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A B S T R A C T   

Parameter optimization or “data fitting” is a computational process that identifies a set of parameter values that 
best describe an experimental data set. Parameter optimization is commonly carried out using a computer 
program utilizing a non-linear least squares (NLLS) algorithm. These algorithms work by continuously refining a 
user supplied initial guess resulting in a systematic increase in the goodness of fit. A well-understood problem 
with this class of algorithms is that in the case of models with correlated parameters the optimized output pa
rameters are initial guess dependent. This dependency can potentially introduce user bias into the resultant 
analysis. While many optimization programs exist, few address this dilemma. Here we present a data analysis 
tool, MENOTR, that is capable of overcoming the initial guess dependence in parameter optimization. Several 
case studies with published experimental data are presented to demonstrate the capabilities of this tool. The 
results presented here demonstrate how to effectively overcome the initial guess dependence of NLLS leading to 
greater confidence that the resultant optimized parameters are the best possible set of parameters to describe an 
experimental data set. While the optimization strategies implemented within MENOTR are not entirely novel, the 
application of these strategies to optimize parameters in kinetic and thermodynamic biochemical models is 
uncommon. MENOTR was designed to require minimal modification to accommodate a new model making it 
immediately accessible to researchers with a limited programming background. We anticipate that this toolbox 
can be used in a wide variety of data analysis applications. Prototype versions of this toolbox have been used in a 
number of published investigations already, as well as ongoing work with chemical-quenched flow, stopped- 
flow, and molecular tweezers data sets. 
Statement of significance: Non-linear least squares (NLLS) is a common form of parameter optimization in 
biochemistry kinetic and thermodynamic investigations These algorithms are used to fit experimental data sets 
and report corresponding parameter values. The algorithms are fast and able to provide good quality solutions 
for models involving few parameters. However, initial guess dependence is a well-known drawback of this 
optimization strategy that can introduce user bias. An alternative method of parameter optimization are genetic 
algorithms (GA). Genetic algorithms do not have an initial guess dependence but are slow at arriving at the best 
set of fit parameters. Here, we present MENOTR, a parameter optimization toolbox utilizing a hybrid GA/NLLS 
algorithm. The toolbox maximizes the strength of each strategy while minimizing the inherent drawbacks.   

1. Introduction 

Parameter optimization, or more commonly ‘data fitting’, is a pro
cess by which the parameters for a model are optimized to best describe 
the experimental observations. In the context of biochemical kinetics 
and thermodynamics, experimental observables are often changes in 

fluorescence [1–9], absorbance [10–12], heat [3,13], force [14,15], or 
pixel density [16–19] to name only a few. The first task of the parameter 
optimization process is to determine a mathematical model that relates 
the experimental observable to an experimentally adjustable indepen
dent variable, i.e. time, concentration, etc. The set of parameters that are 
sought to be determined with the mathematical model could be kinetic 
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rate constants, equilibrium constants, enthalpy, etc. The objective is to 
find a set of parameters that when applied to the model best describe the 
experimental observables. Once a set of parameters are found, the sec
ond task is to evaluate how well these parameters are determined. This 
task includes examining the uncertainty on each of the optimized 
parameter values as well as the error space around the parameter. The 
last task, and arguably the primary goal, is to discern the meaning of the 
parameters in the context of a given system being investigated. 

Since the 1980s, nonlinear least squares (NLLS) analysis has been the 
standard method for performing parameter optimization by biochemists 
[20–24]. While this analysis strategy is easy to use and robust in 
reasonably simple models, difficulties are encountered with complex 
models especially ones involving correlated parameters [1,5,25,26]. As 
the systems being investigated become increasingly more complex, more 
advanced analysis tools and strategies are vital. However, to our 
knowledge, little has been done to apply more sophisticated optimiza
tion methods to biochemical kinetic and thermodynamic investigations. 
This observation is likely a consequence of more advanced optimization 
methods requiring additional programming expertise. Additionally, 
NLLS does not lend itself to exploiting available advantages of parallel 
processing. Consequently, little has been done to capitalize on modern 
computational power. 

Numerous programs use NLLS to optimize parameters in a user 
defined model. A few examples of common programs used by bio
chemists are are KaleidaGraph (Synergy Software, Reading PA), 
Graphical Analysis (Vernier, Beaverton OR), Scientist (Micromath, Saint 
Louis MO), Origin (OriginLab, Northampton, MA), and KinTek Explorer 
(KinTek Corporation, Austin TX). A general overview of the mathe
matical details of NLLS algorithms and a great initial start for re
searchers from a chemistry or molecular biology background is Chapter 
6 from Data Analysis in Biochemistry and Biophysics and Michael L. 
Johnson’s methods chapter on using least-squares techniques in 
biochemistry [22]. Many of the limitations of the technique are 
described there. However, few solutions to the limitations were offered. 

A number of characteristics are conserved across all NLLS tech
niques. These algorithms require an initial guess of the parameter 
values. For simple models, less certainty on the guess is required for 
convergence on the best answer. However, for models that are more 
complicated the guess must be reasonably close to expect convergence. 
The algorithm will iteratively improve the initial set of parameters until 
there is no longer a significant difference between the preceding set of 
parameters and the resultant improved parameters [27]. An analogy of 
this process is a ball placed on a curved surface as illustrated in Fig. 1 a. 
In this analogy, the ball represents the current set of parameters while 
the surface is the goodness of the fit parameters, e.g. chi-squared. The 
ball will roll down the surface until the ball arrives at the minimum chi- 
squared value. The bottom of the surface corresponds to the best esti
mate of the given parameters, since it yields the lowest chi-squared. 
NLLS is classified as a deterministic method because if the algorithm is 
started at the same starting point it will always arrive at the same result. 
The NLLS algorithm does not contain any randomness. 

It is important to point out that simple NLLS routines always go 
downhill as illustrated in Fig. 1a. That is to say, the routine seeks lower 
and lower values of the chi-squared starting from the initial guess. This 
immediately leads to a dependence of the results on the initial user 
provided guess [28,29]. If the error contour does not have local minima, 
then NLLS will arrive at the same global minimum irrespective of initial 
guess as illustrated by Fig. 1a. However, consider the case where a local 
minimum is present as illustrated in Fig. 1b. If one always chooses initial 
guesses from the right-hand side of the curve, then a NLLS routine will 
always find the minimum on the right. Whereas, if initial guesses are 
chosen on the left-hand side, then the NLLS optimization will always 
find the minimum on the left, which, in this example is the lowest. This 
type of emergence of local minima often occurs with correlated pa
rameters. Moderately difficult mathematical strategies to overcome 
correlated parameters include the use of orthogonal polynomials and 

Fourier series analysis [25,30]. 
One way a user can overcome local minima problems is by starting 

NLLS routines with multiple initial guesses and tabulating the resulting 
optimized parameters with the corresponding goodness of fit. The 
tabulated values are then ranked based on their respective goodness of 
fit, and the minimum value is assumed to be the global minimum. A 
reasonable question naturally arises: when have enough different initial 
guesses been investigated to conclude that the lowest goodness of fit 
score has yielded the best parameter values achievable? The answer is as 
many as possible. However, this process is both tedious and laborious. 
Moreover, the answer will not be the same for every model. The 
researcher may also be tempted to only use initial guesses, which yield 
successful convergence onto a result. This is because making large 
changes in the initial guesses can often lead to divergence or “crashing” 
of the software, both of which are often interpreted as evidence of a bad 
model. However, failure of code should not be interpreted as failure of 
the model. Thus, the method of manually testing many different initial 
guesses is not only a laborious task but also one that can easily introduce 
user bias. 

Here we sought to develop a method that overcomes this initial guess 
dependence. On the surface, this sounds trivial; code a computer to give 
many starting points to a NLLS routine. However, the problem with that 
solution is what was articulated above. If initial guesses that are too far 
from a local minimum or the best fit are given to a NLLS routine, then the 
routine is likely to fail and failure of the routine cannot be used to rule 
out a set of parameters. 

Metaheuristics are “upper-level methodologies” (meta) that work “to 

Fig. 1. Illustration outlining deterministic, random, and hybrid algorithms 
approach to finding minima in error contour. a) NLLS, a deterministic method 
will quickly converge on solution. If one minimum is present, the algorithm will 
converge on identical position irrespective of starting point. b) NLLS has well 
known initial guess bias in cases involving multiple minima in error contour. 
Different starting points will result in different optimized parameters. c) The 
genetic algorithm will randomly probe the error space at different parameter 
values. This algorithm overcomes local minima but has difficulty in finding the 
absolute minimum. d) MENOTR, a hybrid NLLS-genetic algorithm, takes 
advantage of the strengths of both approaches while minimizing the weak
nesses. The genetic algorithm component of MENOTR escapes local minima and 
the NLLS quickly converges on a solution. 
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discover” (heuristic) solutions to a problem. Metaheuristics have been 
an avenue of active research for nearly four decades and have yielded 
good results in solving high-level optimization problems across a variety 
of fields [31–33]. Examples include simulated annealing, ant colony 
optimization, particle swarm optimization, bees algorithm, and the ge
netic algorithm [34–39]. As might be obvious from the names, these 
methods are often nature-inspired and utilize ideas like mutation, 
fitness, gene crossover, and natural selection to solve optimization 
problems [40]. The underlying characteristic of these methods that 
lends itself to solving such problems is the stochastic nature of these 
processes. 

The genetic algorithm (GA) is a well-established optimization 
method. This method mimics the principles of biological evolution to 
arrive at the best solution or to identify the parameter that best describes 
the experimental data. A number of books are available to explain the 
details concerning GAs, but here we will discuss some general features 
[40–42]. 

Consider the simplest case involving a one parameter model, y =

m*x, where the slope, m, is the parameter to be optimized. An initial 
value for m is provided by the user and is used to randomly generate 
many unique initial guesses. This set of initial guesses is referred to as a 
population matrix. For each of the experimental x and y pairs, a simu
lated set of x and y pairs are generated from each of the initial guesses in 
the population matrix, and a corresponding chi-squared is calculated. 
The example in Fig. 1 uses chi-squared to quantify goodness of fit but 
other metrics, like root mean squared deviation (RMSD) or variance 
could be used. Each arrow in Fig. 1 c illustrates how different parameter 
values result in different chi-squared values. The sampling of the 
parameter values to generate the population is a stochastic process 
meaning the sampling is discreet and random. The resultant chi-squared 
values are ranked and the parameters with the lowest chi-squared are 
considered the best. Unlike NLLS methods, which are trying to find the 
best parameters by systematically minimizing the chi-squared value of 
the fit, the GA is significantly less likely to be trapped in local minima. 
Equally important, the calculation of chi-squared is a simple mathe
matical operation and the code is unlikely to fail at this stage. This is in 
stark contrast to NLLS where the hunt for the minimum is often a failing 
point of the code because the code is trying to find a minimum by 
executing the first derivative of the fitting function, setting it equal to 
zero, and then finding solutions. In the last step of the GA, a new pop
ulation matrix is formed with values centered around the ‘best fit’ 
parameter value from the previous population. This process is per
formed iteratively until the user defined stopping criteria are met. In 
effect, this strategy results in thousands of initial guesses. While genetic 
algorithms do not get stuck in local minima all GAs have difficulty in 
resolving the absolute minimum. This is a direct consequence of the 
stochastic nature of GAs. The only way to reach the absolute minimum 
in a GA is for the optimal parameters to be randomly selected in the 
population, which is inherently unlikely. 

Here we report the development of MENOTR, a hybrid algorithm 
that balances the strengths of NLLS and GAs to offset their corresponding 
limitations. MENOTR, Multi-start Evolutionary Nonlinear OpTimizeR 
was developed from the MATLAB (MathWorks, Inc., Natick MA) scripts 
used in our previous kinetic data analysis and was designed to address 
NLLS’s dependence on initial guesses through an easy to use MATLAB 
toolbox [17,19]. MENOTR was designed to give researchers with a 
limited coding background access to a more advanced optimization tool 
for the analysis of complex kinetic and thermodynamic models. 
MENOTR is a hybrid NLLS-genetic algorithm in which the GA portion of 
the code ranks thousands of initial guesses before performing NLLS 
optimization. This process is repeated multiple times, further refining 
the parameters to achieve a lower chi-squared until the global minimum 
is reached. This approach eliminates the optimization routine’s depen
dence on the user provided initial guesses and overall minimizes user 
bias. In addition, MENOTR provides a greater search of the possible 
parameter values compared to what one could achieve by manually 

varying the initial guesses, thus giving greater confidence that the 
resultant optimized parameter values are “the best”. Fig. 2 outlines a 
sampling of the features present in MENOTR. MENOTR is capable of 
accommodating a number of different types of models describing 
experimental data. Such examples are systems of ordinary differential 
equations describing chemical kinetics and closed form expressions 
involving both simple and complex mathematical expressions (addition, 
subtraction, Laplace transform, inverse Laplace transform, Fourier 
transform, etc.). In addition, MENOTR can globally optimize parameters 
present in equations describing different experimental observables. An 
example is shared parameters used to simultaneously describe changes 
in both fluorescence and anisotropy [43]. 

MENOTR has additional functionalities that are of immediate use
fulness. MENOTR contains two methods for calculating parameter un
certainty. The first utilizes Monte Carlo simulations and reflects how 
reproducible fit parameters would be if a large number of replicates 
were performed [44]. The second method, grid search analysis, iden
tifies confidence regions for each parameter. These regions correspond 
to parameter values that describe the experimental data. These methods 
allow a user to identify parameters that are correlated and aids in 
identifying unconstrained parameters. Additionally, MENOTR’s ability 
to run independently of user input makes it ideal for being run on high- 
performance computing clusters (HPC). Many parameter optimization 
programs do not have the ability to run independently of user input and 
doing so increases user productivity by allowing multiple models to be 
optimized simultaneously. 

Here we present three case studies to demonstrate MENOTR’s 
parameter optimization capabilities. The first case study contains pub
lished data describing DNA unwinding by the helicase RecBCD, the 

Fig. 2. Functionalities of the MENOTR toolbox. MENOTR can optimize pa
rameters describing floating or static models in addition to closed form ex
pressions. Errors on resultant parameters may be ascertained using Monte Carlo 
or grid search analysis. The toolbox can be run with minimal user intervention, 
making it ideal for being launched on a node of a high-performance com
puter cluster. 
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second presents published data describing polypeptide unfolding/ 
translocation catalyzed by the AAA+ chaperone ClpA, and the last study 
uses simulated data describing three classic thermodynamic ligand 
binding models. The first two examples were chosen because the data 
were previously published, and the models used in the analysis are 
mathematically challenging. The equations used are first derived in the 
Laplace domain. The numerical inverse Laplace transform is then 
necessary to simulate time courses in the time domain. Additionally, 
several parameters are correlated making the optimization extremely 
challenging. The third example was chosen because it requires the use of 
implicit fitting, which again results in a non-trivial optimization prob
lem. Implicit equations emerge in even simple thermodynamic models 
describing ligand binding. Finally, two simple examples with simulated 
data described by a line and kinetic model are present in the supple
mental as a resource for training new users. 

2. Results & discussion 

Genetic algorithms are unlikely to get stuck in local minima, but they 
do have difficulty converging on the absolute minimum. In contrast, 
NLLS will easily find the absolute minimum if an initial guess is provided 
that is close to that minimum. Thus, we hypothesized that by combining 
the two we could overcome the limitations of both. After many iterations 
of the GA, a set of parameters could be provided to the NLLS routine that 
could be confidently assumed to be close to the absolute minimum. In 
addition, a third algorithm is used that we refer to as a multi-start 
routine. The initial user provided guess is first coarsely refined by the 
GA before being further refined by NLLS. This process is setup in a cyclic 
form where the output of the NLLS algorithm is passed back to the GA 
and the process is repeated until an optimal value is achieved. The 
outcome is a survey of the error surface illustrated in Fig. 1a–d. This idea 
is not novel, several research fields have implemented variations of this 
optimization strategy including mathematics [45,46], engineering 
[47,48], computer science [49], and systems biology. However, to our 
knowledge no readily accessible analysis tool is available to optimize 
parameters in the complex kinetic and thermodynamic models that we 
will be presenting here. Moreover, we did not find any available tools 
that were easily adaptable to the unique challenges presented by tran
sient state kinetic data and the statistical thermodynamic models 
required to describe the thermodynamics of ligand binding. 

2.1. Overview of how MENOTR optimizes parameters 

MENOTR, Multi-start Evolutionary NLLS OpTimizeR, is a custom- 
built MATLAB toolbox used to optimize parameters that requires mini
mal user intervention. A general explanation of how MENOTR optimizes 
parameters is shown below while a more nuanced description can be 
found in the supporting material and throughout the source code. 

Like all optimization algorithms, MENOTR requires a set of user 
supplied initial guesses as a first step, depicted at the top of Fig. 3. While 
the exact values are unknown, typically a user will have reasonable 
guesses for each parameter value. Preferably within one or two orders of 
magnitude of the optimal value. Initial guesses closer to that of the true 
answer result in faster optimizations. In MENOTR, these initial guesses 
are used to generate a search area of different parameter values. It is 
often advantageous to establish a parameter search area encompassing 
values spanning several orders of magnitude. MENOTR uses the log10 of 
each parameter value to establish the order of magnitude of the initial 
guesses. A population of different parameter values is then generated for 
each initial guess. The generated population values are a Gaussian dis
tribution centered on the log10 of the initial guess while the standard 
deviation is held constant at 1.The standard deviation value of 1 was 
chosen to create a population encompassing parameter values one order 
of magnitude above and below the initial guess. For example, consider 
an initial guess for a parameter, k1, is 100 s−1. MENOTR first takes the 
log of this value, log10(100) = 2. A gaussian distribution of parameter 

values is generated centered on 2 with a standard deviation of 1. The 
antilog of each parameter value is calculated resulting in parameter 
values from ~10 s−1 to ~1000 s−1. 

Once the initial guess values are chosen for each parameter, the 
parameter values are passed to a user-defined number of optimization 
routines, this is the multi-start component of the algorithm. The default 
number of optimization routines in MENOTR is three, this is depicted in 
Fig. 3 with the red, yellow, and blue boxes. Each of the optimization 
routines begin by generating a separate parameter population (param
eter search area) as described in the previous paragraph. While the mean 
of each parameter population within an optimization routine will be 
identical, the individual parameter values within each population will 
be different and lead to diversification of the surveyed parameter values. 
Within each optimization routine, a genetic algorithm will be used to 
identify parameter values with small chi-squared values. Some of the 
best parameter values are then passed to a NLLS algorithm that further 
optimizes the parameter values. The algorithms have been structured to 
take advantage of the inherent strengths of each optimization method
ology while minimizing the drawbacks. A more detailed explanation of 
how the genetic algorithm and NLLS algorithm work to achieve opti
mized parameter values can be found in the supporting material. Each of 
the optimization routines are performed independently with no cross
over of information between optimization routines. The separation of 
the optimization routines is a multi-start process because each optimi
zation routine is starting from a different population of parameter 

Fig. 3. Flow diagram overview illustrating how MENOTR optimizes parame
ters. In the first step, an initial guess is passed to three different optimization 
routines. The parameters are optimized individually and then pooled together. 
The pooled parameters are then compared to see if they are different. If they are 
different, then the best set of parameters is used as the new initial guess. If they 
are identical then the parameter values are reported. 
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values. 
Upon completion, the set of parameters with the lowest chi-squared 

value from each optimization routine are pooled together with their 
corresponding chi-squared value. Shown in Fig. 3 is an example where 
three kinetic rate constants, k1–k3, are being optimized to describe a 
hypothetical experimental data set. Each optimization routine results in 
a different set of parameter values and a corresponding chi-squared 
value. After being pooled, the parameter sets are then ranked based 
on the chi-squared values. 

The next task is to determine if the optimized parameters are the best 
possible parameters or if further refinement is necessary. We designed 
MENOTR to address this question by requiring the pooled parameter 
values to satisfy two conditions. The first condition is that the reported 
best parameter values between different optimization routines should 
agree. If disagreement is present between the parameter values, then 
further refinement is necessary, and the parameter set with the lowest 
chi-squared is used as the initial guess for another round of optimization 
routines. The second condition that must be met is that the chi-squared 
must stop changing between optimization routines. If a set of parameters 
has been fully optimized, then the chi-squared should be minimized and 
a smaller chi-squared is not achievable. Thus, if multiple optimization 
routines are all reporting the same chi-squared value a smaller chi- 
squared value is unlikely. If different chi-squared values are reported 
from the optimization routines, then the parameter set with the smallest 
chi-squared is used as the initial guess for a second round of optimiza
tion. However, neither the parameters nor the chi-squared is ever going 
to be mathematically exactly equal. Rather for practical purposes it is 
necessary to determine equality based on some tolerancer. MENOTR has 
this built-in capability and when both stopping conditions are met, 
MENOTR reports the optimized set of parameters with the correspond
ing chi-squared value as the final solution. 

2.2. Parameter uncertainty analysis in MENOTR 

Once the parameters are optimized for a given model, the next step is 
to measure the uncertainty on each of the optimized parameters. Such 
error measurements are beneficial for determining trends in parameter 
values, or even more simply, when two parameter values are statistically 
different or identical. MENOTR presents two different strategies to 
assess parameter uncertainty: Monte Carlo analysis and Grid-search 
analysis. 

Monte Carlo simulations for the purpose of uncertainty estimates on 
parameters assumes that: 1) the model accurately describes the experi
mental observable and 2) the deviation between the fit and the experi
mental observable is similar to the deviation one would expect for many 
experimental replicates. During a Monte Carlo simulation, a large 
number of simulated data sets are generated by applying random error 
to each data point of the same magnitude as the deviation between the 
experimental observable and the best fit. Thus, these simulated data sets 
represent simulated replicates with error comparable to that of the 
experimental observable and the best fit. Each simulated time course is 
subjected to NLLS analysis using the set of best-fit parameters of the data 
set for initial guesses. The resultant best-fit parameters for each simu
lated data set are tabulated and a standard deviation for each parameter 
is calculated. This standard deviation represents an estimate of the error 
associated with that parameter if the experiment had been repeated as 
many times as data sets were simulated. This allows for estimates of 
error that would require unrealistic numbers of experimental replicates. 
It is important to note that Monte Carlo lends itself to parallel 
computing, and as such can be performed quickly within the MENTOR 
toolbox. 

In addition to the determination of the standard deviation on each 
parameter the Monte Carlo simulation reveals information about 
parameter correlation. After the Monte Carlo simulation is done the 
experimentalist is left with thousands of estimates of the parameters that 
represent a simulation of thousands of experimental replicates. 

Construction of plots of one parameter vs. another reveal how the 
parameter pairs are correlated or not correlated. An analysis of this 
parameter correlation can aid the experimentalist in interpreting the 
level of confidence one has in a given parameter and protect against over 
interpreting the determined values. 

Grid-search analysis is another method for calculating the uncer
tainty on fit parameters [17–19,50,51]. However, grid-searching yields 
additional information on the level of constraint of a given parameter 
and the symmetry or asymmetry in the error space. In this method, 
values larger and smaller than an optimized parameter value are 
selected. The parameter is fixed at each of its selected values and a NLLS 
minimization is performed to optimize all other parameters. Initial 
guesses for the NLLS routine are the previously optimized parameters. 
The tabulated chi-squared values are then used to generate a plot of chi- 
squared as a function of the parameter being searched. The curve is 
concave up with a minimum at the optimized parameter value. In 
principle, the curve rises to the left and right of the best-fit value, 
because deviating from this optimized value causes an increase in the 
chi-squared. The chi-squared values on the y-axis are normalized to the 
minimum chi-squared value and this generates a new set of numbers 
called the F-statistic values. An example contour from a parameter grid- 
search is shown in Fig. 4. The minimum of the contour is the optimized 
parameter value (~12.5) and the F-statistic values increase to the left 
and right of this minimum indicating that varying this parameter causes 
an increase in the chi-squared values. The minimum of the curve is 1, 
because the error values are normalized to the minimum chi-squared 
value. In MENOTR, a 68% confidence interval is the default selection 
and the F-critical is automatically calculated for the user-supplied data 
set. In Fig. 4, the F-critical line is displayed as the horizontal black 
dashed line. The intersection of the F-calculated value with the F-critical 
value generates a 68% confidence lower and upper bound for the 
parameter value. In MENOTR, uncertainty on fit parameters are calcu
lated using a built-in script that has been adapted to work with the 
outputs from the parameter optimization routine, making the process 
easily executed and user friendly. 

In principle a plot such as that shown in Fig. 4 should be a symmetric 
parabola. However, the parabola is often asymmetric. The asymmetry 
reveals that the error on the left of the parameter is different from the 

Fig. 4. Example of resultant contour generated from grid-search analysis for a 
given parameter. (Circles) Individual F-statistic values, (solid lines) interpola
tion between data points, and (Broken line) F-critical value. 
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error on the right. That is to say, there is asymmetric error on the 
parameter. Simple calculation of the standard deviation, standard error, 
etc. available in most fitting routines will never reveal information on 
asymmetric error. Knowledge of this asymmetry allows the experimen
talist to better understand how well a given parameter is constrained 
and protects the experimentalist from overinterpreting parameters. 

2.3. Case studies 

2.3.1. Case Study I: Duplex DNA unwinding catalyzed by RecBCD helicase 
Case Study 1 is an analysis of a set of DNA unwinding time courses 

that were previously published in 2004 by Lucius et al. These time 
courses, shown as solid traces in Fig. 5, were collected in the investi
gation of DNA unwinding catalyzed by E. coli RecBCD using a FRET 
based stopped-flow assay. This assay monitors the FRET signal between 
a Cy3 and Cy5 pair attached on either side of a nick in a duplex DNA. At 
time zero, the signal from Cy3 is low and the signal for Cy5 is high. Upon 
DNA unwinding, the two dyes are separated, resulting in an increase in 
Cy3 signal and a decrease in Cy5 signal. The time courses shown in Fig. 5 
come from the Cy3 signal in the experiment. 

Weighted global nonlinear least squares analysis of unwinding by 
RecBCD was performed using Scheme 1 and Eq. (1). The resulting 
published fit parameters are shown in Table 1. The fit was performed for 
eight different lengths of duplex substrates using a fitting strategy where 
the parameters kU, kC, kNP, m, and h are constrained as global fitting 
parameters with the same value for all duplex lengths. While A and x are 
local parameters with unique values for each duplex length. This fit was 
also subjected to Monte Carlo analysis to generate uncertainties at 68% 
confidence; these correspond to the error on the fit parameters in Table 1 
for the previously published fits. 

fRecBCD(t) = AL −1

(
kh

c kL/m
t

(
knp + s⋅x

)

s(kc + s)
h(

knp + s
)
(kt + s)

L/m

)

(1) 

Parameter optimization using MENOTR was executed on the same 
eight published RecBCD time courses using Scheme 1 and Eq. (1). Three 
of the eight RecBCD time courses along with the best-fit lines generated 
from the MENOTR optimized parameters are shown in Fig. 5. Inspection 
of the time courses and best-fit line indicate good agreement between 
the model and the data. The chi-squared value from the fit using 
MENOTR was found to be 367, which is ~71% smaller than the previ
ously published fit chi-squared of 515. The MENOTR fit was found to be 
statistically better at a 68% confidence interval by F-statistics. 

The fit parameters determined using MENOTR and the previously 
reported values are compared in Table 1. Interestingly, the kinetic pa
rameters did not vary dramatically compared to published results 
despite finding a statistically better fit. To determine if the parameters 
were within error of the previously published values, a Monte Carlo 
analysis was performed to generate uncertainties. The uncertainties on 
the parameters shown in Table 1 are from the Monte Carlo simulation 
and indicate the 68% confidence interval. All but one of the kinetic 
parameters were found to be within error of the previous results. The 
parameter kNP was found to have a value of (6.49 ± 0.08) s−1 from the 

analysis using MENOTR while its published value is (6.0 ± 0.3) s−1. 
A key difference in the execution of these fits is that MENOTR ran 

unsupervised until an optimized set of parameters was reported. In order 
to be confident that the lowest chi-square was determined, the previous 
published NLLS fit required the user to manually start the NLLS routine 
at different starting points, record the resultant outputs, and try new 
starting points. In contrast, the MENOTR analysis represents the best fit 

after starting from thousands of different initial guesses. This would be 
an intractable number of restarts when doing manually initiated NLLS. 
However, it is the number of restarts that one needs to have confidence 
that the lowest chi-squared has been found and the analysis is not simply 
“stuck” in a local minimum. Finally, the MENOTR analysis was per
formed completely unsupervised and finished in approximately 24 h on 
a quad-core computer. Table 1. Optimized parameter comparison for 
kinetic benchmarks I and II. 

In this study, parameter optimizations performed with MENOTR 
were able to reproduce results comparable to methods that implemented 
only NLLS strategies. The simulated best-fit lines and the values of the 
kinetic parameters determined from the analysis using MENOTR agreed 
with both the experimental time courses and the previously published 
results. However, unlike previous analysis strategies, MENOTR was able 
to perform this fit with minimal user intervention. By automating this 
process three goals are achieved: 1) minimization of user bias, 2) ease of 
use is improved, because no user intervention is necessary throughout 
the optimization process, and 3) the user gains the ability to run multiple 
model optimizations simultaneously on computer clusters which are 
increasingly more accessible to researchers. The previously published 
analysis using NLLS was carried out using a program called CONLIN 
[52]. While robust, this program has a significant learning curve and 
requires a user to manually probe different initial guesses and manually 

Table 1 
Optimized parameter comparison for kinetic benchmarks I and II.  

RecBCD-catalyzed DNA unwinding parameters 

Parameter kU (s−1) kC (s−1) kNP (s−1) m (bp 
step−1) 

h (steps) 

Published 
[2] 

200 ± 40 51 ± 5 6.0 ± 0.3 3.4 ± 0.6 3.2 ± 0.3 

MENOTR 185.5 ±
0.1 

54.9 ±
0.6 

6.49 ±
0.08 

3.68 ± 0.02 3.31 ±
0.04   

ClpA-catalyzed polypeptide translocation parameters 

Parameter kT (s−1) kd 

(s−1) 
kC (s−1) kNP (s−1) m (aa 

step−1) 

Published 
[1] 

1.39 ±
0.06 

ND 0.22 ± 0.01 0.047 ±
0.001 

14.0 ± 1.5 

MENOTR 1.5 ± 0.2 ND 0.165 ±
0.008 

0.040 ±
0.003 

14 ± 1 

kU, unwinding rate constant; kC, slow conformational change; kNP, rate constant 
for change to productive complex; m, kinetic step size; h, number of steps with 
rate constant kC; kT, translocation rate constant; kd, dissociation rate constant. 
Errors reported in this plot come from Monte Carlo analysis of 1000 simulated 
time courses. 
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record which sets of initial guesses give rise to better chi-squared values. 
Other programs utilizing NLLS are available, but few are able to opti
mize models using Laplace transform/inverse Laplace transform func
tions or sets of differential equations. 

While the time courses analyzed in Case Study I are the time courses 
published in the original manuscript, the resultant parameter uncer
tainty values calculated from the Monte-Carlo analysis in MENOTR were 
smaller for all parameter values compared to the published values. A few 
analysis details may explain this observation. First, the previous analysis 
resulted in a slightly higher variance of the fit compared to the lower 
value obtained with MENOTR. Because the MENOTR analysis yielded a 
lower variance, a smaller simulated noise value was applied in the 
Monte Carlo simulations. Since there is less simulated error there is a 
resultant lower error on the parameters. Second, it should be noted that 
the parameter uncertainty analysis in MENOTR used 1000 Monte Carlo 
simulations compared to 50 in the previous published analysis. In the 
previously published Monte-Carlo simulation it was not possible to take 
advantage of parallel processing. Each simulation was done by gener
ating time courses by numerically solving the inverse Laplace transform 
and then fitting those time courses by numerically solving the inverse 
Laplace transform. Further, each one of those cycles were done 
sequentially since they could not be done in parallel. Thus, doing more 
than fifty cycles was inordinately time consuming. This problem is 
solved by MENOTR since each cycle can be done in parallel. This is one 
explanation for the differences observed in the parameter uncertainty 
values. In general, it is recommended to perform hundreds of Monte 
Carlo simulations. 

By doing Monte Carlo simulations many things can be learned about 
the data and the model being used to describe the data. For example, 
plots of one parameter vs. another can yield insight into the degree of 
parameter correlation. Also, the Grid search routine is another method 
we have built into MENOTR for error analysis. But, in addition to 
determining the uncertainty on a parameter, the grid search reveals 
information on the level of constraint on a given parameter and 

asymmetries that may exist in the error space. Although both Monte- 
Carlo and Grid Search will estimate parameter uncertainty and both 
techniques yield additional insights, we recommend collecting the 
experimental data at least three times, fitting each set of data indepen
dently, and reporting the standard error on the resultant parameters 
from three replicates. In our experience the parameter uncertainty 
estimated by replicates is a better representation of the overall repro
ducibility of the experimental observable. However, to yield the most 
insight into the model and protect oneself from overfitting or over 
interpretation we recommend all three, grid search, Monte Carlo, and 
experimental replicates. 

2.3.2. Case Study II: polypeptide translocation catalyzed by ClpA 
The second case study covers the use of MENOTR in fitting time 

courses describing polypeptide translocation catalyzed by E. coli ClpA. 
In 2010, Rajendar et al. developed a fluorescence stopped-flow method 
for studying ClpA catalyzed translocation of polypeptide substrate [1]. 
The assay monitors the change in fluorescence signal of fluorecein-5- 
maleimide as translocation occurs. When ClpA is bound to the poly
peptide substrate the fluorescence is quenched. During translocation, 
ClpA resides on the polypeptide substrate and the fluorescence remains 
quenched. Upon completion of translocation, ClpA dissociates, and 
fluorescence is restored. This assay allows for quantitative measure
ments of the ClpA translocation kinetics. Translocation time courses 
were collected for three polypeptide lengths shown in Fig. 6 as solid 
colored traces. For this stopped-flow method signal can occur at every 
dissociation step. Thus, Scheme 2, in contrast to Scheme 1, incorporates 
a substrate, S, release step at each intermediate translocation step. 
Weighted global nonlinear least squares analysis of polypeptide trans
location catalyzed by ClpA was performed using a function S(t) derived 

Fig. 6. MENOTR analysis of previously published fluorescence time courses for 
ClpA catalyzed polypeptide translocation. Translocation time courses were 
collected on fluorescein-SsrA 30mer, 40mer and 50mer out to 200 s. Fitting was 
performed globally across all three peptide lengths using Eq. (2). Parameters kT, 
kd, kC, kNP, h, m, and b were optimized globally, while A and x were optimized 
locally for each length. The first 20 s of the time courses are plotted here as solid 
traces with the dashes representing a best-fit simulation using Eq. (2) and the 
optimized parameters (Table 1). A corresponding figure for the original fits and 
analysis of this data can be found in Lucius et al. 2010, Fig. 3 [2]. 

Fig. 5. MENTOR analysis of previously published single turnover RecBCD 
catalyzed DNA unwinding. Fitting was performed globally across eight DNA 
duplex lengths using Eq. (1). Parameters kU, kC, kNP, m, and h were assigned as 
global parameters while A and x were local parameters for each length. Here we 
show three representative data sets (colored traces) of duplex lengths (a) 24 bp, 
(b) 43 bp, and (c) 60 bp with the corresponding best-fit simulations (black 
traces) based on Eq. (1) and the optimized parameters (Table 1). A corre
sponding figure for the original fits and analysis of this data can be found in 
Lucius 2004, fig. 8 [1]. 
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from Scheme 2 to find the set of best-fit parameters shown in Table 1. 
The full expression of Eq. (2) can be found in Rajendar et al., 2010 [1]. 
The parameters were optimized using a strategy where kT, kNP, kC, m and 
h were global fitting parameters, while A and x were local parameters for 
each time course.  

S(t) = AL
−1S

(
s, kT , kd, kc, knp, m, b, x, h

)
(2) 

MENOTR was initialized using the same published model shown in 
Scheme 2. Best-fit simulations of the data generated using Eq. (2) are 
shown in Fig. 6 as black dashed traces for the three substrate lengths. 
The optimized parameters are tabulated in Table 1. Inspection of the 
time courses, much like in Case Study I, showed good agreement be
tween the best-fit simulation and the experimental data. MENOTR was 
able to achieve a 50% reduction in the fit chi-squared (from 5934 to 
3002) which resulted in a statistically better fit at a 68% confidence 
interval. 

As in the first case study, the fit was found to be statically better using 
MENOTR, but minimal differences in the optimized kinetic parameter 
values were observed. This fit was also subjected to Monte Carlo analysis 
to generate uncertainties within 68% confidence, found in Table 1 with 
their corresponding parameter values. The values determined for kT and 
m were both within error of their published values. The other two rate 
constants, kC and kNP, were just outside of error of their published 
values, kC,NLLS = (0.20 ± 0.003) s−1 compared to kC,MENOTR = (0.165 ±
0.008) s−1 and kNP,NLLS = (0.045 ± 0.0005) s−1 compared to kNP,MENOTR 
= (0.040 ± 0.003) s−1. 

In this investigation, MENOTR reproduced optimized parameters 
comparable to previous published investigations using only nonlinear 
least squares. In both cases, MENOTR was able to obtain resultant pa
rameters with minimal user intervention and a lower chi-squared was 
found. 

2.3.3. Case Study III: thermodynamics of ligand binding macromolecule 
Unique fitting challenges emerge when using the models that 

describe ligand binding to macromolecules. Indeed, a simple one-to-one 
binding interaction is not terribly difficult to describe since the model 
contains a single equilibrium constant. However, upon departure from 
the realm of one-to-one binding two major problems arise. If the goal is 
to elucidate two or more non-identical equilibrium constants, then 
parameter correlation becomes the first problem. The second problem 
that emerges is that the equations that are written down for extent of 
binding (ligand bound per total macromolecule) are a function of the 
free ligand concentration. However, the experimentally known quantity 
is the total amount of ligand added to the system. Only in rare experi
mental cases does the experimentalist directly measure the free ligand 
concentration, e.g. equilibrium dialysis. In continuous titration experi
ments like ITC or fluorescence titrations, the experimentalist knows how 
much total ligand is added to the vessel but does not know how it parses 
into bound versus free ligand. The parameter that defines how the sys
tem parses into bound ligand and free ligand is the parameter that is 

being sought, the binding equilibrium constant(s). 
For a simple one-to-one binding reaction, the latter problem is 

straightforward to overcome. The equilibrium scheme shown in Eq. (3) 
is described by the binding equation given by Eq. (4). 

M + xf ⇌
Ka

Mx (3)  

[Mx]

[M]T
= X =

Kaxf

1 + Kaxf
(4) 

In Eqs. (3) and (4), M is a single site macromolecule, xf is the free 
ligand concentration, Mx is the bound state, [M]T is the total macro
molecule concentration and Ka is the binding equilibrium constant. To 
derive an equation in terms of an independent variable that the exper
imentalist can control one needs the conservation of mass equation 
given by Eq. (5). 

xt = xf +
∑

Mxi = xf +
[Mx]

[M]T
[M]T (5) 

Where the summation of Mxi represents the summation of all the 
bound states. For Eq. (4) the only bound state is Mx, which can be 
determined by multiplying the extend of binding by the total macro
molecule concentration as shown in the right hand side of Eq. (5). The 
extent of binding, X‾, multiplied by the total macromolecule concen
tration represents the summation of all the bound states. Consequently, 
the conservation of mass equation given by Eq. (6) is general for any 
number of binding sites on a macromolecule that does not change its 
assembly state during the titration. This would include a monomer that 
does not oligomerize during the course of the titration or a larger order 
oligomer that does not either dissociate or further oligomerize during 
the course of the titration. 

xt = xf + X[M]T (6) 

By combining Eqs. (4) and (6) one will arrive at 

X =
Ka

(
xT − X[M]T

)

1 + Ka

(
xT − X[M]T

) (7) 

Notice that, as written, Eq. (7) is implicit in X‾. However Eq. (7) can 
be rearranged to arrive at the explicit equation given in Eq. (8), which is 
the well-known Langmuir isotherm expressed in terms of the dissocia
tion equilibrium constant, Kd = Ka

-1. 

X =
(Kd + xT + MT ) −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Kd + xT + MT )
2

− 4MT xT

√

2MT
(8) 

Eq. (8) is now a function of both the total ligand concentration and 
the total macromolecule concentration, two variables that the experi
mentalist is in control of changing. Importantly, Eq. (8) has the form of 
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the quadratic equation because the derivation of Eq. (8) from Eq. (7) 
requires finding the roots of a second order polynomial. Thus, the two 
non-identical binding sites model given by Eq. (9) will require finding 
the roots of a third order polynomial when one attempts to derive a 
function of total ligand and total macromolecule using Eq. (6). 

X =
K1xf + 2K1K2x2

f

1 + K1⋅xf + K1K2x2
f

(9) 

Indeed, there are solutions to third order polynomials. However, 
they are cumbersome to use in a fitting routing. Moreover, there are no 
explicit solutions for the fourth order polynomial that emerges once a 
third binding site is added. An alternate strategy is to perform implicit 
fitting. In the two site binding example Eqs. (6) and (9) are coded into 
the fitting routine and the data are fit using the total ligand 

concentration and the total macromolecule concentration as the inde
pendent variable. Behind the scenes, the code is solving the implicit 
equation given by Eq. (10). 

X =
K1

(
xT − X[M]T

)
+ 2K1K2

(
xT − X[M]T

)2

1 + K1

(
xT − X[M]T

)
+ K1K2

(
xT − X[M]T

)2 (10) 

To accomplish this the code invokes a numerical root finder to find 
the correct root of the third order polynomial that emerges from Eq. 
(10). 

To test the implicit fitting routine in MENOTR we simulated binding 
isotherms from a simple one-to-one binding model using Eq. (8) at three 
different total macromolecule concentrations. Random gaussian white 
noise was added to each of the data points to simulate experimental 
error. The solid points in Fig. 7a represents the simulated data points 
with simulated uncertainty. The simulated isotherms were analyzed 
using Eq. (7) and the implicit fitting routine in MENOTR. The solid lines 
in Fig. 7a represent the best-fit lines from the optimization. Table 2 
shows that we used Ka = 1 × 105 M−1 to generate the simulated iso
therms and the same value was returned from the analysis. This obser
vation indicates that the implicit fitting routine in MENOTR is working 
as expected at least for a simple model. 

As discussed, implicit fitting is not required for a simple one-to-one 
interaction. Thus, to further test the implicit fitting routine in 
MENOTR we simulated binding isotherms for a two-site binding model 
given by Eq. (9). Data points were again simulated for three total 
macromolecule concentrations and simulated uncertainty was added. 
The simulated data points are shown in Fig. 7b. In this case, data points 
were simulated using Eq. (6) and Eq. (9) in Micromath Scientist 
(Micromath, St. Louis MO). Micromath Scientist was used for two rea
sons. First, it is the only commercially available software that we are 
aware of that can perform implicit fitting or simulations from implicit 
equations. Secondly, Scientist was used to reduce bias in the analysis. 
Scientist was used to generate the simulated data and MENOTR in 
MATLAB was used in the analysis. 

For this test three isotherms were simulated with K1 = 1 × 105 and 
K2 = 1 × 106, see Table 2. The isotherms were subjected to MENOTR 
analysis using Eq. (6) and Eq. (9) and the resultant parameters are shown 
in Table 2. As can be seen in Fig. 7b the data points are well described by 
the model and the resultant parameters are within error of the simulated 
parameters. Thus, we conclude that MENOTR and the implicit fitting 
routine is well equipped to solve implicit models. 

Here we have shown that MENOTR is able to extract known ther
modynamic parameters out of binding data for thermodynamic binding 
models that require implicit fitting strategies. Fit parameters were 

Fig. 7. MENOTR analysis of simulated thermodynamic data for two classic 
cases of ligand binding to macromolecule using implicit fitting strategies. (a) n- 
independent and identical: Simulated data were generated using Eq. (8) and 
Gaussian white noise was added to simulate experimental error. A signal to 
noise ratio of 30 was used for the experimental noise. The data were fit 
implicitly using Eq. (4) and Eq. (6) in MENOTR. (b) n-independent non- 
identical: Data were simulated using a 2-site model with Eq. (6) and Eq. (9) 
in Micromath Scientist. Gaussian white noise was added to each data set to 
simulate experimental error using the function AWGN in MATLAB. A signal to 
noise ratio of 40 was used for the experimental noise. The data were fit 
implicitly in MENOTR using Eq. (6) and Eq. (9). 

Table 2 
Optimized parameter comparison for kinetic benchmark III: Thermodynamic 
macromolecule and ligand binding parameters.  

(a) One-to-one binding 

Parameter K  
Simulation values 1.00 × 105 M−1  

MENOTR fit results (1.00 ± 0.01) x 105 M−1    

(b) n-independent non-identical binding 

Parameter K1 K2 

Simulation values 1.00 × 105 M−1 1.00 × 106 M−1 

MENOTR fit results (9.9 ± 0.2) x 104 M−1 (1.0 ± 0.2) x 106 M−1 

(a) Simulations were generated using the Langmuir isotherm, Eq. (8). White 
Gaussian error was added to each data set with s/n = 40. Simulated data sets 
were implicitly fit globally across three total macromolecule concentrations in 
MENOTR using Eq. (4) and Eq. (6). (b) Simulations were generated in Micro
math Scientist using Eq. (6) and Eq. (9). White Gaussian error was added to each 
data set with s/n = 40. Simulated data sets were implicitly fit in MENOTR using 
Eq. (6) and Eq. (9). 
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reproduced with less than 1.2% error of the known simulation values. 

2.4. Limitations of MENOTR 

MENOTR is a useful model optimization tool but has some limita
tions. One initial drawback is that MENOTR is currently only available 
to users who have MATLAB. We acknowledge that some users may not 
have access to MATLAB, but we are currently unaware of open-source 
scripts for several critical features present in MENOTR. An additional 
limitation of optimizations using a GA/NLLS (consequently MENOTR 
also) is that convergence on the most optimized set of parameters is not 
guaranteed. Theoretically, if the population size in the GA is infinitely 
large then it is possible to guarantee that the optimized parameters are 
the best possible set of parameters. However, the calculation time would 
be, consequently, infinitely long. Thus, it is reasonable to say that the 
GA/NLLS compared to NLLS alone is more likely to result in the best set 
of optimized parameters, but it cannot be guaranteed. Figuring out the 
ideal population size for a given model optimization is difficult and re
quires a user to test different population size values. We have provided 
general recommendations, but we encourage users to modify the code to 
best execute their model optimization. 

2.5. When to use vs. when not to use MENOTR 

Like all tools, MENOTR is designed to be used to tackle specific types 
of optimization problems. Consider the simplest case where you have a 
linear data set, and you want to fit using the linear equation y = m x + b. 
In this model the parameters m and b will be optimized to describe the 
experimental data. In this case the initial guess value is not of great 
concern, because the values are not correlated and are reasonably easy 
to optimize. In this situation MENOTR would be much slower compared 
to standard NLLS programs found in most data analysis packages. Thus, 
in general we do not encourage using MENOTR to fit simple models with 
uncorrelated parameters as the optimization attributes of MENOTR are 
superfluous and a waste of time for simple optimizations. 

In contrast, the models presented in this manuscript contain corre
lated parameters. The initial guess dependence makes model optimiza
tions using standard NLLS approaches more difficult. To overcome these 
obstacles a user must selectively choose different initial guess values and 
monitor how the chi-squared is impacted using the chosen initial guess 
values. This method of manually tabulating different initial guesses and 
different optimized parameters is certainly possible but is labor inten
sive and requires intense focus. MENOTR performs a similar process 
except the computer automatically tabulates the impact of different 
initial guesses and the resultant optimized parameters. From our expe
rience MENOTR does not necessarily arrive at the optimized parameters 
faster compared to a researcher experienced with NLLS algorithms. 
However, unlike human NLLS users, MENOTR is able to execute mul
tiple model optimizations simultaneously. This allows a researcher to 
probe multiple models simultaneously and additionally allows a 
researcher to have multiple models tested while they are otherwise 
preoccupied. Thus, in summary while MENOTR isn’t necessarily faster 
when comparing the optimization of a single model, it is certainly faster 
when comparing the time taken to optimize multiple models. 

3. Conclusion 

We have developed a novel MATLAB optimization toolbox, 
MENOTR, that utilizes a hybrid genetic and nonlinear least squares al
gorithm. This toolbox optimizes sets of parameters describing various 
types of chemical data and is designed for users with limited program
ming experience. The toolbox was used in three benchmark in
vestigations. Two of the benchmarks involved reanalyzing previously 
published kinetic data demonstrating MENOTR’s capability to deter
mine parameters from complex models with highly correlated parame
ters. The third benchmark demonstrated MENOTR’s capability to 

perform implicit fitting. Here we have shown MENOTR to be a useful 
tool in the analysis of complex kinetic and thermodynamic data. With 
the use of MENOTR, rigorous estimates of parameter values and corre
sponding errors are accessible for models with high degrees of correla
tion in parameters and numerous local minima. Most importantly, 
MENOTR solves the problem of knowing when one has chosen an 
adequate number of initial guesses to have confidence that the final best 
fit represents the absolute minima in the error space. Moreover, this can 
be achieved with minimal user intervention and takes advantage of 
modern parallel processing capabilities. This toolbox is stored on github. 
com and is freely available (https://github.com/ZachIngram/20 
21-MENOTR). A new user tutorial can be found in the supplemental 
information. 
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