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Abstract. We decategorify the higher actions on bordered Heegaard Floer strands algebras

from recent work of Rouquier and the author and identify the decategorifications with certain

actions on exterior powers of homology groups of surfaces. We also suggest an interpretation

for these actions in the language of open-closed TQFT, and we prove a corresponding gluing

formula.

1. Introduction

In [MR20], Raphaël Rouquier and the author define a tensor product operation for higher

representations of the dg monoidal category from [Kho14], which we call U , and use it to

reformulate aspects of cornered Heegaard Floer homology [DM14, DLM19]. Part of this

work involves defining 2-actions of U on the dg algebras A(Z) that bordered Heegaard Floer

homology assigns to combinatorial representations Z of surfaces.

Ignoring gradings and thus working with decategorifications over F2, one can view U as a

categorification of the algebra F2[E]/(E2) (an F2 analogue of U(gl(1|1)+)), while if Z is a

representation of a surface F , then A(Z) categorifies the vector space ∧∗H1(F, S+;F2) where

S+ is a distinguished subset of the boundary of F . Thus, the 2-actions from [MR20] should

categorify actions of F2[E]/(E2) on ∧∗H1(F, S+;F2); the goal of this paper is to identify

these actions explicitly using certain topological operations and to give an interpretation of

these actions in the setting of open-closed TQFT.

To make things more precise, we recall that following Zarev [Zar11] (but generalizing his

definition slightly), a sutured surface is (F, S+, S−,Λ) where F is a compact oriented surface

and Λ is a finite set of points in ∂F dividing ∂F into alternating subsets S+ and S−. We

impose no topological restrictions, but note that the sutured surfaces representable by arc

diagrams Z are those such that in each connected component of F (not of ∂F ), both S+ and

S− are nonempty (unlike Zarev [Zar11], we allow arc diagrams to have circle components as

well as interval components, and we do not impose non-degeneracy). In particular, no closed

surface can be represented by an arc diagram.

For an arc diagram Z representing a sutured surface (F, S+, S−,Λ), and each interval

component I of S+, the constructions of [MR20] define a 2-action of U on A(Z). On the

other hand, there is a map φI from H1(F, S+;F2) to F2 taking an element of H1(F, S+;F2)

to its boundary in H0(S+;F2) and then pairing with the cohomology class of I. By summing

φI over tensor factors, for k ≥ 1 we get a map from T kH1(F, S+;F2) to T k−1H1(F, S+;F2)

which induces a map ΦI from ∧kH1(F, S+;F2) to ∧k−1H1(F, S+;F2).
1
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Theorem 1.1. The 2-action of U on A(Z) corresponding to I categorifies the action of

F2[E]/(E2) on ∧∗H1(F, S+;F2) in which E acts by ΦI .

See Theorem 3.5 below for a more detailed statement of Theorem 1.1.

A TQFT interpretation. It is natural to ask whether the actions of F2[E]/(E2) on

∧∗H1(F, S+;F2) fit into a TQFT framework, with associated gluing results. Indeed, [MR20]

reformulates and strengthens Douglas–Manolescu’s gluing theorem for the algebras A(Z),

which applies for certain decompositions of surfaces along 1-manifolds (given by certain de-

compositions of the arc diagram Z). One could hope that such gluing theorems exist in

even greater generality for the decategorified surface invariants ∧∗H1(F, S+;F2), yielding a

TQFT-like construction for 1- and 2-manifolds.

Remark 1.2. Heegaard Floer homology is, in some non-axiomatic sense, a 4-dimensional

TQFT (spacetimes are 4-dimensional); accordingly, its decategorification should be a type

of 3-dimensional TQFT involving the vector spaces ∧∗H1(F, S+;F2) (and e.g. the Alexander

polynomials of knots). The constructions under consideration for 1- and 2-manifolds should

be part of a (loosely defined) extended-TQFT structure for decategorified Heegaard Floer

homology.

A first observation is that a sutured surface (F, S+, S−,Λ) is nearly the same data as a

morphism in the 2-dimensional open-closed cobordism category. As described in [LP08], the

objects of this category are finite disjoint unions of oriented intervals and circles. For two

such objects X, Y , a morphism from X to Y is a compact oriented surface with its boundary

decomposed into black regions (identified with X ⊔ Y ) and colored regions. If (F, S+, S−,Λ)

is a sutured surface and we label each component of S+ as “incoming” or “outgoing,” we get

a morphism from Sin
+ to Sout

+ in this cobordism category. The black part of the boundary is

S+ and the colored part is S−.

The actions of F2[E]/(E2) on ∧∗H1(F, S+;F2) suggest that one could try to assign the

category of finite-dimensional F2[E]/(E2)-modules to an interval. A sutured surface, with

its S+ boundary components labeled as incoming or outgoing, would be assigned a bimodule

over tensor powers of F2[E]/(E2). For simplicity, we will restrict our attention here to sutured

surfaces with no circular S+ boundary components (all components of S+ are intervals).

For a surface F1 with m intervals in its outgoing boundary and another surface F2 with

m intervals in its incoming boundary, let F = F2 ∪[0,1]m F1. We would want the bimodule

of F to be a tensor product over (F2[E]/(E2))⊗m of the bimodules assigned to F1 and F2.

The next theorem says this is true up to isomorphism; let Alg
F2

denote the category whose

objects are F2-algebras and whose morphisms are isomorphism classes of bimodules, with

composition given by tensor product.

Theorem 1.3. For F1, F2, and F as above, suppose that F1 has min intervals in its incoming

boundary and F2 has mout intervals in its outgoing boundary. We have a non-canonical



DECATEGORIFIED HIGHER ACTIONS 3

Figure 1. The open pair of pants; the S+ boundary is shown in orange and
the S− boundary is shown in black (loosely following the visual conventions of
[Zar11]). Specifically, the input S+ boundary is on the right while the output
S+ boundary is on the left.

isomorphism

∧∗H1(F, S+;F2) ∼= ∧∗H1(F2, S+;F2)⊗(F2[E]/(E2))⊗m ∧∗H1(F1, S+;F2)

as bimodules over ((F2[E]/(E2))⊗mout , (F2[E]/(E2))⊗min). Thus, the exterior algebra vector

spaces ∧∗H1(F, S+;F2) give a functor from the “open sector” of the open-closed cobordism

category into Alg
F2
.

In fact, a slightly more general version of Theorem 1.3 holds in which F1 and F2 can have

S+ circles in their boundaries as long as we are not gluing along them; see Theorem 4.2

below.

The tensor product case. As a special case of Theorem 1.3, we can glue interval S+

components of two surfaces F ′, F ′′ to the two input intervals of the “open pair of pants”

cobordism shown in Figure 1. Let P = F1 be the open pair of pants, let F2 = F ′ ⊔ F ′′, and

let F be the glued surface. We can identify ∧∗H1(P, S+;F2) with (F2[E]/(E2))⊗2, with right

action of (F2[E]/(E2))⊗2 given by multiplication and left action of F2[E]/(E2) given by the

coproduct

∆(E) = E ⊗ 1 + 1⊗ E

(in fact, F2[E]/(E2) is a Hopf algebra with this coproduct together with counit ε(E) = 0

and antipode S(E) = E).

Corollary 1.4. We have

∧∗H1(F, S+;F2) ∼= ∧∗H1(F
′, S+;F2)⊗ ∧∗H1(F

′′, S+;F2)

where the tensor product ⊗ is taken in the tensor category of finite-dimensional modules over

the Hopf algebra F2[E]/(E2).

We can view Corollary 1.4 as a decategorification of the gluing result from [MR20] based

on the higher tensor product operation ⊗ . Thus, Theorem 1.3 suggests (at least at the

decategorified level) a more general TQFT framework for the ⊗ -based gluing results of

[MR20].
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Relationship to other work. Probably the closest analogue to the structures considered

here can be found in Honda–Kazez–Matić’s paper [HKM08]. The data of a sutured surface

(F, S+, S−,Λ) as discussed here is equivalent to the data (Σ, F ) considered in [HKM08,

Section 7.1] (our F is Honda–Kazez–Matić’s Σ and our Λ is their F ). The vector space

∧∗H1(F, S+;F2) is isomorphic to an F2 version of Honda–Kazez–Matić’s V (Σ, F ) which was

subsequently studied by Mathews [Mat10, Mat11, Mat13, Mat14, MS15]. In our notation,

Honda–Kazez–Matić view this vector space as the sutured Floer homology of F × S1 with

sutures given by Λ × S1, rather than as a Grothendieck group associated to A(Z). In

other words, their surface invariants come from “trace decategorification” of 3-dimensional

Heegaard Floer invariants rather than from Grothendieck-group-based decategorification of

2-dimensional Heegaard Floer invariants; these notions often agree, as they do here. See

Cooper [Coo15] for related work in the contact setting that discusses vector spaces similar

to ∧∗H1(F, S+;F2) in relation to Grothendieck groups of formal contact categories.

We can think of the gluings in Theorem 1.3 as successive self-gluings of two S+ intervals

in a sutured surface. These gluings can be interpreted as special cases of Honda–Kazez–

Matić’s gluings, where their gluing subsets γ, γ′ cover our gluing S+ intervals and extend a

small bit past them on both sides. However, Honda–Kazez–Matić only assert the existence

of a gluing map from the vector space of the original surface to the vector space of the glued

surface (satisfying certain properties). Theorem 1.3 goes farther for the special gluings under

consideration in that it shows how the vector space of the larger surface is recovered up to

isomorphism as a tensor product.

Integral versions of the vector spaces ∧∗(F, S+;F2), especially for closed F or F with

one boundary component (and implicitly |Λ| = 2), have also been studied in the context of

TQFT invariants for 3-manifolds starting with Frohman and Nicas in [FN91] (see also [Don99,

Ker03]). Building on work of Petkova [Pet18], Hom–Lidman–Watson show in [HLW17] that

bordered Heegaard Floer homology (in the original formulation of [LOT18] where F is closed)

can be viewed as categorifying the 2+1 TQFT described in [Don99] in which a surface F is

assigned ∧∗H1(F ). Our perspective here differs in that we follow Zarev [Zar11] rather than

[LOT18] and in that instead of 2+1 TQFT structure we are (loosely) looking at the lower

two levels of a 1+1+1 TQFT.

Finally, the fact that the topological gluing considered in [MR20] can be viewed as the

above open-pair-of-pants gluing was already noted in [MR20, Section 7.2.5], which also

contains speculations about the connection to open-closed TQFT and extended TQFT.

Future directions. It would be desirable to treat 1-, 2-, and 3-manifolds at the same time,

integrating the gluing results for surfaces here with the 3-manifold invariants mentioned

above in something like a 1+1+1 TQFT. One obstacle to doing this appears to be that

while the isomorphism in the statement of Theorem 1.3 seems like something that could

conceivably be proved using Mayer–Vietoris sequences, we were not able to find such a

proof; the isomorphism we construct is not canonical and depends on suitable choices of

bases. Geometrically, the issue seems to be that given arbitrary elements of ∧∗H1(F1, S+;F2)
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and ∧∗H1(F2, S+;F2), it is not clear how to pair them to get an element of ∧∗H1(F, S+;F2)

in a canonical way (the endpoints of arcs don’t necessarily match up in any nice way at the

gluing interface).

It would also be desirable to categorify Theorem 1.3, such that the ⊗ -based gluing results

of [MR20] are recovered by gluing with an open pair of pants as in Corollary 1.4. Just as

the proof of Theorem 1.3 depends on a choice of basis, it seems likely that a categorification

of this theorem will depend on the arc diagrams Z chosen to represent the surfaces. For

general arc diagrams Z1 and Z2 representing the surfaces F1 and F2 of Theorem 1.3, it is not

even clear how one should glue these diagrams to get an arc diagram for the glued surface

F (speculatively, something like [KP06, Figure 5(b)] followed by an “unzip” operation may

be relevant).

Finally, preliminary computations indicate that close relatives of ∧∗H1(F, S+;F2) should

arise in a TQFT with better structural properties than the “open” TQFT considered here,

specifically one that is extended down to points and defined at least for all 0-, 1-, and 2-

manifolds, with appropriate gluing theorems (including for gluing along circles). In work in

progress, we study this extended TQFT as well as its relationship to the constructions of

this paper.

Organization. In Section 2.1 through 2.3 we review U , the algebras A(Z), and the higher

actions from [MR20]. Section 2.4 discusses decategorification for U and A(Z), showing that

in the sense considered here, A(Z) categorifies ∧∗H1(F, S+;F2). Section 3 decategorifies the

2-actions of U on A(Z) from [MR20] and proves Theorem 1.1. Section 4 proves a generalized

version of Theorem 1.3, and Section 5 discusses Corollary 1.4 in more generality.

Acknowledgments. We would like to thank Bojko Bakalov, Corey Jones, Robert Lipshitz,

and Raphaël Rouquier for useful conversations, as well as the referee for many good sugges-

tions. This research was supported by NSF grant number DMS-2151786.

2. Decategorifying higher actions on strands algebras

2.1. The dg monoidal category U . The following definition originated in [Kho14] and

was partly inspired by the strands dg algebras A(Z) in Heegaard Floer homology (we review

these in Section 2.2). While Khovanov works over Z, we work over F2 in order to interact

properly with the F2-algebras A(Z).

Definition 2.1. Let U denote the strict F2-linear dg monoidal category freely generated

(under ⊗ and composition) by an object e and an endomorphism τ of e ⊗ e modulo the

relations τ 2 = 0 and

(ide ⊗τ) ◦ (τ ⊗ ide) ◦ (ide ⊗τ) = (τ ⊗ ide) ◦ (ide ⊗τ) ◦ (τ ⊗ ide).

We set d(τ) = 1, and we let τ have degree −1 (we use the convention that differentials

increase degree by 1).
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Figure 2. A basis element of NCn for n = 5.

Figure 3. Resolving a crossing.

Figure 4. A resolution that produces a double crossing and thus does not
contribute to the differential on NCn.

The endomorphism algebra of e⊗n ∈ U is the dg algebra referred to as H−
n in [Kho14]

(tensored with F2); in the language used in [MR20] it is a nilHecke algebra with a differential

and in the language used in [DM14] it is a nilCoxeter algebra. We will use NCn to denote

the F2 version of this algebra. It has a graphical interpretation: F2-basis elements of NCn

are pictures like Figure 2, with n strands going from bottom to top (these pictures are in

bijection with permutations on n letters). Multiplication is defined by vertical concatenation,

with ab obtained by drawing a below b, except that if two strands cross and then uncross

in the stacked picture (i.e. if the stacked picture has a double crossing) then the product is

defined to be zero. The differential is defined by summing over all ways to resolve a crossing

(see Figure 3), except that if a crossing resolution produces a double crossing between two

strands then it contributes zero to the differential (see Figure 4). The endomorphism τ of

e⊗ e is represented by a single crossing between two strands.

2.2. Strands algebras. Let Z be an arc diagram as in [Zar11, Definition 2.1.1], except that

we allow (oriented) circles as well as intervals in Z, and we do not impose any non-degeneracy

condition. Thus, Z consists of:

• a finite collection Z = {Z1, . . . , Zl} of oriented intervals and circles;

• a finite set of points a (with |a| even) in the interiors of the Zi for 1 ≤ i ≤ l;

• a 2-1 matching M of the points in a.

An example is shown in Figure 5.
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Figure 5. An arc diagram Z = (Z, a,M); Z consists of two intervals and a
circle, a is the set of endpoints of the red (dotted) arcs, and M matches the
two endpoints of each red arc.

Figure 6. A strands picture (basis element for A(Z)).

The definition of the dg strands algebra A(Z) over F2, from [Zar11, Definition 2.2.2],

generalizes in a straightforward way to this setting and is a special case of the general strands

algebras treated in detail in [MR20]. One can view A(Z) as being defined by specifying an

F2 basis consisting of certain pictures, along with rules for multiplying and differentiating

basis elements.

Definition 2.2. A strands picture is a collection of strands drawn in [0, 1] × Z, each with

its left endpoint in {0}×a and its right endpoint in {1}×a. The strands can be either solid

or dotted and are considered only up to homotopy relative to the endpoints; by convention,

strands are drawn “taut,” sometimes with a bit of curvature for visual effect (see Figure 6).

They must satisfy the following rules:

• Strands cannot move against the orientation of Z when moving from left to right

(from 0 to 1 in [0, 1]).

• No solid strands are horizontal, while all dotted strands are horizontal.
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Figure 7. Example of a product in A(Z).

• If a solid strand has its left endpoint at a ∈ a, and a is matched to a′ ∈ a under M ,

then no strand can have its left endpoint at a′, and similarly for right endpoints.

• If a dotted strand has its left (and thus right) endpoint at a ∈ a, and a is matched

to a′ ∈ a under M , then there must be another dotted strand with its left (and thus

right) endpoint at a′ (we say this dotted strand is matched with the first one).

Definition 2.3. As a F2-vector space, A(Z) is defined to be the formal span of such strands

pictures, so that strands pictures form an F2 basis for A(Z). The product of two basis

elements of A(Z) is defined by concatenation (see Figure 7), with the following subtleties:

• If some solid strand has no strand to concatenate with, or if in some matched pair of

dotted strands {s, s′}, neither s nor s′ has a strand to concatenate with, the product

is zero.

• When concatenating a solid strand with a dotted strand, one erases the dotted strand

matched to the one involved in the concatenation, and makes the concatenated strand

solid.

• If a double crossing is formed upon concatenation, the product of the basis elements

is defined to be zero.

The differential of a basis element of A(Z) is the sum of all strands pictures formed by

resolving a crossing in the original strands picture (in the sense of Figure 3 above), with the

following subtleties:

• When resolving a crossing between a solid strand and a dotted strand, one erases

the dotted strand matched to the one involved in the crossing resolution, and makes

both the resolved strands solid.

• If a double crossing is formed upon resolving a crossing (as in Figure 4 above), then

this crossing resolution does not contribute a term to the differential.

Remark 2.4. Recall that a dg category over a field k is a category enriched in the symmetric

monoidal category of chain complexes over k, i.e. graded k[∂]/(∂2)-modules where ∂ has

degree −1 or +1 depending on conventions, with the tensor product given as usual. Similarly,

a differential category over k is a category enriched in the symmetric monoidal category of
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(ungraded) k[∂]/(∂2)-modules (the symmetric monoidal structure is analogous to the graded

case1).

While U is a dg category and not just a differential category, the grading on A(Z) is much

more complicated: it is a grading by a nonabelian group G(Z) rather than by Z, and it

depends on a choice of “grading refinement data.” To avoid these complications, gradings

were not fully treated in [MR20]; correspondingly, when decategorifying in this paper, we

will work with Grothendieck groups defined over F2 rather than over Z, and we will view

A(Z) as a differential algebra.

Definition 2.5. We letA(Z, k) be the F2-subspace ofA(Z) spanned by strands pictures such

that the number of solid strands plus half the number of dotted strands is k. In fact, A(Z, k)

is a dg subalgebra of A(Z) (ignoring unit), and if |a| = 2n, we have A(Z) =
⊕n

k=0 A(Z, k).

The basis elements ofA(Z) with only dotted (horizontal) strands are idempotents ofA(Z).

Furthermore, for a general basis element a of A(Z), there is exactly one such idempotent

(call it λ(a)) such that λ(a)a = a, and for all other such idempotents λ′, we have λ′a = 0.

We will refer to λ(a) as the left idempotent of a; we can define a right idempotent ρ(a)

similarly.

Below we will identify A(Z) with the differential category whose objects are in bijection

with the all-horizontal basis elements of A(Z), and whose morphism space from e to e′ is

e′A(Z)e. Because each basis element of A(Z) has a unique left and right idempotent, we

can view these elements as giving a basis for the morphism spaces of A(Z) as a category.

2.3. Higher actions on strands algebras. Let Z = (Z, a,M) be an arc diagram; as in

[MR20, Section 7.2.4], we can view Z as a singular curve Z in the language of that paper, and

A(Z) is the endomorphism algebra of a collection of objects in the strands category S(Z) (see

[MR20, Section 7.4.11]). For an interval I in Z (equivalently, a non-circular component of Z

as in [MR20, Section 7.2.2]), the constructions of [MR20, Section 8.1.1] give us a differential

bimodule E over A(Z).

Notation 2.6. We will call this bimodule E rather than E for notational clarity.

Closely related constructions appear in [DM14], although in that paper the relevant pic-

tures were not explicitly organized into a bimodule over A(Z).

As with the strands algebras, the bimodule E is defined by specifying an F2-basis of strands

pictures, together with a differential and left and right actions of A(Z) in terms of basis

elements. These strands pictures are almost the same as those described in Definition 2.2.

To describe the difference, let P be the endpoint of the interval I such that in the orientation

on Z, I points from P to its other endpoint. Then, in a strands picture for E , there should

be one solid strand with its left endpoint at (1/2, P ) ∈ [0, 1]×Z and with its right endpoint

in {1} × a. See Figure 8; all other rules in Definition 2.2 are unchanged.

1and can be summarized by ∆(∂) = ∂ ⊗ 1 + 1 ⊗ ∂, at least in characteristic 2, but our view is that in this
paper “E” and “∂” are playing very different roles.
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Figure 8. A strands picture for E (the distinguished interval I is the top interval).

Figure 9. The action of an element of NC3 on E⊗3.

Definition 2.7. As an F2-vector space, E is defined to be the formal span of the strands

pictures described above, which form an F2-basis for E . The left and right actions of A(Z)

on E , and the differential on E , are defined by concatenation and resolution of crossings as

in Definition 2.3. We let E(k) be the F2-subspace of E spanned by strands pictures such

that the number of solid strands plus half the number of dotted strands is k; then E(k) is a

differential sub-bimodule of E , and if |a| = 2n, we have E =
⊕n

k=1 E(k). Furthermore, E(k)

is a bimodule over (A(Z, k − 1),A(Z, k)) with all other summands of A(Z) acting as zero

on E(k).

As with the basis elements of A(Z), to each basis element x of E we can associate a left

idempotent λ(x) and a right idempotent ρ(x). We have x = λ(x)xρ(x), while for any other

purely-horizontal basis elements λ′ ̸= λ(x), ρ′ ̸= ρ(x) of A(Z), we have λ′x = 0 and xρ′ = 0.

By [MR20, Lemma 8.1.2], the bimodule E ⊗A(Z) E ⊗A(Z) · · · ⊗A(Z) E (with m factors) is

isomorphic to the bimodule defined analogously to E , but having solid strands with left end-

points at {( 1
m+1

, P ), ( 2
m+1

, P ), . . . , ( m
m+1

, P )}. This bimodule (which we will call E⊗m) also

appears in [DM14], and as in that paper it admits a left action of NCm defined diagram-

matically by sticking strands pictures for NCm on the bottom of strands pictures for E⊗m

(see Figure 9). These actions form a 2-action of U on A(Z) via differential bimodules and
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bimodule maps, which was defined in [MR20, Proposition 8.1.3]. In other words, they give

a differential monoidal functor from U to the differential monoidal category of differential

bimodules over A(Z) and chain complexes of bimodule maps between them.

2.4. Decategorification.

2.4.1. Decategorifying U .

Definition 2.8. For a differential category A, we let A denote the smallest full differential

subcategory of A-Mod (left differential modules over A) containing Hom(e,−) for all objects

e of A and closed under mapping cones and isomorphisms. If A is a dg category, we let

A-Mod be the category of left dg modules instead, and require that A be closed under

degree shifts. We let H(A) denote the homotopy category of A, and we let Ai denote the

idempotent completion of A.

Remark 2.9. In the language of bordered Heegaard Floer homology [LOT18, LOT15], A

is essentially the same as the differential category of finitely generated bounded type D

structures over A (in this setting it is typical to view A as a differential algebra with a

distinguished set of idempotents rather than as a dg category).

It is a well-known result (see [Kel06, Corollary 3.7]) that if A is a dg category, then H(A)i

is equivalent to the full subcategory of the derived category D(A) (of left dg A-modules) on

compact objects, i.e. the compact derived category of A.

We can view dg algebras such as NCn as dg categories with one object. Khovanov shows

in [Kho14] that the Grothendieck group of the compact derived category of NCn is zero for

n ≥ 2. For n = 0 and n = 1, NCn is F2, so the Grothendieck group of its compact derived

category is Z (Khovanov gets Z[q, q−1] instead because he introduces an extra q-grading on

NCn which is identically zero, but we will not use this grading).

Corollary 2.10. The Grothendieck group K0(H(NCn)) is also Z for n ∈ {0, 1} and is zero

for n ≥ 2, where H(NCn) is the homotopy category of NCn.

Proof. The inclusion of the triangulated category H(NCn) into its idempotent completion

is a monomorphism by [Tho97, Corollary 2.3]. In fact, by [Tho97, Theorem 2.1], H(NCn)

is already idempotent complete. □

Since we will primarily work with Grothendieck groups over F2 here, we introduce the

following definition.

Definition 2.11. Let C be a category equipped with a collection of distinguished triangles

X → Y → Z ⇝ as in a triangulated category (but we do not require C to be triangulated

or even to have a shift functor; we place no requirements on the collection of distinguished

triangles). We let KF2
0 (C) be the F2-vector space with basis given by isomorphism classes

of objects of C modulo relations [X] + [Y ] + [Z] = 0 whenever there exists a distinguished

triangle X → Y → Z ⇝.
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For a triangulated category C, the above definition agrees with K0(C) ⊗ F2. We see that

KF2
0 (H(NCn) is isomorphic to F2 for n ∈ {0, 1} and is zero otherwise.

Now, since U is a direct sum of NCn (as a one-object dg category) over all n ≥ 0, we have

KF2
0 (H(U)) ∼= F2 ⊕ F2. For notational convenience, we let

KF2
0 (U) := KF2

0 (H(U)).

Taking the monoidal structure on U into account, we see that as an F2-algebra, we have

KF2
0 (U) ∼= F2[E]/(E2)

(this is Khovanov’s identification K0(H
−) ∼= Z[q, q−1, E1]/(E

2
1) from [Kho14], adapted to our

setting).

2.4.2. Decategorifying the strands algebras. As mentioned above, we will view the strands

algebras A(Z) as differential categories with multiple (but finitely many) objects in bijection

with the set of purely-horizontal strands pictures for Z. The homotopy category H(A(Z))

has a collection of distinguished triangles, namely those isomorphic to the image in the

homotopy category of X
f
−→ Y → Cone(f)⇝ for some closed morphism f : X → Y in A(Z).

Recall that the construction of a sutured surface (F, S+, S−,Λ) from an arc diagram Z =

(Z, a,Λ) starts by taking Z× [0, 1], a collection of rectangles and annuli, and gluing on some

2-dimensional 1-handles. For each pair of points {p, q} of a matched by M , one glues on

a 1-handle with attaching zero-sphere {(p, 1), (q, 1)} compatibly with the orientation on Z.

The result is F ; one sets S+ := Z×{0} and Λ := (∂Z)×{0}, with the rest of the boundary

of F placed in S−.

Proposition 2.12 ([Pet18]). For Z = (Z, a,M) with Z a single interval, K0(H(A(Z))) is

isomorphic to ∧∗H1(F ;Z) where F is the surface represented by Z. Specifically, for each k,

K0(H(A(Z, k))) is isomorphic to ∧kH1(F ;Z).

It follows that KF2
0 (H(A(Z))) is isomorphic to ∧∗H1(F ;F2), and in the F2 setting we do

not need to consider Petkova’s absolute Z/2Z homological grading on A(Z).

Remark 2.13. Petkova views the surface F associated to a one-interval arc diagram Z

as being closed, while we view it as having S1 boundary with one S+ interval and one S−

interval. Letting F denote the closed surface and F denote the surface with boundary, we

have natural identifications H1(F ) ∼= H1(F ) ∼= H1(F, S+) (with either Z or F2 coefficients).

Petkova’s arguments readily generalize to show that for general Z as defined above,

KF2
0 (H(A(Z))) has an F2-basis given by the set of objects of A(Z) as a dg category, i.e.

by the purely-horizontal strands pictures for Z.

Proposition 2.14. If (F, S+, S−,Λ) is the sutured surface represented by a general arc dia-

gram Z, then the vector space ∧∗H1(F, S+;F2) has a basis in bijection with purely-horizontal

strands pictures for Z.
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Figure 10. An arc diagram and the sutured surface it represents. The S+

portion of the surface boundary is drawn in orange and the S− portion is
drawn in black.

Proof. It follows from the construction of (F, S+, S−,Λ) that F/S+ is homotopy equivalent

to a wedge product of circles, one for each pair of points of a, and these circles form a basis

for H1(F, S+;F2). A basis for ∧∗H1(F, S+;F2) is then given by all subsets of the set of these

circles. For each such subset X, there is a corresponding purely-horizontal strands picture

for Z; if a circle (corresponding to {p, q} matched by M) is in X, one draws a pair of dotted

horizontal strands at p and q in the strands picture. This correspondence is a bijection,

proving the proposition. □

Let KF2
0 (A(Z)) := KF2

0 (H(A(Z))) and KF2
0 (A(Z, k)) := KF2

0 (H(A(Z, k))).

Corollary 2.15. We have natural identifications

KF2
0 (A(Z)) ∼= ∧∗H1(F, S+;F2) and KF2

0 (A(Z, k)) ∼= ∧kH1(F, S+;F2).

3. Actions on exterior powers of homology

Let Z = (Z, a,M) be an arc diagram representing a sutured surface (F, S+, S−,Λ) as

in Figure 10, and let I be an interval component of S+ (equivalently, let I be an interval

component of Z). The endomorphism ΦI of ∧∗H1(F, S+;F2) defined in the introduction

squares to zero and thus gives us an action of F2[E]/(E2) on ∧∗H1(F, S+;F2) in which E

acts by ΦI . In this section we identify this action with the action of KF2
0 (U) on KF2

0 (A(Z))

coming from the 2-action of U on A(Z) described in Section 2.3.

Remark 3.1. For an element ω of ∧∗H1(F, S+;F2) that is a pure wedge product of arcs in

F with boundary on S+ and/or circles in F , we can depict ω by drawing all the arcs and

circles of ω in a picture of F . See Figure 11 for an example. The element E of F2[E]/(E2)

acts on this depiction of ω by summing over all ways of removing one arc incident with the

component I of S+; see Figure 12. An arc with both endpoints on I is “removed twice”

which, in the sum with F2 coefficients, amounts to not being removed at all; indeed, such an

arc represents the same homology class as a circle with no endpoints.
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Figure 11. Depiction of a pure wedge-product element of ∧∗H1(F, S+;F2).

Figure 12. Action of E ∈ F2[E]/(E2) on ω ∈ ∧∗H1(F, S+;F2) given a dis-
tinguished interval I of S+.

We first review an important structural property of the bimodule E from Section 2.3; the

proposition below follows from [MR20, Section 8.1.4], but to keep this paper self-contained

we include an independent proof.

Proposition 3.2. As a left differential module over the differential category A(Z), E is an

object of A(Z).

Proof. We first show that as a left module (disregarding the differential), E is isomorphic to

a direct sum of modules of the form Hom(e,−) for objects e of A(Z). Indeed, consider the

subset S of strands pictures for E (i.e. F2-basis elements of E) such that the only moving

strand is the one with left endpoint at (1/2, P ) in the language of Section 2.3. See Figure 13

for an example of an element of S. An arbitrary basis element x of E can be written as ay

for unique basis elements a ∈ A(Z) and y ∈ S; indeed, after a homotopy relative to the

endpoints, we can draw x such that all strands of x except the one with endpoint at (1/2, P )

only move on Z× [0, ε] for some ε < 1/2, and are horizontal on Z× [ε, 1] (see Figure 14).

Cutting the diagram for x at Z×{ε}, we see a strands picture for a basis element a ∈ A(Z)

on the left. On the right side of the cut, let y be the element of S obtained by making all the
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Figure 13. An element of the set S of special basis elements of E .

horizontal strands dotted and adding in their matching horizontal strands (according to the

matching M). See Figure 15 for an example. We have ay = x; furthermore, for any y ∈ S

with left idempotent λ(y), and any basis element a of HomA(Z)(λ(y),−), we have that ay is

a basis element for E and that a and y are recovered when splitting ay as above.

We have defined a bijection between our basis for E and the set of pairs (a, y) where y

is an element of S with left idempotent λ(y) and a is a basis element of HomA(Z)(λ(y),−).

Thus, we have an identification of E with
⊕

y∈S HomA(Z)(λ(y),−) as vector spaces. This

identification respects left multiplication by A(Z), so

E ∼=
⊕

y∈S

HomA(Z)(λ(y),−)

as left modules over A(Z) (ignoring the differential).

Now, we can define a grading on the elements of S: say y ∈ S has degree d if the moving

strand σ of y with left endpoint (1/2, P ) encounters d points of a while traveling along a

minimal path in Z from P to its right endpoint. Order the elements of S by increasing degree

(choose any ordering of the elements of S in each given degree). Because the differential on E ,

applied to y ∈ S, will only resolve crossings between the special strand σ of y and horizontal

strands strictly below σ, the only nonzero terms of this differential will be of the form ay′ for

y′ of degree strictly less than that of y (and thus y′ that appear before y in the ordering on

S). It follows that E is isomorphic to an iterated mapping cone built from HomA(Z)(λ(y),−)

for y ∈ S, so we have E ∈ A(Z). □

Remark 3.3. In the language of bordered Heegaard Floer homology, Proposition 3.2 says

that E is the differential bimodule associated to a finitely generated left bounded type DA

bimodule over A(Z) with δ1i zero for i > 2.

Proposition 3.2 gives us the following corollary.

Corollary 3.4. We have a differential functor E ⊗A(Z) − from A(Z) to itself, and thus a

functor E ⊗A(Z) − from H(A(Z)) to itself.
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Figure 14. Stretching the basis element x of Figure 8 so that all “ordinary”
moving strands only move on Z × [0, ε]; the green dashed lines on the right
indicate where we will cut to factor x as ay with a ∈ A(Z), y ∈ S.

Figure 15. Factorizing the basis element x of Figure 8 as a ∈ A(Z) (left)
times y ∈ S (right).

Proof. Let E ∼= ⊕α A(Z) · eα (as a left module) and suppose we have X ∼= ⊕β A(Z) · xβ ∈

A(Z), where eα and xβ are distinguished idempotents of A(Z), the sums over α and β are

finite, for all (α, β) we have eα ·
′ xβ ∈ {eα, 0} where ·′ denotes the right action of A(Z) on E

(the proof of Proposition 3.2 implies this is possible), and there exist orderings of the α and

β such that the differentials on E and X are strictly decreasing with respect to the order.

Then

E ⊗A(Z) X ∼=
⊕

β

E ⊗A(Z) (A(Z) · xβ)

∼=
⊕

β

E ·′ xβ

∼=
⊕

α,β

A(Z) · (eα ·′ xβ).
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If we order the pairs (α, β) lexicographically such that the β coordinate dominates, then

the differential on E ⊗A(Z) X is strictly decreasing with respect to the order. It follows that

E ⊗A(Z) X ∈ A(Z); it is then a standard fact that E ⊗A(Z) − gives a differential endofunctor

of A(Z). □

The differential functor E ⊗A(Z) − sends mapping cones to mapping cones, so the cor-

responding functor on homotopy categories sends distinguished triangles to distinguished

triangles and thus induces an endomorphism [E ⊗A(Z) −] of KF2
0 (A(Z)).

Theorem 3.5. Let Z = (Z, a,M) be an arc diagram and let (F, S+, S−,Λ) be the sutured

surface represented by Z. Let I be an interval component of S+, or equivalently an inter-

val component of Z. Under the identification KF2
0 (A(Z)) ∼= ∧∗H1(F, S+;F2) from Corol-

lary 2.15, the endomorphism [E ⊗A(Z) −] of KF2
0 (A(Z)) agrees with the endomorphism

ΦI of ∧∗H1(F, S+;F2) from the introduction. More specifically, the map [E(k) ⊗A(Z,k) −]

from KF2
0 (A(Z), k) to KF2

0 (A(Z), k − 1) agrees with ΦI as a map from ∧kH1(F, S+;F2) to

∧k−1H1(F, S+;F2).

Proof. Let e be an object ofA(Z) (viewed as a differential category); we have a corresponding

basis element [Hom(e,−)] of KF2
0 (A(Z)). Applying [E ⊗A(Z) −] to [Hom(e,−)], we get

∑

y∈S, ρ(y)=e[Hom(λ(y),−)]. Viewing e as a purely horizontal strands picture and defining S

as in the proof of Proposition 3.2, there is one element ys ∈ S with ρ(ys) = e for each strand

s of e with endpoints in the interval I, and these are all the elements y ∈ S with ρ(y) = e.

For each such strand s (say with endpoints at Q ∈ I), the element ys has a moving strand

between (1/2, P ) and (1, Q), and has the same horizontal strands as e except for s and its

partner s′ under the matching. Thus, λ(ys) is e with the strands s and s′ removed.

It follows that [E⊗A(Z)−]([Hom(e,−)]) is the sum of [Hom(e′,−)] over all e′ obtained from

e by choosing one strand s in [0, 1]× I and removing both s and its partner s′. In particular,

for strands s in [0, 1]× I such that s′ is also in [0, 1]× I, the pair of strands (s, s′) is removed

from e twice, and since we are working over F2, removals of these strands contribute zero to

[E ⊗A(Z) −]([Hom(e,−)]).

Now let ω be the element of ∧∗H1(F, S+;F2) corresponding to [Hom(e,−)] under the

isomorphism of Corollary 2.15. Concretely, each pair of matched strands {s, s′} of e gives a

basis element of H1(F, S+;F2), and ω is the wedge product of these elements over all such

pairs {s, s′}. When we apply ΦI to ω, we sum over all ways to remove a factor from this

wedge product if the factor maps to 1 ∈ F2 under the map φI from the introduction. Such

factors are those corresponding to pairs of strands {s, s′} of e in which one of {s, s′}, but

not both, is in [0, 1] × I. It follows that ΦI(ω) corresponds to [E ⊗A(Z) −]([Hom(e,−)]) as

desired. □

4. Gluing and TQFT

In this section, we prove (a slightly more general version of) Theorem 1.3 from the in-

troduction. Let (F, S+, S−,Λ) be a sutured surface and suppose that I1 ̸= I2 are interval
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Figure 16. A standard model for a sutured surface, given by a sphere with
some number of tori connect-summed on, as well as some number of disks
removed and some even number of sutures on each boundary component. The
S+ boundary is drawn in orange and the S− boundary is drawn in black. The
set of blue arcs and circles gives a basis for H1(F, S+;F2).

components of S+. Up to homeomorphism, there is a unique way to glue I1 to I2 and get an

oriented surface F . There are naturally defined subsets S+ and S− of the boundary of F ,

intersecting in a set of points Λ (which is Λ with the endpoints of I1 and I2 removed).

Lemma 4.1. We have an isomorphism

∧∗H1(F , S+;F2) ∼= (∧∗H1(F, S+;F2))⊗(

F2[E]

(E2)

)⊗2

F2[E]

(E2)
,

where the action of (F2[E]/(E2))
⊗2

on ∧∗H1(F, S+;F2) comes from the F2[E]/(E2) actions

associated to I1 and I2, and the action of (F2[E]/(E2))
⊗2

on F2[E]/(E2) comes from mul-

tiplication. We can choose the isomorphism so that it intertwines the remaining actions of

F2[E]/(E2) from S+ intervals other than I1 or I2.

Proof. Pick a homeomorphism between F and a finite disjoint union of standard sutured

surfaces as shown in Figure 16 (spheres with some number of open disks removed and some

even number of sutures on each boundary component, connect-summed with some number

of tori). Figure 16 also indicates, with blue arcs and circles, a way to choose bases for

H1(F, S+;F2). One chooses:

• For each torus that was connect-summed on, two circles giving a basis for the first

homology of the torus;

• For all but one of the boundary components intersecting S− nontrivially, a circle

around the boundary component;

• A continuous map from a connected acyclic graph ΓF to the surface F (an embedding

on each edge of ΓF ) with one vertex on each component of S+. We will identify ΓF

with its image in F .
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Figure 17. Left: arcs e1 and e2 in the surface F before gluing. Right: the
arc e1 ∪ e2 after gluing I1 to I2.

These circles, together with the edges of ΓF , give a basis for H1(F, S+;F2), so subsets of this

set of arcs and circles give a basis for ∧∗H1(F, S+;F2) consisting of wedge products of basis

elements of H1(F, S+;F2).

Now suppose I1 and I2 are intervals of S+; we consider various cases.

Case 1: First, assume I1 and I2 live on distinct connected components of F . Choose ΓF

such that the vertices on I1 and I2 (say p1 and p2) are leaves of ΓF , i.e. they have degree

1. When gluing F to get F , we can ensure that p1 and p2 are glued to each other. If we let

e1 and e2 denote the edges incident with p1 and p2, and modify ΓF by removing p1, p2, e1
and e2 while adding the edge e1 ∪ e2 as an embedded arc in F , we get an acyclic graph ΓF

embedded in F with one vertex on each component of S+. See Figure 17 for an illustration.

Now, for an element ω of ∧∗H1(F, S+;F2) obtained as a wedge product of basis elements

of H1(F, S+;F2), the I1-action of E ∈ F2[E]/(E2) on ω is zero if e1 is not a wedge factor of

ω. Otherwise, write ω = e1 ∧ ω′; we have E · ω = ω′.

The I2-action of E ∈ F2[E]/(E2) on ∧∗H1(F, S+;F2) is similar; informally, E acts by

“removing e2.” It follows that ∧∗H1(F, S+;F2) is a free module over
(

F2[E]
(E2)

)⊗2

with an
(

F2[E]
(E2)

)⊗2

-basis given by elements e1 ∧ e2 ∧ ω′ for all wedge products ω′ in the other basis

elements (not e1 or e2) of H1(F, S+;F2). Thus, a basis for

(∧∗H1(F, S+;F2))⊗(

F2[E]

(E2)

)⊗2

F2[E]

(E2)

is given by the set of elements e1 ∧ e2 ∧ ω′, together with the elements e1 ∧ ω′ = e2 ∧ ω′ (in

each case ω′ is a wedge product of basis elements of H1(F, S+;F2) that are not e1 or e2).

Meanwhile, a basis for ∧∗H1(F , S+;F2) is given by the set of elements (e1 ∪ e2) ∧ ω′ and ω′

for the same set of ω′. We have a bijection between basis elements given by e1 ∧ e2 ∧ ω′ ↔

(e1 ∪ e2) ∧ ω′ and (e1 ∧ ω′ = e2 ∧ ω′) ↔ ω′; this bijection is illustrated in Figure 18. Thus,

we have an isomorphism of vector spaces as claimed in the statement of the theorem.

To see that this isomorphism intertwines the remaining actions of F2[E]/(E2) for S+

intervals that are not I1 or I2, it suffices to consider the actions for the other two intervals

(say I ′1 and I ′2) that intersect e1 and e2 respectively. We will consider the action for I ′1; the

case of I ′2 is similar. In the terminology used above, there are four types of basis elements

of ∧∗H1(F, S+;F2): those of the forms e1 ∧ e2 ∧ ω′, e1 ∧ ω′, e2 ∧ ω′, and ω′. The I ′1-action of

E ∈ F2[E]/(E2) sums over all ways to remove one wedge factor corresponding to an arc with

exactly one endpoint on I ′1; besides terms that modify ω′, there is a “remove e1” term that
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Figure 18. The bijection on basis elements in the first case of Lemma 4.1.

Figure 19. Left: local model near C for the arcs e1 and e2. Right: the circle
σ after gluing I1 to I2. In both cases the curved arrow indicates the orientation
on F ; the induced boundary orientation on C is clockwise in this figure.

sends e1∧e2∧ω′ to e2∧ω′ and sends e1∧ω′ to ω′. When we tensor over (F2[E]/(E2))
⊗2

with

the identity map on F2[E]/(E2), the “remove e1” term of the action of E sends e1 ∧ e2 ∧ ω′

to e2 ∧ ω′ = e1 ∧ ω′ and sends e1 ∧ ω′ = e2 ∧ ω′ to zero. On the other hand, as above there

are two types of basis elements of ∧∗H1(F , S+;F2): those of the form (e1∪ e2)∧ω′ and those

of the form ω′. The I ′1-action of E has terms modifying ω′ in the same way as above, and it

also has “remove e1 ∪ e2” terms sending (e1 ∪ e2)∧ω′ to ω′ and sending ω′ to zero. It follows

that our choice of isomorphism intertwines the I ′1 action of F2[E]/(E2).

Case 2: Next, assume I1 and I2 live on the same connected component F ′ of F ; without

loss of generality we can assume F is connected so that F ′ = F . We consider two further

cases: either I1 and I2 live on the same connected component of ∂F , or they live on different

connected components of ∂F .

Case 2-1: First assume I1 and I2 live on the same component C of ∂F , so that gluing I1
to I2 increases the number of boundary components of F by one while keeping the genus the

same. When choosing a basis for H1(F, S+;F2) as above, we can choose C for the unique

not-fully-S+ boundary component of F that does not get a circle around it. We can also

ensure that in the acyclic graph ΓF , the vertices p1 on I1 and p2 on I2 are leaves of ΓF .

Case 2-1a: If there are any intervals of S+ other than I1 and I2, or any fully-S+ circles,

then p1 and p2 are incident with distinct edges e1 ̸= e2 of ΓF ; we can furthermore choose ΓF
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Figure 20. Left: local model near C for the arc e. Right: the circle σ after
gluing I1 to I2.

so that e1 and e2 share an endpoint q, and such that as embedded submanifolds of F , they

look like the left side of Figure 19 in a small neighborhood of C and are identical outside this

neighborhood (the picture should be appropriately modified if q lives on the circle C). As

above, ∧∗H1(F, S+;F2) is free over
(

F2[E]
(E2)

)⊗2

and has four types of basis elements, namely

e1 ∧ e2 ∧ ω′, e1 ∧ ω′, e2 ∧ ω′, and ω′. A basis for

(∧∗H1(F, S+;F2))⊗(

F2[E]

(E2)

)⊗2

F2[E]

(E2)

is given by the elements e1∧ e2∧ω′ along with the elements e1∧ω′ = e2∧ω′. Meanwhile, we

can take ΓF to be ΓF with the edges e1 and e2 removed, and when choosing circles around

boundary components to assemble a basis for H1(F , S+;F2), we can put a circle σ around the

component of ∂F containing the segment of ∂F that goes from I1 to I2 when traversing the

boundary in the oriented direction (see the right side of Figure 19). Then ∧∗H1(F , S+,F2)

has basis elements of type σ ∧ ω′ and ω′; we identify these with elements of type e1 ∧ e2 ∧ ω′

and e1 ∧ ω′ = e2 ∧ ω′ respectively. This bijection on basis elements gives us an isomorphism

of vector spaces as in the statement of the theorem.

To see that this isomorphism intertwines the remaining actions of F2[E]/(E2) from S+

intervals other than I1 or I2, it suffices to consider the interval I that contains the common

endpoint q of e1 and e2. The I-action of E ∈ F2[E]/(E2) on ∧∗H1(F, S+;F2) has terms that

modify ω′ as well as “remove e1” terms sending (e.g.) e1 ∧ e2 ∧ ω′ to e2 ∧ ω′ and “remove

e2” terms sending (e.g.) e1 ∧ e2 ∧ ω′ to e1 ∧ ω′. When we tensor over (F2[E]/(E2))
⊗2

with

the identity map on F2[E]/(E2), both the “remove e1” and the “remove e2” terms send

e1 ∧ e2 ∧ ω′ to e1 ∧ ω′ = e2 ∧ ω′, and they send e1 ∧ ω′ = e2 ∧ ω′ to zero. Since the “remove

e1” and “remove e2” terms act in the same way, their contribution to the overall action of

E is zero, and only the “modify ω′” terms remain. On the other hand, the I-action of E on

∧∗H1(F, S+;F2) only modifies ω′ in terms of type σ ∧ ω′ or ω′, since σ is closed. It follows

that our choice of isomorphism intertwines the I-action of F2[E]/(E2).

Case 2-1b: Now assume that I1 and I2 are the only intervals of S+ (but they still live on

the same component C of ∂F ) and that there are no fully-S+ circles; it follows that ΓF has

a unique edge e and it connects p1 to p2. We can assume e lives in a small neighborhood of

C, and that in this neighborhood it looks like the left side of Figure 20. The I1-action and
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Figure 21. Left: F before gluing intervals I1, I2 on the same component of
F but different components of ∂F . Right: the glued surface F .

I2-action of E ∈ F2[E]/(E2) on ∧∗H1(F, S+;F2) agree; they both send e ∧ ω′ to ω′ and send

ω′ to zero. Thus

(∧∗H1(F, S+;F2))⊗(

F2[E]

(E2)

)⊗2

F2[E]

(E2)

is canonically isomorphic to ∧∗H1(F, S+;F2) where no tensor operation is performed. Mean-

while, we can take ΓF to be empty, but in assembling a basis for H1(F , S+;F2), we again put

a circle σ around the component of ∂F containing the segment of ∂F that goes from I1 to

I2 when traversing the boundary in the oriented direction (see the right side of Figure 20).

The correspondences e ∧ ω′ ↔ σ ∧ ω′ and ω′ ↔ ω′ give an isomorphism of vector spaces as

in the statement of the theorem. There are no remaining S+ intervals, so we do not need to

check that this isomorphism intertwines any actions.

Case 2-2: Next, assume that I1 and I2 live on different components C1 and C2 of ∂F ; for

visual simplicity, assume that in the model for F shown in Figure 16, C1 and C2 are next to

each other. Gluing I1 to I2 decreases the number of boundary components of F by one and

increases the genus of F by one.

Case 2-2a: Also assume that there is either at least one S+ interval that is not I1 or I2,

or that there is at least one fully-S+ circle. As above, p1 and p2 are incident with distinct

edges e1 ̸= e2 of ΓF , and we can choose ΓF so that e1 and e2 share a vertex q and only

diverge near C1 and C2. We also assume that C1 is the unique not-fully-S+ boundary circle

of F that does not get a circle around it as a basis element of H1(F, S+;F2). Let σ be the

circle around C2; see the left side of Figure 21.

Basis elements for ∧∗H1(F, S+;F2) can be of the form e1 ∧ e2 ∧ ω′, e1 ∧ ω′, e2 ∧ ω′, or ω′;

when we tensor with F2[E]/(E2) over (F2[E]/(E2))
⊗2
, we have a basis whose elements are

of type e1 ∧ e2 ∧ ω′ or e1 ∧ ω′ = e2 ∧ ω′. Meanwhile, we choose a basis for H1(F , S+,F2) by

choosing a homeomorphism with the standard surface shown on the right side of Figure 21.

The graph ΓF can be understood as ΓF with e1 and e2 removed; we also have basis elements

σ and τ of H1(F, S+;F2) where σ ⊂ F comes from σ ⊂ F and τ comes from e1 and e2. Basis
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elements of ∧∗H1(F , S+;F2) are of the form τ ∧ω′ or ω′ where ω′ is a wedge product of basis

elements for H1(F , S+;F2) that are not τ . The correspondence e1 ∧ e2 ∧ ω′ ↔ τ ∧ ω′ and

(e1 ∧ ω′ = e2 ∧ ω′) ↔ ω′ gives an isomorphism of vector spaces as in the statement of the

theorem. The proof that this isomorphism intertwines the remaining actions of F2[E]/(E2)

proceeds as above.

Case 2-2b: Finally, assume that I1 and I2 are the only S+ intervals and that there are no

fully-S+ circles (while I1 and I2 still live on different components of ∂F ). Letting e be the

arc of ΓF connecting p1 ∈ I1 to p2 ∈ I2, basis elements for ∧∗H1(F, S+;F2) are of the form

e∧ω′ or ω′. Meanwhile, defining τ as in Figure 21, basis elements for ∧∗H1(F , S+;F2) are of

the form τ ∧ ω′ or ω′. The correspondence e∧ ω′ ↔ τ ∧ ω′ and ω′ ∧ ω′ gives an isomorphism

of vector spaces as in the statement of the theorem, and there are no remaining actions for

this isomorphism to intertwine. □

Lemma 4.1 implies the following theorem.

Theorem 4.2. Let (F, S+, S−,Λ) and (F ′, S ′
+, S

′
−,Λ

′) be two sutured surfaces. For some

m ≥ 0, choose distinct intervals I1, . . . , Im of S+ and distinct intervals I ′1, . . . , I
′
m of S ′

+. Use

I1, . . . , Im to define an action of (F2[E]/(E2))
⊗m

on ∧∗H1(F, S+;F2), and similarly for F ′.

Let (F , S+, S−,Λ) be the sutured surface obtained by gluing Ij to I ′j for 1 ≤ j ≤ m (in such

a way that the result is oriented). Then we have an isomorphism

∧∗H1(F , S+;F2) ∼= ∧∗H1(F, S+;F2)⊗(F2[E]/(E2))⊗m ∧∗H1(F
′, S ′

+;F2)

that intertwines the remaining actions of F2[E]/(E2) for intervals of S+ and S ′
+ that are not

included in {I1, . . . , Im} or {I ′1, . . . , I
′
m}.

Proof. We can write

∧∗H1(F, S+;F2)⊗(F2[E]/(E2))⊗m ∧∗H1(F
′, S ′

+;F2)

as
(

(

∧∗H1(F ⊔ F ′, S+ ⊔ S ′
+;F2)

)

⊗(F2[E]/(E2))⊗2 F2[E]/(E2)
)

. . .⊗(F2[E]/(E2))⊗2 F2[E]/(E2).

where there are m successive tensor products by F2[E]/(E2) over (F2[E]/(E2))
⊗2

(one for

each pair (Ij, I
′
j)). The result now follows from Lemma 4.1. □

Corollary 4.3. There is a functor from the full subcategory of the 1+1-dimensional oriented

open-closed cobordism category on objects with no closed circles (the “open sector” of the

open-closed cobordism category) to Alg
F2

sending an object with m intervals to the algebra

(F2[E]/(E2))
⊗m

and sending a morphism (viewed as a sutured surface (F, S+, S−,Λ)) to

∧∗H1(F, S+;F2) (viewed as a bimodule over tensor products of F2[E]/(E2) for the input and

output intervals of the morphism).
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Figure 22. The open pair-of-pants surface P with sutured structure and
basis {e1, e2} for H1(P, S+;F2).

5. The tensor product case

Figure 22 shows the open pair of pants surface P with a sutured structure (P, S+, S−,Λ).

Let e1 and e2 be the arcs shown in the figure and let I1, I2, and I3 be the S+ intervals shown

in the figure. Since {e1, e2} is a basis for H1(P, S+;F2), we have a basis {1, e1, e2, e1 ∧ e2}

for ∧∗H1(P, S+;F2). The three actions of F2[E]/(E2) on ∧∗H1(P, S+;F2) can be described

as follows:

• For the I1-action, E sends 1 7→ 0, e1 7→ 1, e2 7→ 0, and e1 ∧ e2 7→ e2.

• For the I2-action, E sends 1 7→ 0, e1 7→ 0, e2 7→ 1, and e1 ∧ e2 7→ e1.

• For the I3-action, E sends 1 7→ 0, e1 7→ 1, e2 7→ 1, and e1 ∧ e2 7→ e1 + e2.

Using the I1 and I2 actions to define an action of (F2[E]/(E2))
⊗2

on ∧∗H1(P, S+;F2), we see

that ∧∗H1(P, S+;F2) is a free module of rank 1 over (F2[E]/(E2))
⊗2

with an (F2[E]/(E2))
⊗2
-

basis given by {e1∧e2}. The I3-action of F2[E]/(E2) is then given by applying the coproduct

∆(E) = E ⊗ 1 + 1⊗ E, followed by multiplication in (F2[E]/(E2))
⊗2
.

Now, if we have sutured surfaces (F ′, S ′
+, S

′
−,Λ

′) and (F ′′, S ′′
+, S

′′
−,Λ

′′) with chosen intervals

I ′ and I ′′ in S ′
+ and S ′′

+ respectively, we can glue F ′⊔F ′′ to P by gluing I ′ to I1 and I ′′ to I2.

Applying Theorem 4.2 with F1 := F ′ ⊔ F ′′ and F2 := P , and letting (F , S+, S−,Λ) denote

the glued surface, we have

∧∗H1(F , S+;F2) ∼=
(

F2[E]/(E2)
)⊗2

⊗(F2[E]/(E2))⊗2 ∧∗H1(F
′ ⊔ F ′′, S ′

+ ⊔ S ′′
+;F2)

∼= ∧∗H1(F
′ ⊔ F ′′, S ′

+ ⊔ S ′′
+;F2)

∼= ∧∗H1(F
′, S ′

+;F2)⊗ ∧∗H1(F
′′, S ′′

+;F2)

with I3-action of E given by taking ∆(E) = E ⊗ 1 + 1 ⊗ E and then acting on the tensor

product ∧∗H1(F
′, S ′

+;F2)⊗ ∧∗H1(F
′′, S ′′

+;F2). Corollary 1.4 follows from this computation.
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