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ABSTRACT
The fairness-aware online learning framework has arisen as a pow-

erful tool for the continual lifelong learning setting. The goal for the

learner is to sequentially learn new tasks where they come one after

another over time and the learner ensures the statistic parity of the

new coming task across different protected sub-populations (e.g.
race and gender). A major drawback of existing methods is that they

make heavy use of the i.i.d assumption for data and hence provide

static regret analysis for the framework. However, low static regret

cannot imply a good performance in changing environments where

tasks are sampled from heterogeneous distributions. To address the

fairness-aware online learning problem in changing environments,

in this paper we first construct a novel regret metric FairSAR by

adding long-term fairness constraints onto a strongly adapted loss

regret. Furthermore, to determine a good model parameter at each

round, we propose a novel adaptive fairness-aware online meta-

learning algorithm, namely FairSAOML, which is able to adapt to

changing environments in both bias control and model precision.

The problem is formulated in the form of a bi-level convex-concave

optimization with respect to the model’s primal and dual param-

eters that are associated with the model’s accuracy and fairness,

respectively. Theoretic analysis provides sub-linear upper bounds

for both loss regret and violation of cumulative fairness constraints.

Our experimental evaluation on different real-world datasets with

settings of changing environments suggests that the proposed Fair-

SAOML significantly outperforms alternatives based on the best

prior online learning approaches.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
chine learning; • Applied computing→ Law, social and behav-
ioral sciences; • Social and professional topics→ User character-

istics.
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1 INTRODUCTION
In real world, data containing bias are likely collected sequentially

over time and the distribution assumptions of them may vary at

some critical time. For example, a recent news [18] by New York
Times reports that systematic algorithms become increasingly more

discriminative to African Americans in bank loan during COVID-19

than pre-pandemic. These algorithms are built up from a sequence

of data streams collected one after another over time, where at each

time decision-makings are biased on the protected race population.

This reveals (1) online algorithms completely ignore the impor-

tance of learning with fairness, in which fairness is defined by the

equality of a predictive utility across different sub-populations, and

predictions of a model are statistically independent on protected

characters (e.g. race); (2) machine learning models make heavy use

of the i.i.d assumption but this does not hold when environment

changes (e.g. before and after the pandemic).

To control bias over time and especially ensure group fairness

across different protected sub-populations, fairness-aware online

algorithms capture supervised learning problems for which fairness

is a concern and they are to sequentially train predictive models free

from biases. Specifically, the goal of such algorithms is to ensure

that both static loss regret, which compares the cumulative loss

of the learner to that of the best fixed action in hindsight, and

the violation of the sum of fair notions sub-linearly increase in

the total number of rounds [28]. Although these works achieve

state-of-the-art theoretic guarantees, the metric of static regret

is only meaningful for stationary environments, and low static

regret does not necessarily imply a good performance in changing

environments since the time-invariant comparators may behave

badly [24].

To address the limitation of changing environments in online

learning, strongly adaptive regret [3] and dynamic regret [29] at-

tract people’s attention. Dynamic regret handles changing environ-

ments from a global prospective and it compares the cumulative
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loss of the learner against any sequence of comparators but allows

the comparators change over time. By contrast, strongly adaptive

regret takes a local perspective and it gives more attentions on short

time intervals. This regret can be viewed as the maximum statistic

regret over all intervals [3]. Although several works [13, 24, 25]

achieve sub-linear loss regret in online learning with changing

environments, they completely ignore the significance of learning

with fairness, which is a crucial hallmark of human intelligence.

In this paper, we introduce a novel problem, that is fairness-aware
online meta-learning in changing environments. In this problem

setting, a sequence of data batches (i.e. tasks) are collected one

after another over time and the domains of these tasks may vary.

The first goal of this work is to generalize the predictive learning

accuracy and model fairness to the new data domain. Secondly,

both loss regret and violation of cumulative fairness constraints

are minimized and sublinearly increase in time.

To this end, technically we propose a novel online learning al-

gorithm, namely fair strongly adaptive online meta-learner (Fair-
SAOML). In this algorithm, a set of geometric covering intervals

with different lengths are carefully designed. We determine model

parameters by formulating a problem composed by two main levels:

online fair interval-level and meta-level learning. Problems in two

levels interplay each other with two parts of parameters: primal

parameters 𝜽 regarding model accuracy and dual parameters 𝝀
adjusting fairness notions. More concretely, at round 𝑡 ∈ [𝑇 ], a sub-
set of intervals are selected to activate a number of experts where

each expert runs an interval-specific algorithm. An expert takes a

meta-solution pair (𝜽 𝑡−1,𝝀𝑡−1) from the previous round as input

and outputs an interval-level solution (𝜽 𝑡,𝐼 ,𝝀𝑡,𝐼 ) at interval 𝐼 . Then
a meta-algorithm combines the weighted actions of all experts so

that a solution pair (𝜽 𝑡 ,𝝀𝑡 ) at round 𝑡 can make predictions for the

next round. The main contributions are summarized:

• To the best of our knowledge, for the first time a fairness-aware

online meta-learning framework in changing environment is pro-

posed. We first introduce a novel adaptive fairness-aware regret

FairSAR. Then a novel algorithm FairSAOML is proposed to find

a good decision at each round. Specifically, at each round the

problem is formulated as a constrained bi-level convex-concave

optimization with respect to a primal-dual parameter pair.

• Theoretically grounded analysis justifies the efficiency and ef-

fectiveness of the proposed method by demonstrating tighter

bounds 𝑂

(
(𝜏 log𝑇 )1/2

)
for the loss regret and 𝑂

(
(𝜏𝑇 log𝑇 )1/4

)
for violation of fairness constraints.

• We validate the performance of our approach with state-of-the-

art techniques on real-world datasets. Our results demonstrate

FairSAOML can effectively adapt both accuracy and fairness in

changing environments and it shows substantial improvements

over the best prior works.

2 RELATEDWORK
Changing environments in online learning. Since the pioneer-
ing work [29] in online learning, numerous subsequent researches

[10, 22] have been developed under the assumption of stationary

environment with static regret. Low static regret, however, can-

not imply a good performance in changing environment due to

time-invariant comparators. To address this limitation, two regret

metrics, dynamic regret [29] and adaptive regret [11], are devised to

measure the learner’s performance in changing environments. To

bound the general dynamic regret, the path-length of comparators

[25, 29] is introduced and further developed. Unlike dynamic regret,

adaptive regret handles changing environments from a local per-

spective by focusing on comparators in short intervals. To reduce

the time complexity of adaptive regret based online algorithms,

geometric covering intervals [3, 13, 24] and data streaming tech-

niques [8] are developed. Although existing methods achieve state-

of-the-art performance, a major drawback is that they immerse in

minimizing objective functions but ignore the model fairness of

prediction.

Fairness-aware online learning problems assume individuals

arrive one at a time and the goal of such algorithms is to train predic-

tive models free from biases. From the perspective of optimization,

group fairness notions are normally considered as constraints added

on learning objectives. However, when the constraints are com-

plex, the computational burden of the projection onto constraints

may be too high. Several closely related works, including FairFML

[28], FairGLC [23], FairAOGD [12], aim to improve the theoretic

guarantees by relaxing the output through a simpler close-form

projection. However, these methods are not ideal for continual life-

long learning with changing task distributions, as they assume that

all samples come from the same data distribution.

Online meta-learning addresses the issue of learning with fast

adaptation, where a meta-learner learns knowledge transfer from

history tasks onto new coming ones. FTML [7] can be considered

as an application of MAML [6] in the setting of online learning.

FairFML [28] extends FTML by controlling bias in a online working

paradigmwith task-specific adaptation. Unfortunately, none of such

techniques are devised to adapt changing environments.

In this paper, to bridge abovementioned areas, we study the prob-

lem of fairness-aware online meta-learning to deal with changing

task environments. In particular, at each round, model parame-

ters are determined by the proposed novel algorithm FairSAOML.

This algorithm refers to ideas of dynamic programming and expert

tracking techniques. Inspired by fairness-aware online learning and

meta-learning, a bi-level adaptation strategy is used to accommo-

date changing environments and learn model with accuracy and

fairness.

3 PRELIMINARIES
3.1 Notations
An index set of a sequence of tasks is defined as [𝑇 ] = {1, ...,𝑇 }.
Vectors are denoted by lower case bold face letters, e.g. the primal

variables 𝜽 ∈ Θ and the dual variables 𝝀 ∈ R𝑚+ where their 𝑖-th

entries are 𝜃𝑖 , 𝜆𝑖 . Vectors with subscripts of task indices, such as

𝜽 𝑡 ,𝝀𝑡 where 𝑡 ∈ [𝑇 ], indicate model parameters for the task at

round 𝑡 . The Euclidean ℓ2-norm of 𝜽 is denoted as | |𝜽 | |. Given
a differentiable function L(𝜽, 𝝀) : Θ × R𝑚+ → R, the gradient

at 𝜽 and 𝝀 is denoted as ∇𝜽L(𝜽, 𝝀) and ∇𝝀L(𝜽, 𝝀), respectively.
Scalars are denoted by lower case italic letters, e.g. 𝜂 > 0.

∏
B is

the projection operation to the set B. [𝒖]+ denotes the projection
of the vector 𝒖 on the nonnegative orthant in R𝑚+ , namely [𝒖]+ =
(max{0, 𝑢1}), ...,max{0, 𝑢𝑚}). Some important notations are listed

in Table 2 of Appendix A.1.
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3.2 Fairness-Aware Constraints
In general, group fairness criteria used for evaluating and designing

machine learning models focus on the relationships between the

protected attribute and the system output [20, 26, 27]. The problem

of group unfairness prevention can be seen as a constrained opti-

mization problem. For simplicity, we consider one binary protected

attribute (e.g. gender) in this work. However, our ideas can be easily

extended to many protected attributes with multiple levels.

LetZ = X ×Y be the data space, whereX = E∪S. Here E ⊂ R𝑑
is an input space, S = {0, 1} is a protected space, and Y = {−1, 1}
is an output space for binary classification. Given a task (batch)

of samples {e𝑖 , 𝑦𝑖 , 𝑠𝑖 }𝑛𝑖=1
∈ (E × Y × S) where 𝑛 is the number of

datapoints, a fine-grained measurement to ensure fairness in class

label prediction is to design fair classifiers by controlling the notions

of fairness between protected subgroups, such as demographic

parity and equality of opportunity [15, 21].

Definition 1 (Notions of Fairness [15, 21]). A classifier ℎ :

Θ × R𝑑 → R is fair when its predictions are independent of the
protected attribute s = {𝑠𝑖 }𝑛𝑖=1

. To get rid of the indicator function
and relax the exact values, a linear approximated form of the difference
between protected subgroups is defined [15],

𝑔(𝜽 ) =
���E(e,𝑦,𝑠) ∈Z [

1

𝑝1 (1 − 𝑝1)

( 𝑠 + 1

2

− 𝑝1

)
ℎ(𝜽 , e)

] ��� − 𝜖 (1)

where | · | is the absolute function and 𝜖 > 0 is the fairness relaxation
determined by empirical analysis. 𝑝1 is an empirical estimate of 𝑝𝑟1.
𝑝𝑟1 is the proportion of samples in group 𝑠 = 1 and correspondingly
1 − 𝑝𝑟1 is the proportion of samples in group 𝑠 = 0.

Notice that, in Definition 1, when 𝑝1 = P(e,𝑦,𝑠) ∈Z (𝑠 = 1), the
fairness notion 𝑔(𝜽 ) is defined as the difference of demographic

parity (DDP). Similarly, when 𝑝1 = P(e,𝑦,𝑠) ∈Z (𝑦 = 1, 𝑠 = 1), 𝑔(𝜽 )
is defined as the difference of equality of opportunity (DEO) [15].

Therefore, parameters 𝜽 in the domain of a task is feasible if it

satisfies the fairness constraint 𝑔(𝜽 ) ≤ 0.

3.3 Fairness-Aware Online Learning
The protocol of fairness-aware online convex optimization can be

viewed as a repeated game between a learner and an adversary,

where the learner is faced with tasks {D𝑡 }𝑇𝑡=1
one after another. At

each round 𝑡 ∈ [𝑇 ],
• Step 1: The learner selects a model parameter 𝜽 𝑡 in the fair

domain Θ.
• Step 2: The adversary reveals a loss function 𝑓𝑡 : Θ × R𝑑 → R
and𝑚 fairness functions 𝑔𝑖 : Θ × R𝑑 → R,∀𝑖 ∈ [𝑚].
• Step 3: The learner incurs an instantaneous loss 𝑓𝑡 (𝜽 𝑡 ,D𝑡 ) and
𝑚 fairness notions 𝑔𝑖 (𝜽 𝑡 ,D𝑡 ),∀𝑖 ∈ [𝑚].
• Step 4: Advance to round 𝑡 + 1.

The goal of fairness-aware online learning [23, 28] is to (1) min-

imize the loss regret over the rounds which is to compare to the

cumulative loss of the best fixed model in hindsight, and (2) ensure

the total violation of fair constraints sublinearly increase in 𝑇 . The

loss regret is typically referred as static regret since the comparator

is time-invariant. To control bias and especially ensure group fair-

ness across different protected sub-populations, fairness notions

are considered as constraints added on optimization problems.

min

𝜽 1,...,𝜽𝑇 ∈Θ
Regret(𝑇 ) =

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜽 𝑡 ,D𝑡 ) −min

𝜽 ∈Θ

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜽 ,D𝑡 ) (2)

subject to

𝑇∑︁
𝑡=1

𝑔𝑖 (𝜽 𝑡 ,D𝑡 ) ≤ 𝑂 (𝑇𝛾 ),∀𝑖 ∈ [𝑚], 𝛾 ∈ (0, 1)

where the summation of fair constraints is defined as long-term
constraints in [17]. The big𝑂 notation in the constraint is to bound

the total violation of fairness sublinear in 𝑇 . The main drawback

of using the metric of static regret is that it is only meaningful for

stationary environments, and low static regret cannot imply a good

performance in changing environments since the time-invariant

comparator in Eq.(2) may behave badly [24].

4 METHODOLOGY
4.1 Settings and Problem Formulation
To address the limitation of changing environments in online learn-

ing, adaptive regret (AR) based on [11] is defined as the maximum

static regret over any contiguous intervals. However, AR does not

respect short intervals well. To this end, strongly adaptive regret
(SAR) [4] is proposed to improve AR, which emphasizes the depen-

dence on lengths of intervals and it takes the form that

SAR(𝑇, 𝜏) = max

[𝑠,𝑠+𝜏−1]⊆[𝑇 ]

( 𝑠+𝜏−1∑︁
𝑡=𝑠

𝑓𝑡 (𝜽 𝑡 ,D𝑡 ) −min

𝜽∈Θ

𝑠+𝜏−1∑︁
𝑡=𝑠

𝑓𝑡 (𝜽 ,D𝑡 )
)

(3)

where 𝜏 indicates the length of time interval. In SAR, the learner

is competing with changing comparators, as 𝜽 varies with 𝑠 over

[𝑠, 𝑠 + 𝜏 − 1].
In this paper, we consider the online meta-learning setting that

is similar in [7, 28] but tasks are sampled from heterogeneous dis-

tributions. Instead of static regret, we define a novel regret FairSAR

in Eq.(4). Let {𝜽 𝑡 }𝑇𝑡=1
be the sequence of model parameters gener-

ated in the Step 1 of the learning protocol (see Sec. 3.3). The goal

of our problem is to minimize FairSAR under the long-term fair

constraints:

FairSAR(𝑇, 𝜏) = max

[𝑠,𝑠+𝜏−1]⊆[𝑇 ]

( 𝑠+𝜏−1∑︁
𝑡=𝑠

𝑓𝑡

(
G𝑡 (𝜽𝑡 ,D𝑆

𝑡 ),D𝑉
𝑡

)
−min

𝜽∈Θ

𝑠+𝜏−1∑︁
𝑡=𝑠

𝑓𝑡

(
G𝑡 (𝜽 ,D𝑆

𝑡 ),D𝑉
𝑡

))
(4)

subject to max

[𝑠,𝑠+𝜏−1]⊆[𝑇 ]

( 𝑠+𝜏−1∑︁
𝑡=𝑠

𝑔𝑖

(
G𝑡 (𝜽𝑡 ,D𝑆

𝑡 ),D𝑉
𝑡

))
≤ 𝑂 (𝑇𝛾 ), ∀𝑖 ∈ [𝑚]

where 𝛾 ∈ (0, 1). D𝑆
𝑡 ,D𝑉

𝑡 ⊂ D𝑡 are the support and validation set.

G𝑡 (·) is the base learner which corresponds to one or multiple gra-

dient steps [6]. Different from traditional online learning settings,

the long-term constraint violation 𝑔(·) : B×R𝑑 → R is satisfied. To

facilitate our analysis, 𝜽 𝑡 is originally chosen from its domain Θ =

{𝜽 ∈ R𝑑 : 𝑔𝑖 (𝜽 ,D𝑡 ) ≤ 0,∀𝑖 ∈ [𝑚]}. A projection operator is hence

typically applied to the updated variables in order to make them

feasible [12, 17, 23]. In order to lower the computational complexity

and accelerate the online processing speed, we relax the domain Θ
to B, where Θ ⊆ B = 𝑆K with K being the unit ℓ2 ball centered at

the origin, and 𝑆 = max{𝑟 > 0 : 𝑟 = | |𝜽 1 − 𝜽 2 | |,∀𝜽 1, 𝜽 2 ∈ Θ}.
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Figure 1: (Upper) An graphical illustration of AGC intervals (base=2) when 𝑇 = 18. The total interval set I consists of 4 subsets
{I0,I1,I2,I3} and each contains different numbers of intervals with fixed length. Intervals covered by shadow is an example of
target subset C5 when 𝑡 = 5. (Lower) A demonstration of active experts activated by C𝑡 and their corresponding sleeping experts.

In the protocol stated in Sec. 3.3, the key step (Step 1) is to find a
good parameter 𝜽 𝑡 at each round. LetK be an online learning algo-

rithm determining 𝜽 𝑡 . A trick commonly used in designing a meta

algorithm for changing environments is to initiate a new instance

of K at every round [11]. Therefore, we run K independently for

each interval 𝐼 ∈ {[𝑡 ...∞]|𝑡 = 1, 2, ...} and denote K𝐼 as the run of

K on interval 𝐼 . At round 𝑡 , we combine the decisions from the

runs by weighted average. The key idea is that at time 𝑡 , some of

the outputs inK ∈ {K𝐼 }𝐼 ∋𝑡 are not based on any data prior to time

𝑡 ′ < 𝑡 , so that if the environment changes at 𝑡 ′, those outputs may

be given a larger weight by the meta algorithm, allowing it to adapt

more quickly to the change. A main drawback, however, is a factor

of 𝑡 increase in the time complexity. To avoid this, we reduce it

to 𝑂 (log 𝑡) by restarting algorithms on a designed set of adaptive

geometric covering (AGC) intervals.

4.2 AGC Intervals and Experts
In Eq.(4), FairSAR evaluates the learner’s performance on each time

interval and it is the maximum regret over any contiguous intervals.

Similar to the seminal work of SAR [3], we construct a number of

interval sets, namely adaptive geometric covering (AGC) intervals,

where each set contains various intervals with same length. AGC

intervals can be considered as a special case of a more general set

of intervals and they hence efficiently reduce time complexity to

𝑂 (log 𝑡). A set of contiguous AGC intervals I are defined as

I =
⋃

𝑘∈[ ⌊log
𝑇
2
⌋−1]∪{0}

I𝑘 (5)

where ∀𝑘,I𝑘 = {𝐼 𝑖
𝑘
| [(𝑖 − 1) · 2𝑘 + 1,min {𝑇, 𝑖 · 2𝑘 }] : 𝑖 ∈ N}. An

example with 𝑇 = 18 is given in Figure 1 to illustrate the compo-

sition of AGC intervals. Notice that the log base equals to 2 is not

required, but larger base number leads to less interval levels.

Furthermore, inspired by learning with expert advice problems

[13], we construct a set U of interval-level learning processes,

defined as experts, where |U| = ⌊log
𝑇
2
⌋. To better adapt changing

environment, only one expert is assigned to the corresponding

interval subset I𝑘 . At each round 𝑡 ∈ [𝑇 ], we introduce a target set

C𝑡 ⊂ I which includes a set of intervals starting from 𝑡

C𝑡 = {𝐼 |𝐼 ∈ I, 𝑡 ∈ 𝐼 , (𝑡 − 1) ∉ 𝐼 } (6)

C𝑡 aims to dynamically activate a subset of experts inU (an example

of 𝐶𝑡=5 is given in Figure 1). A set of active experts at round 𝑡 is

denoted asA𝑡 ⊆ U and the corresponding inactive ones are called

sleeping experts. The set of sleeping experts is denotedS𝑡 = U\A𝑡 .

Note that only active experts are used to learn and further update

interval-level model parameters through a base learner G𝑡 (·) that
corresponds to one or multiple gradient steps [6]. The interval-level
parameter update for an active expert 𝐸𝐼 inA𝑡 at round 𝑡 is defined

𝜽 𝑡,𝐼 := G𝑡 (𝜽 ,D𝑆
𝑡,𝐼 ) = arg min

𝜽
𝑓𝑡 (𝜽 ,D𝑆

𝑡,𝐼 ) (7)

subject to 𝑔𝑖 (𝜽 ,D𝑆
𝑡,𝐼 ) ≤ 0,∀𝑖 ∈ [𝑚]

where the loss function 𝑓𝑡 (·) and the fairness function 𝑔𝑖 (·) are
defined based on the support set D𝑆

𝑡,𝐼
⊂ D𝑡,𝐼 associated with 𝐸𝐼 .

4.3 Learning Dynamically for Bi-Level
Adaptation

Recall that in the protocol of fairness-aware online learning (Sec.

3.3), the main goal for the learner is to sequentially decide on model

parameter 𝜽 𝑡 that performs well on the loss sequence and the

long-term fair constraints. Crucially, inspired by [6], we consider a

setting where at each round 𝑡 the learner can perform a number of

expert-specific updates at an interval level in the active set A𝑡 .

As specified in Eq.(4), model parameters at each round 𝑡 are

determined by formulating problems with a nested bi-level adapta-

tion process: interval-level and meta-level. Each level corresponds

to a sub-learner, i.e. base and meta learner respectively, described

in Figure 2. The problem of learning a meta-level parameter 𝜽 𝑡 is
embedded with the optimization problem of finding interval-level

parameters 𝜽 𝑡,𝐼 in Eq.(7). For experts in the sleeping set S𝑡 , the
base learner is not applied. The meta-level problem takes the form
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Figure 2: An overview of our FairSAOML to determine model parameter pair at each round. A target set (shadowed) of intervals
are initially selected and are later used to activate corresponding experts. Each active expert runs through a base learner for
the interval-level parameter-pair adaption and its weight is updated. The meta-level parameter-pair is finally attained through
the meta learner by combining weighted actions of all experts.
in Eq.(8). For simplicity, we abuse the subscription 𝐸𝐼 with 𝐼 .

min

𝜽 ∈B

∑︁
𝐸𝐼 ∈A𝑡

𝑝𝑡,𝐼 · 𝑓𝑡 (G𝑡 (𝜽 ,D𝑆
𝑡,𝐼 ),D

𝑄

𝑡,𝐼
) +

∑︁
𝐸𝐼 ∈S𝑡

𝑝𝑡,𝐼 · 𝑓𝑡 (𝜽 𝑡 ′,𝐼 ,D𝑄

𝑡,𝐼
)

(8)

s.t.

∑︁
𝐸𝐼 ∈A𝑡

𝑝𝑡,𝐼 · 𝑔𝑖 (G𝑡 (𝜽 ,D𝑆
𝑡,𝐼 ),D

𝑄

𝑡,𝐼
) +

∑︁
𝐸𝐼 ∈S𝑡

𝑝𝑡,𝐼 · 𝑔𝑖 (𝜽 𝑡 ′,𝐼 ,D𝑄

𝑡,𝐼
) ≤ 0

where 𝑝𝑡,𝐼 ≥ 0 is the expert weight of 𝐸𝐼 at 𝑡 . D𝑄

𝑡,𝐼
⊂ D𝑡,𝐼 is the

query set where D𝑄

𝑡,𝐼
∩ D𝑆

𝑡,𝐼
= ∅. 𝜽 𝑡 ′,𝐼 is the interval-level model

parameter for an sleeping expert 𝐸𝐼 ∈ S𝑡 where the round index

𝑡 ′ < 𝑡 represents the last time this expert was activated.

In the following section, we introduce our proposed algorithm

FairSAOML. In stead of optimizing primal parameters only, it effi-

ciently deals with the bi-level optimization problem of Eq.(7)(8) by

approximating a sequence of pairs of primal-dual meta parameters

{(𝜽 𝑡 ,𝝀𝑡 )}𝑇𝑡=1
where the pair respectively responds for adjusting

accuracy and fairness level.

4.4 An Efficient Algorithm: FairSAOML
To find a good model parameter pair (𝜽 𝑡 ,𝝀𝑡 ) at each round, an

efficient working flow is proposed in Algorithm 1 and an overview

of our proposed FairSAOML is given in Figure 2. Inspired by dy-

namic programming and expert-tracking [16] techniques, experts

at each round are recursively divided into active and sleeping sets.

Model parameters in active experts are locally updated, but for

the ones in sleeping experts, they are directly inherited from the

previous round. Specifically, in the beginning of round 𝑡 , a target

set 𝐶𝑡 containing intervals is used to activate a subset of experts

inU. For each active expert 𝐸𝐼 in A𝑡 , an interval-level algorithm

takes the meta-level solution (𝜽 𝑡−1,𝝀𝑡−1) and outputs an expert-

specific solution pair (𝜽 𝑡,𝐼 ,𝝀𝑡,𝐼 ). Finally, through the meta-learner,

we combine the weighted solutions of all experts and move to the

next round.

We explain the main steps in Algorithm 1 below. In step 4, when

a new task arrives at round 𝑡 , a batch of data D𝑉
𝑡 is randomly

sampled from D𝑡 for validation purpose and the performance

on 𝜽 𝑡−1 achieved is recorded. A target set of intervals C𝑡 is se-

lected from I in step 5. For each interval 𝐼 ∈ C𝑡 (step 6-11), the

corresponding expert 𝐸𝑡,𝐼 is activated. We set adaptive stepsizes

𝜂𝑡,𝐼 = 𝑆/(𝐺
√︁
|𝐼 |) where |𝐼 | = 2

𝑘
denotes the interval length in

I𝑘 . 𝑆 is the radius of the Euclidean ball B and there exists a con-

stant𝐺 > 0 that bounds the (sub)gradients of 𝑓𝑡 and 𝑔𝑖 . Following

the setting used in [12], empirically we set 𝑆 =
√

1 + 2𝜖 − 1 and

𝐺 = max{
√
𝑑 + 𝑆,max𝑡 {| |𝒆𝐼 | |2, 𝒆𝐼 ∈ P𝑡 }}, where 𝒆𝐼 is the non-

protected features lied in the interval 𝐼 and 𝑑 is its feature dimen-

sion. P𝑡 is a set which includes all past intervals until time 𝑡 . In

steps 12-14, for all experts inU, a following weight 𝑝𝑡,𝐼 is assigned:

𝑝𝑡,𝐼 =
𝑤 (𝑅𝑡,𝐼 ,𝐶𝑡,𝐼 )∑

𝐸𝐼 ∈U 𝑤 (𝑅𝑡,𝐼 ,𝐶𝑡,𝐼 )
(9)

Here, a weight function [16] is defined as𝑤 (𝑅,𝐶) = 1

2

(
Φ(𝑅 + 1,𝐶 +

1) − Φ(𝑅 − 1,𝐶 − 1)
)
, where Φ(𝑅,𝐶) = exp( [𝑅]2+/3𝐶) and [𝑟 ]+ =

max(0, 𝑟 ) and Φ(0, 0) = 1. In steps 15-24, our FairSAOML responds

to the bi-level adaptation stated in Eq.(7) and (8). Specifically, to

solve the interval-level problem in Eq.(7), for each active expert 𝐸𝐼
in A𝑡 , we consider following Lagrangian function

F𝑡,𝐼 (𝜽 𝑡−1,𝝀𝑡−1) = 𝑓𝑡 (𝜽 𝑡−1,D𝑆
𝑡,𝐼 ) +

𝑚∑︁
𝑖=1

𝜆𝑡−1,𝑖 · 𝑔𝑖 (𝜽 𝑡−1,D𝑆
𝑡,𝐼 ) (10)

where the interval-level parameter pair for an active expert 𝐸𝐼
are initialized with the meta-level parameter (𝜽 𝑡−1,𝝀𝑡−1) . For
optimization with simplicity, cumulative constraints in Eq.(7) are

approximated with the summarized regularization. Interval-level

parameters are updated through a base learner G𝑡 (·). One example

for the learner is updating with one gradient step [6] using the pre-

determined adaptive stepsize 𝜂𝑡,𝐼 . Notice that for multiple gradient

steps, 𝜽 𝑡,𝐼 and 𝝀𝑡,𝐼 interplay each other for updating.

𝜽 𝑡,𝐼 = 𝜽 𝑡−1 − 𝜂𝑡,𝐼∇𝜽F𝑡,𝐼 (𝜽 𝑡−1,𝝀𝑡−1) (11)

𝝀𝑡,𝐼 = 𝝀𝑡−1 + 𝜂𝑡,𝐼∇𝝀F𝑡,𝐼 (𝜽 𝑡,𝐼 ,𝝀𝑡−1) (12)

Next, to solve the meta-level problem in Eq.(8), we combine the

actions of active experts togetherwith sleeping experts.We consider

the following augmented Lagrangian function and abuse the symbol

𝑡 ′ with 𝑡 in Eq.(8):

L𝑡 (𝜽 𝑡,𝐼 ,𝝀𝑡,𝐼 ) =
∑︁
𝐸𝐼 ∈U

𝑝𝑡,𝐼

(
𝑓𝑡 (𝜽 𝑡,𝐼 ,D𝑄

𝑡,𝐼
) (13)

+
𝑚∑︁
𝑖=1

(
𝜆𝑖,𝑡,𝐼 · 𝑔𝑖 (𝜽 𝑡,𝐼 ,D𝑄

𝑡,𝐼
) − 𝛿 (𝜂1 + 𝜂2)

2

𝜆2

𝑖,𝑡,𝐼

))
where 𝛿 > 0 is a constant determined by analysis. Note that the last

augmented term on the dual variable is devised to prevent 𝝀 from
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Algorithm 1 FairSAOML

1: Initialize meta-parameters pair (𝜽 0,𝝀0), where 𝜽 0 is the center

of B and 𝝀0 ∈ R𝑚+ is randomly chosen

2: Initialize 𝑘 = ⌊log
𝑇
2
⌋ experts in set U and for each expert

𝐸𝐼 ∈ U, set 𝑅0,𝐼 = 0,𝐶0,𝐼 = 0, 𝑝0,𝐼 = 1.

3: for each 𝑡 ∈ [𝑇 ] do
4: Sample D𝑉

𝑡 ⊂ D𝑡 and record the performance of 𝜽 𝑡−1

5: Subset C𝑡 from I using Eq.(6)

6: for each interval 𝐼 ∈ C𝑡 do
7: Activate expert 𝐸𝑡,𝐼 and set 𝜂𝑡,𝐼 = 𝑆/(𝐺

√︁
|𝐼 |),

(𝜽 𝑡,𝐼 ,𝝀𝑡,𝐼 ) ← (𝜽 𝑡−1,𝝀𝑡−1)
8: Identify an 𝐸 𝐽 ∈ U, such that |𝐽 | = |𝐼 |
9: Update 𝑅𝑡,𝐼 ← 𝑅𝑡−1,𝐽 and 𝐶𝑡,𝐼 ← 𝐶𝑡−1,𝐽

10: Replace 𝐸 𝐽 with 𝐸𝐼 inU
11: end for
12: for each expert inU do
13: Update 𝑝𝑡,𝐼 using 𝑅𝑡,𝐼 ,𝐶𝑡,𝐼 in Eq.(9)

14: end for
15: for 𝑛 = 1, ..., 𝑁𝑚𝑒𝑡𝑎 steps do
16: for each active expert 𝐸𝐼 in A𝑡 do
17: Sample support set D𝑆

𝑡,𝐼
⊂ D𝑡,𝐼

18: Adapt interval-level primal and dual variables with

D𝑆
𝑡,𝐼

using Eq.(11)(12)

19: end for
20: for each expert 𝐸𝐼 inU do
21: Sample query set D𝑄

𝑡,𝐼
⊂ D𝑡,𝐼

22: end for
23: Update meta-level primal and dual variables with 𝐷

𝑄

𝑡,𝐼

using Eq.(14)(15)

24: end for
25: for each expert 𝐸𝐼 ∈ U do
26: 𝑅𝑡+1,𝐼 = 𝑅𝑡,𝐼 + F𝑡,𝐼 (𝜽 𝑡 ,𝝀𝑡 ) − F𝑡,𝐼 (𝜽 𝑡,𝐼 ,𝝀𝑡,𝐼 )
27: 𝐶𝑡+1,𝐼 = 𝐶𝑡,𝐼 +

���F𝑡,𝐼 (𝜽 𝑡 ,𝝀𝑡 ) − F𝑡,𝐼 (𝜽 𝑡,𝐼 ,𝝀𝑡,𝐼 )���
28: end for
29: end for

being too large. The update rule for meta-level parameters follows:

𝜽 𝑡 =
∏
B

(
𝜽 𝑡−1 − 𝜂1∇𝜽L𝑡 (𝜽 𝑡,𝐼 ,𝝀𝑡,𝐼 )

)
(14)

𝝀𝑡 =
[
𝝀𝑡−1 + 𝜂2∇𝝀L𝑡 (𝜽 𝑡,𝐼 ,𝝀𝑡,𝐼 )

]
+

(15)

where

∏
B is the projection operation to the relaxed domain B

that is introduced in Sec.4.1. This approximates the true desired

projection with a simpler closed-form. Finally, in steps 25-28, for

each expert we update its 𝑅 and 𝐶 values which determine the

expert weight for the next round. The intuition of weight update is

to re-adjust difference between the meta-solution and the interval-

level solution given by the expert.

5 ANALYSIS
To analysis, we first make following assumptions as in [17, 24].

Examples where these assumptions hold include logistic regression

and 𝐿2 regression over a bounded domain. As for constraints, a

family of fairness notions, such as DDP stated in Definition 1, are

applicable as discussed in [15]. For simplicity, in this section we

omit D used in 𝑓𝑡 (·),∀𝑡 and 𝑔𝑖 (·),∀𝑖 .

Assumption 1 (Convex domain). The convex setΘ is non-empty,
closed, bounded, and it is described by 𝑚 convex functions as Θ =

{𝜽 : 𝑔𝑖 (𝜽 ) ≤ 0,∀𝑖 ∈ [𝑚]}. The relaxed domain B (where Θ ⊆ B)
contains the origin 0 and its diameter is bounded by 𝑆 .

Assumption 2. Both the loss functions 𝑓𝑡 (·),∀𝑡 and constraint
functions 𝑔𝑖 (·),∀𝑖 ∈ [𝑚] satisfy the following assumptions

(1) (Lipschitz Continuous) ∀𝜽 1, 𝜽 2 ∈ B, | |𝑓𝑡 (𝜽 1) − 𝑓𝑡 (𝜽 2) | | ≤
𝐿𝑓 | |𝜽 1 − 𝜽 2 | |, | |𝑔𝑖 (𝜽 1) − 𝑔𝑖 (𝜽 2) | | ≤ 𝐿𝑔 | |𝜽 1 − 𝜽 2 | |. Let 𝐺 =

max{𝐿𝑓 , 𝐿𝑔}, 𝐹 = max𝑡 ∈[𝑇 ] max𝜽 1,𝜽 2∈B 𝑓𝑡 (𝜽 1) − 𝑓𝑡 (𝜽 2) ≤
2𝐿𝑓 𝑆 , and 𝐷 = max𝑖∈[𝑚] max𝜽 ∈B 𝑔𝑖 (𝜽 ) ≤ 𝐿𝑔𝑆

(2) (Lipschitz Gradient) 𝑓𝑡 (𝜽 ),∀𝑡 are 𝛽𝑓 -smooth and 𝑔𝑖 (𝜽 ),∀𝑖 are 𝛽𝑔-
smooth, that is, ∀𝜽 1, 𝜽 2 ∈ B, | |∇𝑓𝑡 (𝜽 1) − ∇𝑓𝑡 (𝜽 2) | | ≤ 𝛽𝑓 | |𝜽 1 −
𝜽 2 | |, | |∇𝑔𝑖 (𝜽 1) − ∇𝑔𝑖 (𝜽 2) | | ≤ 𝛽𝑔 | |𝜽 1 − 𝜽 2 | |.

(3) (Lipschitz Hessian) Twice-differentiable functions 𝑓𝑡 (𝜽 ),∀𝑡 and
𝑔𝑖 (𝜽 ),∀𝑖 have 𝜌 𝑓 and 𝜌𝑔- Lipschitz Hessian, respectively.
That is, ∀𝜽 1 − 𝜽 2 ∈ B, | |∇2 𝑓𝑡 (𝜽 1) − ∇2 𝑓𝑡 (𝜽 2) | | ≤
𝜌 𝑓 | |𝜽 − 𝝓 | |, | |∇2𝑔𝑖 (𝜽 1) − ∇2𝑔𝑖 (𝜽 2) | | ≤ 𝜌𝑔 | |𝜽 1 − 𝜽 2 | |.

Assumption 3 (Strongly convexity). Suppose 𝑓𝑡 (𝜽 ),∀𝑡 and
𝑔𝑖 (𝜽 ),∀𝑖 have strong convexity, that is, ∀𝜽 1, 𝜽 2 ∈ B, | |∇𝑓𝑡 (𝜽 1) −
∇𝑓𝑡 (𝜽 2) | | ≥ 𝜇𝑓 | |𝜽 1 − 𝜽 2 | |, | |∇𝑔𝑖 (𝜽 1) − ∇𝑔𝑖 (𝜽 2) | | ≥ 𝜇𝑔 | |𝜽 1 − 𝜽 2 | |.

Under above assumptions, we state the key Theorem 1 that the

proposed FairSAOML enjoys sub-linear guarantee for both regret

and long-term fairness constraints in the long run for Algorithm 1.

Proof is given in Appendix B.

Theorem 1. Set 𝜽 ∗ = arg min𝜽 ∈Θ
∑𝑠+𝜏−1

𝑡=𝑠 𝑓𝑡 (G𝑡 (𝜽 )) where [𝑠, 𝑠+
𝜏 − 1] ⊆ [𝑇 ]. Under Assumptions 1, 2 and 3, the regret FairSAR
proposed in Eq.(4) of FairSAOML in Algorithm 1 satisfies

max

[𝑠,𝑠+𝜏−1] ⊆[𝑇 ]

( 𝑠+𝜏−1∑︁
𝑡=𝑠

𝑓𝑡

(
G𝑡 (𝜽 𝑡 )

)
− 𝑓𝑡

(
G𝑡 (𝜽 ∗)

))
≤ 𝑂

(
(𝜏 log𝑇 )1/2

)
max

[𝑠,𝑠+𝜏−1] ⊆[𝑇 ]

( 𝑠+𝜏−1∑︁
𝑡=𝑠

𝑔𝑖

(
G𝑡 (𝜽 𝑡 )

))
≤ 𝑂

(
(𝜏𝑇 log𝑇 )1/4

)
, ∀𝑖 ∈ [𝑚]

Discussion for Upper Bounds. Under aforementioned assump-

tions and provable convexity of Eq.(16) in 𝜽 (see Lemma 2 in Appen-

dix B), the proposed FairSAOML in Algorithm 1 achieves sub-linear

bounds in FairSAR for both loss regret and violation of fairness con-

straints. Although such bounds are comparable with the strongly

adapted loss regret in [13, 24] (see Table 1) in terms of online learn-

ing in changing environment paradigms, for the first time we bound

loss regret and cumulative fairness constraints simultaneously. On

the other hand, in terms of fairness-aware online learning, our pro-

posed method outperforms [12, 23, 28] by giving a tighter bound

of fair constraint violations.

Complexity. The computational complexity of FairSAOML in

Algorithm 1 at each round 𝑡 ∈ [𝑇 ] is𝑂 (𝑁𝑚𝑒𝑡𝑎 · |U|) where𝑁𝑚𝑒𝑡𝑎 is

the number of meta-level iterations and |U| = 𝑂 (log𝑇 ) is the total
number of experts that needs to be maintained, and the complexity

of each expert is 𝑂 (1).
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Table 1: Comparison of upper bounds in loss regret and constraint violations across various methods.

Static Environment Changing Environment

Algorithms FTML[7] FairFML[28] FairAOGD[12] FairGLC[23] AOD[24] CBCE[13] FairSAOML(Ours)

Loss Regret 𝑂 (log𝑇 ) 𝑂 (log𝑇 ) 𝑂 (𝑇 2/3) 𝑂 (log𝑇 ) 𝑂
(
(𝜏 log𝑇 )1/2

)
𝑂

(
(𝜏 log𝑇 )1/2

)
𝑂

(
(𝜏 log𝑇 )1/2

)
Constraint Violations - 𝑂

(
(𝑇 log𝑇 )1/2

)
𝑂 (𝑇 2/3) 𝑂

(
(𝑇 log𝑇 )1/2

)
- - 𝑂

(
(𝜏𝑇 log𝑇 )1/4

)
6 EXPERIMENTAL SETTINGS
Datasets.We use the following publicly available datasets. (1) New
York Stop-and-Frisk [14] is a prominent dataset of a real-world ap-

plication on policing in the new york city from 2009 to 2010. It

documents whether a pedestrian who was stopped on suspicion of

weapon possession would in fact possess a weapon. As this data

had a pronounced racial bias on African Americans, for each frisked

record, we consider race as the binary protected attribute, that is

black and non-black. Besides, this dataset consists of records col-

lected in five different sub-districts, Manhattan (M), Brooklyn (B),
Queens (Q), Bronx (R) and Staten (S). Since there are large perfor-
mance disparities across districts and race groups, each district is

viewed as an independent domain. To adapt the online learning set-

ting, data in each domain is further split into 32 tasks and each task

corresponds to ten days of a month with 111 non-protected features.

According to DDP values in Definition 1, the fairness levels from

low to high are Bronx (0.74), Queens (0.68), Staten (0.65), Manhattan

(0.53) and Brooklyn (0.44). The larger DDP values indicate lower

fairness level. We hence consider two settings for domain adapta-

tion where each setting contains 96 tasks in total: (i) fairness level

from high to low: Brooklyn to Manhattan to Staten (B→M→S);
and (ii) fairness level from low to high: Bronx to Queens then Staten

(R→Q→S). (2) MovieLens1 contains 100k ratings by 943 users on

1682 movies and each rating is given a binary label ("recommend-

ing" if rating greater than 3, “not recommending" otherwise). We

consider gender as the protected attribute. To generate dynamic

environments, following [19] we construct a larger dataset by com-

bining three copies of the original data and flipping the original

values of non-protected attributes by multiplying -1 for the middle

copy. Therefore, each copy is considered as a data domain. Further-

more, each data copy is split into 30 tasks by timestamps and there

are 90 tasks in total.

Evaluation Metrics. Two popular evaluation metrics are intro-

duced that each allows quantifying the extent of bias taking into

account the protected attribute. Demographic Parity (DP) [5] and

Equalized Odds (EO) [9] can be formalized as

DP =
𝑃 (𝑌 = 1|𝑆 = 0)
𝑃 (𝑌 = 1|𝑆 = 1)

; EO =
𝑃 (𝑌 = 1|𝑆 = 0, 𝑌 = 𝑦)
𝑃 (𝑌 = 1|𝑆 = 1, 𝑌 = 𝑦)

where 𝑦 ∈ {−1, 1}. Equalized odds requires that 𝑌 have equal true

positive rates and false positive rates between sub-groups. For both

metrics, a value closer to 1 indicate fairness.

Competing Methods.We compare the performance of our al-

gorithm FairSAOML with six baseline methods. These baselines are

chosen from three perspectives: online meta learning (MaskFTML,

FairFML), online fairness learning (FairFML, FairAOGD, FairGLC)

and online learning in changing environment (AOD, CBCE). (1)

MaskFTML [7]: the original FTML finds a sequence of meta pa-

rameters by simply applying MAML [6] at each round. To focus

1
https://grouplens.org/datasets/movielens/100k/

on fairness learning, this approach is applied to modified datasets

by simply removing protected attributes. (2) FairFML [28] controls

bias in an online working paradigm and aims to attain zero-shot

generalization with task-specific adaptation. Different from our

FairSAOML, FairFML focuses on static environment and assumes

tasks sampled from an unchangeable distribution. (3) FairAOGD

[12] is proposed for online learning with long-term constraints. In

order to fit bias-prevention and compare them to FairSAOML, we

specify such constraints as DDP stated in Definition 1. (4) FairGLC

[23] rectifies FairAOGD by square-clipping the constraints in place

of 𝑔𝑖 (·),∀𝑖 . (5) AOD [24] minimizes the strongly adaptive regret by

running multiple online gradient descent algorithms over a set of

dense geometric covering intervals. (6) CBCE [13] adapts chang-

ing environment in an online learning paradigm by combining the

sleeping bandits idea with the coin betting algorithm.

Settings.As discussed in Sec.5, the performance of our proposed

method has been well justified theoretically for machine learning

models whose objectives are strongly convex and smooth. However,

in machine learning and fairness studies, due to the non-linearity

of neural networks, many problems have a non-convex landscape

where theoretical analysis is challenging. Nevertheless, algorithms

originally developed for convex optimization problems like gradi-

ent descent have shown promising results in practical non-convex

settings [7]. Taking inspiration from these successes, we describe

practical instantiations for the proposed online algorithm, and em-

pirically evaluate the performance in Sec.7.

For each task we set the number of fairness constraints to one,

i.e.𝑚 = 1. For the rest, we follow the same settings as used in online

meta learning [7, 28]. In particular, we meta-train with support

size of 400 for each class and 800 for a query set, whereas 90%

(hundreds of datapoints) of task samples for evaluation. Besides,

for New York Stop-and-Frisk dataset, we choose base = 2 and the

total number of experts is ⌊log
96

2
⌋ = 6. Similarly, we choose base

= 3 for the MovieLens dataset and hence it has ⌊log
90

3
⌋ = 4 experts

in total. All the baseline models that are used to compare with our

proposed approach share the same neural network architecture and

parameter settings. All the experiments are repeated 10 times with

the same settings and the mean and standard deviation results are

reported. Details on the settings and hyperparameter tuning are

given in Appendix A.2 and A.3.

7 RESULTS
7.1 Overall Performance
As for all methods showcased in in Figure 3, higher is better for all

plots, while shaded regions indicate standard errors. The learning

curves show that the proposed FairSAOML effectively controls bias

as the learner sees more tasks, and it eventually meets the fair con-

dition of "80%-rule" [1] where DP and EO at last several rounds are

beyond 0.8. Furthermore, FairSAOML substantially outperforms

most of the alternative approaches in achieving the best model pre-

cision represented by high accuracies. Besides, in terms of learning
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Figure 3: Model performance over real-world datasets through each round. New York Stop-and-Frisk (a-d) B→M→S, (e-h)
R→Q→S; (i-l) MovieLens.
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ison over baseline methods
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Figure 5: Ablation studies on the MovieLens dataset.

efficiency, our FairSAOML shows the least running time compared

with baselines in Figure 4. This results from that (1) at each time

the total number of experts are fixed (i.e. 4 in MovieLens), and (2)

instead of using the entire data task, only a subset (support) of data

is used for parameters update of active experts.

7.2 Adaptability to Changing Environments
The main focus of the designed experiments is to test the adapt-

ability of our FairSAOML with respect to both fairness and model

accuracy from one data domain to another. To better visualize

changing environments, we manually add vertical dotted lines in

Figure 3 to distinguish different domains at task indices of changing

data domains. Our experimental results demonstrate that although

FairSAOML may not dominate the performance over other baseline

methods in the first data domain, it can effectively adapt to changes

in the environment and so that the performance is constantly im-

proving in both bias control and predictive accuracy.

In Sec. 4.2, we introduce that experts serve as key components

in FairSAOML and model parameters pair (𝜽 𝑡 ,𝝀𝑡 ) at round 𝑡 are

determined by combining weighted expert advises (see Figure 2).

Figure 3 (d,h,l) show weights change of all experts in FairSAOML.

We observe that (1) expert-weight changes periodically; (2) experts

associated with longer intervals are assigned with larger weights

and these weights keep growing as the learner sees more tasks; (3)

on the contrary, smaller weights are given to experts which carry

short intervals and become less valued. No surprisingly, heavier

weights on experts with long intervals enable our FairSAOML to

adapt to the instability of model performance caused by changing

environments.

As for baseline methods, MaskFTML outperforms other meth-

ods in accuracy in the first domain (see Figure 3 (c,g,k)), but it

is not comparable with respect to model fairness. This indicates

that attempting to make decision-makers blind to the protected

attribute is not able to ameliorate prediction fairness. Although

FairFML, FairAOGD, and FairGLC are able to control bias in the

first domain, they fail to adapt fairness or predictive accuracy when

data domain changes. Since AOD and CBCE are initially designed
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Figure 6: Sensitive analysis on the MovieLens dataset.

for online learning in changing environments, they merely focus

on learning accuracy but ignore control model fairness when data

domain shifted. Besides, higher accuracy in AOD leads to a trade-off

performance on fairness.

7.3 Ablation Studies and Sensitive Analysis
We conduct ablation studies on the MovieLens dataset to demon-

strate the contributions of two key components in FairSAOML:

expert weights 𝑝𝑡,𝐼 and the base learner highlighted in Figure 2.

Specifically, at each round, meta-level parameters are derived by

combining weighted expert decisions. By removing expert weights,

all experts will contribute equally. Furthermore, in active experts,

base learners stated in Eq.(7) are used to further update model

parameters at an interval level. Without base learners, all active ex-

perts share the same model parameters inherited from the previous

round, and hence they are equally weighted. The key findings in Fig-

ure 5 are (1) expert weights play an important role in FairSAOML,

and (2) base learners effectively enhance model performance on

bias control and predictive accuracy.

Some sensitive analysis on the MovieLens dataset are shown

in Figure 6 where intervals are considered using different bases

switched from 2 to 5. According to Eq.(5), the setting with the

smallest base (i.e. 2) indicates the most experts (i.e. 6) and hence its

largest expert carries the longest intervals (i.e. 32). We observe that

in terms of model fairness, settings with smaller base slightly out-

perform the ones with larger base in the first domain, but opposite

findings are given in the last domain. This is because (1) in the first

domain, the largest experts carry more information in smaller base

setting than larger base setting; (2) while in the last domain, the

largest experts in smaller base settings become impure that take

data across two domains. More results are given in Appendix A.4.

8 CONCLUSION
To address fairness-aware online learning in changing environ-

ments where the learner is faced with data tasks sampled from

heterogeneous distributions one after another, we first introduce

a novel regret FairSAR which extends strongly adaptive regret by

adding fairness-aware long-term constraints. We claim that for

the first time a fairness-aware online meta-learning in changing

environments framework is proposed. Then, to determine model

parameters at each round, we propose a novel learning algorithm,

namely FairSAOML. In this algorithm, we dynamically activate

a subset of experts at each round and update their parameters at

an interval-level. Model parameters at the meta-level are further

achieved by combining weighted actions of all experts. Detailed the-

oretic analysis and corresponding proofs justify the efficiency and

effectiveness of the proposed algorithm by demonstrating upper

bounds for the loss regret and violation of fair constraints. Empir-

ical studies based on real-world datasets show that our method

outperforms state-of-the-art online learning techniques in both

model accuracy and fairness.
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A ADDITIONAL EXPERIMENT DETAILS
A.1 Notations

Table 2: Important notations and corresponding descriptions.

Notations Descriptions
𝑇 Total number of learning tasks

𝑡 Indices of tasks

𝜏 Length of time intervals in general

D𝑆
𝑡 ,D𝑉

𝑡 ,D
𝑄
𝑡 Support/Validation/Query set of data D𝑡

𝜽 𝑡 ,𝝀𝑡 Meta-level primal/dual parameters at round 𝑡

𝜽 𝑡,𝐼 ,𝝀𝑡,𝐼 Interval-level primal/dual parameters for an ex-

pert 𝐸𝐼 at round 𝑡

𝑓𝑡 (·) Loss function at round 𝑡

𝑔𝑖 (·) Fairness function

𝑚 Total number of fairness notions

𝑖 Indices of fairness notions

G(·) Base learner

U Expert set

A𝑡 ,S𝑡 Active/Sleeping expert set at round 𝑡

I AGC interval set

C𝑡 Target set of intervals at round 𝑡

B Relaxed primal domain∏
B Projection operation onto domain B

𝜂1, 𝜂2 Learning rates

𝑝𝑡,𝐼 Expert weight of 𝐸𝐼 at round 𝑡

𝛿 Augmented constant

A.2 Data Pre-Processing
The New York Stop-and-Frisk dataset [14] is provided by the New

York Police Department and contains information about the stop,

question, and frisk policy implemented by the NYPD. The full

dataset contains records of this policy dating from 2003 to 2019. It

includes a record for each stop made, with information about the

time of the stop, the location of the stop, information about the

officer, the suspect, and other various features. The data used in

this paper is from the year 2011, which saw the highest number of

stops of any year. This data is used to attempt to predict whether

someone will get frisked based on the circumstances of the stop and

the features of the individual suspect. Specifically, we extract rele-

vant features (predictor and response) that are utilized for analysis

and remove those that may result in data leakage. Missing entries

are imputed using precint (pct) data and further we remove the pct
column due to difficulty in binning them into separate pricints. Data

records containing unknown or inconsistent values are dropped.

The MovieLens dataset was collected through the MovieLens

web site (movielens.umn.edu) during the seven-month period from

September 19th, 1997 through April 22nd, 1998. This data has been

cleaned up - users who had less than 20 ratings or did not have

complete demographic information were removed from this data

set. We first merge the main three spreadsheets by its primary

keys: user-id and item-id. Then some unused features are removed

including user-id, movie-title, release-date, video-release-date, IMDb-
URL and zip-code.

A.3 Implementation Details and
Hyperparameter Tuning

Our neural network trained follows the same architecture used

in [6], which contains 2 hidden layers of size of 40 with ReLU

activation functions. In the training process of the MovieLens (New
York Stop-and-Frisk) data, each gradient is computed using a batch

size of 200 (800) examples where each binary class contains 100 (400)

examples. For each dataset, we tune the folowing hyperparameters:

(1) the initial dual meta parameter 𝝀0 is chosen from {0.00001,
0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000 }; (2) the interval-level
gradient steps are chosen from 1 to 10; (3) the number of iterations

𝑁𝑚𝑒𝑡𝑎 are chosen from {20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70,
75, 80, 85, 90, 95, 100}; (4) learning rates 𝜂1 and 𝜂2 for updating

meta-level parameters in Eq.(14) and (15) are chosen from {0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000};
(5) the positive constant 𝛿 used in the augmented term are chosen

from {10, 25, 50, 75, 100}.

A.4 Additional Results
Due to space limit, more experimental results on the New York
Stop-and-Frisk dataset are given in Figure 7 and 8.

B PROOF SKETCH OF THEOREM 1
Under Assumptions 1, 2 and 3, we first target Eq.(13) and have

Lemma 2 (Theorem 1 in [28]). Suppose 𝑓 and 𝑔 : Θ × R𝑚+ → R
satisfy Assumptions 1, 2 and 3. The interval-level update and the
augmented Lagrangian function L𝑡 (𝜽, 𝝀) are defined in Eq.(11)(12)
and Eq.(13). Then, the function L𝑡 (𝜽, 𝝀) is convex-concave with
respect to the arguments 𝜽 and 𝝀, respectively. Furthermore, as
for L𝑡 (·, 𝝀), if stepsize 𝜂𝑡,𝐼 for each active expert 𝐸𝐼 is selected as

𝜂𝑡,𝐼 ≤ min{ 𝜇𝑓 + ¯𝜆𝑚𝜇𝑔

8(𝐿𝑓 + ¯𝜆𝑚𝐿𝑔) (𝜌𝑓 + ¯𝜆𝑚𝜌𝑔)
, 1

2(𝛽𝑓 + ¯𝜆𝑚𝛽𝑔)
}, then L𝑡 (·, 𝝀) en-

joys 9

8
(𝛽𝑓 + ¯𝜆𝑚𝛽𝑔)-smooth and 1

8
(𝜇𝑓 + ¯𝜆𝑚𝜇𝑔)-strongly convex, where

¯𝜆 ≥ 0 is the mean value of 𝝀.

According to Theorems 1 and 3 in [16] and the Lemma 1 in [24],

we have the following lemma with respect to Eq.(13) that

Lemma 3. Under Assumption 2, for any interval 𝐼 = [𝑖, 𝑗] ∈ I,
FairSAOML satisfies

𝑡∑︁
𝑢=𝑖

L𝑢 (𝜽𝑢 ,𝝀𝑢 ) −
𝑡∑︁

𝑢=𝑖

L𝑢 (𝜽𝑢,𝐼 ,𝝀𝑢,𝐼 ) ≤ 𝑆

√︃
6𝐿𝑓 𝐿𝑔 (𝑡 − 𝑖 − 1)𝑐 (𝑡)

where 𝑐 (𝑡) ≤ 1 + ln 𝑡 + ln(1 + log
𝑇
2
) + ln

5+3 ln(1+𝑡 )
2

.

By applying the Lemma 3 with the Theorem 2 in [24], we have

Lemma 4. Under Assumption 1 and 2, for any interval 𝐼 = [𝑖, 𝑗] ∈
I, for any (𝜽, 𝝀) ∈ Θ × R𝑚+ FairSAOML satisfies∑︁

𝑡 ∈𝐼
L𝑡 (G𝑡 (𝜽 𝑡 ),𝝀) −

∑︁
𝑡 ∈𝐼
L𝑡 (𝜽 ,𝝀𝑡,𝐼 ) ≤ 𝑆

√︁
|𝐼 | (

√︃
6𝐿𝑓 𝐿𝑔𝑐 (𝑡) +𝐺)

To extend our Lemma 4 to any interval 𝐼 = [𝑟, 𝑠] ⊆ [𝑇 ], we refer
the following lemma

Lemma 5 (Lemma 3 in [24]). For any interval [𝑟, 𝑠] ⊆ [𝑇 ], it can
be partitioned into two sequences of disjoint and consecutive intervals,
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Figure 7: Running time comparison and ablation studies on the New York Stop-and-Frisk (B→M→S) dataset.
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Figure 8: Running time comparison and ablation studies on the New York Stop-and-Frisk (R→Q→S) dataset.

denoted by 𝐼−𝑝 , ..., 𝐼0 ∈ I and 𝐼1, ..., 𝐼𝑞 ∈ I, such that

|𝐼−𝑖 |/|𝐼−𝑖+1 | ≤ 1/2,∀𝑖 ≥ 1 and |𝐼𝑖 |/|𝐼𝑖−1 | ≤ 1/2,∀𝑖 ≥ 2

Next, we prove Theorem 1.

Proof. By applying Lemma 4 onto Lemma 5 and set 𝜽 ∗ being
the optimal solution for min𝜽 ∈Θ

∑𝑠
𝑡=𝑟 𝑓𝑡 (G𝑡 (𝜽 )) where [𝑟, 𝑠] ⊆ [𝑇 ],

we have

𝑠∑︁
𝑡=𝑟

L𝑡 (G𝑡 (𝜽 𝑡 ),𝝀) −
𝑠∑︁

𝑡=𝑟

L𝑡 (G𝑡 (𝜽 ∗),𝝀𝑡,𝐼 )

=

𝑞∑︁
𝑖=−𝑝

( ∑︁
𝑡 ∈𝐼𝑖
L𝑡 (G𝑡 (𝜽 𝑡 ),𝝀) −

∑︁
𝑡 ∈𝐼𝑖
L𝑡 (G𝑡 (𝜽 ∗),𝝀𝑡,𝐼 )

)
≤

𝑞∑︁
𝑖=−𝑝

𝑆
√︁
|𝐼𝑖 | (

√︃
6𝐿𝑓 𝐿𝑔𝑐 (𝑠) +𝐺)

≤2𝑆 (
√︃

6𝐿𝑓 𝐿𝑔𝑐 (𝑠) +𝐺)
∞∑︁
𝑖=0

√︁
2
−𝑖 |𝐼 |

≤8𝑆 (
√︃

6𝐿𝑓 𝐿𝑔𝑐 (𝑠) +𝐺)
√︁
|𝐼 | (16)

By expanding Eq.(16) using Eq.(13) and following the Theorem 3.1

in [2], we have

𝑠∑︁
𝑡=𝑟

{
𝑓𝑡 (G𝑡 (𝜽 𝑡 )) − 𝑓𝑡 (G𝑡 (𝜽 ∗))

}
+

𝑚∑︁
𝑖=1

{
𝜆𝑖

𝑠∑︁
𝑡=𝑟

𝑔𝑖 (G𝑡 (𝜽 𝑡 )) −
𝑠∑︁

𝑡=𝑟

𝜆𝑡,𝑖𝑔𝑖 (G𝑡 (𝜽 ∗))
}

− 𝛿 (𝜂1 + 𝜂2) (𝑠 − 𝑟 + 1)
2

| |𝝀 | |2 + 𝛿 (𝜂1 + 𝜂2)
2

𝑠∑︁
𝑡=𝑟

| |𝝀 | |2

≤ 8𝑆

(√︃
6𝐿𝑓 𝐿𝑔𝑐 (𝑠) +𝐺

)√︁
|𝐼 |

Here, we approximately average 𝑝𝑡,𝐼 for all experts 𝐸𝐼 in U
and hence the subscription 𝐼 is omitted. Inspired by the proof of

Theorem 4 in [17], we take maximization for 𝝀 over (0, +∞) and
get

𝑠∑︁
𝑡=𝑟

{
𝑓𝑡 (G𝑡 (𝜽 𝑡 )) − 𝑓𝑡 (G𝑡 (𝜽 ∗))

}
+

𝑚∑︁
𝑖=1

{ [ ∑𝑠
𝑡=𝑟 𝑔𝑖 (G𝑡 (𝜽 𝑡 ))

]
2

+
2(𝛿 (𝜂1 + 𝜂2) (𝑠 − 𝑟 + 1) + 𝑚

𝜂1+𝜂2

) −
𝑠∑︁

𝑡=𝑟

𝜆𝑡,𝑖𝑔𝑖 (G𝑡 (𝜽 ∗))
}

≤ 8𝑆

(√︃
6𝐿𝑓 𝐿𝑔𝑐 (𝑠) +𝐺

)√︁
|𝐼 |

Since 𝑔𝑖 (G𝑡 (𝜽 ∗)) ≤ 0 and 𝜆𝑡,𝑖 ≥ 0,∀𝑖 ∈ [𝑚], the resulting inequal-
ity becomes

𝑠∑︁
𝑡=𝑟

{
𝑓𝑡 (G𝑡 (𝜽 𝑡 )) − 𝑓𝑡 (G𝑡 (𝜽 ∗))

}
+

𝑚∑︁
𝑖=1

[ ∑𝑠
𝑡=𝑟 𝑔𝑖 (G𝑡 (𝜽 𝑡 ))

]
2

+
2(𝛿 (𝜂1 + 𝜂2) (𝑠 − 𝑟 + 1) + 𝑚

𝜂1+𝜂2

) ≤ 8𝑆

(√︃
6𝐿𝑓 𝐿𝑔𝑐 (𝑠) +𝐺

)√︁
|𝐼 |

Due to non-negative of

[∑𝑠
𝑡=𝑟 𝑔𝑖 (G𝑡 (𝜽 𝑡 ))

]
2

+
2(𝛿 (𝜂1+𝜂2) (𝑠−𝑟+1)+ 𝑚

𝜂
1
+𝜂

2

) , we have

𝑠∑︁
𝑡=𝑟

{
𝑓𝑡 (G𝑡 (𝜽 𝑡 )) − 𝑓𝑡 (G𝑡 (𝜽 ∗))

}
≤ 8𝑆

(√︃
6𝐿𝑓 𝐿𝑔𝑐 (𝑠) +𝐺

)√︁
|𝐼 |

= 𝑂

(
( |𝐼 | log 𝑠)1/2

)
Furthermore, we have

∑𝑠
𝑡=𝑟

{
𝑓𝑡 (G𝑡 (𝜽 𝑡 )) − 𝑓𝑡 (G𝑡 (𝜽 ∗))

}
≥ −𝐹 (𝑠 −

𝑟 + 1) according to the assumption and set 𝜂1 = 𝜂2 = 𝑂 (1/
√
𝑠). We

have

𝑠∑︁
𝑡=𝑟

𝑔𝑖 (G𝑡 (𝜽 𝑡 )) ≤ 𝑂

(
( |𝐼 |𝑠 log 𝑠)1/4

)
Therefore, as for FairSAR proposed in Eq.(4) we complete the proof.

max

[𝑠,𝑠+𝜏−1]⊆[𝑇 ]

( 𝑠+𝜏−1∑︁
𝑡=𝑠

𝑓𝑡

(
G𝑡 (𝜽𝑡 )

)
− 𝑓𝑡

(
G𝑡 (𝜽 ∗)

))
≤ 𝑂

(
(𝜏 log𝑇 )1/2

)
max

[𝑠,𝑠+𝜏−1]⊆[𝑇 ]

( 𝑠+𝜏−1∑︁
𝑡=𝑠

𝑔𝑖

(
G𝑡 (𝜽𝑡 )

))
≤ 𝑂

(
(𝜏𝑇 log𝑇 )1/4

)
, ∀𝑖 ∈ [𝑚]

□
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