initial guess. If they
are identical then the parameter values are reported.

values is generated centered on 2 with a standard deviation of 1. The
antilog of each parameter value is calculated resulting in parameter
values from ~10 5! to ~1000 s~ .

Once the initial guess values are chosen for each parameter, the
parameter values are passed to a user-defined number of optimization
routines, this is the multi-start component of the algorithm. The default
number of optimization routines in MENOTR is three, this is depicted in
Fig. 3 with the red, yellow, and blue boxes. Each of the optimization
routines begin by generating a separate parameter population (param-
eter search area) as described in the previous paragraph. While the mean
of each parameter population within an optimization routine will be
identical, the individual parameter values within each population will
be different and lead to diversification of the surveyed parameter values.
Within each optimization routine, a genetic algorithm will be used to
identify parameter values with small chi-squared values. Some of the
best parameter values are then passed to a NLLS algorithm that further
optimizes the parameter values. The algorithms have been structured to
take advantage of the inherent strengths of each optimization method-
ology while minimizing the drawbacks. A more detailed explanation of
how the genetic algorithm and NLLS algorithm work to achieve opti-
mized parameter values can be found in the supporting material. Each of
the optimization routines are performed independently with no cross-
over of information between optimization routines. The separation of
the optimization routines is a multi-start process because each optimi-
zation routine is starting from a different population of parameter
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values.

Upon completion, the set of parameters with the lowest chi-squared
value from each optimization routine are pooled together with their
corresponding chi-squared value. Shown in Fig. 3 is an example where
three kinetic rate constants, k;—k3, are being optimized to describe a
hypothetical experimental data set. Each optimization routine results in
a different set of parameter values and a corresponding chi-squared
value. After being pooled, the parameter sets are then ranked based
on the chi-squared values.

The next task is to determine if the optimized parameters are the best
possible parameters or if further refinement is necessary. We designed
MENOTR to address this question by requiring the pooled parameter
values to satisfy two conditions. The first condition is that the reported
best parameter values between different optimization routines should
agree. If disagreement is present between the parameter values, then
further refinement is necessary, and the parameter set with the lowest
chi-squared is used as the initial guess for another round of optimization
routines. The second condition that must be met is that the chi-squared
must stop changing between optimization routines. If a set of parameters
has been fully optimized, then the chi-squared should be minimized and
a smaller chi-squared is not achievable. Thus, if multiple optimization
routines are all reporting the same chi-squared value a smaller chi-
squared value is unlikely. If different chi-squared values are reported
from the optimization routines, then the parameter set with the smallest
chi-squared is used as the initial guess for a second round of optimiza-
tion. However, neither the parameters nor the chi-squared is ever going
to be mathematically exactly equal. Rather for practical purposes it is
necessary to determine equality based on some tolerancer. MENOTR has
this built-in capability and when both stopping conditions are met,
MENOTR reports the optimized set of parameters with the correspond-
ing chi-squared value as the final solution.

2.2. Parameter uncertainty analysis in MENOTR

Once the parameters are optimized for a given model, the next step is
to measure the uncertainty on each of the optimized parameters. Such
error measurements are beneficial for determining trends in parameter
values, or even more simply, when two parameter values are statistically
different or identical. MENOTR presents two different strategies to
assess parameter uncertainty: Monte Carlo analysis and Grid-search
analysis.

Monte Carlo simulations for the purpose of uncertainty estimates on
parameters assumes that: 1) the model accurately describes the experi-
mental observable and 2) the deviation between the fit and the experi-
mental observable is similar to the deviation one would expect for many
experimental replicates. During a Monte Carlo simulation, a large
number of simulated data sets are generated by applying random error
to each data point of the same magnitude as the deviation between the
experimental observable and the best fit. Thus, these simulated data sets
represent simulated replicates with error comparable to that of the
experimental observable and the best fit. Each simulated time course is
subjected to NLLS analysis using the set of best-fit parameters of the data
set for initial guesses. The resultant best-fit parameters for each simu-
lated data set are tabulated and a standard deviation for each parameter
is calculated. This standard deviation represents an estimate of the error
associated with that parameter if the experiment had been repeated as
many times as data sets were simulated. This allows for estimates of
error that would require unrealistic numbers of experimental replicates.
It is important to note that Monte Carlo lends itself to parallel
computing, and as such can be performed quickly within the MENTOR
toolbox.

In addition to the determination of the standard deviation on each
parameter the Monte Carlo simulation reveals information about
parameter correlation. After the Monte Carlo simulation is done the
experimentalist is left with thousands of estimates of the parameters that
represent a simulation of thousands of experimental replicates.
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Construction of plots of one parameter vs. another reveal how the
parameter pairs are correlated or not correlated. An analysis of this
parameter correlation can aid the experimentalist in interpreting the
level of confidence one has in a given parameter and protect against over
interpreting the determined values.

Grid-search analysis is another method for calculating the uncer-
tainty on fit parameters [17-19,50,51]. However, grid-searching yields
additional information on the level of constraint of a given parameter
and the symmetry or asymmetry in the error space. In this method,
values larger and smaller than an optimized parameter value are
selected. The parameter is fixed at each of its selected values and a NLLS
minimization is performed to optimize all other parameters. Initial
guesses for the NLLS routine are the previously optimized parameters.
The tabulated chi-squared values are then used to generate a plot of chi-
squared as a function of the parameter being searched. The curve is
concave up with a minimum at the optimized parameter value. In
principle, the curve rises to the left and right of the best-fit value,
because deviating from this optimized value causes an increase in the
chi-squared. The chi-squared values on the y-axis are normalized to the
minimum chi-squared value and this generates a new set of numbers
called the F-statistic values. An example contour from a parameter grid-
search is shown in Fig. 4. The minimum of the contour is the optimized
parameter value (~12.5) and the F-statistic values increase to the left
and right of this minimum indicating that varying this parameter causes
an increase in the chi-squared values. The minimum of the curve is 1,
because the error values are normalized to the minimum chi-squared
value. In MENOTR, a 68% confidence interval is the default selection
and the F-critical is automatically calculated for the user-supplied data
set. In Fig. 4, the F-critical line is displayed as the horizontal black
dashed line. The intersection of the F-calculated value with the F-critical
value generates a 68% confidence lower and upper bound for the
parameter value. In MENOTR, uncertainty on fit parameters are calcu-
lated using a built-in script that has been adapted to work with the
outputs from the parameter optimization routine, making the process
easily executed and user friendly.

In principle a plot such as that shown in Fig. 4 should be a symmetric
parabola. However, the parabola is often asymmetric. The asymmetry
reveals that the error on the left of the parameter is different from the

1.08 r T T T T T

1.06 | .

1.04

1.02 |

F-Statistic

1.00

098 1 1 1 1 1 1
6 8 10 12 14 16 18 20

Parameter Value

Fig. 4. Example of resultant contour generated from grid-search analysis for a
given parameter. (Circles) Individual F-statistic values, (solid lines) interpola-
tion between data points, and (Broken line) F-critical value.
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error on the right. That is to say, there is asymmetric error on the
parameter. Simple calculation of the standard deviation, standard error,
etc. available in most fitting routines will never reveal information on
asymmetric error. Knowledge of this asymmetry allows the experimen-
talist to better understand how well a given parameter is constrained
and protects the experimentalist from overinterpreting parameters.

2.3. Case studies

2.3.1. Case Study I: Duplex DNA unwinding catalyzed by RecBCD helicase

Case Study 1 is an analysis of a set of DNA unwinding time courses
that were previously published in 2004 by Lucius et al. These time
courses, shown as solid traces in Fig. 5, were collected in the investi-
gation of DNA unwinding catalyzed by E. coli RecBCD using a FRET
based stopped-flow assay. This assay monitors the FRET signal between
a Cy3 and Cy5 pair attached on either side of a nick in a duplex DNA. At
time zero, the signal from Cy3 is low and the signal for Cy5 is high. Upon
DNA unwinding, the two dyes are separated, resulting in an increase in
Cy3signal and a decrease in Cy5 signal. The time courses shown in Fig. 5
come from the Cy3 signal in the experiment.

Weighted global nonlinear least squares analysis of unwinding by
RecBCD was performed using Scheme 1 and Eq. (1). The resulting
published fit parameters are shown in Table 1. The fit was performed for
eight different lengths of duplex substrates using a fitting strategy where
the parameters ky, k¢, knp, m, and h are constrained as global fitting
parameters with the same value for all duplex lengths. While A and x are
local parameters with unique values for each duplex length. This fit was
also subjected to Monte Carlo analysis to generate uncertainties at 68%
confidence; these correspond to the error on the fit parameters in Table 1
for the previously published fits.

(R .D)NP
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Table 1
Optimized parameter comparison for kinetic benchmarks I and II.

RecBCD-catalyzed DNA unwinding parameters

Parameter ky(s™H ke (s™H knp (5D m (bp h (steps)
step’l)
Published 200 + 40 51+5 6.0 + 0.3 3.4+ 0.6 3.2+0.3
[2]
MENOTR 185.5 + 549 + 6.49 + 3.68 + 0.02 331+
0.1 0.6 0.08 0.04
ClpA-catalyzed polypeptide translocation parameters
Parameter kr(s™h) ka ke s™H knp (s71) m (aa
™ step™)
Published 1.39 + ND 0.22 £ 0.01 0.047 £ 140+ 1.5
[11 0.06 0.001
MENOTR 1.5+0.2 ND 0.165 + 0.040 + 14+1
0.008 0.003

ky, unwinding rate constant; k¢, slow conformational change; kyp, rate constant
for change to productive complex; m, kinetic step size; h, number of steps with
rate constant k¢; k7, translocation rate constant; kg, dissociation rate constant.
Errors reported in this plot come from Monte Carlo analysis of 1000 simulated
time courses.

analysis using MENOTR while its published value is (6.0 + 0.3) s™1.

A key difference in the execution of these fits is that MENOTR ran
unsupervised until an optimized set of parameters was reported. In order
to be confident that the lowest chi-square was determined, the previous
published NLLS fit required the user to manually start the NLLS routine
at different starting points, record the resultant outputs, and try new
starting points. In contrast, the MENOTR analysis represents the best fit

—U 5 5sDNA

(€8]

p o L/m )
ot )

s(ke + 5)" (kup + 5) (ke + s)Hm

Parameter optimization using MENOTR was executed on the same
eight published RecBCD time courses using Scheme 1 and Eq. (1). Three
of the eight RecBCD time courses along with the best-fit lines generated
from the MENOTR optimized parameters are shown in Fig. 5. Inspection
of the time courses and best-fit line indicate good agreement between
the model and the data. The chi-squared value from the fit using
MENOTR was found to be 367, which is ~71% smaller than the previ-
ously published fit chi-squared of 515. The MENOTR fit was found to be
statistically better at a 68% confidence interval by F-statistics.

The fit parameters determined using MENOTR and the previously
reported values are compared in Table 1. Interestingly, the kinetic pa-
rameters did not vary dramatically compared to published results
despite finding a statistically better fit. To determine if the parameters
were within error of the previously published values, a Monte Carlo
analysis was performed to generate uncertainties. The uncertainties on
the parameters shown in Table 1 are from the Monte Carlo simulation
and indicate the 68% confidence interval. All but one of the kinetic
parameters were found to be within error of the previous results. The
parameter kyp was found to have a value of (6.49 + 0.08) s7! from the

-1l Scheme 1

after starting from thousands of different initial guesses. This would be
an intractable number of restarts when doing manually initiated NLLS.
However, it is the number of restarts that one needs to have confidence
that the lowest chi-squared has been found and the analysis is not simply
“stuck” in a local minimum. Finally, the MENOTR analysis was per-
formed completely unsupervised and finished in approximately 24 h on
a quad-core computer. Table 1. Optimized parameter comparison for
kinetic benchmarks I and II.

In this study, parameter optimizations performed with MENOTR
were able to reproduce results comparable to methods that implemented
only NLLS strategies. The simulated best-fit lines and the values of the
kinetic parameters determined from the analysis using MENOTR agreed
with both the experimental time courses and the previously published
results. However, unlike previous analysis strategies, MENOTR was able
to perform this fit with minimal user intervention. By automating this
process three goals are achieved: 1) minimization of user bias, 2) ease of
use is improved, because no user intervention is necessary throughout
the optimization process, and 3) the user gains the ability to run multiple
model optimizations simultaneously on computer clusters which are
increasingly more accessible to researchers. The previously published
analysis using NLLS was carried out using a program called CONLIN
[52]. While robust, this program has a significant learning curve and
requires a user to manually probe different initial guesses and manually
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Fig. 5. MENTOR analysis of previously published single turnover RecBCD
catalyzed DNA unwinding. Fitting was performed globally across eight DNA
duplex lengths using Eq. (1). Parameters ky, k¢, knp, m, and h were assigned as
global parameters while A and x were local parameters for each length. Here we
show three representative data sets (colored traces) of duplex lengths (a) 24 bp,
(b) 43 bp, and (c) 60 bp with the corresponding best-fit simulations (black
traces) based on Eq. (1) and the optimized parameters (Table 1). A corre-
sponding figure for the original fits and analysis of this data can be found in
Lucius 2004, fig. 8 [1].

record which sets of initial guesses give rise to better chi-squared values.
Other programs utilizing NLLS are available, but few are able to opti-
mize models using Laplace transform/inverse Laplace transform func-
tions or sets of differential equations.

While the time courses analyzed in Case Study I are the time courses
published in the original manuscript, the resultant parameter uncer-
tainty values calculated from the Monte-Carlo analysis in MENOTR were
smaller for all parameter values compared to the published values. A few
analysis details may explain this observation. First, the previous analysis
resulted in a slightly higher variance of the fit compared to the lower
value obtained with MENOTR. Because the MENOTR analysis yielded a
lower variance, a smaller simulated noise value was applied in the
Monte Carlo simulations. Since there is less simulated error there is a
resultant lower error on the parameters. Second, it should be noted that
the parameter uncertainty analysis in MENOTR used 1000 Monte Carlo
simulations compared to 50 in the previous published analysis. In the
previously published Monte-Carlo simulation it was not possible to take
advantage of parallel processing. Each simulation was done by gener-
ating time courses by numerically solving the inverse Laplace transform
and then fitting those time courses by numerically solving the inverse
Laplace transform. Further, each one of those cycles were done
sequentially since they could not be done in parallel. Thus, doing more
than fifty cycles was inordinately time consuming. This problem is
solved by MENOTR since each cycle can be done in parallel. This is one
explanation for the differences observed in the parameter uncertainty
values. In general, it is recommended to perform hundreds of Monte
Carlo simulations.

By doing Monte Carlo simulations many things can be learned about
the data and the model being used to describe the data. For example,
plots of one parameter vs. another can yield insight into the degree of
parameter correlation. Also, the Grid search routine is another method
we have built into MENOTR for error analysis. But, in addition to
determining the uncertainty on a parameter, the grid search reveals
information on the level of constraint on a given parameter and
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asymmetries that may exist in the error space. Although both Monte-
Carlo and Grid Search will estimate parameter uncertainty and both
techniques yield additional insights, we recommend collecting the
experimental data at least three times, fitting each set of data indepen-
dently, and reporting the standard error on the resultant parameters
from three replicates. In our experience the parameter uncertainty
estimated by replicates is a better representation of the overall repro-
ducibility of the experimental observable. However, to yield the most
insight into the model and protect oneself from overfitting or over
interpretation we recommend all three, grid search, Monte Carlo, and
experimental replicates.

2.3.2. Case Study II: polypeptide translocation catalyzed by CIpA

The second case study covers the use of MENOTR in fitting time
courses describing polypeptide translocation catalyzed by E. coli ClpA.
In 2010, Rajendar et al. developed a fluorescence stopped-flow method
for studying ClIpA catalyzed translocation of polypeptide substrate [1].
The assay monitors the change in fluorescence signal of fluorecein-5-
maleimide as translocation occurs. When ClpA is bound to the poly-
peptide substrate the fluorescence is quenched. During translocation,
ClpA resides on the polypeptide substrate and the fluorescence remains
quenched. Upon completion of translocation, ClpA dissociates, and
fluorescence is restored. This assay allows for quantitative measure-
ments of the ClpA translocation kinetics. Translocation time courses
were collected for three polypeptide lengths shown in Fig. 6 as solid
colored traces. For this stopped-flow method signal can occur at every
dissociation step. Thus, Scheme 2, in contrast to Scheme 1, incorporates
a substrate, S, release step at each intermediate translocation step.
Weighted global nonlinear least squares analysis of polypeptide trans-
location catalyzed by ClpA was performed using a function S(t) derived
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Fig. 6. MENOTR analysis of previously published fluorescence time courses for
ClpA catalyzed polypeptide translocation. Translocation time courses were
collected on fluorescein-SsrA 30mer, 40mer and 50mer out to 200 s. Fitting was
performed globally across all three peptide lengths using Eq. (2). Parameters kr,
kq, ke, knp, h, m, and b were optimized globally, while A and x were optimized
locally for each length. The first 20 s of the time courses are plotted here as solid
traces with the dashes representing a best-fit simulation using Eq. (2) and the
optimized parameters (Table 1). A corresponding figure for the original fits and
analysis of this data can be found in Lucius et al. 2010, Fig. 3 [2].
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from Scheme 2 to find the set of best-fit parameters shown in Table 1.
The full expression of Eq. (2) can be found in Rajendar et al., 2010 [1].
The parameters were optimized using a strategy where k7, kyp, k¢, m and
h were global fitting parameters, while A and x were local parameters for
each time course.

(Clpdes),,
k
np
kb 1 kT kT
«mm-ﬁL———»«WMowL———»(L_m-———%J

Lk I Lk
S S S

S(t) =AL'S (s, ke, ka, ke, kup, m, b, x, 1) (2

MENOTR was initialized using the same published model shown in
Scheme 2. Best-fit simulations of the data generated using Eq. (2) are
shown in Fig. 6 as black dashed traces for the three substrate lengths.
The optimized parameters are tabulated in Table 1. Inspection of the
time courses, much like in Case Study I, showed good agreement be-
tween the best-fit simulation and the experimental data. MENOTR was
able to achieve a 50% reduction in the fit chi-squared (from 5934 to
3002) which resulted in a statistically better fit at a 68% confidence
interval.

As in the first case study, the fit was found to be statically better using
MENOTR, but minimal differences in the optimized kinetic parameter
values were observed. This fit was also subjected to Monte Carlo analysis
to generate uncertainties within 68% confidence, found in Table 1 with
their corresponding parameter values. The values determined for k1 and
m were both within error of their published values. The other two rate
constants, k¢ and kyp, were just outside of error of their published
values, k¢ nrrs = (0.20 £ 0.003) st compared to k¢ menorr = (0.165 +
0.008) 871 and kNP,NLLS = (0.045 + 0.0005) 571 compared to kNP,MENOTR
= (0.040 + 0.003) s~ .

In this investigation, MENOTR reproduced optimized parameters
comparable to previous published investigations using only nonlinear
least squares. In both cases, MENOTR was able to obtain resultant pa-
rameters with minimal user intervention and a lower chi-squared was
found.

2.3.3. Case Study III: thermodynamics of ligand binding macromolecule
Unique fitting challenges emerge when using the models that
describe ligand binding to macromolecules. Indeed, a simple one-to-one
binding interaction is not terribly difficult to describe since the model
contains a single equilibrium constant. However, upon departure from
the realm of one-to-one binding two major problems arise. If the goal is
to elucidate two or more non-identical equilibrium constants, then
parameter correlation becomes the first problem. The second problem
that emerges is that the equations that are written down for extent of
binding (ligand bound per total macromolecule) are a function of the
free ligand concentration. However, the experimentally known quantity
is the total amount of ligand added to the system. Only in rare experi-
mental cases does the experimentalist directly measure the free ligand
concentration, e.g. equilibrium dialysis. In continuous titration experi-
ments like ITC or fluorescence titrations, the experimentalist knows how
much total ligand is added to the vessel but does not know how it parses
into bound versus free ligand. The parameter that defines how the sys-
tem parses into bound ligand and free ligand is the parameter that is

L—i
I
S
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being sought, the binding equilibrium constant(s).

For a simple one-to-one binding reaction, the latter problem is
straightforward to overcome. The equilibrium scheme shown in Eq. (3)
is described by the binding equation given by Eq. (4).

k.
m)—>T ClpA+S Scheme 2
Ka
M+ x, < Mx (3)
Mx] = Kuxs
Ly # @

In Egs. (3) and (4), M is a single site macromolecule, x; is the free
ligand concentration, Mx is the bound state, [M]r is the total macro-
molecule concentration and K, is the binding equilibrium constant. To
derive an equation in terms of an independent variable that the exper-
imentalist can control one needs the conservation of mass equation
given by Eq. (5).
x=x Yy My :Xf+%[mr )

T

Where the summation of Mx; represents the summation of all the
bound states. For Eq. (4) the only bound state is Mx, which can be
determined by multiplying the extend of binding by the total macro-
molecule concentration as shown in the right hand side of Eq. (5). The
extent of binding, X, multiplied by the total macromolecule concen-
tration represents the summation of all the bound states. Consequently,
the conservation of mass equation given by Eq. (6) is general for any
number of binding sites on a macromolecule that does not change its
assembly state during the titration. This would include a monomer that
does not oligomerize during the course of the titration or a larger order
oligomer that does not either dissociate or further oligomerize during
the course of the titration.

X, = x +X[M], 6

By combining Egs. (4) and (6) one will arrive at

K, (x, — X[M), )

Y:l+KM<)CT*Y[M]T>

)

Notice that, as written, Eq. (7) is implicit in X . However Eq. (7) can
be rearranged to arrive at the explicit equation given in Eq. (8), which is
the well-known Langmuir isotherm expressed in terms of the dissocia-
tion equilibrium constant, Kq = Kl

(Kd + xr +M7-) - \/(Kd + xr +MT)2 - 4MT)CT

X =
2My

®

Eq. (8) is now a function of both the total ligand concentration and
the total macromolecule concentration, two variables that the experi-
mentalist is in control of changing. Importantly, Eq. (8) has the form of
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the quadratic equation because the derivation of Eq. (8) from Eq. (7)
requires finding the roots of a second order polynomial. Thus, the two
non-identical binding sites model given by Eq. (9) will require finding
the roots of a third order polynomial when one attempts to derive a
function of total ligand and total macromolecule using Eq. (6).

Kix; + 2K1K2xf2

G i i
1+ Kl X JrK]szf

)

Indeed, there are solutions to third order polynomials. However,
they are cumbersome to use in a fitting routing. Moreover, there are no
explicit solutions for the fourth order polynomial that emerges once a
third binding site is added. An alternate strategy is to perform implicit
fitting. In the two site binding example Egs. (6) and (9) are coded into
the fitting routine and the data are fit using the total ligand
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concentration and the total macromolecule concentration as the inde-
pendent variable. Behind the scenes, the code is solving the implicit
equation given by Eq. (10).

K, (xr *Y[M]T) + 2K, K, (XT - XM, )2

X = (10)

1+K, (xr —Y[M]T> +K1K2<XT _Y[M]T)z

To accomplish this the code invokes a numerical root finder to find
the correct root of the third order polynomial that emerges from Eq.
(10).

To test the implicit fitting routine in MENOTR we simulated binding
isotherms from a simple one-to-one binding model using Eq. (8) at three
different total macromolecule concentrations. Random gaussian white
noise was added to each of the data points to simulate experimental
error. The solid points in Fig. 7a represents the simulated data points
with simulated uncertainty. The simulated isotherms were analyzed
using Eq. (7) and the implicit fitting routine in MENOTR. The solid lines
in Fig. 7a represent the best-fit lines from the optimization. Table 2
shows that we used K, = 1 x 10° M to generate the simulated iso-
therms and the same value was returned from the analysis. This obser-
vation indicates that the implicit fitting routine in MENOTR is working
as expected at least for a simple model.

As discussed, implicit fitting is not required for a simple one-to-one
interaction. Thus, to further test the implicit fitting routine in
MENOTR we simulated binding isotherms for a two-site binding model
given by Eq. (9). Data points were again simulated for three total
macromolecule concentrations and simulated uncertainty was added.
The simulated data points are shown in Fig. 7b. In this case, data points
were simulated using Eq. (6) and Eq. (9) in Micromath Scientist
(Micromath, St. Louis MO). Micromath Scientist was used for two rea-
sons. First, it is the only commercially available software that we are
aware of that can perform implicit fitting or simulations from implicit
equations. Secondly, Scientist was used to reduce bias in the analysis.
Scientist was used to generate the simulated data and MENOTR in
MATLAB was used in the analysis.

For this test three isotherms were simulated with K3 = 1 x 10° and
K2 = 1 x 10° see Table 2. The isotherms were subjected to MENOTR
analysis using Eq. (6) and Eq. (9) and the resultant parameters are shown
in Table 2. As can be seen in Fig. 7b the data points are well described by
the model and the resultant parameters are within error of the simulated
parameters. Thus, we conclude that MENOTR and the implicit fitting
routine is well equipped to solve implicit models.

Here we have shown that MENOTR is able to extract known ther-
modynamic parameters out of binding data for thermodynamic binding
models that require implicit fitting strategies. Fit parameters were

Table 2
Optimized parameter comparison for kinetic benchmark III: Thermodynamic
macromolecule and ligand binding parameters.

(a) One-to-one binding

10°® 10° 10
X, (M)

Fig. 7. MENOTR analysis of simulated thermodynamic data for two classic
cases of ligand binding to macromolecule using implicit fitting strategies. (a) n-
independent and identical: Simulated data were generated using Eq. (8) and
Gaussian white noise was added to simulate experimental error. A signal to
noise ratio of 30 was used for the experimental noise. The data were fit
implicitly using Eq. (4) and Eq. (6) in MENOTR. (b) n-independent non-
identical: Data were simulated using a 2-site model with Eq. (6) and Eq. (9)
in Micromath Scientist. Gaussian white noise was added to each data set to
simulate experimental error using the function AWGN in MATLAB. A signal to
noise ratio of 40 was used for the experimental noise. The data were fit
implicitly in MENOTR using Eq. (6) and Eq. (9).

Parameter K
Simulation values 1.00 x 10°M !
MENOTR fit results (1.00 + 0.01) x 10°M!

(b) n-independent non-identical binding

Parameter K; K,
Simulation values 1.00 x 10° M~* 1.00 x 10° M1
MENOTR fit results (9.9+0.2)x10*M! (1.0 +£0.2)x10°M !

(a) Simulations were generated using the Langmuir isotherm, Eq. (8). White
Gaussian error was added to each data set with s/n = 40. Simulated data sets
were implicitly fit globally across three total macromolecule concentrations in
MENOTR using Eq. (4) and Eq. (6). (b) Simulations were generated in Micro-
math Scientist using Eq. (6) and Eq. (9). White Gaussian error was added to each
data set with s/n = 40. Simulated data sets were implicitly fit in MENOTR using
Eq. (6) and Eq. (9).
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reproduced with less than 1.2% error of the known simulation values.
2.4. Limitations of MENOTR

MENOTR is a useful model optimization tool but has some limita-
tions. One initial drawback is that MENOTR is currently only available
to users who have MATLAB. We acknowledge that some users may not
have access to MATLAB, but we are currently unaware of open-source
scripts for several critical features present in MENOTR. An additional
limitation of optimizations using a GA/NLLS (consequently MENOTR
also) is that convergence on the most optimized set of parameters is not
guaranteed. Theoretically, if the population size in the GA is infinitely
large then it is possible to guarantee that the optimized parameters are
the best possible set of parameters. However, the calculation time would
be, consequently, infinitely long. Thus, it is reasonable to say that the
GA/NLLS compared to NLLS alone is more likely to result in the best set
of optimized parameters, but it cannot be guaranteed. Figuring out the
ideal population size for a given model optimization is difficult and re-
quires a user to test different population size values. We have provided
general recommendations, but we encourage users to modify the code to
best execute their model optimization.

2.5. When to use vs. when not to use MENOTR

Like all tools, MENOTR is designed to be used to tackle specific types
of optimization problems. Consider the simplest case where you have a
linear data set, and you want to fit using the linear equationy =mx + b.
In this model the parameters m and b will be optimized to describe the
experimental data. In this case the initial guess value is not of great
concern, because the values are not correlated and are reasonably easy
to optimize. In this situation MENOTR would be much slower compared
to standard NLLS programs found in most data analysis packages. Thus,
in general we do not encourage using MENOTR to fit simple models with
uncorrelated parameters as the optimization attributes of MENOTR are
superfluous and a waste of time for simple optimizations.

In contrast, the models presented in this manuscript contain corre-
lated parameters. The initial guess dependence makes model optimiza-
tions using standard NLLS approaches more difficult. To overcome these
obstacles a user must selectively choose different initial guess values and
monitor how the chi-squared is impacted using the chosen initial guess
values. This method of manually tabulating different initial guesses and
different optimized parameters is certainly possible but is labor inten-
sive and requires intense focus. MENOTR performs a similar process
except the computer automatically tabulates the impact of different
initial guesses and the resultant optimized parameters. From our expe-
rience MENOTR does not necessarily arrive at the optimized parameters
faster compared to a researcher experienced with NLLS algorithms.
However, unlike human NLLS users, MENOTR is able to execute mul-
tiple model optimizations simultaneously. This allows a researcher to
probe multiple models simultaneously and additionally allows a
researcher to have multiple models tested while they are otherwise
preoccupied. Thus, in summary while MENOTR isn’t necessarily faster
when comparing the optimization of a single model, it is certainly faster
when comparing the time taken to optimize multiple models.

3. Conclusion

We have developed a novel MATLAB optimization toolbox,
MENOTR, that utilizes a hybrid genetic and nonlinear least squares al-
gorithm. This toolbox optimizes sets of parameters describing various
types of chemical data and is designed for users with limited program-
ming experience. The toolbox was used in three benchmark in-
vestigations. Two of the benchmarks involved reanalyzing previously
published kinetic data demonstrating MENOTR’s capability to deter-
mine parameters from complex models with highly correlated parame-
ters. The third benchmark demonstrated MENOTR’s capability to
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perform implicit fitting. Here we have shown MENOTR to be a useful
tool in the analysis of complex kinetic and thermodynamic data. With
the use of MENOTR, rigorous estimates of parameter values and corre-
sponding errors are accessible for models with high degrees of correla-
tion in parameters and numerous local minima. Most importantly,
MENOTR solves the problem of knowing when one has chosen an
adequate number of initial guesses to have confidence that the final best
fit represents the absolute minima in the error space. Moreover, this can
be achieved with minimal user intervention and takes advantage of
modern parallel processing capabilities. This toolbox is stored on github.
com and is freely available (https://github.com/ZachIngram/20
21-MENOTR). A new user tutorial can be found in the supplemental
information.
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