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In the past decade, Deep Neural Networks (DNNs), e.g., Convolutional Neural Networks, achieved human-
level performance in vision tasks such as object classification and detection. However, DNNs are known
to be computationally expensive and thus hard to be deployed in real-time and edge applications. Many
previous works have focused on DNN model compression to obtain smaller parameter sizes and consequently,
less computational cost. Such methods, however, often introduce noticeable accuracy degradation. In this
work, we optimize a state-of-the-art DNN-based video detection framework—Deep Feature Flow (DFF) from
the cloud end using three proposed ideas. First, we propose Asynchronous DFF (ADFF) to asynchronously
execute the neural networks. Second, we propose a Video-based Dynamic Scheduling (VDS) method that
decides the detection frequency based on the magnitude of movement between video frames. Last, we propose
Spatial Sparsity Inference, which only performs the inference on part of the video frame and thus reduces
the computation cost. According to our experimental results, ADFF can reduce the bottleneck latency from
89 to 19 ms. VDS increases the detection accuracy by 0.6% mAP without increasing computation cost. And
SSI further saves 0.2 ms with a 0.6% mAP degradation of detection accuracy.
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1 INTRODUCTION
1.1 Motivation

Deep Neural Networks (DNN5s) are now widely utilized in many cognitive tasks, such as auto-
mated speech translation [1], natural language processing [2], object detection [3], facial recog-
nition [4], and so on. In this work, we focus on the optimization of DNN-based video detection
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application. Video detection has been popularly adopted in the mobile context and aims at detect-
ing the objects in continuous computer vision captured by mobile cameras for the purposes such
as video analytics. Video detection is one of the most computationally demanding DNN applica-
tions because of many reasons. First, compared to language processing, the input (image) size of
video detection system is usually larger. Second, convolutional layers are commonly used in video
detection and are more computation-intensive than other DNN layers. Last, compared to object
detection, video detection involves a sequence of video frames to be detected in real-time. Many
attempts have been made to accelerate DNN-based video detection, which can be categorized into
model compression and system optimization. Model compression tries to find a compact model by
removing weights from the over-parameterized DNNs. Representative methods include structure
search [5-7], weight pruning [8], low rank approximation [9], and quantization [10]. Another solu-
tion is system optimization, which accelerates the DNN-based system through application-oriented
methods. In Reference [11], Hauswald et al. divide the computation pipeline of computer vision
tasks into a pipeline and examine the tradeoff between different workload partition schemes on
local mobile devices and outside server; in Reference [12], Zhu et al. utilize the motion data from
Image Signal Processor (ISP) to relax the number of expensive Convolutional Neural Net-
works (CNN) inferences. Because system optimization focuses on specific applications (e.g., video
detection), it can obtain better performance, in general, than model compression.

1.2 Contributions

Our work falls in the category of system optimization. The contribution of our work can be sum-
marized as follows:

e We adopt Deep Feature Flow (DFF) as video detection framework and utilize Asynchro-
nous DFF (ADFF) to parallelize the execution of DFF;

o We propose Video-based Dynamic Scheduling (VDS) scheme, which utilizes motion vec-
tors in video decoding procedure to dynamically adjust the inference frequency for adaptive
computing;

e We propose Spatial Sparsity Inference (SSI) to further accelerate the inference time for
each video frame base on either dynamic or static computation masks;

e We dig into the implementation details of SSI on GPU and compare SSI with two related
spatial sparsity works;

e We implement our proposed system optimizations on both mobile and server side and eval-
uate them in detail.

1.3 Organization of the Article

The remainder of our article is organized as follows: In Section 2, we first give a brief preliminary
of DNN profiling results on mobile devices, which show the necessity of executing video detection
with the help of cloud. Then, we describe the motion vector in video codec, which is tightly related
to our proposed optimization methods. In Section 3, we present the framework of the DNN-based
detection system along with our optimization using asynchronous computing. In Section 4, we dis-
cuss our proposed dynamic scheduling method based on the motion vector, which can adaptively
choose the inference frequency. Section 5 presents our optimization, which dynamically executes
a spatial part of the input video frame. Extended from our preliminary work [13], we also imple-
ment the proposed methods on GPU and quantitatively analyze the pros and cons of the proposed
spatial sparsity inference. In Section 6, we set up and conduct experiments on our video detec-
tion system and show how each proposed design optimizes the whole system. In Section 7, we
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Table 1. Profiling of Two State-of-the-art DNN Models

Pixel 2 iPhone 8 Top-1 Acc Param Input size
MobileNet 166.5 ms 32.2 ms 70.9% 17 MB 224 X 224
Inception-v4 3180 ms 611 ms 80.2% 171 MB 229 x 229

summarize the related system optimization works on DNN-based video detection and their differ-
ence from our work. Section 8 concludes our article.

2 PRELIMINARY
2.1 DNN Model Profiling on Mobile Devices

Although DNNs can achieve state-of-the-art accuracy when running on high-performance plat-
forms [14-16], the low availability of computing resources on embedded platforms limits accu-
racy and/or viability of the DNNs in those contexts [17-19]. Table 1 illustrates the inference time
of two representative DNNs [20, 21] when running on flagship smartphones, as well as their cor-
responding Top-1 accuracy on the ImageNet dataset [22]. Those data are gathered from the offi-
cial document of TensorFlow [23], which is a popular toolkit for embedded platforms. In Table 1,
MobileNet [20] is an efficient network structure designed for mobile devices, while Inception-
v4 [21] represents state-of-the-art accuracy. It can be seen that even the highly optimized Mo-
bileNet still cost a long inference latency, leading to 6fps on Pixel 2. Note that the inference times
in Table 1 are measured from image classification tasks, the input image resolution of which is
around 200 x 200. While the typical input image resolution of video detection is about 600 x 1,000,
the corresponding computation cost will increase by more than 10 times. Because deploying large-
scale video detection systems on local mobile devices suffers from overwhelming computation
and energy costs, our detection system targets at a cloud computing setup to achieve both high
accuracy and low latency.

2.2 Motion Vector in H.264 Video Codec

Considering the limitation of network bandwidth, video contents captured from mobile camera are
compressed before being distributed. H.264 is a widely used video format, which is also known as
MPEG-4 Part 10, Advanced Video Coding [24]. One key reason of the fierce compression rate of
H.264 is its utilization of motion compensation. During encoding, H.264 protocol gathers certain
successive video frames in a single group, which is named as Group of Pictures (GoP). Each
GoP is made up of one I frame (“I” for Intra) and multiple P and B frames (“P” for Prediction, “B”
for Bidirectional). I frame independently encodes a complete frame, which serves as the reference
point for P and B frames in the same GoP. P frames are predicted by analyzing the difference
between themselves and the previous P frames or I frames. Similar to P frames, B frames are also
predicted by the frame difference except that they are compared with the later frames. Hence,
P and B frames store less data with high resolution. The video frames are divided into several
macroblocks, serving as the basic unit for predicting the frame difference. The difference between
frames is described by motion vector, including the source and destination of all macroblocks. We
adopt H.264 codec in the communication between mobile and cloud under wireless networks such
as Wi-Fi or LTE networks.

3 SYSTEM FRAMEWORK

Figure 1 shows an overview of our DNN-based video detection system. The upper part of Figure 1
represents the edge users, which capture the frames, encode them to video, transmit them to the
cloud, and wait for the final detection result. The bottom part denotes the execution flow of the
cloud. The received video is first decoded and then fed to the DNN-based detector. Figure 1 also
depicts the position where we add our three system-level optimization methods:
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Fig. 1. Overview of our video detection system.

(1) Asynchronous Deep Feature Flow (ADFF): A system optimization of DFF video detection
framework [25], which uses multi-threading to asynchronously execute the DNNs.

(2) Video-based Dynamic Scheduling (VDS): A system optimization that dynamically adjusts
key-frame detection frequency based on the metadata (motion vector) that exists in H.264 encoded
video. The video decoder component extracts the metadata and sends them to the detector.

(3) Spatial Sparsity Inference (SSI): A DNN-related system optimization which accelerates
DNN inference by focusing on only visual saliency areas. Specifically, SSI accelerates DNN by re-
implementing the convolutional layers so that only the designated spatial positions are convoluted.

3.1 Deep Feature Flow (DFF)

We adopt DFF [25] as the video detection framework. The essence of DFF lies in that it divides video
frames into two kinds: key frames and inter frames. Key frames are detected using a traditional
object detection DNN, i.e., R-FCN, which consists of a feature extractor network, Region Proposal
Network (RPN), and classification network. For the detection of inter frames, DFF compares these
frames with previous key frame using a smaller optical flow network and then generates their
feature map based on the interpolation from the cached key-frame feature map. According to the
default setting of DFF, a key frame occurs every 10 frames, while the other 9 frames are inter
frames. The feature extractor network is substituted by an optical flow network for all the inter
frames, saving much for inference time per frame. Figure 2 shows the execution flow of DFF. The
red arrow shows the execution flow of the key frame, while the green arrow shows the execution
flow of the inter frames. In general, DFF includes four network components:

e Feature Extraction Network (FeatNet): Feature extraction network extracts the high-
level features from raw images through stacks of convolutional, activation, and pooling lay-
ers. FeatNet is the most computation-intensive component in DFF.

e Optical Flow Network (FlowNet): Optical flow network computes the optical flow between
the previous key frame and themselves for the detection of inter frames. To enable end-to-
end training, such an optical flow is also realized by DNN called FlowNet [26].

e Propagation Function (Propagation): Propagation function takes the optical flow between
the key frame and the inter frames as well as the feature map of the key frame as input.
Then, propagation function interpolates the feature map of the key frame using optical flow
via bi-linear interpolation.

e Region Proposal Network (RPN) and Classification Network: Region proposal network is
applied on the feature map of each frame to locate the potential areas of the objectiveness
in the frames. The candidate Regions of Interest (Rols) are then fed into the classification
network to get the final object category by pooling and voting.
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Fig. 2. Execution flow in DFF detection framework [25].

ALGORITHM 1: Original Computation Procedure in DFF.

1: Init Keyframe Interval: i

2: for each Current Frame f;,, with Index idx do
3: if f.,, is keyframe then

4 Dets, featyey = FeatNet(fcur)

5 else if f.,, is interframe then

6: Dets = FlowNet(feur, freyfeatiey)

7

8

end if
: end for

3.2 Asynchronous DFF (ADFF)

One limitation of DFF is that although it achieves a high frame rate on average, the inference
time varies depending on whether the current frame is a key frame or an inter frame. Due to the
different networks utilized by each frame type, when running the original DFF code on GTX 1080
GPU, the detection latency of the key frames is 89 ms, while that of the inter frames is 19 s. If the
key frame interval is set to 7 frames, then the first key frame detection latency is 89 ms followed
by 6 inter frames that consume 19 ms per frame. Such sequential DFF is described in Algorithm 1.
It leads to unbalanced inference time of the frames that is not desirable in real-time applications.
We propose to optimize the system by executing FeatNet and FlowNet asynchronously. Two
threads are utilized here: one to execute key-frame inference and the other to execute inter-frame
inference. Figure 3 compares the original sequential DFF (top) with the proposed ADFF (bottom)
when the key-frame interval is 7. In the sequential DFF, the 1st and the 8th frames take 0.6 s,
respectively, while asynchronous execution allows for an inference time of 0.2 s for all the frames.
Before the current key-frame feature map is generated, every inter frame uses the feature map
of the last key frame and thus asynchronously gets the detection results. By performing compu-
tation asynchronously, detection latency only depends on the execution of FlowNet and video
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Fig. 3. Original sequential DFF (top) vs. proposed asynchronous execution ADFF (bottom).

transmission. As shown in the bottom of Figure 3, the first frame and the eighth frame are the key
frame and inter frame for both two parallel threads. In the example of Figure 3, the feature map
delay is 3 frames as FeatNet is nearly 3x slower then FlowNet. Formally,

Df — [;‘FeatNet }’ (1)
FlowNet

where TreqiNer and TrjowNe: are the inference times for FeatNet and FlowNet, respectively, [-]

rounds up to the nearest integer, and Dy is the feature map delay in terms of frame count. In

practice, D may be even smaller because of the communication overhead.

The details of ADFF are illustrated in Algorithm 2. We can tell that the correctness of multi-
thread execution is assured by utilizing a mutex to indicate when the current key-frame feature
map is available. Concretely, if the current frame to be detected is key frame, then a new thread
will be created to execute the FeatNet. Once the thread is created, it will acquire a thread lock to
prevent the later inter frames from getting the wrong key-frame feature map. In the mean time,

ALGORITHM 2: Asynchronous Deep Feature Flow (ADFF).
1: KeyframeThread (FeatNet, f;,,):

2: ., featliirynp = FeatNet(fc,,), threadLock.acquire()
3 featrey = feat]tczry"p, threadLock.release()

4: Init Thread Lock: threadLock, Keyframe Interval: i, Delay: d
5: for each Current Frame fc,, with Index idx do

6: if f.yr is the first frame in video then

7 Dets, featye, = FeatNet(fc,)

8: else

9 if four is keyframe then

10: thread = new KeyframeThread()

11: thread.start(FeatNet, fz,,),

12: threadLock.acquire()

13: else if idx % i == d then thread.join()

14: else if idx % i == d — 1 then threadLock.release()
15: end if

16: Dets = FlowNet(feur, frey.f€atkey)

17: end if

18: end for

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 33. Publication date: July 2022.



Toward Efficient and Adaptive Design of Video Detection System with DNNs 33:7

Luca

X

s-Kanade Gunnar Farneback

RN N

Fig. 4. Optical flow using Lucas Kanade (left) and Gunnar Farneback (right).

the current frame is also treated as an inter frame to get the detection results immediately. When
the FeatNet of the newest key frame is generated, as shown in line 3 of Algorithm 2, the thread
lock will be released so that the subsequent inter frames acquire the lock to compare themselves
with the newest feature map.

Another difference between sequential and asynchronous DFF is that, to reach the same accu-
racy, asynchronous DFF requires a smaller key-frame interval. This is due to an increased interval
between key frames and the inter frames that utilize their feature maps, and it is an unavoidable
result of Dy. For example, the key-frame interval of sequential DFF in Figure 3 is 6, while it is 9
for ADFF. In our experiments, we find that two threads work better when they are deployed on
different GPUs than on a single GPU. The reason is that if GPU memory is shared by two threads
executing two networks, the total number of GPU kernels for each thread is dynamically changed,
resulting in the fluctuation of the inference time. If we execute two threads on two separated GPUs,
then the inter-frame inference time will not be negatively affected by the parallel execution of key
frame.

4 VIDEO-BASED DYNAMIC SCHEDULING

As part of our detection system, we target the elimination of redundant calculations within the
video frames. Our system attempts such a goal by dividing the input frames into key frames and
inter frames, only performing higher-cost inference on key frames when necessary. In original DFF,
key frames are selected at a predetermined interval, regardless of the underlying video data [25].
This overlooks the case where video clips may contain long runs where there is very little change
from one frame to the next. In such a case, key-frame interval can be greatly increased without loss
of accuracy, reducing the expensive key-frame inference calculations. In our system, we design a
VDS scheme to dynamically determine whether the current frame is a key frame or not.

4.1 Motion Vector and Optical Flow

The idea of VDS is inspired by the similarity between motion vector and optical flow. Motion
vectors in H.264 work in the discrete domain, representing the displacement of sub-blocks in the
video frame. Optical flows are the motions of image brightness in the continuous domain, which
are caused by brightness change. In two-dimensional images, optical flow is the same as motion
vector in the ideal case [27].

One straightforward idea is directly substituting motion vector in H.264 for the FlowNet in
our system. However, the resolutions of motion vectors of different video frames in H.264 are
not identical. Moreover, the accuracy of the H.264 motion vectors is much lower than that of the
FlowNet, which prevents us from using the motion vectors directly. Additionally, we also tried
to replace FlowNet with a more light-weighted optical realization such as Lucas Kanade optical
flow [28] or Gunnar Farneback optical flow [29]. As can be seen in Figure 4, the accuracy of Lucas
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Fig. 5. Standard H.264 GoP pattern (top) and adopted H.264 GoP pattern in our system (bottom).

Kanade optical flow is worse than that of Gunnar Farneback optical flow although Lucas Kanade
method is faster. Even if we utilize Gunnar Farneback optical flow to replace original FlowNet, the
Mean Average Precision (mAP) still drops by 9.6% when the frame interval is set to 10, which
is unacceptable.

Although we could not directly utilize the motion vector, we leverage it to evaluate the displace-
ment between video frames for dynamically scheduling the frame interval for inference. Figure 5
shows how we encode the videos with H.264 format to be uploaded to the server (bottom). Com-
paring with the original H.264 video encoding pattern in the top of Figure 5, the encoding pattern
in our real-time video detection system discards all the B frames. Moreover, the number of refer-
ence frames is set to 1 so that all P frames motion vectors are calculated based on a single prior
frame. In such a way, the motion value means the displacement between frame pairs.

4.2 Video-based Dynamic Scheduling (VDS)

In VDS, we pre-define a frame interval range and a motion vector range. The current frame interval
is dynamically assigned based on the current motion vector magnitude of the current frame. As
described in Algorithm 3, VDS initializes the dynamic frame interval ranging from fi,,in to fimax,
and the motion vector magnitude from muv,,;, to MUy qy. For each video frame, VDS calculates a
scalar mvy,eqn, representing the mean of the magnitude of the incoming mv,,. Following this,
VDS maps mupeqn to a new key-frame interval (fic,,) using Min-Max linear mapping. Till now,
VDS only considers the motion between the current frame and its previous frame. To consider the
video change over a sequence of video frames, we define the accumulated motion vector mv,.
to denote the total motion from the last key frame until the current frame. As depicted in lines 7
and 8 of Algorithm 3, when the magnitude of the accumulated motion vector mv,. is larger than
MUpax, the minimum frame interval (fi,,;,) will be assigned to the current frame interval (fic,;,).

ALGORITHM 3: Video-based Dynamic Scheduling (VDS).

1: Init Dynamic key-frame interval range : fimin, fimax

2: Init Motion vector value range : mvy,in, MUmax

3: Init Accumulated motion value : movg.. = 0

4: for each new frame motion vector mu,,,, from key frame do

5: MUmean = Mean(Abs(mu¢y,))
6: MUgee + = MUmean
7: if mugee > Muy., then
8: ficur = fimin
9: else
. . . . muo, —muo,
10: ficur = fimin + (fimax = fimin) * W
11: end if
12: end for
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We can find that the only computation in VDS is vector summation and averaging, incurring very
marginal computation cost compared with DNN inference. Furthermore, unlike [30], VDS does not
require extra learning procedures. By adopting VDS, the FeatNet is frequently executed when the
movement in the video is fast and rarely executed when the movement is slow.

5 INFERENCE WITH SPATIAL SPARSITY
5.1 Spatial Sparsity Inference (SSI)

In Section 4, temporal redundancy is eliminated via VDS. In this section, Spatial Sparsity Inference
(SSI) is proposed for removal of spacial redundancy in videos. SSI skips unimportant pixels to
accelerate DNN execution. In SSI, we design two computation masks to denote the unimportant
pixels to be skipped: (1) Computation mask based on feedback detection results: Note that,
in DFF, the inter frame is detected based on the key frame and the optical flow between these
two frames. Therefore, the background part of both frames need not be examined by FlowNet,
as background movement would not affect final detection results. Figure 6 shows an example of
a feedback computation mask, where only the region within the red bounding box is executed.
The red bounding box is defined by the detection results from the key frame (green box), with
an additional margin of a constant size. Here, we set the margin as 64, because in FlowNet, the
ratio between the spatial size of the feature map before the first convolution and the smallest
feature map after convolution is 64:1. The ratio can be inferred from Figure 11, which is w/2 or
w/2 divided by w/128 or h/128. (2) Computation mask based on brightness error: Feedback
computation mask reduces the spatial redundancy of the frame background. However, they cannot
be applied when feedback detection results cover the entire video frame. To deal with such a case,
brightness error computation mask is designed, which is defined as the subtraction between inter-
frame brightness (Bjy;r) and key-frame brightness (By):

Mask = 0 where |Biey — Binter| < thd, else 1, (2)
where thd stands for the threshold of the brightness error to be skipped. Figure 7 shows the bright-

ness error mask of an elephant video with a brightness threshold of 15. It can be seen that a large
region is unnecessary to be re-calculated even though it falls within the detection bounding box.
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5.2 Realization of SSI

Figure 8 presents the original layers (left) and their corresponding SSI layers (right). Compared
with the original layers with feature map as input, SSI layers are fed with the feature map and
the computation mask as described in Section 5.1. To deal with the scale change in different DNN
layers, we borrow the idea from SBNet [31], which uses a pooling operation followed by a thresh-
old to downsample the input computation mask. The convolution in the original layer module
is replaced with SSI_Conv and SSI_Index Layer. Because SSI belongs to structured sparsity, it can
better accelerate DNN execution with fully optimized, dense GEMM in both CPU and GPU modes.

5.3 Realization of SSI Index Layer

To skip the designated pixels, we need to first get the indices of the pixels to be skipped, which
is realized by SSI index layer. SSI index layer converts a binary computation mask to a non-zero
index array as well as the total size of non-zero numbers. Figure 9 depicts how to realize an ef-
ficient SSI index operation on GPU in parallel. Each position of the binary computation mask is
assigned to one GPU kernel for parallel execution. Then, for each GPU kernel, it decides whether
the assigned number is 0 or 1. If the assigned number is 0, then the kernel will end its execution
thread. Otherwise (the assigned number is 1), the kernel will first do an atomic addition to the
global position counter. Atomic addition assures the correctness of parallel execution of SSI index
operation so that two GPU kernels will not access and update the same position in the output non-
zero index array. After that, the thread will get the old value before the atomic addition, indicating
the position that can be filled for the current GPU kernel. Last, such a GPU kernel will update
the position in the non-zero index array with the indices of the non-zero numbers in the original
computation mask. As shown in the example of Figure 9, the final non-zero index array contains
0, 2, and 5, which are the position indices of the input binary computation mask.

5.4 Realization of SSI Convolution Layer

Figure 10 details the procedure of the SSI_Conv operation. Before the matrix-by-matrix multipli-
cation in step 2, the input feature map is first expanded from a three-dimensional tensor to a
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Fig. 10. Procedures of SSI convolution operation.

two-dimensional tensor with a patch to column operation. Patch here means a subset of feature
map that is of the same dimension of the convolution kernels. Originally, each patch in the feature
map is flattened to a single matrix column iteratively along the x axis and y axis. In SSI_Conv, patch
to column operation takes the non-zero indices from the SSI_Index layer as input and iteratively
assigns the columns to GPU kernels based on the patches with the non-zero indices. Comparing
to the original patch to column implementation, the output matrix is smaller with fewer columns,
leading to less memory consumption. Take step 1 in Figure 10 as an example, the number of the
output matrix column is 3, because the non-zero index only includes three indices (0,2,5). Conse-
quently, step 2 in Figure 10 does the matrix multiplication with the smaller matrix. Step 3 is an
extra step for SSI_Conv operation, which expands the output matrix to the original size based on
the non-zero indices.

5.5 Applying SSI on FlowNet

After applying ADFF, the latency bottleneck becomes the inference time of FlowNet. Thus, SSI is
applied on FlowNet to further accelerate the inference latency. The detailed network architecture
of FlowNet is shown in Figure 11. The input of FlowNet is a frame with height (h) and width (w),
which is first compressed by half in both dimensions. There are six convolution groups, each of
which decreases the input feature map side length by half. There is one convolution operation in
the groups of Convi, Conv2, while there are two convolution operations in the groups of Conv3,
Conv4, Conv5, Convé6. After six convolution groups, the output feature map dimension becomes
h/128 x w/128, which is fed into the refinement layers. The refinement layers generate the optical
flow with the spatial dimension of h/16 X w/16 with two channels, representing the displacement
of two frames from the x axis and y axis. As indicated in Figure 9, SSI index operation contains
atomic addition, which needs to be executed sequentially even on GPU. The time consumption of
SSI index operation increases quadratically with the increase of computation mask spatial scale.
As a result, applying SSI on Convi1 and Conv2 does not achieve speedup in practice. Therefore, SSI
is applied after two convolution groups.

5.6 Comparison of SSI with Related Works

The realization of SSI is jointly inspired from PerforatedCNNs [32] and SBNet [31], with necessary
modifications. The reason why we combine the ideas of PerforatedCNNs and SBNet in SSI is due
to their functional limitations when taken separately:

e PerforatedCNNs supports pixel-wise skipping but the skip index is static with the same com-
putation mask for all input images. PerforatedCNNs could not be directly applied to our
system, because in our system, the computation mask is dynamically changing.

e SBNet supports dynamic computation mask but only realizes convolution speedup in block-
wise situations. However, SBNet could not achieve speedup with a small scale feature map.
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Fig. 11. Network architecture of FlowNet in DFF.

This is due to the computation overhead incurred by Gather and Scatter operations when
the feature map is of low dimension and large channel size.

Therefore, SSI adopts the dynamic computation mask method from SBNet as well as the efficient
convolution from PerforatedCNNs, yielding an efficient convolution inference with spatial sparsity.

6 EXPERIMENTS
6.1 Experimental Setup

Test Benches: We implement our video detection system using the DFF [25] framework, with all
proposed optimization schemes. DFF also serves as the baseline. For the fairness of comparison, we
directly utilize the trained models from DFF without fine-tuning in all experiments. We adopt the
ImageNet VID dataset for evaluation, which includes 5,354 annotated videos. The model structures
adopted for the FeatNet and FlowNet are ResNet101 [33] and FlowNet [26], respectively. Video
frames are resized to 600 pixels on the shorter side as the input of FeatNet, and 300 pixels on
the shorter side for FlowNet. In our experiments, the accuracy-related performance of the video
detection system is reported using mean average precision (mAP), speed-related performance is
evaluated in terms of sparsity and milliseconds (ms).

System Environment: For the client side, we adopt the Nexus 5 and the Pixel 2, representing
two popular Android-based smartphones. The Nexus 5 is powered by a Quad-core Krait CPU
with an Adreno 330 GPU and 2 GB of RAM. The Pixel 2 is equipped with an Octa-core Kryo CPU
with an Adreno 540 GPU and 4 GB RAM. We implement and deploy an H.264 video encoding
application on both devices, which utilizes the EGL interface for efficient GPU-accelerated
encoding. For the server side, we deploy our system on a server running Ubuntu 16.04, with
a 16-core, 2.4 GHz Intel Xeon CPU, two NVIDIA GPUs (GeForce GTX 1080 and GeForce GTX
TITAN), and 128 GB RAM. Corresponding to the video encoding performed on the Android
devices, we establish a video decoding application on the server with low-level fimpeg and
%264 libraries. For the DNN video frame inference module on the server side, we extend the
existing DFF project with our optimizations on MXNet [34], a powerful deep learning framework
developed by DMLC team. Figure 12(a) shows the histogram of the motion value derived from
ImageNet VID. For ease of visualization, all motion values larger than 10 are truncated. From the
figure, it can be seen that the distribution of motion values is polarized: 29% of the video motion
values are smaller than 1 while 23% of the values are larger than 9. The mean of the motion values
is 6.83, and the median is 3.05. Figure 12(b) shows the relationship between different image scales
and their corresponding encoding/decoding time. Generally, Pixel 2 is faster than Nexus 5 for
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Fig. 12. (a) Motion value histogram on ImageNet VID with H.264 and (b) encode/decode time on tested
hardware.

Table 2. Ablation Study of Proposed Optimization Methods

Key frame Inter frame Ave FPS mAP

DFF [25] 89.8 ms 19 ms 4437 69.92
ADFF 19 ms 19 ms 52.63  69.92
DFF+VDS 89.8 19 ms 4437  70.56
DFF+SSI 89.8 18.8 ms 4474 6932

ADFF+VDS+SSI  18.8 ms 18.8 ms 53.19  69.92

video encoding, which consume 14.9 and 22.8 ms on average, respectively. When the image scale
reaches 246K on Pixel 2, the encoding time becomes shorter than that of lower-scale images. This
is due to the highly parallel nature of both the encoding operation and the mobile GPU. The video
decoding time from server side is 3.9 ms per frame on average.

6.2 Overall Evaluation

We evaluate our video detection system under the setting of key-frame interval = 20, video scale =
800 x 600, network throughput = 10 Mbps, video size per frame = 47 KB, and H.264 Bitrate =
2 Mbit/s. The corresponding communication and codec latency sums up to 30 ms.

Table 2 demonstrates the ablation study about the inference latency of key frame, inter frame, the
average FPS, and the performance with or without our proposed methods. The baseline inference
latency from the server side is 89.8 ms for key frame and 19 ms for inter frame. After adopting
ADFF, the execution of FeatNet is hidden so that the execution bottleneck becomes only FlowNet
latency. In such a case, the inference latency becomes 19 ms for both key frame and inter frame.
When combining DFF with VDS, a higher mAP is realized under the same frame interval because of
the content-based scheduling. When combining DFF with SSI, the inference latency of inter frame
is further shortened by sacrificing 0.6% mAP The average time saving of 0.2 ms is derived from
both SSI index and SSI convolution. If the computation mask is asynchronously generated, then
SSI will achieve a higher speedup. As shown in the last line of Table 2, when combining all the
methods, the inference FPS achieves 53.19 compared to the original 44.37 under the same mAP.

6.3 Evaluation of Communication Cost

Figure 13 illustrates the average communication time per frame of transmitting the H.264 encoded
videos of different resolutions under different uploading bandwidths. The uploading bandwidth
we choose in Figure 13 is from 6 to 21 Mbps, which is the common uploading bandwidth range in
LTE standard [35]. From Figure 13, we find that H.264 could fiercely compress the video frame with
high resolution: For 1,280x 960 video resolution, the average frame size can be compressed down to
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Fig. 14. Computation time comparison between sequential DFF and ADFF.

1.98 Mb from an original raw data of 9.83 Mb. The communication latency varies under different
uploading bandwidths. For the 1,280 X 960 video resolution, it takes 330 ms to communicate under
6 Mbps bandwidth while 94 ms under 21 Mbps bandwidth. Because the communication latency is
roughly proportional to image resolution, different resolutions could be used for different user
requirement under different bandwidths.

6.4 Evaluation of ADFF

Figure 14 compares DNN inference time between original sequential DFF and our proposed ADFF.
As indicated in Figure 14, the inference time of each video frame always equals the one of the
inter frame in ADFF. We find that the inference time for key frame and inter frame are 93 and
20 ms for GTX TITAN, and 89 and 19 ms for GTX 1080, respectively. Based on this observation,
we deploy the key-frame thread on GTX TITAN and the inter-frame thread on GTX 1080, as the
execution time of inter frame is the bottleneck latency in ADFF. The inference time per frame in
the original sequential DFF baseline is always much higher than that of ADFF, which is due to the
bottleneck of key-frame execution. Note that the delay in ADFF is set as 3, and that delay should
be no bigger than the key-frame interval. Hence, Figure 14 shows the key-frame interval from
6 to demonstrate the advantage of ADFF. As the dotted line in Figure 14 shows, ADFF achieves
1.05-1.47x and 1.1-1.5X speedup compared with sequential DFF on GTX 1080 and GTX TITAN,
respectively. Another benefit of ADFF is its uniform frame timings, whereas sequential DFF is
highly fluctuating. It will tremendously improve user experience.

6.5 Evaluation of VDS

Figure 15 presents the results of VDS, where the gray dots show the baseline speed-accuracy trade-
off with a static key-frame interval. For VDS, we try three max motion values: 10, 20, and 30, the
results of which are colored as orange, yellow, and green. For each max motion value setting, we

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 33. Publication date: July 2022.



Toward Efficient and Adaptive Design of Video Detection System with DNNs 33:15

I e o ® static ¢ VDS_30

74 * VDS_20 = VDS_10
S73 e =
= ol o
A, 72 ¥ e "
§71 faii

70 °

69 *

0 5 10 15 20 25

Average Key Frame Interval

Fig. 15. mAP under different average key-frame interval with static scheme and VDS scheme.

Mask_thd 0  messsss Mask thd 10 mssssssm Mask thd_ 20|
—=— Bascline —— Mask_thd 0 Mask_thd 10 80

S
= —— Mask_thd 20 76

)
2 nE
-

S =
o 68 ~
B =
N N—
!

<

[=9
9}

3 5 7 9 11 13 15 17 19 21 23
Key Frame Interval

Fig. 16. Sparsity-accuracy tradeoff with SSI.

set the minimum key-frame interval as 5, 10, 15 and max key-frame interval as 20, 30, 40, forming
nine dynamic interval ranges in total. As shown in Figure 15, when the key-frame interval is small
(e.g., <12), VDS does not show an advantage compared to static key-frame scheduling. It is because
the dynamic interval range is small and thus there exists little optimization space for higher ac-
curacy. With the increase of key-frame interval, we derive a higher accuracy than baseline when
adopting VDS. For example, when the average key-frame interval is 21.6, the mAP reaches 70.6%.
Meanwhile, the mAP of static key-frame scheduling only achieves 69.9% when the key-frame in-
terval is 21. Therefore, VDS does help the prediction of the key frame, achieving a better accuracy
with less computation.

6.6 Sparsity-accuracy Tradeoff of SSI

We set three brightness thresholds: 0, 10, and 20 to demonstrate sparsity-accuracy tradeoff of SSL
Figure 16 shows the sparsity-accuracy tradeoff when adopting SSI in our system. The average spa-
tial sparsity equals 52.8% when only applying the feedback computation mask. The mAP drop is
controlled within 1% for all the key-frame interval settings. Furthermore, the mAP drop is negligi-
ble (e.g., <0.5%) when the key-frame interval is small (e.g., <9). With the increase of the key-frame
interval, the spatial sparsity keeps decreasing. The reason lies in that a larger key-frame interval in-
curs larger movement between the key frame and the inter frames and thus the bounding box area
in the feedback computation mask becomes larger. As illustrated in Figure 16, the spatial sparsity
increases with the increase of brightness error mask thresholds. Take the key-frame interval 9 as an
example, the sparsities are 53%, 68%, and 75% for the thresholds 0, 10, and 20, respectively. Their cor-
responding mAP results are 72.53%, 72.18%, and 71.85%. Therefore, we find that setting the bright-
ness error mask threshold as a small number (e.g., 10) leads to a better sparsity-accuracy tradeoff.
One limitation of SSI is that it could not achieve speedup when the input feature map is large in
height and width. So, we apply SSI after two pooling operations in FlowNet. In our experiments, SSI
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Fig. 18. Speedup of SSI convolution operation.

achieves 1.06x-4.25X speedup on convolutional layers of FlowNet with 60%—-90% spatial sparsity.
Because FlowNet only contains 12 convolutional layers after two pooling operations, the impact of
SSI on speedup of the whole inference operation is limited to 1.01x-1.15X under 60%-90% spatial
sparsity. The rest operations such as RPN, deconvolution, and so on, were not accelerated.

6.7 Speed Evaluation of SSI Index

Figure 17 depicts the time consumption of SSI index operation with different scales of computa-
tion mask and spatial sparsities using GeForce GTX 1080. As illustrated in Figure 17, the time
consumption of SSI index operation reduces with the sparsity and increases with the scale of the
input image. Here, the scale of the input image denotes the side length of the input frame. In gen-
eral, the time consumption of SSI index operation is proportional to the number of non-zeros in
the computation mask, which is due to the atomic addition in SSI index operation. For example, the
time consumption of SSI index operation reaches 0.94 ms when the computation mask is 80 x 80
with 70% sparsity. Such a long operation time is unacceptable, because the standard convolution
operation just costs about 1 ms on GPU. To get rid of the computational overhead of SSI index
operation in the FlowNet inference, SSI is not adopted for the first two layers that have large-scale
computation masks.

6.8 Speed Evaluation of SSI Convolution

Figure 18 demonstrates the speedup of SSI convolution operation using GeForce GTX 1080. Fig-
ure 18 is derived from running standalone layer-wise speedup tests, where the layer setting in-
cludes 3 X3 x 128 X 128 convolution kernels with 1 padding and stride. The implementation details
are similar to PerforatedCNNs. So, in our video detection system, if the computation mask is static
or pre-defined, the speedup in Figure 18 is the final speedup that SSI could achieve. SBNet claims
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Table 3. Configuration of Convolution Layers in FlowNet

Input Dim | Output Dim | Kernel | Stride | Filter Num
Convl 300 x 500 150 X 250 7 2 64
Conv2 150 X 250 75 X 125 5 2 128
Conv3 75 X 125 38 X 63 5 2 256
Conv3_1 38 X 63 38 X 63 3 1 256
Conv4 38 X 63 19 x 32 3 2 512
Conv4_1 19 x 32 19 x 32 3 1 512
Conv5 19 x 32 10 X 16 3 2 512
Conv5_1 10 X 16 10 X 16 3 1 512
Convb6 10 X 16 5% 38 3 2 1,024
Convé6_1 5% 8 5% 8 3 1 1,024
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Fig. 19. Layer-wise speedup on FlowNet with SSI convolution.

that it achieves 0.88-3.39x speedup under 90% sparsity with different input scales [31]. Compared
with SBNet, SSI convolution achieves higher speedups under the same input scale, e.g., 1.25-3.79%
speedup under 80% sparsity and 1.32-5.76X speedup under 90% sparsity, respectively, when the
input scale is ranging from 50 X 50 to 500 X 500. The reason is that SSI requires less memory alloca-
tion and memory copy than SBNet. Similar to SBNet, with the decrease of the scale, the speedup of
SSI convolution becomes lower. This phenomenon is because the total parallel GPU threads could
cover the parallel capacity of GEMM operation when the input scale is small [36]. In such a case,
a higher spatial sparsity could no longer achieve proportional speedup.

6.9 Evaluation of FlowNet with SSI

Table 3 shows the configuration of each convolution layer in FlowNet with input video frame
dimension of 600 X 1,000. Figure 19 shows their corresponding speedup with different sparsities
of static computation mask on GeForce GTX 1080. Later layers get lower input dimensions of
the feature map. So, their corresponding speedups are limited compared with the prior layers.
Furthermore, SSI achieves marginal speedup with comparatively low sparsity such as 50%. As a
result, it is recommended that SSI could be used when the spatial sparsity is high. Mind that the
speedup results shown in Figure 19 only considers SSI convolution operations. Therefore, if we
adopt a dynamic computation mask for each video frame, then the overall speedup will be lower
because of the overhead of the SSI index operations. Fortunately, the SSI index operations could
be done once the feedback bounding boxes of the last video frame are available, which will not
affect the detection latency.
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6.10 Memory Evaluation of SSI

Figure 20 shows the memory consumption of original convolution, SSI convolution, and SBNet
convolution, respectively. We calculate the memory consumption with different non-zero sparsi-
ties under the setting of 128 3 X 3 convolution kernels and a 100 X 100 feature map of 128 channels
as input. To show the memory consumption of SBNet with different block granularities, we shows
three sparsity levels, e.g., SBConv10, SBConv30, and SBConv50, respectively. Here 10, 30, and 50
represent the number of blocks from each side of the feature map. For example, SBConv10 means
that the feature map is divided into 10 X 10 = 100 blocks. We could find from Figure 20 that SSI
and SBNet require similar or even more memory than the original convolution when the spatial
sparsity is under 40%. Hence, neither SSI nor SBNet achieves satisfactory speedup under low spa-
tial sparsity. Additionally, SSI requires less memory than SBNet, because SBNet needs to make a
copy of the input feature map during the Gather operation. Moreover, with the decrease of block
granularity in SBNet, the memory consumption keeps increasing due to the increase of total blocks
and the overlaps between blocks.

7 RELATED WORKS
7.1 Impact on Video Detection System

In this work, we focus on the optimization of video detection—an application of continuous com-
puter vision for object detection and analytics purpose. Many prior works tried to accelerate DNN-
based video detection on mobile platforms by leveraging cache reuse [37, 38], model compres-
sion [39, 40], dynamic execution paradigm [41, 42], communication deduction [43, 44], and so on.

The contributions that extinguish our work from the prior-arts can be summarized as follows:
First, our proposed optimization methods (ADFF and SSI) are specific for DFF framework. ADFF is
the asynchronous version of original DFF and SSI is only used for Optical Flow estimation. In this
way, a better performance can be achieved thanks to the based cutting-edge video detection frame-
work. Second, we emphasize the low coupling character of our proposed VDS method. VDS could
be easily ported to any DNN-based video detection system without touching the other function
modules and no extra computation is incurred.

7.2  Multi-path Execution of DNNs

Multi-path execution of DNNs is a way to accelerate the detection pipeline. In Reference [41],
the authors propose NoScope, where large DNNs are only executed when specialized models that
perform classification tasks fail. Similar to NoScope, in Reference [42], the authors propose Frugal
Following, where small networks are used for object tracking and large DNNs are executed only
when needed. Unlike these works, ADFF decouples the original sequential execution of two DNNs
into two parallel parts. In our experiments, R-FCN (ResNet101) is adopted as the FeatNet [45].
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Mind that the FeatNet could be substituted by any other object detection framework like SSD or
Yolo [46, 47]. Thanks to ADFF, the bottleneck of the original DFF is transferred from the FeatNet to
FlowNet. Therefore, the execution time of FeatNet will not affect the latency of our video detection
system.

7.3 Temporal Redundancy in Video Detection

Removing temporal redundancy in video detection is also an efficient way to accelerate the execu-
tion. Many previous works utilize a smaller model or light-weight algorithms (e.g., logistic regres-
sion, Lucas-Kanade optical flow, or diamond search) to detect the frames with small displacement
and thus avoid executing the large DNN model on those frames [37, 38, 41-44, 48]. Following the
same idea, VDS also utilizes the idea of low displacement between frames to dynamically decide
the frame interval in DFF. However, there exist two main differences that make VDS outperform
the related works. First, no extra computation is required for VDS, because the motion vector is
directly derived from H.264. Such an idea is also used in Reference [44] for alleviating communi-
cation costs. Second, unlike the previous works, the motion vector in VDS is not directly applied
to the video frame and thus will not affect the detection performance. For example, in Reference
[48], the motion vector is applied in the receptive fields while in VDS, the H.264 motion vector is
accumulated by a single value to guide the key-frame selection.

To skip the unchanged areas in each video frame, DeepCache [37] and DeepMon [38] cache the
previous feature map and utilize Chi-Square distance and diamond search to detect the change of
each grid block of the frame. Similarly, DFF also caches the feature map of the previous key frame
and our proposed SSI selects the areas using two computation masks. Compared with DeepMon,
SSI can tolerate scene variation. Compared with DeepCache, our proposed computation masks
require less computation.

8 CONCLUSION

In this work, we propose an efficient cloud-based video detection system for real-time applica-
tions. Our system adopts the state-of-the-art video detection framework DFF with several opti-
mizations. First, we design Asynchronous DFF (ADFF), which utilizes multi-thread technology to
asynchronously execute the DNNs in DFF while ensuring the functional correctness via Mutex.
Second, we propose Video-based Dynamic Scheduling (VDS) to dynamically decide the key frame
based on H.264 motion vector. Third, We propose Spatial Sparsity Inference (SSI) for spatially par-
tial inference based on both feedback detection results and brightness error. Our video detection
system is able to satisfy real-time requirement of video detection applications on popular mobile
platforms with marginal accuracy degradation.
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