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Abstract— In this paper, we consider a communication
system where an agent is receiving update information
from a source/controller through a wireless channel. In
particular, we investigate the problem of optimal quantiza-
tion considering a unified distortion measure caused by the
quantization and the age of information (AoI). To this end,
we propose an upperbound for the quantization distortion
given an arbitrarily distributed stochastic process. We then
provide a specific example of the above problem where the
question is whether to send the commands (actions) or the
command generator (action distribution) to the agent. We
show that a command generator which is a probability
distribution function (PDF) can be a more efficient policy
when the cost of communication is of interest. We analyze
the existing tradeoff between the rate of change of the
update and the channel use. We show that since the faster
the process varies, the larger the distortion becomes, it
requires a higher quantization rate to meet the same level
of distortion.

Index Terms—Age of Information (AoI), quantization,
rate-distortion, optimal policy, cost of communication.

I. INTRODUCTION

Transmitting timely and fresh update information from
sources (e.g., sensors or remote controllers) to the des-
tinations (e.g., cloud or robots) is being vital due to
the increasing demand for real-time communications
in different applications from smart transportation to
smart healthcare networks [1, 2]. From its advent in
[3], age of information (AoI) has been recognized as
a powerful metric to assess the freshness of the update
data [4–8]. Ever since a rich state of the art has been
developed towards finding the optimal tradeoffs with
other performance metrics [9–19].

In the case of transmitting real-valued data, an inter-
esting problem is to balance the tradeoff between the
AoI and the distortion caused by the quantization. The
tradeoff here is due to the fact that a larger distortion
(small quantization levels and shorter codes) leads to
faster communications and hence, smaller AoI and vice
versa. So far, a few works have studied this problem
[20–26].

In this regard, a basic problem was considered in [20]
where distortion was simply modeled as a monotonically
decreasing function of the processing time. Through a
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multi-objective optimization, the work in [21] considers
minimizing time-averaged AoI and mean squared error
(MSE) to obtain the optimal channel block length. The
authors in [22, 23] consider a bit allocation problem in
an ON/OFF channel to minimize the average receiver-
side AOI under the distortion constraint. A triple tradeoff
between AoI, distortion, and energy was considered in
[24] where packet scheduling among multiple sources
was investigated in order to maximize a linear combina-
tion of the three metrics. The AoI-distortion tradeoff was
also investigated in [25] for an energy-harvesting sensor
where the goal was to schedule the transmit power such
that a weighted sum of AoI and distortion is minimized.
Considering partial information rather than the original
information, [26] aims to minimize the AoI at the
receiver side while maintaining the mutual information
between the partial and the original information at an
acceptable level.

In this paper, we consider a system in which a
remote agent is receiving update information regarding
its path direction through a wireless channel. Instead
of considering the AoI itself, we are interested in the
distortion caused by the AoI so that to obtain a unified
distortion measure. The contributions of this paper are
as follows:

• In order to obtain a unified distortion measure, we
are interested in the distortion caused by the AoI
along with the distortion caused by the quantization.
In particular, we consider the rate-of-change of the
update information assumed to be a continuous
stochastic process.

• We obtain an upperbound for the quantization dis-
tortion given a general distribution for the update
information. Using this upperbound, we then obtain
the minimum transmission rate, since the goal is to
minimize the channel use while an acceptable level
of distortion is guaranteed.

• After providing a general framework, we then con-
sider a specific problem in which the question
is whether to send a command or a command
generator to a remote agent. For the command
generator (called the stochastic policy) assumed to
be uniformly distributed, using the bounds from
rate-distortion theory, we obtain a tradeoff between



Fig. 1: A simple illustration of the system model and
data transmission policy.

the communication cost and the overall distortion
caused by quantization and AoI.

The organization of this paper is as follows: In Section
II we provide the system model and preliminaries. Then,
in Section III we present the distortion analysis and the
rate minimization problem. Section IV investigates the
example problem and Section V concludes the paper.

II. SYSTEM MODEL

Figure 1 shows a simple illustration of the system
model. We consider a time-slot based transmission where
a controller sends the direction information or commands
to an agent through wireless channels. We assume that
the information at the n-th transmission is a stochastic
process denoted by Xn, n = 1, . . .∞ where |Xn| ≤ 11.
We define the rate of change for Xn as ∆X(m,n) =
E[(Xn −Xm)2] where E[.] is the expectation function.
Furthermore, the information is undergone quantization
before being transmitted. Hence, at the receiver, Xn is
estimated as X̂n. We assume that Xn is generated at
the beginning of each M ∈ R time-slot and considering
k bits quantization, it takes k time-slots for Xn to be
completely received by the agent. Therefore, the AoI of
Xn at time-slot j can be obtained as

aXn(j) = j − (n− 1)M,

∀j ∈ {(n− 1)M + k, nM + k}

in which (n− 1)M is the generation time of the Xn.
Note that when the symbol Xn has been replaced by

Xn+1, AoI of the system is obtained based on the age
of Xn+1 and not Xn anymore. Furthermore, we assume
no delay in the wireless channel. Figure 2 shows the AoI
evolution for the proposed system model.

We assume a noiseless channel where Xn is decoded
correctly at the receiver. After transmitting one update,
the transmitter then waits for M − k time-slots to
be passed and then starts transmitting another update.
Hence, the data transmission is performed at each M

1In general, we can assume that the random variable is normalized.

Fig. 2: AoI Evolution.

time units. Now, with k bits transmission at each M
time-slots, we can write the communication rate as

R =
k

M
. (1)

The distortion due to the k-bit quantization is defined
as

Ek = E
[
(X̂n −Xn)2

]
. (2)

As noted earlier, the quantized data received at the
receiver is estimated as X̂n. We show the process in
which the data changes as below

Xn
Quantization & Estimation→ →X̂n

Aged→ X̂n−a = Yn, (3)

where k ≤ a ≤M is the age of symbol in progress. Now
considering both the quantization and delay, we define
an overall distortion measure denoted by D, as below

D = E
[
(Yn −Xn)2

]
= E

[
(X̂n−a −Xn)2

]
= E

[
(X̂n−a −Xn−a)2

]
+ E

[
(Xn−a −Xn)2

]
= Ek + ∆X(n, n− a),

where ∆X(n, n−a) is a non-decreasing function of a. In
this paper, we assume that Xn changes in time according
to a Brownian motion process with variance σ2

B , i.e.,
Xn1 −Xn2 ∼ N (0, σ2

B(n1 − n2)) [27], we have

∆X(n, n− a) = aσ2
B . (4)

III. DISTORTION ANALYSIS AND OPTIMAL RATE

In this section, we provide initial analysis on the
overall distortion, D. To this end, we first obtain an
upperbound for Ek through the following lemma.

Lemma 1. For any stochastic process Xn where |Xn| ≤
1, Ek is upperbounded as below:

Ek ≤ 2−2k. (5)

Proof. For the proof, we use the uniform quantization
shown in Figure 3 where assuming k bits quantization,



Fig. 3: The uniform quantization of a random process
between [-1, 1].

we have 2k quantization levels in the interval [−1, 1].
Hence, we have an interval lengths of δ = 2

2k
= 21−k.

We also note that X̂n = E [Xn | Ai]. Now, we calculate
Ek as below:

Ek = Ei

[
E
[(
Xn − X̂n

)2
| Ai

]]
= Ei

[
E
[
(Xn − E [Xn | Ai])

2 | Ai

]]
= Ei

[
Var((Xn − X̂n) | Ai)

]
(a)

≤ Ei

[(
1

2k

)2
]

(b)
= 2−2k,

where (a) results from the fact that if a1 ≤ X ≤ a2 is
an arbitrary random variable, then Var(X) ≤ (a2−a1)

2

4
[27], where Var(.) is the variance function and (b) comes
from the law of total expectation.

Therefore, considering Lemma 1 and Equation (4), the
overall distortion is written as

D ≤ aσ2
B + 2−2k. (6)

We wish to obtain the optimal k and M such that an
acceptable level of distortion is met. To do so, we set
up an optimization problem to obtain the minimum data
rate with the constraint of maximum allowable distortion
as below:

min
k,M

R,

s.t. D ≤ dth,

k ≤M,

(7)

where dth is the maximum allowable distortion and the
last inequality comes from the system model assumption.

Before solving Problem (7), we first rewrite the first
condition as below:

D ≤ (M + k)σ2
B + 2−2k ≤ dth, (8)

since in the worst case scenario, we have a = M + k.
Now we first choose the maximum allowable M from
(8) as below

M∗ =

[
dth − 2−2k

σ2
B

− k
]+

, (9)
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Fig. 4: Rmin versus k, dth = 10−4 and σB = 0.001.
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Fig. 5: Solution of Equation (11) for dth = 10−4.

where [.]
+

= max [., 0]. We note that we should have
M∗ > k for the sake of feasibility. Now substituting (9)
in the objective function, i.e., R = k

M , we obtain

Rmin(k) =
k

M∗ =
kσ2

B

dth − 2−2k − kσ2
B

. (10)

Figure 4 is the schematic representation of Rmin in (10)
versus k for dth = 10−4. According to this figure, we
can see that given M∗, there is an optimum k, denoted
by k∗, as well that minimizes R. To obtain k∗, we take
the derivative of (10) with respect to k and we obtain

2k2−2k ln 2 = dth − 2−2k. (11)

Since, Equation (11) is not analytically solvable, in
Figure 5 we plot the curves in the two sides of equation
to show the value of k∗ for dth. In this figure, k∗ = 8.5
shows the value of k for which the two curves intersect.
This is consistent with the k∗ shown in Figure 4.

Theorem 1. Problem (7) has a unique solution dk∗e or



bk∗c obtained from (11) for dth ≥ dmin, where

dmin = σ2
B

[
1

ln 2
− log2

σ2
B

ln 2

]+
. (12)

Proof. We note that Rmin(k) is convex for k >
− 1

2 log2 dth, for which Rmin > 0. Hence, the k∗ obtained
from (11) is the optimal k and, since k ∈ N, we need
to check that which one of the dk∗e or bk∗c results in
the less value in Rmin. Finally, since in Problem (7), we
have k ≤ M , the minimum distortion with respect to
M in Equation (8) is obtained when M = k. Therefore,
(12) is obtained by substituting M with k in (8) that
insures for any σ2

B , there exists a minimum dth for the
larger values of which the solution is feasible.

The problem investigated here was developed for a
general random process. In the next section, provide an
example in which we analytically answer a very basic
question.

IV. OPTIMAL COMMUNICATION OF COMMANDS

In this section, we investigate a specific example of
the above scenario. Motivated by the work in [28],
where an autonomous agent is aimed to be controlled
by a controller through transmitting a moving policy i.e.,
distribution of the directions, while considering the cost
of communications, we investigate the following basic
problem: From the cost of communication perspective,
what is the efficient method to control the agent? Action
commands or action distribution?

Consider a remote agent is being used in a mission
by a controller. There are N actions that an agent can
operate them at each time instant in order to accomplish
its mission. The controller can either send the exact
command (deterministic policy) or the distribution of the
actions (stochastic policy). In the former, the controller
sends the index of the action, i ∈ {1, 2, 3, . . . , N},
while in the latter it sends the probability of actions,
for example pi, 0 < pi < 1, i = 1, 2, 3, . . . , N . The total
mission time is assumed to be T seconds.

For the sake of simplicity, we assume that we only
have two commands, for example, ”right” and ”left”.
As mentioned above, in the deterministic scenario, the
controller sends the exact order. Therefore, assuming a
binary scheme for transmission, the communication bit
rate per unit of time for deterministic policy is simply

Rd = 1. (13)

In the stochastic policy, we apply a different trans-
mission regime: we consider a transmission period of
M time units where M ∈ R in general. The reason is
that when the distribution is sent, the agent can make
decisions based on that for a while until it is being
updated by the controller. Therefore, it is expected that
the stochastic policy is transmitted less frequently than
the deterministic commands. Specifically, as M →∞, it
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Fig. 6: Comparison of Rs and Rd versus the distortion
where Rs is plotted for different values of M .

will be more efficient in terms of channel usage to send
the distribution while as M decreases, at some point,
the deterministic policy outperforms. Note that in the
stochastic policy, the controller sends N − 1 symbols of
the distribution since the last value will be obtained by
pN = 1−

∑N−1
i=1 pi.

Lets denote the stochastic policy at time-slot n by
Xn. Then, we assume a mean squared error of E[(Xn−
X̂n)2] ≤ D, where X̂n is the representation of Xn

at the receiver side. Hence, considering the optimal
quantization for uniform random variable Xn ∼ U [0, 1],
which is the uniform quantization with L levels with
L ≥

√
1

12D , we have the following bounds for R(D)

−1

2
log2 2πeD ≤ R(D) ≤ −1

2
log2 12D. (14)

Therefore, in this scenario, R(D) bits are transmitted
every M time units which means the bit rate can be
obtained as

Rs =
1

τs
=
R(D)

M
. (15)

Considering the upperbound of R(D), we have

R(D) =
M

τs
≤ −1

2
log2 12DX(M, τs), (16)

which gives us an upperbound for DX(M, τs) as below:

DX(M, τs) ≤
1

12
2−2Mτs ≤ D, (17)

in which D is the desired distortion. Figure 6 shows
a comparison of the rate performance between the two
policies. The bit rates, Rd and Rs, are plotted versus
the maximum tolerable distortion. According to this
figure and as intuitively expected, as M increases, Rs

decreases, resulting to a less channel use in comparison
to Rd.



Fig. 7: Maximum distortion caused by the AoI.
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Now, we notice that although the stochastic policy has
the potential of decreasing the channel use, it however,
comes with a few costs in terms of distortion as well.
In what follows we wish to investigate this aspect of
problem. As mentioned in the previous section, in the
stochastic scenario, we have two sources of distortion:
the distortion caused by the quantization and the distor-
tion caused by the AoI. The main idea is to characterize
the existing trade-offs between the communication cost
and distortion while considering the signal variations.
In order to analyze the amount of distortion caused by
the outdated information, we assume that at each time
unit, the probability measure p changes according to a
truncated Brownian motion process with variance σ2

B
such that it will never jump out of [0,1]. Therefore,
at time-slots t = jM, j = 1, 2, ..., T

M , that the agent
receives an update about the probability status, it has
been already outdated by a maximum amount of ws =
Mσ2

B . Figure 7 shows the worst case AoI for this system
setup. According to this figure, we see that the maximum
amount of distortion due to the AoI reaches 2Mσ2

B .
The overall distortion in the stochastic policy can be

written as wT = ws+D(M, τs) for which we would like
to find the proper τs such that a maximum threshold for

the distortion is met:

wT,max = 2Mσ2
B +DX(M, τs)

= 2Mσ2
B +

1

12
2−2Mτs (18)

≤ D.

In Equation 18, we can obtain the optimum M minimiz-
ing wT,max as below:

M∗ = −τs
2

log2

(
12τsσ

2
B

ln 2

)
. (19)

Hence, we can say that for any Rs and σ2
B , there exists

an M∗ that minimizes wT . Now substituting (19) in (18),
we obtain the minimum of wT,max we have

min
M

(wT,max) = −σ
2
B

Rs
log2

(
12

σ2
B

ln 2Rs

)
+

σ2
B

ln 2Rs
.

(20)

Figure 8, shows the minimum value of wT,max obtained
with respect to M vs Rs for different values of σ2

B . It
can be seen that for the highly variating processes, i.e.,
processes with a high σ2

B , transmitting with lower Rs

results in distortion exceeding the threshold. In other
words, for highly variating processes we need more
channel use to meet the same level of distortion.

V. CONCLUSION

In this paper, we have introduced a unified distortion
measure that includes both distortions from quantization
and the AoI. We first developed a rate minimization
problem for an arbitrary random variable. Using the
proposed framework, we then considered a problem in
which the question was whether to send a command
deterministically or stochastically. We showed that if the
communication cost is of importance, it is more efficient
to send the command generator. However, we observed
that for highly variating processes, we need to send
more bits so that the distortion is kept below a desired
threshold. The problem solved in this paper was for an
agent with two policies. We wish to extend this work
to a multi-agent network while policies with more than
two actions are operated. Another interesting direction
would be to consider a sequence of data instead of a
single symbol.
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