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Abstract—Recently, we have proposed a model-free privacy-
preserving mechanism (PPM) against attacks that compromise
user privacy by matching patterns in data sequences to those
that are unique to a given user [1]. Because the PPM is model-
free, there are no requirements on the statistical model for the
data, which is desirable when the model is not perfectly known.
However, the proposed PPM did not enforce any constraints on
the value to which a data point might be obfuscated, hence
allowing an unlikely pattern that would make it easy for the
adversary to detect which values have been obfuscated. In this
paper, we consider a constrained PPM that enforces a continuity
constraint so as to avoid abrupt jumps in the obfuscated data.
To design such, we employ a graph-based analytical framework
and the concept of consecutive patterns. At each point, the
obfuscated data should be chosen strictly from that point’s
neighbors. Unfortunately, this might undesirably increase the
noise level employed in data obfuscation and hence unacceptably
reduce utility. We propose a new obfuscation algorithm, namely
the obfuscation-return algorithm, and characterize its privacy
guarantees under continuity and noise level constraints.

Index Terms—Obfuscation, privacy-preserving mechanism
(PPM), pattern matching, consecutive pattern.

I. INTRODUCTION

Data-driven services and applications improve the user
experience by continuously collecting and analyzing users’
personal data. The utility of the user data for the application
relies on its accuracy and timeliness. However, as the accuracy
and timeliness are improved, users’ privacy becomes vulnera-
ble, hence necessitating adopting effective privacy-preserving
mechanisms (PPMs) against various threats and attacks [2]–
[4].

An essential assumption underlying many privacy-
preserving mechanisms is that the statistical model of the
data is known to the privacy designers. In other words, the
designers adopt a model-based approach where the data is
assumed to follow a statistical model such as an independent
and identically distributed (i.i.d.), Markov chain, or a given
distribution function [5]–[9]. The model-based approach has
a major limitation: it is limited to that specific model and, if
the underlying model is different from the one considered,
the privacy of users can be compromised [10].
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A model-free approach where no assumptions have been
made on the statistical model of the data was proposed in [1]
and [11] to thwart pattern matching attacks, where the adver-
sary identifies the user for a given data sequence by locating
an identifying pattern that is known to him from a previous
knowledge or observation [12]. Such pattern matching has
been employed in scenarios such as fingerprinting webpages
visited by users [13], [14], linking communicating parties on
messaging applications [15], and inferring the activities of the
users of IoT devices [16].

The idea in [1], [11] is to obfuscate the data sequences such
that any identifying pattern appears in the data sequence for a
large number of users. However, in these prior works, there is
no constraint on the values produced by the obfuscation and
hence the adversary may be able to identify values that have
been obfuscated by noting anomalies in the data sequences,
such as a large jump in location data from one time instance to
the next. Consider the case where the data denoted by Xu (k)
is the location of user u at time k. Further, assume that the
sampling rate is relatively high. In this case, Xu (k) and Xu (k+
1) must show values that are geographically close to each
other. Therefore, if we obfuscate Xu (k + 1) to a value that
is far from Xu (k), as is possible in the methods of [1], [11],
the adversary can easily detect the presence of an obfuscation.
To avoid this potential limitation, here we enforce consistency
constraints on the obfuscated user data sequences, such as a
continuity constraint requiring that adjacent sequence elements
have similar values.

Therefore, in this paper, the goal is to extend our recent
model-free approach to a constrained version. By using a
graph-based framework and the concept of consecutive pat-
terns, we apply a continuity constraint on the data obfuscation
algorithm to make certain there are no abrupt jumps in the
obfuscated data. In particular, at each point that we aim to
obfuscate the pattern, we are required to choose the obfuscated
points only from the neighbors of that point, and this constraint
inevitably increases the noise level in the obfuscated data and
hence potentially reduces user utility. To address this chal-
lenge, we introduce a new algorithm termed the “obfuscation-
return” algorithm, and we demonstrate that it ensures users
have common consecutive patterns with a probability greater
than a certain threshold (privacy), while keeping the data



manipulation below a certain desired threshold (utility).

A. Related Work

To thwart privacy attacks, different kinds of privacy-
preserving mechanisms that address the nature of the at-
tack and data itself have been developed. The concept
of k−anonymity was introduced in [17] and investigated
further for location-based services, for example [18]–[21].
k−anonymity has been also investigated widely in social
networks, which is not as straightforward as in rational data
tables [22]–[27].

However, anonymization can be vulnerable to de-
anonymization attacks that are based on previous knowledge
of user’s trajectory information and patterns [28], [29]. Hence,
obfuscation methods where data perturbation techniques are
employed are used to protect users’ data [30]. In this regard,
[5], [31] obtained the limits of location privacy for the i.i.d.
and dependent users, respectively, whereas [32] proposed a
location perturbation for adversaries with approximate back-
ground location knowledge. A comparison between encryption
and obfuscation was investigated in [33] for location data in
terms of latency and computational load. Anonymization and
obfuscation techniques were investigated in [34] where user
traces are i.i.d. Gaussian time series with a user-dependent
mean.

For addressing pattern matching attacks, there are many
studies in different scenarios for different types of data. For
example, efficient privacy-preserving wildcard pattern match-
ing for IoT data was investigated in [35]. Also, PPMs against
matching attacks for ridesharing applications were developed
in [36], and privacy-preserving string pattern matching in
cloud databases was investigated in [37], [38].

B. Contributions and Organization

The contributions of this paper are as follows:
• We provide a constrained model-free privacy-preserving

method in the presence of pattern matching attacks.
• Using tools from graph theory, we develop a new obfus-

cation algorithm in which the continuity of the obfuscated
data is satisfied.

• We show that the proposed algorithm not only satisfies the
continuity and noise level constraints, but also provides
privacy guarantees.

This paper is organized as follows: In Section II, the system
model is provided. Section III provides the proposed con-
strained obfuscation algorithm, and Section IV concludes the
paper.

II. SYSTEM MODEL

As noted in the Introduction, similar to [1] and [11], we
do not assume a statistical model for the data. However, in
contrast to [1] and [11], our problem is further complicated
by assuming that the (obfuscated) user data sequences must
satisfy some continuity constraints, as follows.

Data Model: We denote by Xu (k) the data of user u at
time k. We assume that Xu (k) can take one of r ≥ 2 possible

values in R = {0, 1, . . . , r − 1}. Furthermore, the user data
vector is denoted by Xu = [Xu (1), Xu (2), . . . , Xu (m)]T which
represents m data points for user u. To have a general setting,
we model the constraint on the data using a (pseudo-)graph
G(V, E). Here V = R = {0, 1, . . . , r − 1}. The edges of the
graph, E ⊂ V×V , show the constraint on the data. Specifically,
if Xu (k) = i, then Xu (k +1) can take only values from the set
N (i) = { j ∈ V : (i, j) ∈ E} where N (i) is the set of neighbors
of Node i. For example, in the case of location data, N (i)
could show the locations that are geographically close to i.
We use an undirected graph with the understanding that if
(i, j) ∈ E, then ( j, i) ∈ E. We also allow loops, i.e., (i, i) ∈ E.
This could be interpreted as saying the user stays in location i.
The degree of a vertex v ∈ V , shown as deg(v), is the number
of nodes that are connected to v, with the understanding that
loops contribute only one unit to the degree of the associated
nodes. We denote the maximum degree by dmax , so for any
v ∈ V , we have deg(v) ≤ dmax . The maximum degree is
a fixed integer value which is a property of the graph G, so
it is independent of the number of users or the number of
adversary observations per user. The graph for user u, shown
by Gu (Vu, Eu ) is a subgraph of G, i.e., Vu ⊂ V and Eu ⊂ E.

We assume some regularity conditions, which can be viewed
as thresholds for which a node or edge is included in the user
graph, respectively:

1) If i ∈ Vu , we assume that the portion of times that
Xu (k) = i is bounded away from zero (otherwise, i would
not have been included in Vu). Formally, there exists
δ1 > 0 such that for all users u, we have

For all i ∈ Vu , P
(
lim inf
m→∞

|{k : Xu (k) = i}|
m

≥ δ1

)
= 1.

2) Next, we assume that if (i, j) ∈ Eu , and Xu (k) = i, then
the probability that Xu (k + 1) = j is bounded away from
zero. Formally, there exists δ2 > 0 such that for all users
u, we have

If (i, j) ∈ Eu, then
P (Xu (k + 1) = j |Xu (k) = i, Xu (k − 1) = ik−1,

Xu (k − 2) = ik−2, . . . , Xu (1) = i1) > δ2.

Adversary Model: We assume that for each user, the ad-
versary has access to the m obfuscated data points. For pattern
matching, we assume that the adversary aims at identifying a
user’s data sequence by matching a specific pattern for that
user. Specifically, if Qv = q(1)

v , q(2)
v , . . . , q(l )

v , where l ≥ 2,
is a pre-identified pattern of user v, the adversary looks for
this pattern in the obfuscated sequences to identify user v.
Finally, we assume that the adversary knows the obfuscation
algorithm; however, he does not know the realization of the
random elements of the obfuscation mechanism.

Constrained Obfuscation Mechanism: We now discuss
requirements for the obfuscation. Let Zu be the obfuscated
sequence for user u. Remember our goal here is to obfuscate
the data in a way that the obfuscated sequence has a large
number of patterns. Having the context in mind (e.g., the data



being locations visited consecutively), we define a consecutive
pattern as follows

Definition 1. A consecutive pattern is a sequence Q =

q(1)q(2) · · · q(l ) , where (q(i), q(i+1)) ∈ E for all i ∈ {1, 2, · · · , l−
1}. A user u is said to have the consecutive pattern Q if the
sequence Q is a subsequence of user u’s data sequence in a
consecutive way.

However, here the problem is further complicated by the
requirement that the sequence Zu (1), Zu (2), . . . must be a
valid sequence according to G. In general, we require that the
obfuscation mechanism must satisfy the following properties:

1) The sequence Zu (1), Zu (2), . . . must be a valid sequence
according to G. That is, for any k ∈ {1, 2, · · · }, we must
have

(Zu (k), Zu (k + 1)) ∈ E.

2) Data and utility constraints must be maintained below
acceptable thresholds. Specifically, in the following, (a)
means we cannot change too many values, and (b) means
that we cannot change any value by too much.

a) The noise level (which shows the portion of altered
data points) must be below a set threshold. Formally,
if we define

Am =
|{k ∈ {1, 2, · · · ,m} : Zu (k) , Xu (k)}|

m
,

we would like

P(Am > a(n)) → 0, as n → ∞,

for the set threshold a(n) which is sufficiently small.
b) Next, to ensure the utility of the data, we require that

for all users u and all k = 1, 2, 3, · · · , we must have

d(Xu (k), Zu (k)) ≤ D,

where d(i, j) shows the distance of nodes i and j in
G (the length of a shortest path from i to j), and D is
the threshold set by the application.

3) Finally, we would like our obfuscation mechanism to
create a large number of patterns. Specifically, let Q =
q(1)q(2) · · · q(l ) be an arbitrary consecutive pattern of
length l on graph G. Let n be the number of users u
for whom q(1) ∈ Vu . We require that the probability that
the obfuscated sequence of length m of user u has the
consecutive pattern Q, denoted by P (Bu ) to be larger
than some c(n,m). This property requires for m and n to
be large enough, specifically, m = Ω(1) and n = Ω(1).

Definition 2. An obfuscation mechanism satisfying the above
properties is said to be a (G, a(n), D, c(n,m))−obfuscation.

III. CONSTRAINED OBFUSCATION

We now provide a specific
(G, a(n), D, c(n,m))−obfuscation algorithm, named
Obfuscate-Return (OR) and prove it satisfies the required
properties for a specific choice of a(n), D, and c(n,m). For a
finite set S, we define rand(S) as a randomly chosen element

from S, where all elements are equally likely, and the choice
is independent of any other source of randomness in the
problem. We also need to define an auxiliary random process,
W (k) ∈ {0, 1, 2, · · · , l − 1}, where W (1) = 0, to follow the
location of the obfuscation process. Before providing the OR
algorithm, we introduce two operations that the algorithm
uses repeatedly.

1) The first, is the obfuscation, shown as Ob f (k, p), in
which p is a probability measure independent of any other
random sources. In this operation:
• With probability p:

Zu (k) = rand (N (Zu (k − 1))) ,
W (k) = W (k − 1) + 1.

• With probability 1 − p:

Zu (k) = Xu (k),
W (k) = 0.

In other words, at time k, Ob f (k, p) chooses an obfus-
cated data point from the set of neighbors of the point
Zu (k − 1) with probability p, or the original data point
with probability 1 − p. In the former we let W (k) =
W (k − 1) + 1, where in the latter W (k) = 0.

2) The second operation is called the return operation,
shown as Ret(k), which is defined as follows:

Zu (k) = rand( arg min
v∈N (Zu (k−1))

d(v, Xu (k))),

W (k) = 0 if Zu (k) = Xu (k).

In this equation, the arg min(.) determines the set of
nodes v from Zu (k − 1)’s neighbors that have the min-
imum distance from Xu (k), and Ret(k) then chooses
randomly one of these nodes in order to return to the
original pattern. Finally, during the return process, when
Zu (k) = Xu (k), we reset W (k) = 0.

We now provide the OR(l, pob f ) algorithm.
Obfuscate-Return (OR) Algorithm: Let Zu (1) = Xu (1).

At time k > 1,
1) If W (k − 1) = 0, then Ob f (k, pob f ).
2) If 1 ≤ W (k − 1) < l − 1, then Ob f (k, 1).
3) If W (k − 1) = l − 1, then Ret(k).

Intuitively, we start obfuscating at some point, say k, with
probability pob f if W (k − 1) = 0 which indicates there was
no obfuscation at k −1, and we continue to obfuscate for l −1
data points. Then the Ret(k) is conducted to determine the
last obfuscation node in order to return to the original path.

Now, before stating the main theorem, let’s make a simple
observation.

Lemma 1. For the OR algorithm, we have

d(Xu (k + b), Zu (k + b)) ≤ d(Xu (k), Zu (k)) + 2b.

for any k, b ∈ {1, 2, 3, · · · }.



Proof. At each stage of the algorithm, the distance can in-
crease by at most 2, i.e,

d(Xu (k + 1), Zu (k + 1)) ≤ d(Xu (k), Zu (k)) + 2.

The Lemma can then be proved by induction. �

For simplicity, let’s define Dk = d(Xu (k), Zu (k)), so we
have Dk+b ≤ Dk + 2b.

Theorem 1. Let pob f = 1
nθ , where 0 < θ < 1 is

arbitrary. The OR(l, pob f ) algorithm defined above is a
(G, a(n), D, c(n,m))−obfuscation method, where

1) D = 2(l − 1);
2) a(n) = c1

nθ−γ , where c1 > 0 is a constant independent of
n, and γ is an arbitrarily small constant independent of
n.

3) P (Bu ) ≥ c(n,m) = c2
nθ , for some constant c2 independent

of n = Ω(1) and m = Ω(1).

Proof. 1) First, we prove that the sequence {Zu (k)}∞
k=1 is a

valid sequence according to G, i.e., for any k > 1, we
have (Zu (k − 1), Zu (k)) ∈ E. We consider three cases:

a) If W (k−1) = 0, then Zu (k−1) = Xu (k−1). In this case,
the algorithm runs the Ob f (k, pob f ) operation. Which
means either Zu (k) = Xu (k) so (Zu (k − 1), Zu (k)) =
(Xu (k − 1), Xu (k)), or Zu (k) ∈ N (Zu (k − 1)).

b) If 1 ≤ W (k − 1) < l − 1, then Ob f (k, 1) is run, which
means Zu (k) ∈ N (Zu (k − 1)).

c) If W (k − 1) = l − 1, then Ret(k) is executed, which
satisfies Zu (k) ∈ N (Zu (k − 1)).

2) Next, we investigate the two utility constraints:
a) Here, we show that the noise level is below c1

nθ . Define

Tm = |{k ∈ {1, 2, · · · ,m} : Zu (k) , Xu (k)}|,

so Am =
Tm

m . Our goal is to show that Tm cannot be
very large. Remember, Zu (1) = Xu (1). Let

K1 = min{k > 1 : W (k) = 1},

K ′1 = min{k > K1 : W (k) = 0}.

For j > 1, define

K j = min{k > K ′j−1 : W (k) = 1},

K ′j = min{k > K j : W (k) = 0}.

Also, let N (m) be the number of K js, i.e.,

N (m) = max{ j : K j < m}.

Then, we can write

Tm =

N (m)∑
j=1

(K ′j − K j ) =
N (m)∑
j=1

Tm, j,

where Tm, j = K ′j−K j . Note that Tm,1,Tm,2,Tm,3, · · · are
i.i.d, and also N (m) is a stopping time for the random
process Tm,1,Tm,2,Tm,3, · · · , which means that we can
use Wald’s Equation [39] to conclude

E[Tm] = E


N (m)∑
j=1

Tm, j


= E[N (m)]E[Tm, j ]. (1)

Lemma 2. For all j = 1, 2, · · · , N (m), we have

E[Tm, j ] ≤ (l − 1)
(
1 +

1
δ2

)
.

Proof. Investigating the OR algorithm, we observe that
at any K j , the Ob f (K j, pob f ) has been executed with
the result Zu (k) being chosen randomly from the set
N (Zu (k − 1)). We note that K ′j ≥ K j + l − 1 and

DK j+l−2 = d(Xu (K j + l−2), Zu (K j + l−2)) ≤ 2(l−1).

This can be concluded from Lemma 1 and the fact
that Zu (K j − 1) = Xu (K j − 1). Also note that for all
k ∈ {K j + l − 1, K j + l, · · · , K ′j }, the Ret(k) operation
is executed. We now claim that for all k ∈ {K j + l −
1, K j + l, · · · , K ′j }, we have P(Dk+1 ≤ Dk −2) > δ2. To
see this, consider the shortest path between Zu (k) and
Xu (k) = i, say Zu (k), v1, v2, · · · , vDk−1, Xu (k). Then,
we know that

P
(
Xu (k + 1) = vDk−1 |Xu (k) = i, Xu (k − 1) = ik−1,

Xu (k − 2) = ik−2, Xu (1) = i1) > δ2.

This means that if the Ret(k) operation chooses Zu (k+
1) = v1, then Dk+1 = Dk − 2. Since the Ret(k)
operation chooses Zu (k+1) in a way to minimize Dk+1,
we conclude that

P(Dk+1 ≤ Dk − 2) > δ2.

Therefore, we can write

Tm, j ≤ l − 1 + Fj,

where Fj is a Pascal random variable with parameters
l − 1 and δ2 (we adopt the definition where Fj is the
total number of successes and failures, so Fj > 0).
Therefore,

E[Tm, j ] ≤ l − 1 + E[Fj ]

= l − 1 +
l − 1
δ2

= (l − 1)
(
1 +

1
δ2

)
,

which completes the proof. �

Lemma 3. We have

E[N (m)] ≤
m
nθ
.

Proof. This follows immediately from the algorithm
definition. We can think of N (m) as a counting process.
Each new K j (arrival) happens when an obfuscation
occurs with probability pob f = 1

nθ . However we cannot
have any arrivals between K j and K ′j . Therefore, the



number of arrivals here is less than or equal to the num-
ber of arrivals for a corresponding Bernoulli(pob f )
process (where arrivals could also happen between K j

and K ′j ). We conclude that

E[N (m)] ≤ mpob f =
m
nθ
.

�

Using (1), Lemma 2, and Lemma 3, we conclude that

E[Tm] ≤ (l − 1)
(
1 +

1
δ2

)
m
nθ
. (2)

Since Am =
Tm

m , by letting a(n) = c1
nθ−γ , we conclude

P (Am > a(n)) = P(Tm > ma(n))

≤
E[Tm]
ma(n)

(Markov’s Inequality)

≤ (l − 1)
(
1 +

1
δ2

)
m

nθma(n)
(Eq. 2)

= c1
1
nγ
→ 0, as n → ∞,

where c1 is a constant.
b) Next, we show that for all users u and all k =

1, 2, 3, · · · , we have

Dk = d(Xu (k), Zu (k)) ≤ 2(l − 1).

Examining the OR(l, pob f ) algorithm, we have Dk =

d(Xu (k), Zu (k)) = 0 for values of k outside of the
[K j, K ′j−1]. Within each [K j, K ′j−1], we apply Lemma
1 to obtain Dk ≤ 2(l − 1), for all k ≤ K j + l − 2. For
values of k, K j + l − 1 ≤ k ≤ K ′j − 1 the Ret(k)
operation is performed and as we saw above, Dk will
be decreasing. This proves that Dk ≤ 2(l − 1) for all
k = 1, 2, 3, · · · .

3) Finally, we can compute P (Bu ) as follows. Let Q =

q(1)q(2) · · · q(l ) be an arbitrary consecutive pattern of
length l on graph G. Consider a user u for whom
q(1) ∈ Vu . By our regularity assumption, we have

P

(
lim inf
m→∞

|{k : Xu (k) = q(1) }|

m
≥ δ1

)
= 1.

Since m = Ω(1), we conclude that with a probability
converging to 1 (as m → ∞), we have

|{k : Xu (k) = q(1) }| = |Iu | ≥ mδ1.

Now, define Ju as the set of integers k ∈ Iu , at which
Ob f (k, pob f ) operation is executed in the OR(l, pob f )
algorithm. We have

|Ju | ≥ |Iu | − Tm .

Note that with probability converging to 1, we have Tm ≤

ma(n). We conclude that we have

|Ju | ≥ δ1m − ma(n).

Noting that a(n) → 0 as m → ∞, we conclude that for a
constant δ′1 > 0, we have |Ju | ≥ δ′1m. In other words, for

at least δ′1m values of k, we have Xu (k) = q(1) , and the
Ob f (k, pob f ) operation is executed. Now for such values
of k, we have

P
(
Zu (k + 1) = q(2), Zu (k + 2) = q(3), · · · , Zk+l−1 = q(l )

)
= P

(
Zu (k + 1) = q(2)

)
× P

(
Zu (k + 2) = q(3) |Zu (k + 1) = q(2)

)
· · · × P

(
Zu (k + l − 1) = q(l ) |Zu (k + l − 2) = q(l−1), · · · ,

Zu (k + 1) = q(2)
)

(a)
≥

pob f
dl−1
max

= c2
1
nθ
,

where (a) comes from the fact that the probability of
choosing a consecutive pattern’s point from the neighbors
of a current point is always greater than 1

dmax
and c2 is

a constant. Thus, we can confirm P (Bu ) ≥ c2
nθ , for some

constant c2 independent of n.
�

Although the results of this paper are obtained asymptot-
ically where m, n → ∞, they can be extended for finite m
which is of our future interest.

IV. CONCLUSION

In our previous work [1], we proposed a model-free privacy-
preserving method and showed we could use superstrings to
preserve privacy against pattern matching attacks. Here, we
perform the challenging extension of [1] to develop a con-
strained model-free obfuscation, which requires a significantly
different approach. To this end, we enforced a continuity
constraint on the obfuscated data so that the obfuscated
data does not have any abrupt jumps or discontinuities that
would indicate to the adversary that obfuscation had occurred.
However, the continuity constraint makes the problem quite
complicated. We employed concepts from graph theory and
defined consecutive patterns to design a PPM for the con-
strained obfuscation problem. Analytical results show that the
proposed algorithms satisfies privacy guarantees as well as the
continuity and noise level constraints.

There are many avenues for future research. First, there
could be "second order" characteristics of sequences that could
result in leakage. For example, there might be information in
the number of times that a specific pattern is repeated. In this
case, not only do we need to ensure the occurrence of patterns
in many sequences but also we need to ensure that they are
repeated enough times in a fraction of the users. Second, one
can assume a stronger adversary that has knowledge of a large
number of different patterns for each user. In this case, it is
essentially required to guarantee a large number of matchings
in the graph. Finally, our obfuscation was independent of
users’ data. One can consider a data-dependent obfuscation
where the key idea will be to choose obfuscated values in a
way that at each point, the goal is to maximize the number of
distinct patterns in the data sequence of user u based on the
obfuscated sequence of the user so far.
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