EXACT LOWER-TAIL LARGE DEVIATIONS OF THE KPZ EQUATION

LI-CHENG TSAI

ABSTRACT. Consider the Hopf-Cole solution h(t,z) of the KPZ equation with the narrow wedge initial
condition. Regarding t — oo as a scaling parameter, we provide the first rigorous proof of the Large

Deviation Principle (LDP) for the lower tail of h(2t,0) + lt—z, with speed t2 and an explicit rate function

®_(2). This result confirms existing physics predictions [SMP17, CGK 18, KLDP18]. Our analysis utilizes
the formula from [BG16] to convert the LDP for the KPZ equation to calculating an exponential moment of
the Airy point process. To estimate this exponential moment, we invoke the stochastic Airy operator, and
use the Riccati transform, comparison techniques, and certain variational characterizations of the relevant
functional.

1. INTRODUCTION

In this article, we study the lower-tail probability of the Kardar—Parisi-Zhang (KPZ) equation:
Oth = $0ah + £(0:h)* + & (t,2) €[0,00) x R,

where £ = £(¢, ) is the spacetime white noise. Introduced in [KPZ86], the KPZ equation is a paradigm
for random surface growth, which has links to a host of different physical phenomena. Via the Hopf-
Cole transform and the Feynman—Kac formula, this equation connects to directed polymers in random
environments [HHEF85]. The spatial derivative 0,h satisfies the stochastic Burgers equation, which is a
model for randomly stirred fluids [FNS77], interacting particle systems, and driven lattice gases [vBKS85].
In additional to being a phenomenological model, the KPZ equation has been fertile ground for mathematical
study. Being a nonlinear equation and an irreversible Markov process, the KPZ equation has been a prototype
for the study of Stochastic Partial Differential Equations (SPDEs) and weakly irreversible interacting particle
systems. Along with a vast host of (discrete and continuous) models, the KPZ equation enjoys exact
solvability originating from combinatorics, representation theory, and Bethe ansatz. We refer to [FS11,
Quall, Corl2, QS15, CW17] and the references therein.

We say that h is a Hopf—Cole solution of the KPZ equation if h(t,z) = log Z(¢,x), and the process
Z(t,x) solves the Stochastic Heat Equation (SHE)

WZ =20,.2 + €2, (t,x) € [0,00) x R. (1.1)
Throughout this article we will consider the narrow wedge initial condition
Z(z) = §(x). (1.2)

Such a notion of solution is motivated by informally exponentiating the KPZ equation, and has been ob-
served in various regularization schemes and particle systems, e.g., [BC95, BG97]. Also, for certain classes
of continuous initial conditions, the Hopf-Cole solution agrees with the ones constructed from regularity
structures [Hail4|, paracontrolled distributions [GIP15], and energy solutions [GJ14, GP18]. A slight gener-
alization of the standard theory [Wal86, BC95] asserts that there exists a unique C'((0, 00), R)-valued process
Z that solves (1.1)—(1.2) in the mild sense, i.e.,

Z(t,z) =p(t,x) + /0 /Rp(t —s,x—y)Z(s,y)E(s,y) dsdy,

where p(t,z) := (27t) "2 exp(—g—:) denotes the standard heat kernel. Further, [Mue91, MF14] showed that
for almost surely for all ¢ > 0, the solution is strictly positive, i.e., Z(t,z) > 0, for all x € R and ¢ > 0. This
defines the Hopf-Cole solution h(t, x) := log Z(t, x) with the initial condition (1.2).
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Under the initial condition (1.2), for large ¢, the height develops an average (downward) growth with

velocity —2—14, and, after centering, fluctuates at O(t%) and scales to the GUE Tracy—Widom distribution
[ACQ11, CLDR10, Dot10, SS10]

73 (h(2t,0) + &) = GUE Tracy Widom, as ¢ — co.

The results in [ACQ11, SS10] are based on [TW08, TW09]. Here, instead of typical behaviors of h, we focus
on Large Deviations (LDs), namely the rare events that h(2t,0) deviates distance O(t) from its center — 7.
Regarding ¢t — oo as a scaling parameter, we aim at extracting the leading order of the tail probability:

P[h(2t,0) + & > 2t] mexp (=t @4 (2)), z>0, (Upper Tail)
P[h(2t,0) + & < zt] mexp (-t @_(2)), =z<0, (Lower Tail)

as t — co. More precisely, (Upper Tail) means that tlim - 1log P[h(2t,0) + & > 2t] = —® . (2) for fixed

z > 0, and similarly for (Lower Tail). We refer to ¢+ as the speed of deviations, and ®4(z) as the rate
function.

Put in a broader context of random growth, directed polymers, and particle systems, the upper- and
lower-tail LDs considered here probe excess growth and massive die out, respectively. Whereas excess
growth originates from locally favorable environment, massive die out occurs only when a widespread area
of environment jointly becomes unfavorable. This distinction results in asymmetric speed: t%+ = t! and
t%= = t2. These observations and predictions of the speeds were made in [LDMS16]. The upper tail is
accessible from Fredholm determinants [CQ13, Proposition 10], and it is predicted [LDMS16, SMP17] that
b, (2) = %z%, a single %—power. (The prediction of [LDMS16] was based on a short-time analysis, while
[SMP17] analyzed the long-time regime considered here.) This predicted upper tail rate function has been
recently proved in [DT21].

On the other hand, the lower-tail rate function is predicted by [KK07, MKV16] to exhibit a crossover
from cubic power law (—z)?® for small |z| to 2-power law (—2)3% for large |z|. While the 3_power law is seen
also in zero temperature polymer models, the crossover behavior for the lower tail distinguishes the KPZ
equation, as a positive temperature polymer model, from zero temperature polymers.

Given the known Fredholm determinant formula ([ACQ11, CLDR10, Dot10, SS10], see [BG16, Eq. (7)]),
extracting the upper tail boils down to a perturbative analysis. This is so because, the relevant operator
converges to zero (in the the trace-class norm) as ¢ — oo. By contrast, for the lower tail, one faces the
situation where an operator does not converge to zero yet the determinant does. This is a well-known issue
in random matrix theory, and has since prompted the development for much more involved machineries.
For example, extracting the lower tail of the GUE Tracy—Widom distribution is done by the method of
commuting operators [TW94], via Riemann—Hilbert problems [BBD08, DIKO08], via the Stochastic Airy
Operator [RRV11], or non-rigorously via Coulomb gas [DMO6].

The first result regarding the lower tail of the KPZ equation is the aforementioned almost-sure positivity
of Z [Mue91]. Motivated in part by showing the existence of probability density of Z(t,x), various works
[MNO8, MF14, HL18] have investigated the negative moments and the positivity of Z. These results mostly
concern finite time behaviors of Z, and, in view of the —ﬁ average growth, are not well-adapted to the
t — 0o regime.

Recently, there has been much development around accessing the lower tail in the ¢ — oo regime.
In [CGT20], rigorous upper and lower bounds on the lower-tail probability are obtained. The bounds
hold for all sufficiently large ¢, and capture the aforementioned crossover behavior. The upper and lower
bounds do not match as t — oo, and hence do not yield the rate function ®_. In the physics literature, much
attention has been devoted to obtaining the the rate function. In [SMP17], an explicit rate function ®_
(see (1.3)) was predicted. This is done by analyzing a generalization of Painlevé II, introduced in [ACQ11],
through a WKB approximation, along with a self-consistency ansatz. Later, based on a formula from [BG16],
[CGK™18] employed a Coulomb gas heuristic to derive the rate function ®_, which agrees with the result
in [SMP17]. More recently, based on certain conjectural forms of expansions, [KLDP18] developed a scheme
of calculating cumulants under the Airy point process, and, through resummation, produced the same rate
function ®_ previously predicted.

The aforementioned physics results provide much insight in the lower-tail Large Deviation Principle (LDP).
They, however, assume certain conjectural formulas or approximations, or are based on certain infinite
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dimensional settings that go beyond existing theories. In this work, we give the first rigorous proof of
the lower-tail LDP for the KPZ equation, by invoking the stochastic Airy operator, and using the Riccati
transform, comparison techniques, and certain variational characterizations.

Theorem 1.1. Let h(t,z) denote the Hopf-Cole solution of the KPZ equation with narrow wedge initial
condition Z(0,z) = §(x), and fiz ¢ € (0,00). Then

.1
Jim. = log (P[h(2t,0)+ &5 < —Ct]) = —@_(=¢),
with the rate function
D_(z):= ﬁ(l—ﬂ‘QZ)% — T+ 522 — 527, 2 <0, (1.3)

Remark 1.2. After the first version of this article was posted, there are more works on this lower-tail LDP
problem. The physics work [KLD19] shows that the four different (rigorous and non-rigorous) methods used
in [SMP17, CGK"18, KLDP18] and this article are closely related at the level of variational problem. Two
new methods of deriving ®_ have been recently obtained, in the rigorous work [CC19] (which also produces
quantitative bounds) and the physics work [LD20].

The starting point of our analysis is a formula of [BG16] that expresses the previously known Fredholm
determinant formula [ACQ11, CLDR10, Dot10, SS10] in terms of the Airy Point Process (PP). Even though
only the 8 = 2 Airy PP will enter the formula, to demonstrate the generality of our approach, we will
consider general 8 > 0. Let B(x), x > 0, denote a standard Brownian motion. Recall from [RRV11] that
the Stochastic Airy Operator (SAO)

d? 2
e —B 1.4

e 5B (1.4)
with Dirichlet boundary boundary condition at = 0 defines an unbounded, self-adjoint operator on L?(0, o)
(see Section 2 for more details on the construction of Ag). Further, Ag has a pure-point spectrum that is
bounded below and has no limit points:

—00 < Al(.Ag) < Az(Ag) < )\3(./45) ... — 00.

Ag =

The 5 Airy PP {a; g}72, is simply this spectrum of Ag up to a space reversal, i.e., ag g := —Ax(Ag). In
[BG16, Theorem 2.1], substituting (%, ar,u) = (t, —Ap(Asz), ef¢), we have
(o9}
E[exp ( B eh(2t70)+fﬁ+t€>} _ E[exp ( " e (Ak(Aa) — t%g))}’ (1.5)
k=1
where
dr(A) = log (1 + exp(—t3 ). (1.6)

The formula (1.5) links two distinct objects: the KPZ equation on the left, and the Airy PP process on the
right. The identity (1.5) of [BG16] shows that specific observables of them match algebraically.

It is readily checked that the double exponential function e—¢" well approximates the indicator function
1«0} except in a neighborhood of = 0. As ¢ — oo, it is conceivable that the Lh.s. of (1.5) becomes a
good proxy for the tail probability P[h(2¢,0)+ {5 < —(t], and that proving Theorem 1.1 amounts to proving

Theorem 1.3. For fized ¢, 3, L € (0,00), we have
s s (o (15 vt )] -2 () (-5 o
k=1

Theorem 1.3 can be regarded as a result on a type of LDs of the § Airy PP. For related processes (the Sineg
and Sch, processes), the overcrowding LDPs were obtained in [HV15]. See also [HV17].

The relevant parameters corresponding to the r.h.s. of (1.5) are 8 = 2 and L = 1. Here, we state and
prove Theorem 1.3 for general 8, L € (0,00) to demonstrate the generality of our method. Further, it has an
application in a different setup. Referring to [BBCW18, Definition 7.1], we let h® (¢, x) := log Z®(¢, x) denote
the Hopf-Cole solution of the KPZ equation on the half-line [0, c0) with boundary parameter A = —%, with
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initial condition Z"(0,z) = d(x). The result [BBCW18, Theorem B] together with the convergence result
of the half-space ASEP [Par19] (which generalizes the result in [CS18]) yields the identity

E[exp ( _ iehhf(Zt,0)+ﬁ+tC)} _ E[exp ( _ ;i@o\k(/{l) _ t%g))] (1.8)

Indeed, the r.h.s. of (1.8) corresponds to 8 =1 and L = % As a corollary of Theorem 1.3, we have

Corollary 1.4. Refer to [BBCW1S8, Definition 7.1]. Let h™(t,z) := log Z"(t,z) denote the Hopf-Cole
solution of the KPZ equation on the half-line [0,00) with the boundary parameter A = —%, with the initial
condition Z"(0,z) = 6(z). Then, for any fived ¢ > 0,

lim 5 log (P[hM(2t,0) + &5 < —t(]) = —32_(=().

t—o0

Passing from Theorem 1.3 to Theorem 1.1 and Corollary 1.4 is simple, which we do in Section 4. In addition
to Theorem 1.1 and Corollary 1.4, there may be further connection to the processes considered in [GS18],
but we do not pursue this direction here.

The preceding discussion reduces the LDP for the KPZ equation to calculating an exponential moment
of the Airy PP. This observation was first used in [CGT20], along with certain bounds on the Airy PP, to
derive bounds on the lower-tail probability. Further, it was noted [CG ™20, Section 2.3] that the rate function
®_ can be derived by developing an LDP for the Airy PP from the known LDP for the Gaussian  ensemble
[BAGO97]. This scheme was adopted in [CGKT18]. Non-rigorously taking an edge scaling of the rate function
of the Gaussian 3 ensemble [BAG97, Theorem 1.3], the work [CGK™ 18] derived an explicit rate function
Iniry [CGKT18, Section A, Supplementary Material] for the Airy PP, and solved a corresponding variational
problem to obtain ®_.

The non-rigorous edge scaling from the rate function of the 5 Gaussian ensemble to Iai, is backed by
the known weak convergence [RRV11] of the Gaussian  ensemble to the Airy PP. However, justifying this
passage at the LDP level requires convergence up to exponentially small probability, which remains an open
problem. Partial results in this direction have been recently obtained in [Zhol9]. Here, we take a different
approach, completely bypassing the need for taking edge scaling from the Gaussian 8 ensemble.

1.1. A heuristic of the proof. We give a heuristic of the ideas behind our proof. The discussion in this
subsection is informal, serves only as a conceptual guideline, and will not be used in the rest of the article.

Let Gy := LY 7y ¢e(Ae(Ag) — t3¢) denote the relevant quantity on the r.h.s. of (1.7). By Varadhan’s
lemma, analyzing the ¢ — oo behavior of E[exp(—G;)] amounts to characterizing the LDs of G;. With B
being the only random component in Ag (see (1.4)), the quantity G; is a functional of B. Therefore, the
questions about the LDs of G; is ultimately a question on the LDs of a functional of the Brownian motion
B. To better express G; as a functional of B, we use the Riccati transform. Let

NA) :=#{k e N: X (Ap) < A}
denote the number of eigenvalues of Az at most A, i.e., the counting function, and consider the solution of
the following ODE

fllx) =2 — X — f(x) + %B’(aj), x>0, f(0)=+oc. (1.9)

Due to the negative, quadratic drift — f2, the solution may undergo a few explosions to —oo, whence f is
immediately restarted at +o0o. The Riccati transform asserts (see Section 2 for more details) that N(\) =
#{explosions of f(x)}. We hence view f and N()\) as functionals of B through (1.9), and this gives G; as a
functional of B through

Gi=1L / (A —t20)AN(N) = —L / (AN — t2O)N(A)dA. (1.10)
R R

We now need to analyze how deviations of B affect f and N(X). To this end, it is instructive to first
introduce a few scales. Straightforward differentiations from (1.6) shows that ¢}(\ — t3¢) ~ —tél{)\<t2/3<}
for £ > 1. Using this in (1.10), we see that the relevant A should be of order ¢3, i.e., A = O(t3). In (1.9),
if we ignore the Brownian term %B’ (z), explosions of f occur only when x < A. This suggests that
z = O(\) = O(t3). Now, consider a generic v € C[0,00). We postulate that the relevant deviation is B(z)
behaving like a drifted Brownian motion with drift ¢3v(t~3z). Here, the (£~ 3z) scaling ensures that the
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drift varies at scale comparable to = O(¢3) in (1.9), and the multiplicative factor ¢3 guarantees that the
drift competes at the same level as 2 — A = O(t3).

We henceforward regard v as the control function of the LDs in question. The LDP on sample paths of
Brownian motion suggests that

’ 2 -2 1 s 2/,—2 2 *1 2
P[B'(z) ~ t5v(t 5z)] Rﬁexp(— §t3v (t 3x)dx> :exp<—t v (:U)dx)
0 0

Indeed, B is not differentiable, and B’ () &~ t3 v(¢t~ 3 2) merely means that ¢~ 3 B(t3z) approximates Jy v(y)dy
uniformly in 2 over compact subsets. Here, however, we informally equate B’(x) with t%v(t_gx) in (1.9)
and write

f{,(:r):—t%(—t Sy 4+t 3/\—7 v(t™ dx))—ff(x), x>0, f,(0)=+o0.

This equation can be solved approximately by regarding b(x) := —tEx 4t EN— 2v(t_%m)/\/3 as a locally
constant function. Consider a generic b > 0 and solve for a function fi. that satisfies f/. = —t3b — f2..
This gives fioc(z) = tan(t%b%x + ¢), ¢ € R, which explodes over a period of 7t~3b~ 2. Hence the time lapse

between explosions of f,, near a given point x is roughly
1

Tv(x)ﬁﬂtié((—t Sppt 3)\—* (t 333))+)_2,

where y+ := (+y) V0 and 1/0 := co. Integrating the reciprocal time lapse 1/7,(z) over 2 > 0 gives the total
number of explosions:

N(A) = Ny(\) ~ %/0 (- Foreia— Zu@Ha), ) bae

Now, substituting this approximate expression of N () in (1.10), together with the aforementioned approx-
imation ¢)(\ —t3¢) ~ —tél{qu/gC}, we arrive at

l

i3 B _2 _2 9 -2 1
Gt = Gio = = L) (—t75z+t5N— ot 5x))4)? dAdz
2L [°° 3
= 1523—7r i (2 +¢ = Ho(x))4)? da.

So far we have derived an approximate expression of G, = G;,, as a functional of the control v, and the
‘cost” for realizing a given v is & f x)dz. These discussions suggest that
2 . 2L 3 2
log (E[G)]) ~ —t mm{ (?m(( r+ ¢~ Zo(),)* + 5@ (m))dx}.
v 0

The minimizer v = v, is solved by straightforward variation, giving

v.(2) = 4L%7 2873 (— 1+ \/1+(§%)2(<—x)+). (1.11)
Substitute in v = v,. After straightforward but tedious calculations, we get

log(E[Gi]) ~ —*L(%§)°®_(~(37)%¢).

1.2. Overview of the proof. The crucial assumption behind the preceding heuristic is having locally
constant drifts. That is, we postulate that the ‘optimal strategy’ is achieved by having a drift t%v(fgx)
that is locally constant, and varies at the macroscopic scale O(tg). It is far from clear why this is the case.

Indeed, with B’ being rough (not function-valued), local behaviors of B at scales < =3 could have dramatic
effects on the spectrum of Ag.

Our proof proceeds through a localization procedure. That is, we partition (0, c0) into intervals of length
t*: I; := (ni—1,m5], m; := it*, and counts the number of explosions of the Riccati ODE within each interval
I;. Our analysis works for any fixed exponent a € (—57 %) Note that this range exhausts all mesoscopic
scales. As seen in Section 1.1, 3 is the macroscopic scale of  and A in (1.9), while =3 the microscopic
scale of typical time lapse 7,(z) between explosions.

To prove Theorem 1.3, we separately establish upper and lower bounds on the Lh.s. of (1.7). For the

lower bound, within each interval I;, we perform a change-of-measure (via Girsanov’s theorem) so that
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the Brownian motion has drift V; := tgv*(tgm,l). Within [I;, the change in the linear potential x is
negligible, and can be well-approximated by the constant 7;_1. This being the case, the number of explosions
(after the change-of-measure) can be estimated by spectral comparison to the shifted Laplace operator
,% +1ni_1 + %Vi. Doing so eventually yields the desired lower bound.

The harder part of the proof is to obtain a matching upper bound. This is where we address the afore-
mentioned issue — that the ‘best strategy’ is achieved by a locally constant drift. More precisely, we show
that the ‘best strategy’ is to have B constantly drifted within each interval I;. To this end, we first use
dr(N) =~ —t3A_ to approximate the relevant quantity as a truncated sum of eigenvalues of certain Hill-type
operators (see (3.33)). Next, we show in Proposition 3.4 (after passing to periodic boundary condition as
done in Lemma 3.2) that the truncated sum is dominated by the one with B’(z) replaced by its average
%. Key ingredients behind the proof of Proposition 3.4 are the variational characterizations built
in Lemma 2.3 and (3.41).

We note here that most part of our proof works even if ¢;(\) were replaced by a smooth compactly
supported function. However, the aforementioned variational characterizations (Lemma 2.3 and (3.41)) are

tailored to a truncated sum of eigenvalues, and hence apply only for the specific cost function ¢;(\) = —tEA_.

1.3. Quantitative bounds. In this article, we focus on the ¢ — oo asymptotic of the lower-tail probability,
and extract the leading order term, i.e., the rate function ®_. Our analysis, however, allows much room for
more quantitative estimates. As mentioned in Section 1.2, the partition can take any size t* with o € (f%, %)
Optimizing over « (and a few other parameters within our analysis) should lead to a quantitative estimate

on the tail probability in a similar spirit as [CG*20]. We do not pursue this direction here.
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Ivan Corwin and Yao-Yuan Mao for their suggestions that improve the presentation of this article, and thank
the anonymous referees for their careful reading and many useful comments. Tsai’s research was partially
supported by a Junior Fellow award from the Simons Foundation, and by the NSF through DMS-1712575
and DMS-1953407.

Outline. In Section 2, we prepare a few basic tools. Based on these tools, in Section 3 we prove Theorem 1.3.
In Section 4, we settle Theorem 1.1 and Corollary 1.4.

2. BASIC TOOLS

Hereafter throughout the rest of the article, we fix L, ¢, 8 € (0, 00), and drop dependence on these variables.
For example A := Ag.

Below we will recall a general construction, via functional analysis, of a class of self-adjoint operators,
and then specialize to the special case of Hill’s operator and the SAO. One can also find the constructions
of these random operators in [FN77] and in [AGZ10, Section 4.5.2] and [RRV11, Section 2].

We begin by recalling the classical construction of self-adjoint operators via sesquilinear forms. Consider
Hilbert spaces . and ¥, both over C, equipped with inner products (-, ) and (-, )y and the thus
induced norms ||+||» and ||+|lv, and assume the embedding ¥ C . as vector spaces. Consider also a
symmetric sesquilinear form @ : ¥ x ¥ — C. The associated operator T' = (T, D(T)) of @ has domain
D(T') consisting of v € ¥ such that

Ju € S such that Q(v,v") = (u,v') 5, YV’ € ¥, (2.1)

and, for each v € D(T), Tv := u is defined to be the (necessarily unique) vector u € 5 that satisfies (2.1);
see [Gru08, Definition 12.14]. Recall that @ is coercive with respect to ¥ C . if, for some fixed constant
¢ < 00,

[vll5 < c(lvle + Qv,v)), Yve¥.

Recall that 7 is compactly embedded in JZ if ||v||y < c||v||s¢, for some fixed constant ¢ < oo and all
v € ¥, and if any ||+|»-bounded sequence has a | -|| s-convergent subsequence. It is known (c.f., [Gru08,
Corollary 12.19]) that if ¥ C J# compactly and densely and if @ is coercive, then the associated operator
(T, D(T)) is self-adjoint and closed, with D(T') C ¥ being dense in J#. Furthermore, since @ is coercive
and since ¥ C # compactly and densely, T necessarily has a pure-point spectrum that is bounded below
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and has no limit points, i.e., —0o < A\; < Ay < ... — o0, with the corresponding eigenvectors forming a
complete basis (i.e., dense orthonormal set) of 7. We will call such self-adjoint operators standard.

In the following, we will consider quadruples (T,Q,¥ C J¢), where @ is a symmetric sesquilinear form
on ¥ and T is the associated operator. The preceding discussion is summarized as follows.

Proposition 2.1. Fiz a quadruple (T,Q,V C J) described as in the preceding. If v C A compactly and
densely, and if Q is coercive, then T is standard: self-adjoint and has a pure-point spectrum that is bounded
below and has no limit points, i.e., —oco < A1 < Ay < ... — 00, with the corresponding eigenvectors forming
a complete basis of .

Now, to construct the SAO (1.4), we let # = L?[0, 00), and

Y =1L, := {f € H'[0,00) : f(0) =0, / (If' (@)? + (L + )| f(z)]?) dz < oo}, (2.2)
0

equipped with the inner product (f, g)z, :== [~ (f (x)+ (1 +x)f(x)g(x))dz. It is standard to check that

L. C L?[0,00) compactly and densely Now define the symmetric sesquilinear form Qsao : Ly X L, — C,

Qsrolf.9)i= [ (F@g@) + (2 + ) f@g@)B @) d, (23)
0 VB
where, with f, g € L., the integral against B’(z) is understood in the integration-by-parts sense. Recall from
[RRV11] (see also [AGZ10, Lemma 4.5.44 (b)]) that, almost surely, Qsao is coercive with respect to L. C
L?]0,00). Given these properties, we let A be the associated operator of Qsao, which, by Proposition 2.1,
is standard.
Aside from the SAO, we will also consider operators of the form —4 + fJ’( x), on xz € [a,b], for

J € Cla,b], and with Dirichlet boundary condition at # = a,b. To define such an operator, take 5# = L?[a, b]
and ¥ = Hl[a,b] .= {f € H'a,b] : f(a) = f(b) = 0}, and define

b
it = [ (1@ @)+ @ @) d. (24)

where, for f,g € H}|a,b], the integral against J'(z) is understood in the integration-by-parts sense. Indeed,
H'la,b] C L*[a,b] compactly and densely. For continuous .J, we show in (2.10) in the following that Q is
coercive with respect to H}[a,b] C L?[a,b]. Given these properties, we let

d2
Si=— T2 + ﬁj (z), =z € (a,b), with Dirichlet BC (2.5)
be the operator associated to )y, which, by Proposition 2.1, is standard. One particular J we will consider
is J(z) = B(x), which gives the Hill operator:
" € 2 Bw), we(ab), with Dirichlet BC (2.6)
= — x € (a wi iri . .
[a,b] d T2 \/B » V)

For a standard operator T', we will often adopt the notation A, (7') for its k-th eigenvalue, starting with
index k = 1. For (T,Q, ¥ C ) satisfying the properties of Proposition 2.1, we have the minimax principle:

Me(T) = min{ max {Q(v,v)} : & k-dimensional subspace of 7/}. (2.7)

V€S, ||vle=1
This principle yields a useful comparison for the spectra of operators of the type (2.5).

Lemma 2.2. Fix a finite interval [a,b] and continuous functions J; € Cla,b], i = 1,2. Let S; be the operators
as in (2.5) with J; in place of J. We have

An(S1) < (14 EE) X (S2) + 3 (BEEU2 4 w203), k>0, n=12,...,

where Uz 1= sup,¢(q) [J2(2)] and Uiz = sup ¢ |J1(2) — Ja(2)]-
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Proof. To simplify notation, we write Hi := Hg[a,b] and L? := L*[a,b]. For J € Cla,b], we write U; :=
SUPyepa) |/ ()] Let f € H}[a,b] and r > 0. Applying the inequality 2|ajas| < |a;|2+|ag|? for a; = r—2 f'(z)

and ag = %r%f(x);](x), we have

’ —

D)2 (2)da | = %\ - / (@F )+ F(@)f'(2))J (@)de|

b
_ ar _
< [ (I @P + G @@ do <1 + T UF IR,
a B B
Setting (J,7) = (J1 — Jo, k?) and (J,r) = (J2, 5 + 1) gives
Qu(f ) S Qu(f )+ w7If e + 2 UR 1172, (2.8)
Q£ 1) 2 11 = 211 — ““ LFRUR£17- (29)
The inequality (2.9) is rearranged as
171132 < =2Qu, (£, £) + XU £ (2.10)
Inserting (2.10) into (2.8) gives
Qu (£ f) < (L+ SE)Qu(F ) + 4 (EREUZ + 20 12
This together with the minimax principle (2.7) yields the desired result. ]

We will also use the following variational characterization of sums of eigenvalues.

Lemma 2.3. For (T,Q,¥ C ) satisfying the properties of Proposition 2.1, we have
Z Ak(T) = min { Z Q(vg,vg) : {v1,..., v} C ¥ orthonormal in %}
k=1 k=1

Proof. To simplify notation we write A;(T') = A throughout this proof. Let u1, us, ... denote the correspond-
ing orthonormal eigenvectors. Since A; > —oo, by shifting T +— T + ¢ and Q(v,v") — Q(v,v") + c{v,v') e,
we may assume without lost of generality that 7" is positive and @ is elliptic, i.e., [|[v]|3 < ¢Q(v,v). Given
any set {v1,...,v,} C ¥ that is orthonormal in /%, expand each vector into the eigenbasis vy, = >~ atui,
al = (vg,u;) 5. Using this, we have

> Q(uk, v) = ZQ(ZGZU“ > agui’) =3 i Quiur) = laj P, (2.11)
k=1 k=1 i=1 =1

k=11i,i'=1 i=1 k=1
where, in the second equality we exchanged infinite sums with ), which is justified by @ being elliptic. Put
differently, (2.1_1) states that >.;_, Q(vk, vx) is given by a weighted average of the eigenvalues, with weight
wy, =Y p_; |ai|>. Moreover, the total amount of weight is fixed:

o0 n o0 n
i 12 2
down =) Y lai =) lvill3 = n.
n=1 k=1 i=1 k=1

Given this constraint, to minimize (2.11), it is desirable to allocate more weights to smaller eigenvalues. On
the other hand, each eigenvalue cannot receive weight more than 1:

Z| (Vi wi) e <||“Z||zi”—1

where the inequality follows because {vl, ..., Up} is orthonormal. Combining the preceding properties, we
see that the quantity in (2.11) cannot be smaller than 22:1 Ak. Conversely, for vy = ug, k= 1,...,n, we
indeed have Y"7_, Qug,uk) = Y p_; M- a

A useful tool for analyzing the eigenvalue distribution is the Riccati transform. We refer to [CRRO07] and
[AD14, Sections 2-3] for expositions on the Riccati transform of Hill’s operator and the SAO. The starting
point of the Riccati transform is the eigenvalue problem for A:

§'(@) = Z9(@)B (@) + (x — Ng(a), @ >0, (2.12)
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understood in the integration-by-parts sense. Namely, we say that g € L, (defined in (2.2)) solves (2.12) if it

holds upon integrating against any test function p(z) € C£°[0, 00), under the interpretation [ p(x)g(x) B’ (z)dz :=

— I (p x)+p(x)g'(z))B(x)dz. The Riccati transform f(z) := ¢’'(z)/g(x) brings the second order equa-
tion (2 12) mto a first order one:

flx)=a—X— f*(z) + %B'(x), x> 0.
More generally, instead of taking an eigenvalue A of A, we consider a generic A € R, regarded as a tunable
parameter of the first order equation:

1 () zx—/\—fQ(x)—F%B’(x), z > 0. (2.13)

With B’(x) not being function-valued, we make sense of (2.13) by integrating in z. Note that, due to the
negative, quadratic drift — f2(z), the solution f(x) may undergo explosions to —oo, so we integrate only over
intervals that does not contain such explosions:

T2

f@)]; :/ (z = A= f(2))dz + FB(@)[, (2.13")

[z1,z2] C [0, 00) such that no explosions occur in [z1, z2].

For a given initial condition fy € R, it is readily checked that (2.13") permits a unique C([0,71))-valued
solution f with f(0) = fo until the first explosion time 7; of f. We will also consider f; = +o0, which
is understood as lim,_,q+ f(2) = +oo. It is not hard to show that, existence and uniqueness (up to first
explosion) holds also for fo = co. At each explosion 7, to —co, we immediately restart f at f(7,) = +oo.

Given the prescribed explosion structure, it is convenient to view f as taking values in a countable disjoint
union of R, i.e.,

fERJUR SUR _3U...:=R_y,

with each component R_; keeping track of the value of f between the (i — 1)-th and i-th explosions. To
define the topology and ordering on R_y, take an order-preserving homeomorphism « : R — (0,1) (e.g.,
u(zx) := (arctan(z)+m/2)/m), and consider the map u : R_y — (0,00): @(z,n) := u(x) —n—1. That is, each
R_; is mapped into (¢ — 1,¢) in an order-preserving and homeomorphic manner. We endow the space R*
with the pull-back topology and ordering through w. Indeed, the latter is simply lexicographical ordering,
ie, (z,n) > (2/,n) if n >n' € =N, and (z,n) > (z/,n) if z > 2’ € R,

We now recall known properties on the Riccati transform that will be used subsequently. Hereafter, for a
standard operator T, we let N (A, T') denote the counting function of eigenvalues:

N(AT) = #{n e N: X\, (T) < A}.

Proposition 2.4 ([RRV11]). Under the prescribed ordering and topology, we have the following.
(a) Fizx A € R and an initial condition f(0) € RU {+o0}, Equations (2.13)-(2.13’) admits a unique,
continuous solution f(x) = f(x, ). Further, f(x,\) is decreasing in X for each x.
(b) Equations (2.13)—(2.13’) preserves ordering. That is, given any continuous solutions f1(x) and fo(x)
of (2.13) with f1(0) > f2(0), we have fi(x) > fo(x) for all x > 0.
(c) Almost surely for all A\, N(X, A) = #{explosions of f(+, ) in (0,00)}.

Parts (a) and (c) are stated in [RRV11, Fact 3.1, Proposition 3.5], and Part (b) follows immediately from
Part (a). Let us emphasize that, our discussions regarding the Riccati transform are pathwise, and in
particular hold if B is replaced by any w € C([0,00)) with sublinear growth: lim, .. |g(z)|z~% = 0, for
some a < 1.

As for the Hill operator, similarly consider the Riccati transform:

F@)= -2 @)+ LB (@), v (ab). (2.14)

Just like in the preceding, we interpret (2.14) in the integrated sense

X2

f@) :/ (=2 = f(@)dz+ FB()],, (2.14)

[x1, 2] C [a,b] such that no explosions occur in [z1, za],
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and whenever an explosion occurs f is immediately restarted at +o0o. It is standard to show (see [FNT77])
that the following analogue of Proposition 2.4 holds.

Proposition 2.5. Under the prescribed ordering and topology, we have the following.
(a) Fiz A € R and an initial condition f(0) € RU {+o0}, Equations (2.14)—(2.14°) admits a unique,
continuous solution f(x) = f(x,\). Further, f(x,\) is decreasing in X for each x.
(b) Equations (2.14)—(2.14°) preserves ordering. That is, given any continuous solutions fi(z) and fo(x)
of (2.13) with f1(0) > f2(0), we have fi(x) > fo(x) for all x > 0.
(c) Almost surely for all \, N(\,Hqp)) = #{ explosions of f(+, ) in (a,b]}.

As mentioned previously in Section 1.2, our proof of Theorem 1.3 proceeds by a localization procedure.

To setup notation for it, fix o € (—%, %), and partition (0, 00) into intervals of length t*, i.e., n; := it*, and

Ii = (771'—1; 771]7 1= 1, 27 . .i*, Ii*+1 = [771*7 OO) (215)
To decide what i, should be, referring back to (1.11), we see that v.(z)|z>¢ = 0. It is natural to choose
i, > (t37 so that 230, (t%/32)| y>n,. = 0. We choose

iy o= [CEE 457, (2.16)

where the +¢3~2 factor makes room for subsequent analysis. Counting the number of explosions of (2.13)
on each subinterval gives

Ni(AA) = #{z € I+ Tim f(y, ) = —oc},
y—x—

where f(z,A) solves (2.13) with the initial condition f(0,\) = +oc0. Then,

te+1

NLA) =D Ni(AA). (2.17)

Note that we have omitted the dependence on ¢ in the notation I;, n;, and so on. Similar conventions will
be frequently adopted without explicitly stating so.

Indeed, N;(A,.A) depends on the entrance value f(1n;—1, ) of f at the start n;_; of the interval I;. As a
result the processes N;(-,A), i =1,...,i. + 1 are mutually dependent. This being the case, it will often be
more convenient to consider

N\ HL), i=1,...,0, N A) =#{keN:X(A) <A},
where A, is the SAO restricted to [1;,,00):

d? 2
gz tet ﬁB/(I)’ x > n;,, with Dirichlet BC at z = 7;,, (2.18)

constructed in a similar way as the SAO. Recall from Proposition 2.5(c) that N (A, Hy,) counts the number
of explosions within x € I; of the solution f;(x) = f;(x, A) of

A, =

fi(x) = =X = fi(z) + %B/(x)’ zel;, filni-1)=+oo. (2.19)
Similarly, N (), A,) counts the number of explosions within x € I; 11 of the solution f.(x) = fi(x, ) of
flla)=a— A= f2e) + ZB'@), v € Lpr, fulm.) = +oc. (2.13%)

From the preceding descriptions, we see that N (A, Hy,) depends only on the increment B(z) — B(n;—1) of
the Brownian motion within z € I;, and N (A, A.) depends only on B(x) — B(n;.) for « € I; 1. Hence, the
processes N(+,Hy,), i =1,...,i., and N(-,A,) are independent.

To relate the processes N(+,Hy,) and N (-, A,) back to N;(+,.A), we establish the following inequalities.

Lemma 2.6. Couple the processes N;(+, A), N(+,Hr,), N(+, As) by having the same spatial white noise
B'(z) for the operators in (1.4), (2.6), and (2.18). Almost surely for all N € R and i =1,..., 4., we have

NA=ni,Hr,) < Ni(AMA) S NOA=mim, Hr) +1, Nipyai(ALA) S N AL + 1
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Proof. Fix i and A. Let f(z) = f(x, \) be the solution of (2.13) with f(0) = 4+o00. Restricting (2.13) to the
relevant interval x € I;, we write

fl@)=2—X— f2(z)+ ﬁB’(m), zel;, f(ni—1) € RU{+o0}, given. (2.20)
Let g(x) = fi(z, A — n;) be the solution of (2.19) with A — A —n;, i.e.,
g (@) =—\—m) — g*(z) + %B'(z), x €L, g(ni—1) = +oo. (2.21)

By definition, N;(), A) is the number of explosions of f on I; = (n;—1, 7], and recall that N(A —n;, Hy,) is
equal to the number of explosions of ¢ in I;. Since z — A < —(A—1mn;) on z € I; and since f(n;—1) < g(ni—1) =
~+00, by comparison we have f(z) < g(x), € I;, under the ordering of R_y. This gives the first inequality
N()\ - 77i,H[i) S Nl(A,A)

Turning to the second inequality, we consider g(x) = f;(x, A — 1;,_1), which solves
J(@) = ~(A=mni-1) = §*(@) + ZB'(2), v € Li;  g(ni—1) = +oo, (2.22)
and consider the first explosion time of f on I;. If f does not explode within I;, then N;(X,.A) = 0, whence
the desired inequality NV; (A, A) < N(A—n;—1, Hy,)+1 follows trivially. Otherwise let b € [n;_1,7;] denote the
first explosion. We then have x — A > —(A—m;_1) on x € [b,7;] and +00 = f(b) > g(b). Comparison applied
to f and g over the interval x € [b,n;] yields f(x) > g(x), « € [b,n;]. Taking into account the explosion of f
at x = b, we obtain N;(\, A) < N(A—mn;—1,Hy,) + 1.

The last inequality concerning N;, +1(A, . A) and N (A, A, ) follows by the same comparison argument applied
to solutions of (2.13*) and (2.20) for ¢ =i, + 1. O

3. PROOF OF THEOREM 1.3

Our proof of Theorem 1.3 breaks into lower and upper bounds. That is, we establish matching bounds
on the Lh.s. of (1.7) to obtain the desired result. Hereafter, we use ¢ = ¢(a,b,...) to denote a generic,
deterministic, finite positive constant that may change from line to line, but depend only on the designated
variables. As declared previously, 8, ¢, L € (0,00) are fixed throughout this article, so their dependence will
not be designated.

3.1. Lower bound. To simplify notation, set
s 2
G::E[exp(—LZgz)t(Ak(A)—tﬁg))] (3.1)
k=1

Our goal is to establish a desired lower bound on ¢t~2log G. The proof is carried out in steps.

Step 1: localization. Recall the partition (2.15) introduced previously. By definition, N (), A) counts the
number of eigenvalues Ag(A) of A at most A. Using this fact, together with the decomposition (2.17), we
rewrite the infinite sum in (3.1) as

=3 i (A) — £30) = — / oA — 30 AN (A, A)
k=1 R

i1 (3.2)
= [NOAs-don =Y [ MO+ A
R —JRr
where d acts on the variable A € R. In the second inequality in (3.2) we used integration by parts and
lim ¢;(A)N(X+ t3¢, A) =0, almost surely. (3.3)

A—00

We postpone the proof of (3.3) until the end of Step 3 to streamline the presentation, since the proof uses
arguments similar to those in Step 3. Recall the Hill operator Hy, from (2.6) and A, from (2.18). Our goal
here is to pass from the operator A to Hj, for i = 1,...,4, and to A, for i = i, + 1. To simplify notation,
set Nj(A) := N(A+t5¢ —mi_1,Hy,) for i = 1,...,i,, and N, 11 := N(A + 3¢, A,). Consider the event
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Q; := {A1(A) > —t3} that the groundstate eigenvalue of A lies above —t3. It is readily checked from (1.6)
that ¢;(A\) < 0. Using this and the bounds from Lemma 2.6 in (3.2), we write

il oo

GZE[lQl . H exp (L/
i=1

. NG )]
—t3 (14+¢)

Tet1 o

ZE[lgl . H exp(L/ ,
i=1

—t3(1+0)

(1+ NG (A)er (V) ) | (3.4)
Within the last expression, separate the 1’s from the A;’s and evaluate the contribution of the former

. /w 1+ @, (A)dA = —L (=15 (1+¢)) = —L log(1 + '*+9) > —et.

—t3 (14¢)
With i, + 1 < ¢t3~%, we bound
i1 o -
I] ex» (L/ ) 1~¢;()\)d>\) > emeti T,
i=1 —t3 (1+¢)

Use this bound in (3.4), and for the remaining integral of N;¢; (which is negative), release the range of
integration from A € (—£3 (1 + ¢),00) to A € R. We get
i1

E[ml : H exp (L /RM(A)(;SQ(A) dA)]. (3.5)

a

G > efct%*

Step 2: change of measure. Write yy := (£y) V 0 for the positive/negative part, and consider

va(a) == 422772571 (— 141+ ()¢ - 2)4), (3.6)
and set
Vii=tiu,(t i), V(z):= Z Vily (2). (3.7)
=1

Girsanov’s theorem asserts that
E[-]= E[ei I V(@) dB(z)+5 [¢° Vi (z)da (- )L (3.8)

and, under E, B is distributed as a drifted Brownian motion, i.e., B law E—i—fo' V(y)dy, where B is a standard
Brownian motion. Let A, = —% +x+ %E’(z), x>, and let Hy, = —% + %E’(m), x € I;, denote
the analogous operators. On the r.h.s. of (3.5), apply (3.8), and express each B in terms of B and V for the
result. We obtain
5_4 o ~ o ~ Gt d ~
G > e td -y [ Vi@ E[1§26— I VBE) ] exp (L / YAGNEASY d/\ﬂ, (3.9)
i=1 R
where
M(A) = N(A + t%C - %V; - 771'—177'211)’ 1= 17 s 7i*7 NV’Z*-‘rl(A) = N(A + t%é‘w’z*)a

and Qy = {)\1(,1 + %V) > —tg}. In the last expression we interpreted V as a multiplicative operator
L?[0,00) — L?[0,00), which is a bounded, Hermitian operator. From this point onward, we will always

operate under the transformed measure E. To alleviate heavy notation, we dropped all the tildes and
rewrite (3.9) as

50 1 reoua - 1 +1
G > e ctd = T Vi @)de -E[19267 J5° V(2)dB() H exp (L / M (N (\) d/\ﬂ. (3.9
i=1 R
where Qg := {A1 (A + %V) > —t3}, and

Mi(N) = NQA+15¢ = ZVi—mioy, Hy,), i=1,oyie, Miga (V) i= NG AL, (3.10)
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Step 3: bounding terms on the r.h.s. of (3.9”). We begin with the term M;()\), i =1,...,i.. To bound
M;(N), we will apply spectral comparison of the Hill operator Hy, and the Laplace operator

d2
—Ap, = L with Dirichlet BC.
Set U; := maxgey, |B(x) — B(n;i—1)], fix i = 1,...,4s, and let kK > 1 be an auxiliary parameter. Apply
Lemma 2.2 with (Jy(x), J2(x)) = (0, B(x) — B(m_l)) to get

(1+55) Aa(H1) = Aa(=Ar) — e (s +1)*U7. (3.11)
From this we deduce, for r = t%C — %Vi — Ni—1,

MiA) =#{neN: X (Hp) < A+r} <#{neN: XA (-Ar) < (1+ S (A +7) +c(s+1)°U7}

=N((1+ 5 (A +7)+ (k+ 1)%cU2, —Ay,), (312)

for some fixed constant c, < oo. Fix ¢ € (0, 3 2 — @), and consider the event
Qs(k) = {(k+1)2c, U} < 01+, (3.13a)
Uy <t30Fad) =14, }. (3.13b)

Given that the interval I; has length |I;| = t¢, it is straightforward to verify P[Q3(x)] — 1, for fixed k € [1, c0)
as t — oco. Under the condition (3.13a), we have

193(H)Mi()\) < M;(M\g), i=1,... i, (3.14)
where

Ml'()\,li) = N((1+NT-§1) (A‘i’T’) +t6+a+,fA[i), Ty = t§47%v;7771_1 (315)

We now turn to bounding M;_ 11 (A) = N(\ + ¢3¢, A,). Shifting the operator A, (defined in (2.18)) by
x =z — 1, we see that {A,(A.)}22, faw {An(A) +m;, 152, or equivalently

Mip1(+) N (e + 3¢ =, A). (3.16)

Our next step is to compare the spectrum of H to that of the Airy operator A := f% +x, in a way similarly
to Lemma 2.2. Recall that A is the associated operator of the form (2.3), with ¥ = L, given in (2.2) and
A = L*[0,00). For the Airy operator we take the same Hilbert spaces ¥ = L, C # = L?[0,00), with
the form Qa(f,9) == [;°(f )+ 2 f(x)g(z))dr. We seek to apply [AGZ10, Lemma 4.5.44 (b)]. To this
end, note that the ||f|\2 deﬁned in [AGZlO, p 308] is equal to Qa(f, f) + [|f[172( o) here, and the (f, f)r,
defined in [AGZ10, Equation (4.5.15)] is equal to Q 4(f, f) here. By [AGZ10, Lemma 4.5.44 (b)], there exists
a [0, 00)-valued random variable U such that,

Qualf, f) = 3Qalf ) = UllflI2p0,00  VF € La

The minimax principle (2.7) hence gives A,(A) > 2X,(A) — U. From this we conclude that N (X + 3¢ —
i, A) < N(2(A+t3¢ —n;.) + 2U, A). Recall 4, from (2.16). We have 7, = i,t* > t3¢ +t3, so

N+ 3¢ —n;., A) < N(2(A — t3 + U),A). (3.17)

The spectrum of the Airy operator is exactly the zero set of the Airy function on R up to a spatial reversal,
and the real zeros of the Airy function admit precise asymptotic expansions (see, e.g., [O1v97, Section 11.5]).
In particular, N()\,A) < ¢(\;)%/2, for all A € R. Combining this with (3.16) and (3.17), we have that

Mi1(\) S N2 —t5 +U,),A), (3.18)

for some U Z' U. Therefore,

esp (L / Mi (N (A)N) > exp (e / (A—1} 40

+ wleo

¢;(/\)d>\). (3.19)
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Consider the event € := {U, < t3}. Indeed, since U, 2T s [0, 00)-valued, we have P[Qy] — 1, as t — oc.

1
On the r.hs. of (3.19), use ¢}(\) > —tze *** (verified from (1.6)) and perform the change of variables
A\ —t3 + U, — \. Under the condition Q := {U, < t%}, we have

o0 2
1o, -exp (L /RMi*+1()\)¢;()\)d)\) > 1g, -exp ( - C/ >‘2t§€_t3(’\+t3_U*))d>\>

0
8,1 —t5a
zexp(—c/ A2t3e d)\)z
0
for all ¢ large enough.

Next we turn to the exponential martingale in (3.97). Recall that U; := max.cy, |B(z) — B(n;—1)|, and
that V(z) takes the constant value V; on I;, and note from (3.7) that |V;| < ct3. From these properties we
have

(3.20)

N |

[ ZIVIIB 0~ Bl )l < et S0
=1

Using the condition (3.13b) together with i, < ct3 2 gives
lo,)e = Jot Vi@)dB(e) > exp(—ct%"’%(é'm*)). (3.21)

On the r.h.s. of (3.9") within the expectation, multiply by 1q,()nq, to get

G > eictgia 20 Vialda E[lﬂzﬂﬂs(n)l’794e Jo™ vi)aB() . H exp / M (;St d)\)]

On the r.h.s., insert the bounds (3.14) and (3.20)—(3.21) (noting that M;(\, k) is deterministic), take the
logarithm, and divide the result by ¢2. We obtain

t2log G > — ct™5 7 — ;/Ooo t72V2(z) da — et~ 3T20Fes) 4 :i;/Rt_2Mi(>\, k) y(A) dA (3.22)
—t72log2 + t 2 log P[Qy N Q3(k) N Q).

As has been argued previously, P[Q3(k)], P[] — 1, for fixed k € (0,00) as t — oco. As for Qo, with

V(z) > 0, a comparison argument similarly to the preceding one gives A1 (A + %V) > A1(A). This being

the case, we necessarily have P[Qs] = P[A1(A + %V) > —t3] > PA(A) > —t3] = 1, as t — oo.

Consequently, P[22 N Q3(k) N Q4] — 1. Now, for fixed € (0,00), sending ¢t — oo in (3.22), together with
a>—1%and § + oy < 2, we arrive at

0

1 [
.. _92 .. + —921,2 .. —2a 7 /
htrglogf(t log G) > htrglor‘}f ( — 2/ t7*V4(x) dx) + htrgg.}f (L E 1 /]Rt M;(\, &)@ (A) d)\). (3.23)

Proof of (3.3). The proof of (3.3) amounts to bounding N (A 4 ¢3¢, A). Apply (2.17) to decompose N (A +
t%g; A) into a sum, and apply Lemma 2.6 to bound the result as

N(A+1t5¢, A) Z A+15¢—mi1, Hr) +1) + NOA+15¢, AL + 1. (3.24)

For the second to last term in (3.24), recalling that N(A+13¢, A,) =: M;.41(\), we have the bound (3.19).
As for the summand in (3.24), recall the definition of M;(A) from (3.10) and rerun the arguments that lead
up to (3.12) but with V; — 0 and x = 1. We have

N+ 3¢ =m0, M) S NBA+t5¢ - Z —mi) + Ui, —Ay,), (3.25)

for some [0, 00)-valued random variable U; that does not depend on A. Insert the bounds (3.19) and (3.25)
into (3.24). Having in mind the goal of proving (3.3), we view ¢, ( as being fixed, let A vary, and note that
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i, 1+« does not depend on A\. We have

N34 < ST (NE@A+ ¢t Q) + Uy, —Ar) +1) + N@A + ¢(t, Q) + U, A) + 1, (3.26)
i=1
where A = —% + x. As mentioned previously, for the Airy operator A we have N(X,A) < ¢(A,)%/2; for

the Laplace operator —Aj,, it is standard to show that N(X, —Az,) < ¢(t,¢) (A+)/2. Use these bounds in

(3.26), recall that U;, U, i, are A-independent, and note that the factor ¢:(A) in (3.3) decays exponentially
as A — co. We conclude (3.3). O

Step 4: evaluating the limit. The last step is to evaluate the limits on the r.h.s. of (3.23). For the first
term, recall the definition of v, (z) and V(z) from (3.6)—(3.7). Substituting in |I;| = t*, we have

1 /w V@ = 205 Bt = Z (G T
= r)der = — v (n;— | == vi((i — .
2 /s 9 w\Thi—1 i 9 4 *

i=1 =1
The last expression is indeed a Riemann sum of the integral fo
compactly supported, we have

* (z)dz. Since v, is continuous and

1 [ <1
lim — t72V3(z) dx :/ —v%(z)d. (3.27)
0

t—o0 0 2

Next, recall the definition of M;(\, k) and r; from (3.15). Indeed, the spectrum of the Laplace operator —Ap,
is simply {\,(—=A7)}%, = {n?m?|I;|~2}22,. Substituting in |I;| = t*, we obtain

M;(\, k) < ta\/((l + 50 (A +1) + t5+a+) : (3.28)

™ +

Apply ZZ L e t72( ) @i (X) dX to both sides of (3.28). With ¢} < 0, the resulting equality flips sides, giving

- ’ 2L L . ,
L ;At‘QMi(A, ez [ EE Y (0 s () e sian

™ ;
i=1

1 1
Substitute in r; = 3¢ — Z5Vi—nio1, Vi = o, ((— 1)t 3), miy = (i— 1), ¢h(N) = —t3e 32 /(147 15H),
and perform a change of variables ¢~ 3X+— \. We then obtain

—tA

& L e
—2
L E /Rt Mi()\aﬁ)(l%()‘)d)\z—;/ﬂ{m
i=1

> /(0=

As t — oo, the factor 1 ,AM — 1(—o0,0)(A) for all A # 0. Within the last sum, given that § + a; < %7
2

the term ¢~ 379t vanishes as t — oo. Ignoring this term, we recognize the sum as a Riemann sum of

I \/ + DA+ ¢ - fv*( z) — x)4 dz. Hence, upon taking the limit ¢ — oo, we have

htrggfi/t 20 (N, K)o, (A )d/\>——<1+n+1 é/ / \/A+C Zo.(x )—x)+d:c)d/\
oL

——(1—|—K+1);/0003ﬂ_((§—\%v*(x)—x)+)gdx. (3.29)

Insert (3.27) and (3.29) into (3.23), and send k — co. We thus obtain

YA+ ¢ = Zua(i— 1o d) = (= D E) 4o +6+a+)+taf%d,\.

ligglf(t—2 logG) > — /000 (3v2(x) + 2 ((¢ - %v*(x) —z)4)?)da. (3.30)
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It is readily checked from (3.6) that (¢ — %v*( x)—x)y = (‘F;r v,(x))?. Using this to substitute the 2-power
n (3.30), after straightforward but tedious calculations, we arrive at the desired lower bound:

tminf(t210g 6) 2 - [ (3200 + 52 (G 0w) Yar = —L(3) o (- (5)%0)  av

3.2. Upper bound. First, from (1.6), it is readily checked that ¢¢(\) > ¢3A_. Using this, in (3.1) we
replace ¢y (Ar(A) — £3¢) with 3 (t3¢ — Ap(A))4 to get

o0
G <Elexp (= LS t5(t5¢ — Ap(A)1 )] = B[ exp —L/t%(t§<—>\)+dN()\,A) .
ool 15 -l (-1 | )
In the integral in the last expression, perform integration by parts in A and use ((t2/3C Nt NN A)) as 23 =
0 and ((t*/3¢ — A\)1 N(A, A))|x<a,(4) = 0. The integral becomes —t1/3Lf <N A, A)dA. Perform the

change of variables X\ — \ 4 t2/3¢ and the decomposition (2.17). We have
Tx+1

G<E{exp(—t3LZ/ Ny( /\—|—t3C, )d/\)} <E[exp<—t3L2/ Ny( )\+t3C .A)d)x)]

Within the last expression, apply the bounds from Lemma 2.6 to pass from N;(A + tﬁg“, A) to N(A—n; +

t%Q Hy,). Since the processes N(+,Hy,), i = 1,..., 1., are independent, the resulting bound factorizes
i 0
¢<[[c: Gi:= E[exp ( - t%L/ N —mi+ t%c,%h)cu)] (3.32)

Our next step is to bound each G; in (3.32). Fix hereafter ¢ € {1,...,4.}, and, to simplify notation, we
will often omit dependence on ¢ in notation, e.g., I = I;. To begin with, using

0 oo
—t%L/ N +rHp)d) = —t%L/(r — N AN H) =t LY (r = A(H1)) (3.33)
—00 R _
we rewrite the term G; as
Gi :E[exp(—t%L S (3¢, —)\n(HI))+]. (3.34)
n=1

Recall that H; is constructed with Dirichlet boundary condition. We will also need to consider operators
with periodic and Neumann boundary conditions. To setup notation for this, identify I = (1;_1,n;] with
the torus T := R/(|I|Z), and consider the Hilbert spaces H'(T) and H'(I). It is standard to check that
Qp (defined in (2.4) for J = B) defines a coercive form, both with respect to H*(T) C L?(I) and with
respect to HY(I) C L?(I). Given this, we let Hr and Hyeu be the associated operators of Qp with respect
to HY(T) c L*(I) and H(I) C L*(I), respectively:

d2 2
Hr @‘FWB (.’E), zeT,
d2 2 _, .
HNeu := “q2 + ﬁB (z), €1, with Neumann B.C.

Remark 3.1. At first glance, it may seem that the Hilbert space ¥ = H'(I) for Hneu does not capture
Neumann boundary condition, but in fact any eigenfunction g of Hyen does satisfy ¢'(n;—1) = ¢'(n;) = 0.
To see this, consider an eigenvalue problem for Hyey: a given function g € H*(I) and A € R satisfying

| Go@w@+ %gmp(mB'(m — Ag(@)p(x) )dw =0, Vpe HI(I). (3.35)

Given that B is a-Holder continuous for a < 5 , it is standard to show that ¢’ is also a-Holder continuous
for a < 5, so in particular g (m 1) and ¢'(n;) are well-defined. Now, for the test function p(z) = ps(z) :=
(1-6- (x —1i—1))+, using g,¢" € C(I), it is readily checked that

lim [ ¢ (z)ps(x)de = —g'(ni-1),
6—0 I
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fimy | g(@)ps(z)de =0,

hm/ x)ps(z)B'(x)dx := gi_{% (g(sc)pg(at)B(x) Zi_l _ /I (g/(aj)p5($> + g(x)pﬁ;(m))B(m)dx)
= —9g(ni-1)BMi-1) + 9(mi-1)B(ni—1) = 0.

Combining these properties with (3.35) yields ¢'(1;—1) = 0. A similar procedure applied to the test function
(1 =07 (m — x))+ yields ¢'(n;) = 0.

To bound the r.h.s. of (3.34), our first step is to pass from H; to Hr and Hyey-

Lemma 3.2. Almost surely for all r € R,

— i (r— )\n(HI)) < (r =AM (Hneu)) i . (3.36)

n=1

Remark 3.3. The following proof actually shows that

o0

> (r=Au(Hn), < (r— A (Hn)) Z

and then uses A1 (Hrt) > A1 (Hneu) (explained in the proof) to get (3.36). The reason for going from XAy (Hr)
to A1(Hneu) is because the latter is easier to bound (by the Riccati transform, as done in Lemma 3.5).

Proof. Fix a mollifier ¢, namely q E C°°( ), bupported in (—1,1), ¢ > 0, and [, g(z)dz = 1. For € > 0,
mollify the Brownian motion B.(x) := [; q(e —y)e~tdy € C>(I). Accordingly, let H; . and Hr .
be the associated operators of QBS Wlth respect to HI(T) C L%*(I) and H'(I) C L*(I), respectively. A
classical result [CL55, Equation (3.15), Proof of Theorem 8.3.1] of Sturm-Liouville theory asserts that,
for operators of the form (2.5) with piecewise continuous J'(x), the eigenvalues under Dirichlet and under
periodic boundary conditions interlace. Applying this result with J = B, gives

—00 < Al(HT,s) S Al(HI,e) S AQ(HT,E) S >‘2(HI,E) S )\S(HT,a) S >‘3(HI,E) S ... = O0. (337)

Our next step is to pass (3.37) to the limit ¢ — 0. Indeed, almost surely for all ¢ € (0,1), we have
supger |Be(2)| < supgepy, o —1,m41] 1B(2)| < 00. Also, as e — 0, we have sup,¢; |Be(z) — B(z)| —p 0. Given
these properties, apply the bounds from Lemma 2.2 with (Jy,J3) = (B, B:) and with (Jy,J2) = (B, B).
Sending ¢ — 0 and k — oo in order, we obtain that A, (H;:) —p Ap(H), for any n € Nase — oo0. A
similar argument applied to periodic boundary condition gives A, (Hr) —p Ap(Hr). Now taking the limit
e — 01in (3.37) gives

—00 < A1(Hr) < Ai(Hp) < Xo(Hr) < Xo(Hp) < As(Hr) < A3(Hp) <...— oo (3.38)

The interlacing condition (3.38) gives, for any r € R,

> (r=AHD), < =D (r=Au(H1)), = (r — X (Hr)) Z r— An(Hr)) (3.39)
n=1 n=2 n=1

On the other hand, since H*(T) c H'(I), applying the minimax principle (2.7) for ¥ = 1 and for T =
Hr, HNew, we have A1 (Hnew) < A1(Hr). Using this in (3.39) to bound (r — A1 (Hr))+ < (r — A1 (HNew))+,
we conclude the desired result. ]

We now direct our attention to the last sum in (3.36). The next proposition is the key step of the proof,
c.f., the first and fourth paragraphs in Section 1.2.

Proposition 3.4. Set X := (27|I|~*|%])?. Almost surely for all r € R,

Z 7 — An(Hr)) Z<r7— (m:) |11|5’(m V fA;)+. (3.40)

n=1
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Proof. The readily checked identity that ‘removes the 4+’ will be useful:

_Z(x")+:_ sup {an}: inf {—an}, forany co > x1 > a0 > 23> ..., (3.41)
n=1 n=1

meZLsq meEZLx>o

with the convention that the empty sum is zero. Now, consider the Fourier basis of L?(T):

@) =172, fou(z) = |17 2e T, foppa(a) o= I 2, k=1,2,....
Set b := 1 (B(n;) — B(n;—1)) to simplify notation. Insert these vectors f, into the form Qp (defined
1]

n (2.4) for J = B) and sum the result over n = 1,...,m. Within the result, recognize |f,(z)|* = I—}I and
f”‘ |fa(@)?B'(z)dx = 3y [ B'(z)dx = b. We have
> Quelhu i) =3 [1r@Par+ 2 [7 i @PE @) - S (0 + 20).
n=1 n=1 “T VB Jn n=1 VB
Since {f1,..., fm} C H'(T) is orthonormal in L?(T), Lemma 2.3 gives > A, (Hr) < Y0 (A5 + %b),

or equivalently

n=1

Z T))S—Z(T—%b_/\z).
Applying (3.41) with z,, = 7 — A, (H

ST AHe), < - (= AH) < - S (r— %b—)\;),
n=1 n=1 n=1

for any m € Zso. Since this holds for all m € Z>¢, optimizing over m, and then applying (3.41) with
Tp =T — %b — A, in reverse, we conclude the desired result. O

T), we have

Write |I|~Y(B(n;)—B(n;i—1)) :=t~% Z, so that Z is a standard Gaussian. Recall the given expression (3.34)
of G;. Combine Lemma 3.2 with Proposition 3.4 for r = t§C —n;. Multiply the result by t3L, exponentiate,
and take E[+]. With (1 — A (Hnew))+ < 74 + (A1 (Hnew)) - < et?/? 4+ (A1 (HNeu))—, we have

GiSE[eXp<t%L(Ct2/3 (At (Hven)) )_tsLZ(tsg - 2t 37— ,\*)+)}.

Fix an auxiliary parameter £ € [1,00). To separate terms within the last expression, we apply Holder’s
inequality with exponents x + 1 and "TH to get

G <e™GITGHT (3.42)
where

Giq = E[exp (L %<I€ + 1)(/\1(’HNeu))7)},

Gia = Blewp (- 1325 S (3¢ n- 282 )]

n=1

We now proceed to bound the terms G;; and G; ».
Lemma 3.5. For allt > 1, we have log(G; 1) < c(k +1)3t

The proof of Lemma 3.5 goes through a series of comparison argument for Riccati-type ODE’s. As the
argument is somewhat disconnected from the rest of the proof, to avoid breaking the flow, we postpone
proving Lemma 3.5 until the end of this subsection. As for the term G, 3, recall the definition of v, from (3.6).

Lemma 3.6. For all xk >0 andt < oo,
1

2L
log Gip < —tH (2(¢ =t m = Zoa(t3n0) 4 So2(Im) ) en (e 1A
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Proof. Recall that A}, := (2 |I|~*|% ). Forgoing the first cigenvalue A}, we write

S A <= = A = = 3 20 — 4?1,
n=1 n=2 k=1

Since (r — 4m2|I|=22%)4 is a decreasing function of x for > 0, comparing sums to integrals gives, for
Yo = 4n|I|7L,

- * > 21 71—-2,.2 |I| 2 s 1 3
=) (=A< —2/ (r—4n*|I|7"2%) 4 dz =*(—§r2 +7"yo—§yo>1{r>y3}-
n=1 2 ™

Within the last expression, drop the —7y0 term, and split —%7“2 into ‘two pieces’ to get

|I| 2K 3 2 3
— L — 1 27.
Z ( 3(1+/<;)r2 3(1+/€)r2 +7"y0) {r>y2}

Consider separately the cases 3T 2> ryo and y2 < rs < r1yo- In the former case — (11 )7“§ +ryo <

2
(1+ )
ré +7Y0)Lrsy2y < (14 £%)yg. Hence,

1+ )
0; in the latter case r < ¢ (1 + x)%y2, which gives (—

3(l+n)
= |I| 2k 3 2.3 26[I] 3 2(71-3
e ( —_—r? 1 ) <——r——r? 1 I, 4
2; 3(1+H)r++c( + k) ys ) < 3(1+H)ﬂr++c( + k)41 (3.43)
Within (3.43), substitute r = t3¢— 1 — %t’%Z and |I| = ¢%, multiply the result by ts ”THL, exponentiate,
and take E[ - ]. We have
-1 3,1 -3a 2L 1 2 _a 3
Gia <" (k+1)%t3 E[exp(_?)?ts-'r@(tsc_ni_%t 2Z)i)} (3.44)

Recall that Z is a standard Gaussian. We then evaluate the expectation on the r.h.s. of (3.44) as

e F) 2L 1 51
dy, F(y):= =—=tst(t ;g — 2t 3 —y2
W Fl)=g0t (3¢ —m — 5t %)} + 5

%t’%yc =0, and at y., F is still C'. Given these prop-

erties, straightforward differentiations show that F(y) reaches its global minimum at y, := t%+%v*(t_%ni),
and F”(y) > 1 expect at y = y.. Consequently, F(y) > F(y.) + 3(y — y+)?, which gives

Indeed, F' is C™ except at y = y. where t%C — N —

e—F(v) ot d 2L s 9 P
> dv < exp(—F (v *))—exp(—t 3(37(C—t Sni—ﬁv*(t )) +2v 2t 3771))>

Combining this with (3.44) gives the desired result. O

Now, rewrite (3.32) and (3.42) as log G < EZ;I log G; < cLti, —I—ZZ*: (~+1 log Gi1 + ;57 log G 2). Then,

insert the bounds from Lemmas 3.5-3.6, and divide the result by 2. With i, < ct3* and L being a fixed
constant, we arrive at

t*log G <c (t_%_a + (k+1)2 5T 4 + (K + 1)2t—1—3a) (3.450)
i
- K 2L 2 _2 1 _ 2.4
> A G Zmm )]+ Go2e g i (3.45b)
i=1

Given that o € (—3,%), the r.hs. of (3.45a) vanishes as ¢ — co. Recognizing the term in (3.45b) as a

Riemann sum (as done in Section 3.1), sending t — oo and k£ — oo in order, we obtain
2L 3 1
: —2 _ o _ _ 2 2 .2
fim sup (17 log G) < /0 37 ((C v = 75vs(@)} + g <x))dm'

The last expression matches the previously established lower bound (3.30). The proof is now completed
upon settling Lemma 3.5.
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Proof of Lemma 3.5. Throughout the proof, we write Ay = A (Hneu) to simplify notation. Recall that ¢
indexes which interval I = I; we are considering. The law of A; is clearly independent of 7, so, without lost
of generality, we take ¢ = 1, and I = I; = (0,m1].

The proof amounts to establishing a suitable tail bound on (A;)_. We achieve this by a series of comparison
arguments of the Riccati equation (2.14). Recall that our discussion regarding (2.14) in Section 2 is pathwise,
and holds for every realization (i.e., any C[0,7;] function) of B. On the other hand, within this proof we
will also regard (2.14) as a Stochastic Differential Equation (SDE)

df(z) = (=X — f*(z))dz + %dB(m), (3.46)

and, accordingly, sometimes view f as a process. It is standard to check that f satisfies the strong Markov
property. That is, letting .#(z) := o(B(y) : y > 0) denote the canonical filtration of B, and letting f*(z)
denote the solution of (3.46) with initial condition f(0) = a, for any #-stopping time 7, we have

law T
Fltm) ' O,

Let f(z,A) denote the solution of (2.14) with initial condition f(0,\) =0, and let 7(v; g) := inf{z € [0, ] :
g(x) =~} denote the first hitting time of a given function g at level 7, with the convention that inf () := co.
To simplify notation we write 74 1= 7(£3/5; f(+, —5)).

The proof is carried out in steps.
Step 1: truncation. This step of the proof follows similar arguments in [DV13]. In this step we estab-
lish a useful truncation bound (3.47) that allows use to restriction our attention to the band f(z,—s) €
[—3V/5, 54/5]. To setup notation, let

Qg ={r—s <7y}, Qo ={ry s <7}

For s > t*+, we aim at showing that

Plr_, <oo] <cP[{r_s <o} NQ_4]. (3.47)
Decompose the Lh.s. of (3.47) into
Plr_,<oo] =P[r_ s <00, Q4] +P[r_ s <oo, Q_]. (3.48)

The last term in (3.48) encodes the probability that f(z, —s), which starts at f(0,—s) = 0, first hits level
1

5V, and then hits level —%\/E Reinitiate the process f(x,—s) at * = 71 5. The strong Markov property
gives f(+ 4+ 745) faw f1(+), where f; solves (3.46) for A = —s with the initial condition f;(0) = 3+/s. This
gives

P[r_, <00, Q4| <P[r(—3Vs, f1) < o0l (3.49)
The r.h.s. of (3.49) encodes the probability that fi, which starts at f1(0) = 3+/s, hits level —%/s within
x € [0,71]. This being the case, f; must also have hit level 0. Reinitiate the process fi(z) at z = 7(0; f1).
By the strong Markov property, we have f1(+ 4+ 7(0; f1)) law f(+,=s), so

Plr_ <00, Q4| <P[7(0, f1) < oo] - P[r_ s < o0].

Combining this with (3.48)—(3.49) now gives

Plr_s<oo] =(1-R)"'P[r_, <oo, Q_4], (3.50)
where R := P[7(0, f1) < 0]

We proceed to bound R. To this end, consider the event Do := {sup,co,y,] %|B($)| > 11/s}. Recall
that f1(0) = $v/s. Let 71 :=sup{z € [0,7(0, f1)] : fi(z) = 41/s} be the last exit time of f; from the region
above 1,/s before f; hits level 0. Under the occurrence of {r(0, f1) < oo}, setting (21, z2) = (77,7(0, f1))
in (2.14’) gives

2z=7(0,f1) /T(O,h)( fz( N 2 Blx) z=7(0,f1)
= s — x))dx + —=DB(x
T T ! \/B =Ty

T=T]
On the r.h.s., the integral is nonnegative since (s — fZ(z)) > 35 > 0 for = € [r{,7(0, f1)]. This gives

{r(0, f1) <0} C {%B(az)]zﬂ(o’m < —%\/E} C Dy.

N
wf‘rl

On {r(0. f1) <00}, ¥ = Al@)
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and hence R := P[r(0, fl) < 00] < P[Dy]. Under the assumption s > t%*, together with n; = t, it is readily

checked that P[Do] < 5, for all ¢ > 1. Hence R < 5. Inserting this bound into (3.50) gives (3.47).

Step 2: Reduction to Brownian exit probability. Fix s > t®+Y(=2%) Our goal in this step is to bound
the tail probability P[A; < —s]. To begin with, consider the associated eigenfunction g, of A;. Taking the
real part of g, if necessary, we may assume that g, is R-valued. Referring to Remark 3.1, we have that g, is in
fact C! with ¢.(0) = g.(m) = 0. The Riccati transform f, := g./g. furnishes a solution of (2.14) for A = A\;
such that f.(0) = fi(n1) = 0. On the event {A\; < —s} under current consideration, Proposition 2.5(a)
asserts that f(x,—s) < fi(x), Vo € I, under the ordering described in Section 2. Consequently, either
f(x,—s) hits the level —1./s (which gives 7_ ; < 00), or, if not, f(n,—s) < 0. This gives

P[)\l < —s] = P[T,’S < oo] —|—P[T,,s =00, f(m,—s) < O].
Applying (3.47) to the first term on the r.h.s., we have
P [)\1 < —S] <cP [Ql] +P [QQ], (351)

where Oy == {7_ s <00} NQ_1 and Qg := {7_ s = 00, f(m,—s) <0}
The next step is to bound the probability on the r.h.s. of (3.51). Under the occurrence of Q, set
(x1,22) = (0,7_ ) and A = —s in (2.14") to get

on 0, == [ o= PNt B,

Since |f(z)| < /s for all & < 7  A7_,, here we have [;7*(s — f2(z))dz > 2s7_ ,. This gives

On (4, —% — 357> %B(T_,s). (3.52)

Consider further the sub-events Oy < = {7_ s < s*%} Ny and Q; 5 = {s*% < T_ s <00fNQy. Under the

occurrence of €; <, forgoing the term 7%57_75 in (3.52) gives

O« c{ sp = |B(x)| > 7} — D (s). (3.53)

velo,s-1/2) VB 2
Under the occurrence of {25 -, forgoing the term — ‘2[ in (3.52) gives
Q< C { sup 2_|B(@)] > §s} := Dy(s). (3.54)
z>s—1/2 5 |z| 4
Consequently,
P[] < P[Di(s)] + P[Da(s)]. (3.55)

Next we turn to bounding P[Qs]. Consider the last exit 7%° := sup{z € [0,m] : f(z,—s) > 1./s} of
f(z,—s) from the region above %\/5, with the convention that sup® := —oo. Under the occurrence of €,
set (z1,22) = (0V 7% 1) and A = —s in (2.14") to get
1 m 2

= (s — f(z))dz + —=B(z)
e ™ o 7

Since |f(x)| < /s for all x € [0V 7%, 7_ ], here we have [ .. (s — f*(z))dz > 3s(m — 0V 7). This
gives

st

s
On Qo, —%1{7*,520} > f(x)

OVT*ss

On Qy, —1(eesgp — 3s(m — 0V 75%) > 2 B(x)|" (3.56)

ovr*s”

Consider further the sub-events Qg < 1= {7%° < 1n; — 5*%} NQy and Qo 5 = {7%° >n — s*%} N Q5. Under
the occurrence of 25 <, forgoing the term —?1{7*,520} in (3.56) gives
|B(z) — B(m)| _ 3

2 ~
Q< C { sup =y > fs} := Ds(s).
a z€[0,m1—s1/2] \/B |Z‘ - 771| 4
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Recall our current assumption s > ta+v(_2"‘), which ensures that s~ < n1. Hence under the occurrence of
Q2,>, we necessarily have 7% > 0. Forgoing the term —32s(n; — 0V 7%) in (3.56) gives

2 Ji =

Q> C sup —=|B(x) = B(m)| = =~ = Di(s).
- {we[m—s—l/2,m] VB )

Further, since B(+) — B(n1) faw B(+ — 1), we have P[El(s)] = P[D;(s)] and P[ﬁg(s)] < P[Dy(s)]. The

preceding discussion gives P[Qs] < P[D1(s)] + P[Ds(s)]. Combining this with (3.55) and (3.51) gives

P\ < —s| <cP[Di(s)] + cP[Da(s)], s> o V(=2a), (3.57)
Step 3: estimating Brownian exit probability. We now proceed to bound the r.h.s. of (3.57). Referring

to the definition (3.53) of D;(s), it is readily checked that P[D;(s)] < exp(—%s%). As for Ds(s) (defined
in (3.54)), partition [s~2,00) into intervals Sy, := [ks™2,(k + 1)s~2), k € N of length s~2.

P[Dy(s)] SiP{sup 2 B Zﬁ} SiP{ sup IB(fﬂ)\Z@} Si@m(—ﬁ)
= lies, VB @ 407 = Lcp (r)s—1/2) c — c(k+1)
The last sum is bounded by exp(—%s_%) for all s > 1. Consequently,
P[A; < —s] <exp(-— %s%), 5 > V(=200 (3.58)

Now, write
1 0 1
Giy = B[t (HDO0-] — P[(A))_ > 0] + ¢t5(k + 1)/ P[(A1)- > s]eclt?(vtDsgs,
0

Indeed, P[(A;)_ > 0] = 1. For the last integral, bound P[(A;)_ > s] < 1 for s € [0,¢*+V(=2%)] and use the
bound (3.58) for s > t*+V(=2%) With L being a fixed constant, we have

t%+a+v(72a)

Gia < 1413729 (g 4 1)ecl D) 5 (1 4 1))’

With o € (—%, %), the last term exp(c(x + 1)3t) dominates for large t. From this we conclude the desired
result: log(G; 1) < e(k +1)3t, for all t > 1. O

4. PROOF OF THEOREM 1.1 AND COROLLARY 1.4
Passing from Theorem 1.3 to Theorem 1.1 and Corollary 1.4 amounts to showing
Lemma 4.1. Let X;, t > 0, be a sequence of R-valued random variables, and let b € (0,00), g € C[0,00).
If, for any fized ¢ € (0,00) we have
1 X+t
tllgloﬁl% (E[exp (—be C)]) =g(Q), (4.1)
then, for any fized ¢ € (0,00),

tlg& tlz log (P [Xt < —tC]) =g(0).

Indeed, given the identity (1.5), Theorem 1.1 follows by combining Theorem 1.3 for (8,L) = (2,1) and
g(¢) = =®_(—¢) and Lemma 4.1 for X; = h(2t,0)+ {5 and b = 1. Similarly, given (1.8), Corollary 1.4 follows
by combining Theorem 1.3 for (3, L) = (1,2) and g(¢) = —3®_(—¢) and Lemma 4.1 forX; = h"(2¢,0) + &5
and b = i.

Proof of Lemma 4.1. Write F(x) := exp(—be®) for the double exponential function. Fix § € (0,(). We
indeed have F(z + 6t) < 1,0y + exp(—be’") and F(z — 6t) > exp(—be )1, ¢}. From this we conclude
that

P[X; < —t(] + exp(—be’") > E[F(X, + (¢ +9))], (4.2)

e " PX, < —t¢] <B[F(X, +t(¢ - 6))]. (4.3)

Combining the given assumption (4.1) for ¢ — ¢ + 0 with (4.2
P[X; < —t¢] > S exp(t’g(¢ +6)

gives, for all large enough ¢,

— exp(—be?).

 —
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On the r.h.s., the first term dominates as ¢ — oo, regardless of the sign of g(¢ + 6). Consequently, for all
large enough ¢,

P[X; < —t¢] > Sexp(t?g(( +6)). (4.4)

Now, apply 7= log(+) to both sides of (4.3)~(4.4), take t — oo with the aid of (4.1), and take 6 | 0 and use
the continuity of g. We conclude the desired result. (|
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