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Abstract 
Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under 

global and gauged U(1) symmetries. We generalize this framework to include a Proca mass for the gauge 

boson, which can arise either from spontaneous symmetry breaking or via the Stückelberg mechanism. A 

heavy (light) gauge boson leads to solitons reminiscent of the global (gauged) case, but for intermediate 

values these Proca solitons exhibit completely novel features such as disconnected regions of viable pa-

rameter space and Q-shells with unbounded radius. We provide numerical solutions and excellent analytic 

approximations for both Proca Q-balls and Q-shells. These allow us to not only demonstrate the novel 

features numerically, but also understand and predict their origin analytically. 
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I. INTRODUCTION 

Scalar field theories with a conserved Noether charge Q can support non-topological soliton so-

lutions [1, 2], which we refer to simply as solitons. The simplest examples are Q-balls from U(1)-

invariant complex scalars [3, 4]; the required conserved symmetry could also be a local symmetry, 

which leads to gauged solitons in the form of Q-balls [5–8] and Q-shells [9–11]. 

The additional generalization to massive gauge bosons has garnered scant attention in the liter-

ature (see, however, Refs. [12–15]) because it is a significantly more difficult system to solve, even 

numerically. However, given the prevalence of massive gauge bosons in the Standard Model and its 

extensions, it is of great phenomenological interest to investigate the effect of gauge boson masses.1 

Clearly, a very light gauge boson leads to solitons resembling the known gauged ones, while very 

heavy gauge bosons lead to solitons reminiscent of global Q-balls. In addition to quantifying the 

previous statement, we show below that gauge boson masses in the intermediate range exhibit novel 

effects. 
1 We should mention that solitons in models of self-interacting massive gauge bosons without any scalars have been 

discussed in Refs. [16–19] but have no relation to our study. 
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We begin, in Sec. II, by defining the theory and introducing Q-balls and Q-shells. The mechanical 

analogy of a particle rolling in a two-dimensional potential is introduced and the different soliton 

types are associated with different trajectories along this potential. This language provides familiar 

terminology and intuition for understanding the various solitons considered. The numerical methods 

employed to determine the exact soliton solutions are also introduced. 

Following this discussion, in Sec. III we focus on Proca Q-balls, deriving excellent approximate 

analytic formulae for the scalar and gauge field profiles. We also develop a mapping between the 

solution space of global Q-balls and Proca Q-balls. This mapping provides an understanding of how 

Proca Q-balls interpolate between global and gauged Q-balls as the mass of the gauge field changes. 

It also predicts new features in the Proca Q-ball solutions space, such Q-balls with large minimum 

charge and gaps in continuity between branches of solutions. These predictions are then compared 

to exact numerical results and found to be in superb agreement. 

We then turn to Q-shells in Sec. IV. Similar to the Q-ball case, we develop impressive analytical 

approximations of the Q-shell fields. These are used in conjunction with the mechanical analogy to 

predict the solutions space of Proca Q-shells. We find not only Q-shells that match onto gauged Q-

shells as the gauge boson mass is taken to zero, but also Q-shells without a massless analogue. These 

predictions are compared to exact numerical results and shown to agree. Following this discussion 

we conclude in Sec. V and include some technical derivations regarding general Proca solitons in 

Appendix A. 

II. FRAMEWORK 

Our starting point for Proca solitons is the following Lagrange density of a complex scalar field φ 

charged under a U(1) gauge symmetry, 

φ|2 L = |Dµ − U(|φ|) − 
1 
Fµν F µν 

4 

2 mA Aµ + Aµ
2 

, (1) 

where U(|φ|) is a U(1)-invariant scalar potential, Dµ = ∂µ − ieAµ is the gauge covariant derivative, 

and Fµν = ∂µAν − ∂ν Aµ is the gauge field strength tensor. The (positive) parameter e is the gauge 

coupling normalized so that φ has charge one. We include a mass mA for the gauge field that can 

have two origins: 

i) it can be considered a Stückelberg mass [20, 21], in which case the U(1) gauge symmetry is 

unbroken albeit fixed in L, while the underlying global U(1) symmetry φ(t, ~x) → eiθφ(t, ~x) is 

manifestly conserved; 
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ii) it can originate from spontaneous symmetry breaking by a scalar ψ that is either very heavy 

or has negligible couplings to φ in order to be irrelevant for the soliton dynamics. In the latter 

case the full Lagrangian L(φ, ψ) must feature one global and one gauged U(1) symmetry, only 

the latter of which is broken by hψi. 

Assuming the field ψ in ii) can be neglected, the phenomenology of L is the same no matter the 

origin of mA. In the following we simply refer to the massive gauge boson A as a Proca field and 

the corresponding solitons as Proca solitons. These are to be distinguished from global solitons (the 

limiting case e → 0 or mA → ∞) and gauged solitons (the limiting case mA → 0). 

We expect ground-state soliton solutions to be spherically symmetric [3] and make the following 

ansatz for the fields, 

φ0 iωt φ(t, ~x) = √ f(r)e , A0(t, ~x) = φ0A(r) , A1,2,3(t, ~x) = 0 , (2) 
2 

with a constant frequency ω. The dimensionful scale constant φ0 is determined by the scalar po-

tential. We have left U(|φ|) largely unspecified, but there are a few qualities that must be present. 

Since we do not want to break the U(1) symmetry, at least not through φ, we require hφi = 0 in the 

vacuum, which implies that f = 0 in the vacuum. Then, we choose the potential energy to be zero 

at the vacuum by U(0) = 0 and enforce that the vacuum is a stable minimum of the potential by 

dU 
d|φ| 

���� = 0 , 
φ=0 

d2U 
dφ dφ∗ 

���� 
φ=0 

2 = m , φ (3) 

where mφ is the mass of the complex scalar. With all this in mind, Coleman [3] showed that global 
√ 

Q-balls exist when the function U(|φ|)/|φ|2 has a minimum at |φ| = φ0/ 2 with 0 < φ0 < ∞ such 

that s √ 
2U(φ0/ 2) 

0 ≤ ≡ ω0 < ω < mφ . (4) 
φ2 
0 

Note that we can use the global U(1) symmetry to make φ0 real and positive without loss of generality. 

The gauged and Proca solitons have a somewhat modified region of validity for ω that is discussed 

below, but at the very least it is bounded from above by ω ≤ mφ. 

It proves convenient to introduce the dimensionless quantities defined by 

ρ ≡ r
q ω ω0 2 − ω2 

0 , Ω ≡ q
m

Ω0 ≡ , (5) q
m

m , φ 
2 − ω0

2 2 − ω0
2 

φ φ 

φ0 mA 
Φ0 ≡ q

m
α ≡ eΦ0 , M ≡ . (6) q, 

2 − ω0
2 2 − ω0

2 mφ φ 
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p
In addition, we often use the parameter κ ≡ Ω2 − Ω0

2 ∈ (0, 1] instead of Ω. With these definitions 

and the field ansatz from Eq. (2) the Lagrangian takes the form Z 
1 
f 02 1 

A02 1 2 U(f) M2 
+ + f 2 (Ω − αA) − + 

0(m
L = 4πΦ2

0 m2 
φ − ω0

2 dρ ρ2 A2 , (7) − 
2 

q (
2 2 2 Φ2 

φ − ω0
2 )2 2 

) 

with primes denoting derivatives with respect to ρ. We also define a (dimensionless) potential for 

the two dynamical fields: 

1 2 U(f) M2 
A2 V (f, A) = f 2 (Ω − αA) − 

2 + . (8) 
0(mΦ2 − ω0

2 )2 2 2 φ

The Euler–Lagrange equations pertaining to the Lagrangian in Eq. (7) are 

2 ∂V 1 dU 
f 00 f 0 2 + = − = 

2 − (αA − Ω) f , (9) 
Φ2 

0 − ω0
2 )2 ρ ∂f (m df φ

A00 +
2 
A0 = + 

∂V 
= αf 2(αA − Ω) + M2A . (10) 

ρ ∂A 

The boundary conditions for localized solitons are similar to those for gauged Q-balls [5]: 

f 0 A0 lim = lim f = lim = lim A = 0 . (11) 
ρ→0 ρ→∞ ρ→0 ρ→∞ 

The conserved charge Q is defined in the usual way as the integral over the time component of 

the scalar current [5], which can be expressed as Z 
Q = 4πΦ2

0 dρ ρ2f 2 (Ω − αA) . (12) 

Finally, the soliton energy is obtained from the Hamiltonian 

dρ ρ2 

(
A2

) Z 
φ

q
2 m

2 

1 
f 02 1 

A02 1 2 U(f) M2 
+ + f 2 (Ω − αA) + + 

0(m
E = 4πΦ2

0

q
− ω0

2 (13) 
Φ2 2 − ω0

2 )2 2 2 2 2 φ

4πΦ2
0

q
3 

m2 
φ − ω0

2 Z � � 
f 02 − A02 dρ ρ2 − ω0

2 ΩQ + (14) = m . φ

The second equation is derived in App. A together with the proof that the popular soliton equation 

dE dQ 
= ω , (15) 

dω dω 

continues to hold even in the presence of a gauge boson mass. 

Aside from the novel inclusion of the gauge boson mass M , the above essentially reviews the known 

gauged soliton formulae following the conventions of Ref. [8]. It bears repeating, however, that no 

exact solutions to the coupled differential equations Eqs. (9) and (10) are known. Even numerical 

solutions are tedious to obtain, especially upon including the gauge boson mass M . Therefore, in 
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what follows, we motivate approximate analytical solutions that also serve as seed functions for 

numerical finite-element solutions. 

Most of our discussion employs the most generic U(1)-symmetric, sextic potential studied already 

in Refs. [4, 8, 11], which can be conveniently parametrized as 

f2 � � 
U(f) = Φ2

0(m 2 
φ − ω0

2 )2 (1 − f 2)2 + Ω0
2 , (16) 

2 

leading to the effective potential h i 1 � �2 M2 
V (f, A) = f 2 κ2 + αA(αA − 2Ω) − 1 − f 2 + A2 . (17) 

2 2 

A. The Potential 

We can understand much of the dynamics of gauged Q-balls by considering the potential V of 

Eq. (8). If we neglect the friction terms we can write the equations of motion as simply 

∂V ∂V 
f 00 A00 − + = 0, = 0 . (18) 

∂f ∂A 

Note then that we can define the quantity 

E =
1 
f 02 − 

1 
A02 + V (f, A) , (19) 

2 2 

and find that it is conserved: � � � � 
dE ∂V ∂V 

f 00 A00 − = f 0 + − A0 = 0 . (20) 
dρ ∂f ∂A 

Of course, in general this quantity is not conserved and we see immediately that 

dE 2 � � 
f 02 − A02 = − . (21) 

dρ ρ 

However, we can integrate this quantity to find Z ∞ dρ � � 
V (f(0), A(0)) = 2 f 02 − A02 , (22) 

ρ 0 

where we have used that f(∞) = A(∞) = 0 and that the derivatives of f and A vanish at both 

boundaries. Of course, the integration can also be taken over any finite range. For instance, in 

determining the Q-shell radii we consider integrating from zero to the inner radius and separately 

from the outer radius to infinity. 

The first term in the friction integral (22) appears to be the energy lost due to friction as the 

f field rolls down the potential to the maximum at f = 0. It would be helpful to have a similar 

mechanics intuition for A. Notice that A’s dynamics are determined by −V , instead of V . Thus, we 
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have that A also rolls from rest down the slope of −V and this also produces a friction term, but 

with the opposite sign. 

Much of the Q-ball and Q-shell profiles can be extracted by considering the shape of the potential 

as if it were determining the motion of a particle in two dimensions. For constant f , the potential 

V for A is simple with one extremum at 

Ωαf 2 
Am = . (23) 

M2 + f 2α2 

For f 6= 0 this is a minimum of V . 

For constant A, the potential in f ≥ 0 has three extrema, one maximum at f = 0 and a minimum 

and maximum at � � p1 
f± 
2 = 2 ± 1 + 3κ2 − 3αA(2Ω − αA) . (24) 

3 

The existence of real f± are necessary for a localized soliton solution, which then requires the term 

under the square root to be non-negative; this provides the following constraint on the amplitude of 

the gauge field: q
αA ≤ Ω − Ω0

2 − 1/3 , (25) 

√ 
which is only relevant when Ω0 ≥ 1/ 3. 

Recall from Eq. (14) how f 0 and A0 affect the energy. The f profile behaves according to our usual 

single-particle intuition, but A behaves as if kinetic energy has the opposite sign. Consequently, as 

the extremum in Eq. (23) is a maximum in −V , the dynamics of the system drive A down the −V 

hill away from the minimum. This implies that for Q-ball solutions, where f begins at a value near 

one, that A must take values below Am and is driven by the dynamics to even smaller values. In 

particular, 2Ω − αA > 0, so as the system evolves the term under the square-root in Eq. (24) is 

reduced and the peak in f grows. When f transitions to small values Am follows suit, which slows 

the motion of the particle as it approaches (f = 0, A = 0). 

Two examples of Q-ball trajectories are given in Fig. 1. On the left we see the scalar and gauge 

field profiles for a thick-wall Q-ball along with the corresponding trajectory (shown as the thick blue 

curve) in V . A thin-wall profile is shown on the right. In both cases the locations of f+ and Am 

within the potential V are shown with dotted blue and green lines, respectively. 

We see that for the thick wall, the trajectory begins at f ≈ 1, a little downhill from f+ causing 

the particle to roll to smaller f . The value of A is less than Am, so the particle rolls uphill toward 

smaller A. When f and A become small enough the trajectory crosses Am and the gauge field mass 

begins to dominate the A evolution. 
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FIG. 1. Scalar and gauge field profiles for Proca Q-balls (top) and the corresponding trajectories in the 

potential V (bottom). Shown are the numerical f profile (blue), the numerical A profile (orange), and the 

analytic approximations from Eqs. (30) and (31) of the same radius (dashed). A thick (thin) wall Q-ball is 

shown on the left (right). The values of the f maximum f+ (blue) and A minimum Am (green) are shown 

with dashed lines. 

The thin-wall trajectory begins near the intersection of f+ and Am. This is a point of unstable 

equilibrium and plays a role similar to a particle resting exactly at f+ in the global Q-ball case. By 

beginning the evolution close and closer to the equilibrium point the radius of the thin-wall Q-balls 

can increase without bound. Once the particle begins rolling, being pushed uphill in V to smaller 

values of A, the trajectory remains very close to f+ until the rapid transition in f . The particle is 

slowed by both being above Am and the usual f direction dynamics, rolling through a valley and 
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FIG. 2. Scalar and gauge field profiles for Proca Q-shells. Shown are the numerical f profile (blue), the 

numerical A profile (orange), as well as the analytic approximations from Eqs. (38) and (39) of the same 

radii (dashed). A wide (narrow) Q-shell is shown on the left (right). The values of the f maximum f+ 

(blue) and A minimum Am (green) are shown with dashed lines. 

then back up to a peak. 

For gauged solitons, those with M = 0, the A profiles must be monotonic [5, 8], but this need 

not hold for M 6= 0. This is seen clearly for narrow Proca Q-shells shown on the right side of Fig. 2. 

In this case f begins near zero and so the evolution of the system is dominated by the gauge field 

mass. In other words, with A > Am the value of the gauge field increases until f transitions to near 

f+. This change in f suddenly puts A < Am and so the gauge field is pushed to smaller values. As 
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the particle transitions back toward f = 0 and A > Am, it is slowed until it comes to rest at the 

origin of the potential. 

Similar, though milder, behavior is seen for the wide Q-shell on the left side of the figure. The 

gauge potential starts at a larger value, and increases until the particle rolls in the f direction up to 

f+. The wide Q-shell trajectory then lies along f+ as A decreases, in contrast to the narrow Q-shell 

which approaches it only briefly. 

B. Numerical Methods 

Solving the coupled differential equations (9) and (10) is impossible analytically and difficult even 

numerically. The shooting method discussed by Coleman [3] is quite successful for global Q-balls, 

but when a gauge coupling and a gauge boson mass are added this approach is tedious at best. To 

avoid this, we simply solve the boundary value problem as in Refs. [4, 8, 11]. In order to enforce 

boundary conditions at ρ = ∞ we use a compactified coordinate 

ρ 
y = , (26) 

1 + ρ/a 

where a is a positive constant. Clearly, y takes values y ∈ [0, a] and so we can simply require the 

conditions f(a) = 0 and A(a) = 0. The derivatives become 

f 00 1 − + f 0 + f κ2 + αA(αA − 2Ω) − 1 + 4f 2 − 3f 4 = 0 (28) 

d 
dρ 

= 
dy 
dρ 

d 
dy 

� 
= 1 − 

�2 y 
a 

d 
dy 

, (27) 

so the boundary conditions at y = 0 are still f 0(0) = 0 and A0(0) = 0 where primes denote a 

derivative with respect to y. The set of equations � �4 y 
� 

2 
� � � 

a y � � � �4 y 2 
A00 1 − + A0 − αf 2 (αA − Ω) − AM2 = 0 (29) 

a y 

can then be solved using finite-element methods. The success of this method relies heavily on the 

initial seed function, which should be as close as possible to the exact solution. The field profiles 

derived below are perfectly suited for this task. 

III. Q-BALLS 

We start our discussion of Proca solitons with Q-balls, a type of solution familiar from both the 

global [4] (α → 0) and gauged [8] (M → 0) special cases. In both cases the scalar profile for large 

Q-balls is approximately a step function, f ∼ 1 − Θ(ρ − R∗) [3, 5], defined exclusively by the radius 
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R∗ . Since the gauge boson mass M interpolates, to some degree, between the global and gauged 

case, it is not surprising that the f profile for large Proca Q-balls also has this shape. Using this 

ansatz for f in the A differential equation, Eq. (10), yields the solution 

αΩ 

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩ 

1 (1 + MR∗) sinh (ρµ) 
1 − , ρ < R∗ 

ρ µ cosh (R∗ µ) + M sinh (R∗ µ) 
A(ρ) = . (30) 

2 (R∗−ρ)M µ R∗ µ − tanh (R∗ µ) e
µ + M tanh (R∗ µ) ρ 

, ρ ≥ R∗ 

Here we have required that A and A0 be continuous at ρ = R∗ and defined the quantity µ ≡ 
√ 
α2 + M2, which is the effective mass of the gauge field inside the Q-ball. Remarkably, this form 

for A is a good approximation of the exact solution even beyond the thin-wall or large-radius regime; 

see for example the green dashed lines in Fig. 1. The scalar profile can be improved markedly by 

replacing the step function by the transition profile 

1 
f = √ , (31) 

2(ρ−R∗) 1 + 2e

where the Q-ball radius is defined by f 00(ρ = R∗) = 0. This functional form was derived in Ref. [4] 

as the asymptotic solution for global Q-balls in the limit R∗ → ∞. This transition profile remains 

a good description of Q-ball profiles even for small radii and even in the presence of gauge or Proca 

fields; see the red dashed lines in Fig. 1. 

These simple profiles for f and A also allow us to calculate analytic expressions for the Q-ball 

charge and energy; these expressions are not particularly illuminating and are not shown here, but 

they are compared to the numerical results for several parameter benchmarks below. Before we can 

make and compare these predictions, we must determine the radius R∗ as a function of the potential 

parameters. This can be achieved via the mapping method of Ref. [8]. 

A. Mapping 

Because the thin-wall solution for A(ρ) from Eq. (30) is a good approximation of most exact 

gauged Q-ball solutions—as shown below—we can use it to estimate how much αA changes when f 

transitions from 1 to 0. We find 

|αA0(R ∗ )| = α2 Ω(1 + MR∗) 
µ2R∗2 

���� tanh(µR∗) − µR∗ 

µ + M tanh(µR∗) 

���� αΩ 
< , (32) 

3 

which implies that αA0 � 1 for small αΩ during the f transition from interior to exterior, so A 

is approximately constant. In fact, we show below that this mapping is qualitatively, and often 

quantitatively, accurate even beyond the small αΩ limit. In the region around ρ ∼ R∗ , the f 
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equation in Eq. (9) takes the form 
dU 

(ρ2f 0)0 = 
ρ2 

− ρ2 [Ω − αA(R ∗ )]2 f (33) 
Φ2 2 − ω2 

0(m 0 )
2 df φ 

which is exactly the form of the potential for the global Q-ball equation with the global value of 

Ω = ΩG given by 

ΩG = Ω − αA(R ∗ ) . (34) 

This makes clear that the f transition profiles for Proca Q-balls can be identified with particular 

transition profiles for global Q-balls; for large R∗, these are simply the transition profiles given in 

Eq. (31). These profiles only match when the amount of friction is the same for both the global and 

gauged cases, which implies that the radius R∗ is the same for each. Therefore, if the R∗ dependence 

of the global Q-ball parameter ΩG(R
∗) is known, we can determine the R∗ dependence of the Proca 

2R∗ µ + M tanh(R∗ 

Q-ball Ω(R∗) via � 
Ω(R ∗ ) = ΩG(R ∗ ) 1 − 

α2 �−1 
R∗ µ − tanh(R∗ µ) 

, (35) 
µ µ) 

where we have used the thin-wall formula given in Eq. (30) for A(R∗). As quick sanity checks we can 

easily verify that Ω(R∗) → ΩG(R
∗) for either α → 0 or M → ∞ as it should. In the limit M → 0, 

the success of this mapping relation has been demonstrated in Ref. [8]. 

Equation (35) provides a powerful mapping from global Q-balls—for which the relation ΩG(R
∗) 

between frequency and radius is much easier to obtain both analytically and numerically—and Proca 

Q-balls. This rather simple result provides amazingly accurate analytic descriptions using the global 

ΩG(R
∗) relation for our sextic potential found in Ref. [4]. 

The solution of the differential equations is approximated as follows: Eq. (35) provides the radius 

of the Proca Q-ball given the known relationship ΩG(R
∗) from the global Q-ball (Ref. [4]). The scalar 

profile f(ρ) is taken to be the transition profile of global Q-balls of Eq. (31); this is well motivated 

around ρ ∼ R∗ for large R∗ but happens to be a very good approximation for all other cases as well. 

Finally, the gauge profile A(ρ) is taken from Eq. (30). Below we compare these approximations with 

exact numerical results and show that they are remarkably good, even far beyond their expected 

region of validity. 

B. Discussion and Comparison 

In Fig. 1 we show two examples of predicted profiles for f and A together with the exact numerical 

results. The agreement is particularly good for small α and large R∗, the approximations that lead 

us to our mapping formula and profile functions, but are still useful for large α and small R∗ . 
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What then are the implications of the mapping relation in Eq. (35)? In general, the predicted 

relation between the frequency Ω and the Q-ball radius R∗ is far more complex than for either global 

or gauged Q-balls. However, in the limit of large R∗, where our analytic approximations are best, the 

behavior is quite simple. Using the large-R∗ global Q-ball relation Ω2 ' Ω2 + 1/R∗ [4] in Eq. (35), G 0 

we find 

αΩ0 
κ(R ∗ → ∞) → (36) 

M 

for M > 0. Since stable localized Q-balls require κ ≤ 1 (corresponding to ω ≤ mφ), we immediately 

conclude that Proca Q-balls with M < αΩ0 exhibit a maximal radius just like gauged Q-balls [8], 

whereas Proca Q-balls with M > αΩ0 can potentially be arbitrarily large just like global Q-balls [4].2 

This quantifies the statements in the introduction that heavy (light) gauge bosons give rise to solitons 

that resemble global (gauged) ones. 

Some benchmark scenarios for Proca Q-balls are shown in Fig. 3. In addition to exact numerical 

solutions (circles), we show the analytical predictions (curves) for κ(R∗) from the mapping relation 

in Eq. (35) — using the full numerical relation for the global κ(R∗) from Ref. [4] — as well as the 

predictions for E and Q. The κ(R∗ → ∞) behavior from Eq. (36) is clearly shown for the M = 0.25 

and M = 1 benchmarks in the left column of the figure. The benchmark point M = 0.1 exhibits an 

instability at R∗ ∼ 23 due to violation of Eq. (25) and hence has a maximal radius.3 This parameter 

point also supports Q-shells, which are discussed in Sec. IV. 

The behavior of κ(R∗) can be more complex than the left column of Fig. 3 suggests; for small Ω0, 

κ(R∗) can have a local maximum at large R∗ and thus up to three branches of Q-ball solutions for 

a given κ. This is illustrated by the benchmarks in the right column. Because Ω0 = 0, these Proca 

Q-balls resemble global Q-balls for very large R and have no maximal charge or radius. However, the 

case M = 1/500 has an instability region around R∗ ∈ (200, 2000) defined by κ > 1 and E > mφQ. 

These disconnected stability regions are a novel feature of Proca Q-balls. 

These benchmarks illustrate the success of the mapping formula Eq. (35) and the analytic profiles 

for f and A. It is not difficult to derive analytic expressions for special points in parameter space, 

such as the local minima and maxima of κ(R∗) or instability regions where κ(R∗) > 1, which are left 

as an exercise to the reader. One interesting special case deserves mentioning, though: there exists 

a region of parameter space where the local minimum κmin(R
∗) is larger than 1; the valid Q-ball 

radii then do not start at R∗ ∼ 1 as in almost all other cases, but rather at R∗ � 1. The formation 

2 Additional relations need to be satisfied to evade a maximal radius, in particular Eq. (25). 
3 Using Eq. (25) together with A = A(0) from Eq. (30) and the mapping relation predicts this instability at R∗ > 16, 

in qualitative agreement with the numerical result. 

13 



••••··•·····•··•······························································· 

global Q-balls

M=0.1

M=0.25

M=1

5 10 50 100
0.0

0.2

0.4

0.6

0.8

1.0

R
*

κ

global Q-balls

M=0.02

M=0.005

M=0.002

10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

R
*

κ

↑ unstable

5 10 50 100

0.7

0.8

0.9

1.0

1.1

R
*

E
/(
m

ϕ
Q
)

↑ unstable

10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
*

E
/(
m

ϕ
Q
)

stable prediction

unstable prediction

stable exact

unstable exact

Ω0=1, α=0.1

5 10 50 100
10

1000

105

107

R
*

Q

Ω0=0, α=0.1

10 100 1000 104 105

100

104

106

108

1010

1012

R
*

Q

FIG. 3. Proca Q-ball solutions vs. R∗ for Ω0 = 1 (left column), Ω0 = 0 (right column), and various M . 

Top row: κ(R∗) for Proca Q-balls. The solid lines correspond to our predictions using the mapping of 

Eq. (35), the dots to exact numerical solutions, and the gray dotted line to the global Q-ball case shown 

for comparison. Middle row: E/(mφQ) vs. R∗ using the same benchmark parameters as above. Q-balls are 

unstable for E/(mφQ) > 1. Bottom row: Q vs. R∗ . The solid lines are our analytic approximations. 

of these extra-large Q-balls, as well as those with disconnected stability regions, will be studied in 

future work. 
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IV. Q-SHELLS 

Global solitons in our sextic potential (16) only exist in the form of Q-balls [4]; the presence of a 

gauge field gives rise to a qualitatively different kind of soliton: Q-shells [11]. Similar Q-shells are 

expected to also exist in the Proca case, at least for small gauge boson masses. While we do find 

these soliton solutions that match to the pure gauge Q-shells when M → 0, we also discover Q-shells 

with no M → 0 analogue. Thus we see that, like in the Q-ball case, the introduction of a Proca 

mass term leads to new classes of soliton solutions. 

Following Ref. [11] we can approximate the scalar profile of large-radii Q-shells by ⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ 

0 , ρ < R< , 

f(ρ) = 1 , R< ≤ ρ ≤ R> , (37) 

0 , R> < ρ , 

specified by the two radii of the shell. With this ansatz we can solve the A equation of motion and 

find 

A(ρ) =

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

R< sinh(Mρ) 
A< , ρ < R< , 

ρ sinh(MR<) 
αΩ A1 A2 − sinh(µρ) − cosh(µρ) , R< ≤ ρ ≤ R> , (38) 

2 ρ ρ µ
R> (R>−ρ)M A> e , R> < ρ , 
ρ 

with A<, A1, A2, and A> determined by demanding continuity of A and A0 at the two radii. Similar 

to the Q-ball case, this profile is a remarkably good description of all Q-shells, even when the radii are 

small; see Fig. 2. The f profile can be improved by replacing the step function by a double-transition 

profile [11] 

1 1 
f(ρ) = √ √ . (39) 

2(R<−ρ) 2(ρ−R>) 1 + 2e 1 + 2e

These profiles for f and A give the correct qualitative behavior, as illustrated in Fig. 2. It remains 

to determine the two radii 0 < R< < R> as a function of the potential parameters. 

By requiring continuity in A and A0 and R< and R> one obtains four equations relating the six 

parameters A<, A>, A1, A2, R<, and R>. To fully specify the system we need two more independent 

equations that relate the parameters. Similar to the gauged Q-shell case [11], we use the energy-

due-to-friction relation given in Eq. (22) to deduce the following approximate relations: 

R< ' − 
� �−1 
κ2 − αA< (2Ω − αA<) , (40) � 

R> ' 
�−1 

κ2 − αA> (2Ω − αA>) . (41) 
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FIG. 4. Predictions for the Q-shell radii R> (left) and R< (right) based on Eqs. (40) and (41) for several 

values of the gauge-boson Proca mass M . The narrow Q-shell radii R>,< diverge at κ given by Eq. (42); 

the wide Q-shell radii R> are degenerate with the Q-ball radii (dashed) and both end at a radius that is 

determined by Eq. (25) for a given Ω0, not shown in the plot. 

These equations are sufficient to fully specify the system. Though difficult to solve analytically, by 

treating them numerically the Q-shell radii can be predicted as a function of the potential parameters. 

While general solutions are challenging, we can extract some information from the limit of very 

large radii. In this limit we consider both R< and R> as becoming infinite, so the results only apply 

to narrow Q-shells. In this limit of infinite radius we find q
α2 − M2 + (α2 − M2)2 + 8Mα2Ω2

0 
κ2 ∼ ; (42) 

2M 

this the value of κ at which we expect the narrow Q-shell radii to grow without bound. 

In Fig. 4 we display the predictions for outer (left) and inner (right) radii for Q-shells of increasing 

M . The equations in the large-radius limit can be written in terms of rescaled parameters like α/Ω2
0 

such that all explicit dependence on Ω0 vanishes, just like in the gauged case [11]. The Q-ball 

predictions are also shown in wide dashes in the left plot. Note that the wide Q-shells continue to 

follow exactly along the thin-wall Q-balls. We can also see from both plots that the narrow Q-shells’ 

radii diverge at the values of κ given by Eq. (42). We also note that the narrow Q-shells’ curves 

seem to be bounded, in κ, from below by the Q-ball κmin. Consequently, when the parameters are 

such that the Q-ball prediction given by the mapping relation does not fold back in κ, but has a 

one-to-one relation between κ and R∗, there are no Q-shell solitons. 

We compare the predicted Q-shell characteristics with exact numerical results in Fig. 5. This 

benchmark is for α = 0.1, for which there are no Q-shells when M → 0 [11]. This tests our predictions 

away from the small M limit, where both M and α have the same magnitude. The figure shows 
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FIG. 5. Proca solitons for the benchmark point α = M = Ω0/10 = 1/10, φ0 = mφ. The red points 

correspond to exact Q-ball solutions, the dashed red line to our prediction from Eqs. (40) and (41); the 

full Q-ball branch is shown in Fig. 3. The black circles are exact Q-shell solutions and the black line our 

analytical approximation. Notice that the wide Q-shells are degenerate with Q-balls and cease to exist for 

κ > 0.76 due to the instability described in Eq. (25). 

impressive agreement between the theoretical predictions and the exact numerical results. We see 

that the wide Q-shells and thin-wall Q-balls always lie together. This suggests that we can use the 

numerically simpler Q-ball mapping relation to obtain the wide Q-shell characteristics, other than 

the inner radius. 
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We also note that, as predicted, E/(mφQ) (which can be thought of as measuring stability) is 

smaller, at fixed Q, for narrow Q-shells than for the other solitons. This would seem to imply that 

narrow Q-shells may be, in this sense, the more stable solitons for a given Q. These more stable 

Q-shells also have a larger outer radius. These results suggest that the cosmological production of 

Proca solitons may favor Q-shells in some cases, though a thorough analysis is beyond the scope of 

this work. 

V. CONCLUSION 

Non-topological solitons in complex scalar field theories have long been discussed in both the case 

of an underlying global U(1) symmetry and a gauged U(1). Here, we present the inaugural study of 

solitons made up of complex scalars coupled to a massive Proca gauge boson. The resulting solitons 

are similar to the global ones, i.e. Q-balls, for large Proca masses and similar to gauged ones, Q-balls 

and Q-shells, for small Proca masses. For intermediate gauge boson masses the solitons show unique 

features such as Q-balls with extremely large minimal radii and charge and Q-shells with arbitrarily 

large radii. We have provided powerful analytic approximations for the scalar and gauge profiles for 

these Proca solitons that allow insights into their behavior and also make possible efficient numerical 

studies. 

Open avenues for further study of these novel solitons include their stability with respect to 

decay into smaller solitons as well as the reverse issue of soliton formation from smaller solitons and 

individual scalars. The possibility of transitions between Q-balls and Q-shells of equal charge is also 

intriguing. Addressing these questions is likely to precede a complete understanding of how these 

solitons might be produced in the early universe and how they might persist as a component of the 

Universe’s dark matter. 

ACKNOWLEDGEMENTS 

This work was supported in part by NSF Grant No. PHY-1915005. C.B.V. also acknowledges 

support from Simons Investigator Award #376204. R.R. acknowledges support from the National 

Science Foundation Graduate Research Fellowship Program under Grant No. 1839285. 

18 



Appendix A: Energies 

In this appendix we derive two relations relating to the energy of Proca solitons. We begin with 

the definition of the charge Q in (12): Z 
Q = 4πΦ2

0 dρ ρ2f 2 (Ω − αA) (A1) Z 
M2 4πΦ2 4πΦ2

0 0 = dρ ρ2A − lim ρ2A0 , (A2) 
α α ρ→∞ 

where the second line uses the A equation given in (10). If M = 0, this implies that for large ρ 

αQ 
A = , (A3) 

4π Φ2 
0 ρ

up to corrections that fall off faster than 1/ρ [5]. For M 6= 0, requiring a finite Q implies A falls off 

faster than 1/ρ and we obtain Z 
Qα 

= dρ ρ2A . (A4) 
4πΦ2

0M
2 

These results lead to a rewriting of the soliton energy given in Eq. (13): Z � � q
2 f 02 A02 E/ mφ − ω0

2 = 4πΦ2
0 dρ ρ2 1

+
1 

+ f 2(Ω − αA)2 + M2A2 − V (f, A) , 
2 2 Z � � 
1 1 1 � �0 ΩM2 
f 02 ρ2A0= 4πΦ2 dρ ρ2 + A02 + (Aα − Ω) + A − V (f, A) , (A5) 0 2 2 αρ2 α 

where in the second line we have used the A equation from (10). The third term can be integrated 

by parts; when M = 0 this produces a nonzero boundary term determined by Eq. (A3), when M 6= 0 

the boundary term vanishes and the fourth term can be evaluated using Eq. (A4). In either case we 

find 

E = ωQ − L . (A6) 

We can also compute that Z � � qdL df 0 dA0 dV 
= m2 − ω2 4πΦ2 dρ ρ2 −f 0 + A0 + φ 0 0 dω dΩ dΩ dΩ � � Z � �� q ∞ � dA df ∂V dA ∂V dV 
= m2 − ω0

2 4πΦ2 ρ2A0 � + dρ ρ2 − − + φ 0 � dΩ dΩ ∂f dΩ ∂A dΩ Z 0 q
2 − ω2 = mφ 0 4πΦ0

2 dρ ρ2 ∂V 
∂Ω 

= Q , (A7) 

where one should use Eq. (A3) to evaluate the limit in the second line when M = 0. This, along 

with Eq. (A6), implies that 
dE dQ 

= ω , (A8) 
dω dω 
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which extends the result in [7] to the case of nonzero M . 

The form for the energy given in Eq. (14) is obtained by first noting the following: suppose we 

take the Lagrangian (7) and rescale the radial coordinate ρ → χρ. This yields Z � � 
L = 

q
m2 

φ f 02 A02 − ω0
2 4πΦ2

0 dρ ρ2χ − 
1

+
1 

+ χ2V (f, A) 
2 2 

. (A9) 

Consider the variation of this Lagrangian with respect to χ and then set χ = 1. The first contribution 

comes from the Lagrangian’s explicit dependence on χ, while the second follows from the implicit 

dependence through the functions f(ρ) → f(ρχ), A(ρ) → A(ρχ). This second collection of terms, 

with χ set to one, is simply the usual variation of the Lagrangian, and so vanishes due to the 

equations of motion. Requiring the other term in the variation to also vanish yields the constraint Z � � 
f 02 0 = dρ ρ2 − 

1 
+

1 
A02 + 3V (f, A) . (A10) 

2 2 

We can use this constraint to remove the explicit dependence on U(f) from the energy in Eq. (13): Z � � q
f 02 A02 + M2A2 = 4πΦ2

0 dρ ρ2 1
+

2 
+ f 2(αA − Ω)2 2 − ω0

2 E/ mφ 3 3 Z � � 
1 2 1 � �0 M2Ω 
f 02 A02 ρ2A0 = 4πΦ2 dρ ρ2 + + (αA − Ω) + , (A11) 0 3 3 αρ2 α 

where in the last line we have used the A equation of motion. This third term is then integrated by 

parts to produce Z q 4πΦ2
0 � � 

f 02 − A02 dρ ρ2 2 − ω0
2 = ΩQ + E/ , (A12) mφ 3 

which is the desired result. 
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