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Abstract.

In this article we review the ideas in [Tsa18] toward proving the
one-point, lower-tail large deviation principle for the Kardar–Parisi–
Zhang equation.

§1. Introduction

The Kardar–Parisi–Zhang (KPZ) equation was introduced in [KPZ86]
as a model of random surface growth. In one spatial dimensional the
equation reads

∂th = 1
2∂xxh+ 1

2 (∂xh)2 + ξ,(1)

where ξ = ξ(t, x) denotes the spacetime white noise, and the solution
h = h(t, x) is a random function that describes the height at time t ∈ R+

and position x ∈ R. Together with a host of related models, the KPZ
equation has been intensively studied, due to its rich connections to
other physical phenomena and mathematical structures. We refer to
[FS11, Qua11, Cor12, QS15, CW17, CS19] for reviews on studies related
to the KPZ equation.

Due to the roughness of ξ, the solution h is only a-Hölder continuous
in x for a < 1

2 . This fact together with the presence of the nonlinear

term (∂xh)2 makes the KPZ equation (1) ill-posed. New theories have
been built toward making sense of the KPZ equation and constructing
the corresponding solution. We refer to [Hai14, GIP15, GJ14, GP18] and
the references therein for related developments. An alternative formu-
lation to these theories is the Hopf–Cole solution. That is, a formal
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exponentiation Z(t, x) := eh(t,x) brings (1) to the Stochastic Heat Equa-
tion (SHE)

∂tZ = 1
2∂xxZ + ξZ.(2)

This equation is well-posed [Wal86, BC95] and the solution Z(t, x) is
strictly positive for t > 0 and for generic nonnegative and nonzero initial
data [Mue91, MF14]. These facts allow us to define the Hopf–Cole solu-
tion h(t, x) := logZ(t, x). The Hopf–Cole formulation arises in several
discrete or regularized versions of the KPZ equation, and other notions
of solutions from the aforementioned theories have been shown to co-
incide with the Hopf–Cole solution within the relevant class of initial
data.

In this article we are concerned with the one-point, lower-tail Large
Deviation Principle (LDP) for the KPZ equation. Consider the Hopf–
Cole solution h(t, x) := logZ(t, x) with the initial data Z(0, x) = δ(x),
a Dirac delta at the origin. It is known that, for large time t � 1, the
height h(2t, 0) concentrates around − t

12 . The question of interest here
is to estimate the probability of h(2t, 0) being much smaller than this
typical value − t

12 . This question has been much studied recently in the
physics and mathematics communities. In particular, the physics works
[SMP17, CGKLDT18, KLDP18] each employed a different method to
derive the explicit rate function

P
[
h(2t, 0) ≤ − t

12 + tz
]
≈ e−t

2Φ−(z), z < 0,

where

Φ−(z) := 4
15π6 (1− π2z)

5
2 − 4

15π6 + 2
3π4 z − 1

2π2 z
2.(3)

The first rigorous proof came soon later, via yet another method:

Theorem 1 ([Tsa18]). Consider the Hopf–Cole solution h(t, x) :=
logZ(t, x) of the KPZ equation with the initial data Z(0, x) = δ(x). For
any z < 0,

lim
t→∞

1

t2
logP

[
h(2t, 0) ≤ − t

12 + tz
]

= −Φ−(z).

The four different methods [SMP17, CGKLDT18, KLDP18, Tsa18]
were later shown to be closely related in [KLD19]. Two new methods
have been recently obtained, in the mathematically rigorous work [CC19]
and the physics work [LD19]. This article focuses on reviewing the
method used in [Tsa18].
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It is known that the large deviation rate function depends on the
initial data, and there has been many recent results for general initial
data or special initial data other than Z(0, x) = δ(x). In the mathemat-
ics literature, the work [CG20] proved upper- and lower-tail probabil-
ity bounds for general initial data; the work [Kim19] proved lower-tail
probability bounds for the narrow-wedge initial data in the half-space
geometry; the work [GL20] proved the one-point, upper-tail LDP for
general initial data; the work [Lin20] proved the one-point, upper-tail
LDP for the narrow-wedge initial data in the half-space geometry. For
the physics literature we refer to [Kra19] and the references therein.
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§2. Exact formulas and the stochastic Airy operator

Hereafter Z(t, x) denotes the solution of the SHE with Z(0, x) =
δ(x) and h(t, x) := logZ(t, x). We recall the formula that expresses the
Laplace transform of Z(2t, 0) in terms of a Fredholm determinant:

E
[
e−sZ(2t,0)e

t
12
]

= det(I −Ks,t), s, t > 0,(4)

where Ks,t is a trace-class operator on L2[0,∞) with the integral kernel

Ks,t(x, y) :=
∫
R

dr

1+s−1e−t1/3r
Ai(x+ r)Ai(y+ r), and Ai denotes the Airy

function. The formula (or a closely related version of it) was derived si-
multaneously and independently in the works [CLDR10, ACQ11, Dot10,
SS10], and [ACQ11] provided a rigorous proof.

The formula (4) provides access to the distribution of h(2t, 0), for
example, in deriving the Tracy–Widom fluctuation of h(2t, 0) at large
time [CLDR10, ACQ11, Dot10, SS10]. Another instance is the upper-
tail large deviations. For s = e−zt and z > 0, the determinant in (4)
behaves perturbatively, and (with some modifications) can be used to
derive the upper-tail large deviations of h(2t, 0) [LDMS16, DT19].

In the lower-tail regime considered here, the determinant in (4) does
not provide a handy access to the LDP. Instead, we appeal to a different
expression of the formula from [BG16]:

E
[
e−sZ(2t,0)e

t
12
]

= E
[ ∞∏
i=1

1

1 + set1/3ai

]
, t, s > 0.(5)

On the r.h.s., the expectation is taken with respect to the Airy point
process −∞ < . . . < a3 < a2 < a1 < ∞, which is the determinan-
tal point process on R with the correlation kernel KAiry PP(x, y) :=
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drAi(x + r)Ai(y + r). In (5), substitute in s = e−tz and Z(2t, 0) =

eh(2t,0). We rewrite the formula as

E
[
F (h(2t, 0) + t

12 − tz)
]

= E
[

exp
(
− t
∫
R

dµa,t(a)ψt,z(a)
)]
,(6)

where F (x) := exp(−ex) and ψt,z(a) := log(1+e−t(z+a)), and µa,t(a) :=
t−1

∑∞
i=1 δ−t−2/3ai

(a) denotes the empirical measure of the scaled, spaced-
reversed Airy point process.

As noted in [CG20a], the formulas (5)–(6) provide the suitable frame-
work for the lower-tail LDP. To see how, we discuss the left and right
hand sides of (6):

(LHS) The function F (x) approaches 0 and 1 respectively as x→∞
and as x → −∞. Together with the t scaling, the function
F (x) serves as a good proxy for 1x<0, thereby

(l.h.s. of (6)) ≈ P
[
h(2t, 0) + t

12 − tz ≤ 0
]
.

Note that this approximation holds even in the large deviation
regime, because F (x)→ 0 super -exponentially as x→∞.

(RHS) For t � 1, ψt,z(a) ≈ t(z + a)−, where x− := max{−x, 0}
denotes the negative part of x. Hence

(r.h.s. of (6)) ≈ E
[

exp
(
− t2

∫
R

dµa,t(a)(a+ z)−

)]
.

Assuming that the random measure µa,t enjoys an LDP with
speed t2 and a rate function Ia, we should have

(r.h.s. of (6)) ≈ exp
(
− t2 inf

µ

{∫
R

dµ(a) (a+ z)− + Ia(µ)
})
,

where the infimum is taken over a suitable class of measures µ.
(Var) Combining the preceding two observations, one expects

Φ−(z) = inf
µ

{∫
R

dµ(a) (a+ z)− + Ia(µ)
}
.(7)

The observations (RHS)–(Var) were first made and noted in [CG20a].
Based on these observations, [CG20a] obtained detailed bounds on the
tail probability of h(2t, 0). The physics work [CGKLDT18] continued
along this path. It is known that the Airy point process {ai}∞i=1 is the
limit near the top edge of the spectrum of the Gaussian Unitary Ensem-
ble (GUE). Employing a non-rigorous limit transition from the known
rate function of the GUE [BAG97], the work [CGKLDT18] obtained a
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conjectural form of Ia, and solved the variational problem (7) to obtain
the rate function (3).

The work [Tsa18] also proceeds through (7), but, instead of viewing
the Airy point process as a limit of the GUE, appeals to the stochastic
Airy operator. For β > 0, consider the random operator

Aβ = − d2

dx2 + x+ 2√
β
B′, x ∈ [0,∞),(8)

where B′ denotes the derivative of a Brownian Motion (BM). It is
standard to construct Aβ as an unbounded, self-adjoint operator on
L2[0,∞) with the Dirichlet boundary condition at x = 0, and the so
constructed operator has a pure-point, bounded below spectrum, −∞ <
λ1 < λ2 < λ3 < . . .. This spectrum offers an alternative description of
the Airy point process:

Theorem 2 ([RRV11]). The spectrum of A2 is equal in law to the

space-reversed Airy point process, i.e., {λi}∞i=1
law
= {−ai}∞i=1.

The main theorem of [Tsa18] can now be stated as:

Theorem 3 ([Tsa18]). For any β > 0 and z < 0, let λi, i = 1, 2, . . .,
denote the eigenvalues of Aβ. We have

lim
t→∞

1

t2
log
(
E
[
e−

∑∞
i=1(λit

1/3+zt)−
])

= −
(

2
β

)5
Φ−
((
β
2

)2
z
)
.(9)

Theorem 1 then follows from Theorem 3 for β = 2 and the preceding
observations (LHS)–(RHS).

We devote the rest of the article to explaining the ideas of the proof
of Theorem 3. The proof proceeds in steps, which are designated in the
titles of the remaining sections.

§3. Localization via Riccati transform

The stochastic Airy operator (8) has a linear potential x. Such a
potential is physically relevant because it ensures that Aβ , which acts
on the unbounded interval [0,∞), has a pure-point spectrum. For our
analysis, however, a varying potential is inconvenient. We hence seek to
approximate Aβ by a sequence of operators with translation-invariant
potentials. Fix a mesoscopic scale Ξ = ta, where the value of a will be
specified later in (18). For j ∈ Z≥0, consider the (shifted) Hill’s operator

Hj := − d2

dy2 + jΞ + 2√
β
W ′, y ∈ [0,Ξ],(10)



tsai.tex : 2022/6/11 (10:13) page: 420

420 Li-Cheng Tsai

with the Dirichlet boundary condition at y = 0 and Ξ, where W denotes
a BM, and for different j’s the operators {Hj}∞j=0 are independent.

The idea is that the term jΞ in (10) approximates the linear poten-
tial x for x = y+(j−1)Ξ, on the interval y ∈ [0,Ξ] or x ∈ [(j−1)Ξ, jΞ].
We then seek to ‘piece together’ the operatorsH1,H2, . . . to approximate
Aβ . Doing so requires the Riccati transform. The transform begins
with the eigenvalue problem Aβf = −f ′′ + xf + 2√

β
B′f = λf , with

the boundary condition f(0) = 0. Viewing this equation as a second-
order ODE, we perform the transformation g = f ′/f into a first-order
ODE of the Riccati type: g′ = x − λ − g2 + 2√

β
B′. See Figure 1 for

schematic graphs of f and g. With g = f ′/f , we see that g explodes to
±∞ whenever f crosses zero. Since the underlying space [0,∞) is one-
dimensional, the k-th eigenvector has exactly k roots, and hence the
function g explodes exactly k times, excluding the explosion at x = 0.

Fig. 1. Schematic graphs of f and g in the Riccati transform

Now, let us view λ ∈ R as an arbitrary parameter, and solve the
following ODE:

g′λ(x) = x− λ− g2
λ(x) + 2√

β
B′(x), x ∈ (0,∞), gλ(0) = +∞.(11)

The solution gλ may undergo explosions to −∞, and whenever that
happens we immediately reinitiate gλ from +∞. LetN(λ) := #{λi ≤ λ}
counts the eigenvalues of Aβ at most λ.

Proposition 4 (Prop. 3.4. in [RRV11]). Almost surely for all λ ∈ R,
#{x ∈ (0,∞) : |gλ(x)| =∞} = N(λ).
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We can also consider the analogous ODE for Hill’s operator

g′λ,j(y) = jΞ− λ− g2
λ,i(y) + 2√

β
W ′(y), gλ,i(0) = +∞, y ∈ (0,Ξ].(12)

Let {−∞ < λ
(j)
1 ≤ λ

(j)
2 ≤ . . .} denote the spectrum of Hj , and similarly

Nj(λ) := #{λ(j)
i ≤ λ}. Similarly to Proposition 4, Nj(λ) is equal to the

number of explosions of (12).
Having introduced the Riccati transforms for Aβ and Hj , we now

apply these transforms to compare the counting functions N(λ) and
Nj(λ). Localize (11) onto the interval x ∈ ((j − 1)Ξ, jΞ], and set x =
y + (j − 1)Ξ to get

g′λ = (y + (j − 1)Ξ))− λ− g2
λ + 2√

β
B′.(11’)

We can now couple (11’) with (12) by W (y) = B(y + (j − 1)Ξ). On
the interval y ∈ (0,Ξ] we see that (12) has a larger potential jΞ ≥
(y+(j−1)Ξ)) and a larger entrance value gλ,j(0) = +∞ ≥ gλ((j−1)Ξ).
Comparison arguments then yield

Nj(λ) ≤ #{x ∈ ((j − 1)Ξ, jΞ] : |gλ(x)| =∞}.(13)

To get the reverse inequality, we apply the same coupling W (y) = B(y+
(j − 1)Ξ) for (12) with j 7→ j − 1 and for (11’) with j. The potential is
now reversely ordered (j − 1)Ξ ≤ (y + (j − 1)Ξ)), though the entrance
values are not. The issue of entrance values can be cured by forgoing
the first explosion of (11’) on y ∈ (0,Ξ], which gives

Nj−1(λ) + 1 ≥ #{x ∈ ((j − 1)Ξ, jΞ] : |gλ(x)| =∞}.(14)

Next, to make use of the comparison results (13)–(14), we rewrite
the quantity of interest in Theorem 3 as

−
∞∑
i=1

(λit
1/3 + zt)− = −

∫
(−∞,−zt2/3]

dN(λ) (t1/3λ+ z)− = −t1/3
∫

(−∞,−zt2/3]

dλN(λ),(15)

and similarly

−
∞∑
i=1

(λ
(j)
i t1/3 + zt)− = −t1/3

∫
(−∞,−zt2/3]

dλNj(λ).(16)

Combining (13) and (15) gives, for any n ∈ Z>0,

−
∞∑
i=1

(λit
1/3 + zt)− ≤ −

n∑
j=1

∞∑
i=1

(λ
(j)
i t1/3 + zt)−.
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Here we forgo the explosions of (11) on [nΞ,∞) because they con-
tribute negatively. For the reverse inequality, we need to account for
these remaining explosions. To this end, consider the operator Aβ,n :=

(− d2

dx2 + x+ 2√
β
B′) acting on x ∈ [nΞ,∞), with the Dirichlet boundary

condition at x = nΞ. We make (Aβ +nΞ) independent of {Hj}n−1
j=0 . Let

{ηi}∞i=1 denote the spectrum of Aβ,n. We have

−
∞∑
i=1

(λit
1/3 + zt)− ≥ −n−

n−1∑
j=0

∞∑
i=1

(λ
(j)
i t1/3 + zt)− −

∞∑
i=1

(ηit
1/3 + zt)−.

Exponentiate the preceding inequalities, take expectation, and utilize
the independence of {Hi}ni=1 and of {Hi}n−1

i=0 ,Aβ,n to split the resulting

expectations into products. Note that Aβ,n
law
= Aβ + nΞ. We have

Proposition 5. For any n ∈ Z>0,

n−1∏
j=0

E
[
e−

∑∞
i=1(λ

(j)
i t1/3+zt)−

]
· e−n ·E

[
e−

∑∞
i=1((λi+nΞ)t1/3+zt)−

]
(17a)

≤ E
[
e−

∑∞
i=1(λit

1/3+zt)−
]
≤

n∏
j=1

E
[
e−

∑∞
i=1(λ

(j)
i t1/3+zt)−

]
.(17b)

§4. Lower bound

Proposition 5 reduces the problem of analyzing Aβ to analyzing each
Hj . Based on this reduction, we will explain how to obtain the desired
lower and upper bounds on the quantity of interest, i.e., the l.h.s. of (9)
in Theorem 3.

Let us begin by fixing the scale Ξ = ta. Referring to the l.h.s. of (9),
since z < 0 is fixed, we see that the relevant eigenvalues should be of
order t2/3. Refer to (11); if we also match the order of λ to t2/3, then the
linear potential should vary at scale t2/3. This observation forces us to
choose a < 2/3, since otherwise we cannot expect x to be approximated
by a constant on the interval ((j − 1)Ξ, jΞ]. On the other hand, we
wish Ξ = ta to be greater than the time scale between explosions of
(11). Doing so gives us some room for analysis. Performing scaling in
(11) under the assumptions that λ, x � t2/3 shows that explosions of the
ODE should occur at scale t−1/3. Hence we require a > − 1

3 . It turns
out that our analysis does not require any further condition on a, and
we hereafter fix

Ξ = ta, a ∈ (− 1
3 ,

2
3 ).(18)
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We now return to the task of obtaining the lower bound. The ex-
pression (17a) contains three terms. Let us focus on the first term and
show that, for some suitable n given later in (23),

lim inf
t→∞

1

t2
log
( n−1∏
j=0

E
[
e−

∑∞
i=1(λ

(j)
i t1/3+zt)−

])
≥
(

2
β

)5
Φ−
((
β
2

)2
z
)
.(19)

Once this is done, we will argue that the remaining two terms in (17a)
are negligible.

Recall from (10) that the randomness of Hj and hence of {λ(j)
i }∞i=1

comes solely fromW . Our task is to find an ‘optimal’ deviation ofW that
realizes the lower bound (19). Namely, we seek a deviation such that,
when evaluating the l.h.s. of (19) around this deviation one obtains the
desired lower bound. As will be explained in Section 5, such a deviation
can be chosen to be a constantly drifted BM. That is, we consider the
deviation where W (y) behaves like a constantly drifted BM with a drift
t2/3vjdy. Here vj ∈ R is a parameter, and the scaling t2/3 matches the
aforementioned scaling of λ and x.

We now evaluate the l.h.s. of (19) around the deviation. Girsanov’s
theorem asserts that the probability of having such a deviation is

Prob. ≈ exp(− 1
2 t
a+4/3v2

j ).(20)

Around such a deviation, Hill’s operator behaves like the shifted Laplace

operator − d2

dy2 +jΞ+ 2√
β
t2/3vj , acting on [0,Ξ] with the Dirichlet bound-

ary condition. From this we calculate

−
∞∑
i=1

(λ
(j)
i t1/3 + zt)− = −t1/3

∫
(−∞,−zt2/3]

dλNj(λ)

≈ − t
1/3Ξ

π

∫ −zt2/3
−∞

dλ
√

(λ− 2√
β
t2/3vj − jΞ)+

= −2ta+4/3

3π

(
(−z − 2√

β
vj − jta−2/3)+

)3/2
.(21)

Combining (20)–(21) gives

t−4/3−a logE
[
e−

∑∞
i=1(λ

(j)
i t1/3+zt)−

]
& − 1

2v
2
j − 2

3π (−z − 2√
β
vj − jta−2/3)

3/2
+ .

(22)

Here & means ≥ with some lower order (in t) error terms.
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The approximate inequality (22) holds for all vj ∈ R. It is natural
to optimize over vj . Differentiating in vj shows that the optimum is
achieved at

vj,∗ := 4π−2β−3/2
(
− 1 +

√
1 + (βπ2 )2(−z − jta−2/3)+

)
.

Note that vj,∗ = 0 for all j > −zt2/3−a, which suggests that we need

only to invoke j ≤ −zt2/3−a. With this in mind, we set

n = −zt2/3−a.(23)

Sum (22) over j = 0, 1, . . . , n−1 for vj = vj,∗. Within the result, the sum

over j can be recognized as a Riemann sum, with jna−2/3 approximating
a continuous variable ν ∈ [0,∞). This gives

(l.h.s. of (19)) ≥ −
∫ ∞

0

dν 1
2v

2
∗(ν) +

(
(−z − 2√

β
v∗(ν)− ν)+

)3/2
,(24)

where v∗(ν) := 4π−2β−3/2(−1 +
√

1 + (βπ2 )2(−z − ν)+). The integral

in (24) is explicit and can be evaluated to be (2/β)5Φ−((β/2)2z).
We have concluded (19) for the n in (23). A careful analysis shows

that, for such an n, the last expectation in (17a) is negligible after
being taken t−2 log(·) and passed to the limit t → ∞. The analy-
sis is too involved for the purpose of this article and hence not pre-
sented. The term e−n in (17a) is also negligible because t−2 log(e−n) =
−t−2(log(−z) + t2/3−a) → 0 by (18). This concludes the discussion of
the lower bound.

§5. Upper bound, the WKB condition

In Section 4, we utilized a certain type of deviations of W — namely
constantly drifted BM — to produce the desired lower bound. To com-
plete the proof, we need to argue that such deviations are optimal,
asymptotically as t → ∞. We refer to this assertion as the WKB
condition. The terminology is motivated by the fact that our analysis
in Sections 3–4 can be interpreted as the WKB approximation of the
stochastic Airy operator.

The WKB condition is by no means obvious in the current con-
text. To see why, recall that the BM enters Hill’s operator (10) through
the derivative W ′. Consider the Fourier transform of W ′ on the inter-
val [0,Ξ], i.e., W ′(y) =

∑
k∈ZWke

2πiy/Ξ. A priori, since W ′ is very
rough, it seems that the high frequency modes Wk, k � 1, could have
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significant impacts on the spectrum of Hill’s operator. The WKB con-
dition, however, asserts that only the constant mode W0 matters for
the LDP in question. Let us further emphasize that the WKB con-
dition may be violated for some other cost functions. More precisely,

here we are concerned with E[exp(
∑∞
i=1 ψ̃t(λ

(j)
i )], with the cost func-

tion ψ̃t(λ) := −(λt1/3 + zt)−. As claimed previously and will be verified
in the sequel, the major contribution of this expectation comes from
configurations with constantly drifted W . On the other hand, we ex-

pect that there exists some other cost function ψ̂t, such that the major

contribution of E[exp(
∑∞
i=1 ψ̂t(λ

(j)
i )] arises from deviations where high

frequency modes of W contribute. A class of cost functions that should
enjoy the WKB condition have been studied in [KLD19].

We now return to the task of verifying the WKB condition. The first
step is to argue that, we can replace the Dirichlet boundary condition for
Hj with the periodic boundary condition. This is proven in [Tsa18] by
utilizing the interlacing of eigenvalues under different boundary condi-
tions. We do not repeat the technical argument here, and simply switch
to the periodic boundary condition hereafter.

We will verify the WKB condition at a deterministic level. To set
up the notation, for a real f ∈ C[0, 1], consider

H := − d2

dy2 + f ′, H̃ := − d2

dy2 + 1
Ξ (f(Ξ)− f(0))(25)

acting on [0,Ξ] with the periodic boundary condition. Note that f does
not have to be periodic. The following Proposition encapsulates the
WKB condition. To see how, apply Proposition 6 with r = t2/3z+jΞ and

with f = 2√
β
W . One finds that the linear statistics −

∑∞
i=1(t1/3λ

(j)
i +

tz)− of Hj is bounded above by the same linear statistics of an operator
with W ′ replaced by the average 1

Ξ (W (Ξ) −W (0)). This shows that,
among all configurations of W with both ends W (0) and W (Ξ) fixed,
the constantly drifted configuration performs the best.

Proposition 6. For any real f ∈ C[0, 1], consider the operators H

and H̃ defined in (25), and let {λ1 ≤ λ2 ≤ . . .} and {λ̃1 ≤ λ̃2 ≤ . . .}
denote their respective spectra. For any r ∈ R we have

−
∞∑
i=1

(r + λi)− ≤ −
∞∑
i=1

(r + λ̃i)−.
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Proof. The first step is to recognize that, for any sequence of real
numbers put in ascending order −∞ < a1 ≤ a2 ≤ . . ., we have

−
∞∑
i=1

(r + ai)− = inf
N

{ N∑
i=1

(
ai + r

)}
.(26)

We will apply this inequality with ai = λi, so for now let us focus on

bounding the sum
∑N
i=1 λi, for generic N ∈ Z≥0. The operator H is self-

adjoint on L2[0,Ξ] (with the periodic boundary condition), and hence
the corresponding eigenvectors φ1, φ2, . . . form an orthonormal basis for
L2[0,Ξ]. We can thus express the sum of the first N eigenvalues as∑N
i=1 λi =

∑N
i=1〈φi, Hφi〉L2 . In fact, the sum can be characterized as

the infimum of the same quantity when tested over orthonormal sets:

N∑
i=1

λi = inf
{ψ1,...,ψN}

N∑
i=1

〈ψi, Hψi〉L2 ,(27)

where the infimum is taken over orthonormal ψ1, . . . , ψN in the domain
of H. The assertion (27) can be proven by expanding each ψi into a
linear combination of {φj}∞j=1. We do not perform the calculation here.

To bound the r.h.s. of (27), we insert a particular orthonormal set
from the Fourier basis. That is, we let ψ1,∗(y), . . . , ψN,∗(y) be the first
N among

1
|Ξ|1/2 ,

1
|Ξ|1/2 e

2πiy/|Ξ|, 1
|Ξ|1/2 e

−2πiy/|Ξ|, 1
|Ξ|1/2 e

4πiy/|Ξ|, . . . .

From (27) we obtain

N∑
i=1

λi ≤
N∑
i=1

〈ψi,∗, Hψi,∗〉L2 =

N∑
i=1

∫ Ξ

0

(
dy |ψ′i,∗|2 + df(y) |ψi,∗|2

)
,

where the integral against df(y) is interpreted in the Riemann–Stieltjes
sense. Noting that |ψi,∗|2 ≡ 1

Ξ and referring to (25), we see that the last

sum is equal to
∑N
i=1〈ψi,∗, H̃ψi,∗〉L2 . Further, since H̃ is just a shifted

Laplace operator, the Fourier vectors ψi,∗, i = 1, . . . , N , are the first N

eigenvectors of H̃. Consequently, the last sum is equal to
∑N
i=1 λ̃i, and

therefore

N∑
i=1

λi ≤
N∑
i=1

λ̃i.(28)

Now, apply (26) with ai = λi, use (28) to bound the result, and

apply (26) with ai = λ̃i in reverse. This concludes the desired result.
Q.E.D.
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Proposition 6 verifies the WKB condition. The upper bound can
now be proven in the same fashion as the lower bound.
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