ON THE DECATEGORIFICATION OF SOME HIGHER ACTIONS IN
HEEGAARD FLOER HOMOLOGY
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ABSTRACT. We decategorify the higher actions on bordered Heegaard Floer strands algebras
from recent work of Rouquier and the author and identify the decategorifications with certain
actions on exterior powers of homology groups of surfaces. We also suggest an interpretation
for these actions in the language of open-closed TQFT, and we prove a corresponding gluing
formula.

1. INTRODUCTION

In [MR20], Raphaél Rouquier and the author define a tensor product operation for higher
representations of the dg monoidal category from [Khol4], which we call U, and use it to
reformulate aspects of cornered Heegaard Floer homology [DM14, DLM19]. Part of this
work involves defining 2-actions of U on the dg algebras A(Z) that bordered Heegaard Floer
homology assigns to combinatorial representations Z of surfaces.

Ignoring gradings and thus working with decategorifications over Fy, one can view U as a
categorification of the algebra Fy[E]/(E?) (an Fy analogue of U(gl(1]1)T)), while if Z is a
representation of a surface F', then A(Z) categorifies the vector space A*H1(F, S, ;Fy) where
S, is a distinguished subset of the boundary of F. Thus, the 2-actions from [MR20] should
categorify actions of Fo[E]/(E?) on A*H,(F,S.;Fy); the goal of this paper is to identify
these actions explicitly using certain topological operations and to give an interpretation of
these actions in the setting of open-closed TQFT.

To make things more precise, we recall that following Zarev [Zarll] (but generalizing his
definition slightly), a sutured surface is (F, Sy, S_, A) where F' is a compact oriented surface
and A is a finite set of points in OF dividing OF into alternating subsets S, and S_. We
impose no topological restrictions, but note that the sutured surfaces representable by arc
diagrams Z are those such that in each connected component of F' (not of 9F), both S, and
S_ are nonempty (unlike Zarev [Zarll], we allow arc diagrams to have circle components as
well as interval components, and we do not impose non-degeneracy). In particular, no closed
surface can be represented by an arc diagram.

For an arc diagram Z representing a sutured surface (F,S;,S_,A), and each interval
component [ of S,, the constructions of [MR20] define a 2-action of & on A(Z). On the
other hand, there is a map ¢; from H;(F,S,;F,) to Fy taking an element of H(F,S,;Fs)
to its boundary in Hy(S,;Fy) and then pairing with the cohomology class of I. By summing
¢; over tensor factors, for k > 1 we get a map from TFH,(F,S,;Fs) to TF1H,(F, S ;Fs)

which induces a map ®; from AFH|(F, S, ;Fy) to A¥"L1H(F, S, ;Fy).
1
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Theorem 1.1. The 2-action of U on A(Z) corresponding to I categorifies the action of
Fo[E]/(E?) on AN*H(F, S, ;Fy) in which E acts by ®.

See Theorem 3.5 below for a more detailed statement of Theorem 1.1.

A TQFT interpretation. It is natural to ask whether the actions of Fy[E]/(E?) on
N*Hy(F,Sy;Fy) fit into a TQFT framework, with associated gluing results. Indeed, [MR20]
reformulates and strengthens Douglas—Manolescu’s gluing theorem for the algebras A(Z),
which applies for certain decompositions of surfaces along 1-manifolds (given by certain de-
compositions of the arc diagram Z). One could hope that such gluing theorems exist in
even greater generality for the decategorified surface invariants A*H(F, S, ;Fs), yielding a
TQFT-like construction for 1- and 2-manifolds.

Remark 1.2. Heegaard Floer homology is, in some non-axiomatic sense, a 4-dimensional
TQFT (spacetimes are 4-dimensional); accordingly, its decategorification should be a type
of 3-dimensional TQFT involving the vector spaces A*Hy(F, S, ;) (and e.g. the Alexander
polynomials of knots). The constructions under consideration for 1- and 2-manifolds should
be part of a (loosely defined) extended-TQFT structure for decategorified Heegaard Floer
homology.

A first observation is that a sutured surface (F,S;,S_,A) is nearly the same data as a
morphism in the 2-dimensional open-closed cobordism category. As described in [LP08], the
objects of this category are finite disjoint unions of oriented intervals and circles. For two
such objects X, Y, a morphism from X to Y is a compact oriented surface with its boundary
decomposed into black regions (identified with X LI'Y") and colored regions. If (F,S,,S_,A)
is a sutured surface and we label each component of S, as “incoming” or “outgoing,” we get
a morphism from S™ to S in this cobordism category. The black part of the boundary is
S, and the colored part is S_.

The actions of Fy[E]/(E?) on A*Hy(F,Sy;Fy) suggest that one could try to assign the
category of finite-dimensional Fy[E]/(E?)-modules to an interval. A sutured surface, with
its S boundary components labeled as incoming or outgoing, would be assigned a bimodule
over tensor powers of Fy[E|/(E?). For simplicity, we will restrict our attention here to sutured
surfaces with no circular S} boundary components (all components of S, are intervals).

For a surface F; with m intervals in its outgoing boundary and another surface Iy with
m intervals in its incoming boundary, let F' = Fy U m F1. We would want the bimodule
of F' to be a tensor product over (Fy[E]/(E?))®™ of the bimodules assigned to I} and F.
The next theorem says this is true up to isomorphism; let Algy, denote the category whose
objects are Fo-algebras and whose morphisms are isomorphism classes of bimodules, with
composition given by tensor product.

Theorem 1.3. For Fy, I3, and F' as above, suppose that Fy has my, intervals in its incoming
boundary and Fy has meoy intervals in its outgoing boundary. We have a non-canonical
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F1GURE 1. The open pair of pants; the S, boundary is shown in orange and
the S_ boundary is shown in black (loosely following the visual conventions of
[Zarl1]). Specifically, the input S, boundary is on the right while the output
S, boundary is on the left.

1somorphism
/\*Hl(F, S+7 IFQ) = /\*Hl (F27 S_,_, ]FQ) ®(]F2[E]/(E2))®m /\*H1<F1, S+, Fg)

as bimodules over ((Fo[E]/(E?))®meut (Fy|E]/(E?))®™in). Thus, the exterior algebra vector
spaces N*Hq(F, S;;Fy) give a functor from the “open sector” of the open-closed cobordism
category into Algp, .

In fact, a slightly more general version of Theorem 1.3 holds in which F; and F;, can have
S, circles in their boundaries as long as we are not gluing along them; see Theorem 4.2
below.

The tensor product case. As a special case of Theorem 1.3, we can glue interval S,
components of two surfaces F’, F” to the two input intervals of the “open pair of pants”
cobordism shown in Figure 1. Let P = F7 be the open pair of pants, let Fy = F' U F”, and
let F' be the glued surface. We can identify A*H, (P, S, ;Fy) with (Fo[E]/(E?))®?, with right
action of (Fy[E]/(E?))®? given by multiplication and left action of Fo[E]/(E?) given by the
coproduct
A(E)=E®1+19E

(in fact, Fy[E]/(E?) is a Hopf algebra with this coproduct together with counit £(E) = 0
and antipode S(F) = E).

Corollary 1.4. We have
N Hy(F, S4;Fo) =2 AN"H\(F', 43 Fo) @ A"Hy (F, S Fp)

where the tensor product @ is taken in the tensor category of finite-dimensional modules over
the Hopf algebra Fy[E]/(E?).

We can view Corollary 1.4 as a decategorification of the gluing result from [MR20] based
on the higher tensor product operation &). Thus, Theorem 1.3 suggests (at least at the
decategorified level) a more general TQFT framework for the ®)-based gluing results of
[MR20].
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Relationship to other work. Probably the closest analogue to the structures considered
here can be found in Honda—Kazez—Mati¢’s paper [HKMOS8]. The data of a sutured surface
(F,S,,S_,A) as discussed here is equivalent to the data (X, F’) considered in [HKMOS,
Section 7.1] (our F is Honda-Kazez-Mati¢’s ¥ and our A is their F'). The vector space
N*Hy(F, S4;Fy) is isomorphic to an Fa version of Honda-Kazez-Matié¢’s V (3, F') which was
subsequently studied by Mathews [Mat10, Mat11, Mat13, Mat14, MS15]. In our notation,
Honda-Kazez-Matié¢ view this vector space as the sutured Floer homology of F' x S! with
sutures given by A x S, rather than as a Grothendieck group associated to A(Z). In
other words, their surface invariants come from “trace decategorification” of 3-dimensional
Heegaard Floer invariants rather than from Grothendieck-group-based decategorification of
2-dimensional Heegaard Floer invariants; these notions often agree, as they do here. See
Cooper [Cool5] for related work in the contact setting that discusses vector spaces similar
to A*Hy(F, S;;TFy) in relation to Grothendieck groups of formal contact categories.

We can think of the gluings in Theorem 1.3 as successive self-gluings of two S, intervals
in a sutured surface. These gluings can be interpreted as special cases of Honda—Kazez—
Matié’s gluings, where their gluing subsets «,~’ cover our gluing S, intervals and extend a
small bit past them on both sides. However, Honda—Kazez—Mati¢ only assert the existence
of a gluing map from the vector space of the original surface to the vector space of the glued
surface (satisfying certain properties). Theorem 1.3 goes farther for the special gluings under
consideration in that it shows how the vector space of the larger surface is recovered up to
isomorphism as a tensor product.

Integral versions of the vector spaces A*(F, S, ;Fy), especially for closed F or F with
one boundary component (and implicitly |A| = 2), have also been studied in the context of
TQFT invariants for 3-manifolds starting with Frohman and Nicas in [FN91] (see also [Don99,
Ker03]). Building on work of Petkova [Pet18], Hom-Lidman—Watson show in [HLW17] that
bordered Heegaard Floer homology (in the original formulation of [LOT18] where F is closed)
can be viewed as categorifying the 2+1 TQFT described in [Don99] in which a surface F is
assigned A*H;(F'). Our perspective here differs in that we follow Zarev [Zarl1] rather than
[LOT18] and in that instead of 2+1 TQFT structure we are (loosely) looking at the lower
two levels of a 14141 TQFT.

Finally, the fact that the topological gluing considered in [MR20] can be viewed as the
above open-pair-of-pants gluing was already noted in [MR20, Section 7.2.5], which also
contains speculations about the connection to open-closed TQFT and extended TQFT.

Future directions. It would be desirable to treat 1-, 2-, and 3-manifolds at the same time,
integrating the gluing results for surfaces here with the 3-manifold invariants mentioned
above in something like a 1+1+1 TQFT. One obstacle to doing this appears to be that
while the isomorphism in the statement of Theorem 1.3 seems like something that could
conceivably be proved using Mayer—Vietoris sequences, we were not able to find such a
proof; the isomorphism we construct is not canonical and depends on suitable choices of
bases. Geometrically, the issue seems to be that given arbitrary elements of A*H; (Fy, S4;Fy)
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and A*Hq(Fy, S1;Fy), it is not clear how to pair them to get an element of A*Hy(F, S ;Fs)
in a canonical way (the endpoints of arcs don’t necessarily match up in any nice way at the
gluing interface).

It would also be desirable to categorify Theorem 1.3, such that the ®)-based gluing results
of [MR20] are recovered by gluing with an open pair of pants as in Corollary 1.4. Just as
the proof of Theorem 1.3 depends on a choice of basis, it seems likely that a categorification
of this theorem will depend on the arc diagrams Z chosen to represent the surfaces. For
general arc diagrams Z; and Z, representing the surfaces F; and Fy of Theorem 1.3, it is not
even clear how one should glue these diagrams to get an arc diagram for the glued surface
F (speculatively, something like [KP06, Figure 5(b)] followed by an “unzip” operation may
be relevant).

Finally, preliminary computations indicate that close relatives of A*H;(F,Sy;Fs) should
arise in a TQFT with better structural properties than the “open” TQFT considered here,
specifically one that is extended down to points and defined at least for all 0-, 1-, and 2-
manifolds, with appropriate gluing theorems (including for gluing along circles). In work in
progress, we study this extended TQFT as well as its relationship to the constructions of
this paper.

Organization. In Section 2.1 through 2.3 we review U, the algebras A(Z), and the higher
actions from [MR20]. Section 2.4 discusses decategorification for ¢ and A(Z), showing that
in the sense considered here, A(Z) categorifies A*H; (F, Sy;Fq). Section 3 decategorifies the
2-actions of U on A(Z) from [MR20] and proves Theorem 1.1. Section 4 proves a generalized
version of Theorem 1.3, and Section 5 discusses Corollary 1.4 in more generality.

Acknowledgments. We would like to thank Bojko Bakalov, Corey Jones, Robert Lipshitz,
and Raphaél Rouquier for useful conversations, as well as the referee for many good sugges-
tions. This research was supported by NSF grant number DMS-2151786.

2. DECATEGORIFYING HIGHER ACTIONS ON STRANDS ALGEBRAS

2.1. The dg monoidal category U. The following definition originated in [Khol4] and
was partly inspired by the strands dg algebras A(Z) in Heegaard Floer homology (we review
these in Section 2.2). While Khovanov works over Z, we work over Fy in order to interact
properly with the Fo-algebras A(Z).

Definition 2.1. Let U/ denote the strict Fso-linear dg monoidal category freely generated
(under ® and composition) by an object e and an endomorphism 7 of e ® e modulo the
relations 72 = 0 and

(ide ®7) o (T ® id,) o (ide ®T) = (T ® id,) 0 (ide ®T) o (T ® id,).

We set d(7) = 1, and we let 7 have degree —1 (we use the convention that differentials
increase degree by 1).
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FIGURE 2. A basis element of NC,, for n = 5.

—>

F1GURE 3. Resolving a crossing.

KK

FIGURE 4. A resolution that produces a double crossing and thus does not
contribute to the differential on NC,,.

The endomorphism algebra of e®" € U is the dg algebra referred to as H, in [Khol4]
(tensored with Fy); in the language used in [MR20] it is a nilHecke algebra with a differential
and in the language used in [DM14] it is a nilCoxeter algebra. We will use NC,, to denote
the Iy version of this algebra. It has a graphical interpretation: Fy-basis elements of NC),
are pictures like Figure 2, with n strands going from bottom to top (these pictures are in
bijection with permutations on n letters). Multiplication is defined by vertical concatenation,
with ab obtained by drawing a below b, except that if two strands cross and then uncross
in the stacked picture (i.e. if the stacked picture has a double crossing) then the product is
defined to be zero. The differential is defined by summing over all ways to resolve a crossing
(see Figure 3), except that if a crossing resolution produces a double crossing between two
strands then it contributes zero to the differential (see Figure 4). The endomorphism 7 of
e ® e is represented by a single crossing between two strands.

2.2. Strands algebras. Let Z be an arc diagram as in [Zar11, Definition 2.1.1], except that
we allow (oriented) circles as well as intervals in Z, and we do not impose any non-degeneracy
condition. Thus, Z consists of:

e a finite collection Z = {Z1,...,Z;} of oriented intervals and circles;
e a finite set of points a (with |a| even) in the interiors of the Z; for 1 <i <[,
e a 2-1 matching M of the points in a.

An example is shown in Figure 5.
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FIGURE 5. An arc diagram Z = (Z,a, M); Z consists of two intervals and a
circle, a is the set of endpoints of the red (dotted) arcs, and M matches the
two endpoints of each red arc.

FIGURE 6. A strands picture (basis element for A(Z)).

The definition of the dg strands algebra A(Z) over Fy, from [Zarll, Definition 2.2.2],
generalizes in a straightforward way to this setting and is a special case of the general strands
algebras treated in detail in [MR20]. One can view A(Z) as being defined by specifying an
Fy basis consisting of certain pictures, along with rules for multiplying and differentiating
basis elements.

Definition 2.2. A strands picture is a collection of strands drawn in [0, 1] X Z, each with
its left endpoint in {0} x a and its right endpoint in {1} x a. The strands can be either solid
or dotted and are considered only up to homotopy relative to the endpoints; by convention,
strands are drawn “taut,” sometimes with a bit of curvature for visual effect (see Figure 6).
They must satisfy the following rules:

e Strands cannot move against the orientation of Z when moving from left to right
(from 0 to 1 in [0, 1]).
e No solid strands are horizontal, while all dotted strands are horizontal.
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S R - |

FIGURE 7. Example of a product in A(Z).

e If a solid strand has its left endpoint at a € a, and a is matched to @’ € a under M,
then no strand can have its left endpoint at a’, and similarly for right endpoints.

e If a dotted strand has its left (and thus right) endpoint at a € a, and a is matched
to @’ € aunder M, then there must be another dotted strand with its left (and thus
right) endpoint at o’ (we say this dotted strand is matched with the first one).

Definition 2.3. As a Fy-vector space, A(Z2) is defined to be the formal span of such strands
pictures, so that strands pictures form an [y basis for A(Z). The product of two basis
elements of A(Z) is defined by concatenation (see Figure 7), with the following subtleties:

e If some solid strand has no strand to concatenate with, or if in some matched pair of
dotted strands {s, s'}, neither s nor s’ has a strand to concatenate with, the product
is zero.

e When concatenating a solid strand with a dotted strand, one erases the dotted strand
matched to the one involved in the concatenation, and makes the concatenated strand
solid.

e If a double crossing is formed upon concatenation, the product of the basis elements
is defined to be zero.

The differential of a basis element of A(Z) is the sum of all strands pictures formed by
resolving a crossing in the original strands picture (in the sense of Figure 3 above), with the
following subtleties:

e When resolving a crossing between a solid strand and a dotted strand, one erases
the dotted strand matched to the one involved in the crossing resolution, and makes
both the resolved strands solid.

e If a double crossing is formed upon resolving a crossing (as in Figure 4 above), then
this crossing resolution does not contribute a term to the differential.

Remark 2.4. Recall that a dg category over a field k is a category enriched in the symmetric
monoidal category of chain complexes over k, i.e. graded k[9]/(0%)-modules where O has
degree —1 or +1 depending on conventions, with the tensor product given as usual. Similarly,
a differential category over k is a category enriched in the symmetric monoidal category of
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(ungraded) k[0]/(0?)-modules (the symmetric monoidal structure is analogous to the graded
case').

While U is a dg category and not just a differential category, the grading on A(Z) is much
more complicated: it is a grading by a nonabelian group G(Z) rather than by Z, and it
depends on a choice of “grading refinement data.” To avoid these complications, gradings
were not fully treated in [MR20]; correspondingly, when decategorifying in this paper, we
will work with Grothendieck groups defined over Fy rather than over Z, and we will view
A(Z) as a differential algebra.

Definition 2.5. We let A(Z, k) be the Fo-subspace of A(Z) spanned by strands pictures such
that the number of solid strands plus half the number of dotted strands is k. In fact, A(Z, k)
is a dg subalgebra of A(Z) (ignoring unit), and if |a| = 2n, we have A(Z) = @,_, A(Z, k).

The basis elements of A(Z) with only dotted (horizontal) strands are idempotents of A(Z).
Furthermore, for a general basis element a of A(Z), there is exactly one such idempotent
(call it A(a)) such that A(a)a = a, and for all other such idempotents X', we have Na = 0.
We will refer to A(a) as the left idempotent of a; we can define a right idempotent p(a)
similarly.

Below we will identify A(Z) with the differential category whose objects are in bijection
with the all-horizontal basis elements of A(Z), and whose morphism space from e to €’ is
¢! A(Z)e. Because each basis element of A(Z) has a unique left and right idempotent, we
can view these elements as giving a basis for the morphism spaces of A(Z) as a category.

2.3. Higher actions on strands algebras. Let Z = (Z,a, M) be an arc diagram; as in
[MR20, Section 7.2.4], we can view Z as a singular curve Z in the language of that paper, and
A(Z) is the endomorphism algebra of a collection of objects in the strands category S(Z) (see
[MR20, Section 7.4.11]). For an interval I in Z (equivalently, a non-circular component of Z
as in [MR20, Section 7.2.2]), the constructions of [MR20, Section 8.1.1] give us a differential
bimodule E over A(Z).

Notation 2.6. We will call this bimodule £ rather than E for notational clarity.

Closely related constructions appear in [DM14], although in that paper the relevant pic-
tures were not explicitly organized into a bimodule over A(Z).

As with the strands algebras, the bimodule £ is defined by specifying an F»-basis of strands
pictures, together with a differential and left and right actions of A(Z) in terms of basis
elements. These strands pictures are almost the same as those described in Definition 2.2.
To describe the difference, let P be the endpoint of the interval I such that in the orientation
on Z, I points from P to its other endpoint. Then, in a strands picture for £, there should
be one solid strand with its left endpoint at (1/2, P) € [0, 1] x Z and with its right endpoint
in {1} x a. See Figure 8; all other rules in Definition 2.2 are unchanged.

land can be summarized by A(d) = d® 1+ 1® 9, at least in characteristic 2, but our view is that in this
paper “E” and “0” are playing very different roles.
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(1/2,P)

-

FIGURE 8. A strands picture for £ (the distinguished interval [ is the top interval).
WL e

Definition 2.7. As an Fy-vector space, £ is defined to be the formal span of the strands

FIGURE 9. The action of an element of NC5 on £%3.

pictures described above, which form an Fy-basis for £. The left and right actions of A(Z)
on &, and the differential on &, are defined by concatenation and resolution of crossings as
in Definition 2.3. We let £(k) be the Fy-subspace of £ spanned by strands pictures such
that the number of solid strands plus half the number of dotted strands is k; then £(k) is a
differential sub-bimodule of £, and if |a] = 2n, we have £ = @, _, £(k). Furthermore, £(k)
is a bimodule over (A(Z,k — 1), A(Z,k)) with all other summands of A(Z) acting as zero
on (k).

As with the basis elements of A(Z), to each basis element x of £ we can associate a left
idempotent A(z) and a right idempotent p(x). We have x = A(z)xp(x), while for any other
purely-horizontal basis elements X # A(z), p’ # p(z) of A(Z), we have Nz = 0 and zp’ = 0.

By [MR20, Lemma 8.1.2], the bimodule £ ® 4(z) £ ®u(z) - - ®a(z) € (with m factors) is
isomorphic to the bimodule defined analogously to £, but having solid strands with left end-
points at {(725, P), (55, P),---, (525, P)}. This bimodule (which we will call £™) also
appears in [DM14], and as in that paper it admits a left action of NC,, defined diagram-
matically by sticking strands pictures for NC,, on the bottom of strands pictures for £%™
(see Figure 9). These actions form a 2-action of U on A(Z) via differential bimodules and



DECATEGORIFIED HIGHER ACTIONS 11

bimodule maps, which was defined in [MR20, Proposition 8.1.3]. In other words, they give
a differential monoidal functor from U to the differential monoidal category of differential
bimodules over A(Z) and chain complexes of bimodule maps between them.

2.4. Decategorification.
2.4.1. Decategorifying U.

Definition 2.8. For a differential category A, we let A denote the smallest full differential
subcategory of A-Mod (left differential modules over A) containing Hom(e, —) for all objects
e of A and closed under mapping cones and isomorphisms. If A is a dg category, we let
A-Mod be the category of left dg modules instead, and require that A be closed under
degree shifts. We let H(A) denote the homotopy category of A, and we let A* denote the
idempotent completion of A.

Remark 2.9. In the language of bordered Heegaard Floer homology [LOT18, LOT15], A
is essentially the same as the differential category of finitely generated bounded type D
structures over A (in this setting it is typical to view A as a differential algebra with a
distinguished set of idempotents rather than as a dg category).

It is a well-known result (see [Kel06, Corollary 3.7]) that if A is a dg category, then H(A)’
is equivalent to the full subcategory of the derived category D(A) (of left dg A-modules) on
compact objects, i.e. the compact derived category of A.

We can view dg algebras such as NC), as dg categories with one object. Khovanov shows
in [Khol4] that the Grothendieck group of the compact derived category of NC, is zero for
n > 2. Forn=0and n =1, NC, is Fy, so the Grothendieck group of its compact derived
category is Z (Khovanov gets Z[q, ¢~!] instead because he introduces an extra g-grading on
NC,, which is identically zero, but we will not use this grading).

Corollary 2.10. The Grothendieck group Ko(H(NC,)) is also Z for n € {0,1} and is zero
for n > 2, where H(NC,,) is the homotopy category of NC,,.

Proof. The inclusion of the triangulated category H(NC,,) into its idempotent completion
is a monomorphism by [Tho97, Corollary 2.3]. In fact, by [Tho97, Theorem 2.1], H(NC,)
is already idempotent complete. [l

Since we will primarily work with Grothendieck groups over [Fy here, we introduce the
following definition.

Definition 2.11. Let C be a category equipped with a collection of distinguished triangles
X =Y — Z ~» as in a triangulated category (but we do not require C to be triangulated
or even to have a shift functor; we place no requirements on the collection of distinguished
triangles). We let K;2(C) be the Fy-vector space with basis given by isomorphism classes
of objects of C modulo relations [X]| + [Y] 4+ [Z] = 0 whenever there exists a distinguished
triangle X — Y — Z ~~.
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For a triangulated category C, the above definition agrees with Ky(C) ® F5. We see that
K{*(H(NC,) is isomorphic to Fy for n € {0,1} and is zero otherwise.

Now, since U is a direct sum of NC,, (as a one-object dg category) over all n > 0, we have
K 2(H(U)) = Fy @ F,. For notational convenience, we let

Kq*(U) = Ko* (H(U)).
Taking the monoidal structure on i into account, we see that as an Fy-algebra, we have
Ko (U) = F,[E]/(E?)

(this is Khovanov’s identification Ko(H ) = Z[q, ¢!, E1]/(F?) from [Khol4], adapted to our
setting).

2.4.2. Decategorifying the strands algebras. As mentioned above, we will view the strands
algebras A(Z) as differential categories with multiple (but finitely many) objects in bijection
with the set of purely-horizontal strands pictures for Z. The homotopy category H(A(Z))
has a collection of distinguished triangles, namely those isomorphic to the image in the
homotopy category of X Ly - Cone(f) ~ for some closed morphism f: X — Y in m

Recall that the construction of a sutured surface (F,S;,S_,A) from an arc diagram Z =
(Z,a, A) starts by taking Z x [0, 1], a collection of rectangles and annuli, and gluing on some
2-dimensional 1-handles. For each pair of points {p, ¢} of a matched by M, one glues on
a 1-handle with attaching zero-sphere {(p, 1), (¢,1)} compatibly with the orientation on Z.
The result is F; one sets S; := Z x {0} and A := (0Z) x {0}, with the rest of the boundary

of F placed in S_.

Proposition 2.12 ([Petl8]). For Z = (Z,a, M) with Z a single interval, Ko(H(A(Z))) is
isomorphic to N*H{(F;Z) where F is the surface represented by Z. Specifically, for each k,

Ko(H(A(Z,k))) is isomorphic to N¥H,(F;Z).

It follows that Kj2(H(A(Z))) is isomorphic to A*H,(F;Fy), and in the Fy setting we do
not need to consider Petkova’s absolute Z/27Z homological grading on A(Z).

Remark 2.13. Petkova views the surface F' associated to a one-interval arc diagram Z
as being closed, while we view it as having S boundary with one S, interval and one S_
interval. Letting ' denote the closed surface and F' denote the surface with boundary, we

have natural identifications Hy(F') = Hy(F) = Hy(F,S;) (with either Z or Fy coefficients).

Petkova’s arguments readily generalize to show that for general Z as defined above,
Ky?(H(A(Z2))) has an Fy-basis given by the set of objects of A(Z) as a dg category, i.e.
by the purely-horizontal strands pictures for Z.

Proposition 2.14. If (F,S.,S_,A) is the sutured surface represented by a general arc dia-
gram Z, then the vector space N*Hi(F,S,;Fy) has a basis in bijection with purely-horizontal
strands pictures for Z.
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Vg

F1GURE 10. An arc diagram and the sutured surface it represents. The S
portion of the surface boundary is drawn in orange and the S_ portion is
drawn in black.

Proof. 1t follows from the construction of (F,S,,S_,A) that F'//S, is homotopy equivalent
to a wedge product of circles, one for each pair of points of a, and these circles form a basis
for H,(F, S;;Fs). A basis for A*H;(F, S;;Fs) is then given by all subsets of the set of these
circles. For each such subset X, there is a corresponding purely-horizontal strands picture
for Z; if a circle (corresponding to {p, ¢} matched by M) is in X, one draws a pair of dotted
horizontal strands at p and ¢ in the strands picture. This correspondence is a bijection,
proving the proposition. 0]

Let Ki*(A(2)) := K*(H(A(Z))) and K2(A(Z, k) = KE2(H(A(Z, F))).
Corollary 2.15. We have natural identifications
Ko2(A(2)) 2 AN H(F,S4;Fy) and K§*(A(Z,k)) = APHL(F, S Fy).

3. ACTIONS ON EXTERIOR POWERS OF HOMOLOGY

Let Z = (Z,a, M) be an arc diagram representing a sutured surface (F,S;,S_,A) as
in Figure 10, and let I be an interval component of S, (equivalently, let I be an interval
component of Z). The endomorphism ®; of A*Hi(F,S;Fs) defined in the introduction
squares to zero and thus gives us an action of Fy[E]/(E?) on A*H,(F,S.;Fy) in which F
acts by ®;. In this section we identify this action with the action of K;2(U) on Kg2(A(Z2))
coming from the 2-action of U on A(Z) described in Section 2.3.

Remark 3.1. For an element w of A*H;(F, S, ;) that is a pure wedge product of arcs in
F with boundary on Sy and/or circles in F', we can depict w by drawing all the arcs and
circles of w in a picture of F. See Figure 11 for an example. The element E of Fy[E]/(E?)
acts on this depiction of w by summing over all ways of removing one arc incident with the
component [ of Sy; see Figure 12. An arc with both endpoints on I is “removed twice”
which, in the sum with Fy coefficients, amounts to not being removed at all; indeed, such an
arc represents the same homology class as a circle with no endpoints.
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FIGURE 11. Depiction of a pure wedge-product element of A\*H;(F,Sy;Fs).

§ | |
DO+ O +)0)=00

FIGURE 12. Action of E € Fy[E]/(E?) on w € A*H(F,S;Fy) given a dis-
tinguished interval I of S;.

We first review an important structural property of the bimodule £ from Section 2.3; the
proposition below follows from [MR20, Section 8.1.4], but to keep this paper self-contained
we include an independent proof.

Proposition 3.2. As a left differential module over the differential category A(Z), £ is an
object of A(Z).

Proof. We first show that as a left module (disregarding the differential), £ is isomorphic to
a direct sum of modules of the form Hom(e, —) for objects e of A(Z). Indeed, consider the
subset S of strands pictures for £ (i.e. Fa-basis elements of £) such that the only moving
strand is the one with left endpoint at (1/2, P) in the language of Section 2.3. See Figure 13
for an example of an element of S. An arbitrary basis element = of £ can be written as ay
for unique basis elements a € A(Z) and y € S; indeed, after a homotopy relative to the
endpoints, we can draw z such that all strands of = except the one with endpoint at (1/2, P)
only move on Z x [0, ] for some € < 1/2, and are horizontal on Z X [e, 1] (see Figure 14).
Cutting the diagram for x at Z x {e}, we see a strands picture for a basis element a € A(Z2)
on the left. On the right side of the cut, let y be the element of S obtained by making all the
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FIGURE 13. An element of the set S of special basis elements of £.

horizontal strands dotted and adding in their matching horizontal strands (according to the
matching M). See Figure 15 for an example. We have ay = x; furthermore, for any y € S
with left idempotent A(y), and any basis element a of Hom 4(z)(A(y), —), we have that ay is
a basis element for £ and that a and y are recovered when splitting ay as above.

We have defined a bijection between our basis for £ and the set of pairs (a,y) where y
is an element of S with left idempotent A(y) and a is a basis element of Hom 4(z)(A(y), —).
Thus, we have an identification of £ with €, s Hom4(z)(A(y), —) as vector spaces. This
identification respects left multiplication by A(Z), so

€ = @D Homaz)(\y), —)
yes
as left modules over A(Z) (ignoring the differential).

Now, we can define a grading on the elements of S: say y € S has degree d if the moving
strand o of y with left endpoint (1/2, P) encounters d points of a while traveling along a
minimal path in Z from P to its right endpoint. Order the elements of S by increasing degree
(choose any ordering of the elements of S in each given degree). Because the differential on &,
applied to y € S, will only resolve crossings between the special strand o of y and horizontal
strands strictly below o, the only nonzero terms of this differential will be of the form ay’ for
y" of degree strictly less than that of y (and thus 3’ that appear before y in the ordering on
S). It follows that & is isomorphic to an iterated mapping cone built from Hom 4(z)(A(y), —)

for y € S, so we have £ € A(Z). O

Remark 3.3. In the language of bordered Heegaard Floer homology, Proposition 3.2 says
that £ is the differential bimodule associated to a finitely generated left bounded type DA
bimodule over A(Z) with ¢} zero for i > 2.

Proposition 3.2 gives us the following corollary.

Corollary 3.4. We have a differential functor € ® aizy — from A(Z) to itself, and thus a

functor € @ 4(z) — from H(A(Z)) to itself.
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FIGURE 14. Stretching the basis element x of Figure 8 so that all “ordinary”
moving strands only move on Z x [0,¢]; the green dashed lines on the right
indicate where we will cut to factor = as ay with a € A(Z),y € S.

//— i_{ff::::::::::::::::::::::::::::::::::':_':}i

) T )

FIGURE 15. Factorizing the basis element x of Figure 8 as a € A(Z) (left)
times y € S (right).

Proof. Let £ = @&, A(Z) - e, (as a left module) and suppose we have X = &3 A(Z) - 25 €
m, where e, and z are distinguished idempotents of A(Z), the sums over o and [ are
finite, for all (v, ) we have e, - x5 € {€,,0} where - denotes the right action of A(Z) on &£
(the proof of Proposition 3.2 implies this is possible), and there exist orderings of the o and
[ such that the differentials on £ and X are strictly decreasing with respect to the order.
Then
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If we order the pairs (a, ) lexicographically such that the 8 coordinate dominates, then
the differential on & ® 4(z) X is strictly decreasing with respect to the order. It follows that
E®@uz) X € A(2); it is then a standard fact that £ ® 4(z) — gives a differential endofunctor

of A(Z). O

The differential functor &€ ® 4(z) — sends mapping cones to mapping cones, so the cor-
responding functor on homotopy categories sends distinguished triangles to distinguished
triangles and thus induces an endomorphism [€ ® 4(z) —] of Kj2(A(2)).

Theorem 3.5. Let Z = (Z,a, M) be an arc diagram and let (F,Sy,S_,\) be the sutured
surface represented by Z. Let I be an interval component of Sy, or equivalently an inter-
val component of Z. Under the identification Ky2(A(Z)) = A*H\(F,S;Fy) from Corol-
lary 2.15, the endomorphism [€ @az) —] of Ky*(A(Z)) agrees with the endomorphism
Q; of NHy(F,Sy;Fs) from the introduction. More specifically, the map [E(k) @azx) —]
from K§?(A(Z2),k) to Ky*(A(Z),k — 1) agrees with ®; as a map from A*H{(F,S,;Fy) to
ATH L (F, S5 TFy).

Proof. Let e be an object of A(Z) (viewed as a differential category); we have a corresponding
basis element [Hom(e, —)] of Kj*(A(Z)). Applying [€ ®4(z) —] to [Hom(e, —)], we get
> yes. ply)=eHOm(A(y), —)]. Viewing e as a purely horizontal strands picture and defining S
as in the proof of Proposition 3.2, there is one element y, € S with p(ys) = e for each strand
s of e with endpoints in the interval I, and these are all the elements y € S with p(y) = e.
For each such strand s (say with endpoints at @) € I), the element y, has a moving strand
between (1/2, P) and (1,Q), and has the same horizontal strands as e except for s and its
partner s’ under the matching. Thus, A(y,) is e with the strands s and s’ removed.

It follows that [€ ®4(z) —|([Hom(e, —)]) is the sum of [Hom(e’, —)] over all ¢’ obtained from
e by choosing one strand s in [0, 1] X I and removing both s and its partner s’. In particular,
for strands s in [0, 1] x I such that s is also in [0, 1] x I, the pair of strands (s, s’) is removed
from e twice, and since we are working over Iy, removals of these strands contribute zero to
€ ®az) —]([Hom(e, —)]).

Now let w be the element of A*H,(F,S,;Fs) corresponding to [Hom(e, —)] under the
isomorphism of Corollary 2.15. Concretely, each pair of matched strands {s, s’} of e gives a
basis element of Hi(F,S,;Fs), and w is the wedge product of these elements over all such
pairs {s,s’}. When we apply ®; to w, we sum over all ways to remove a factor from this
wedge product if the factor maps to 1 € Fy under the map ¢; from the introduction. Such
factors are those corresponding to pairs of strands {s, s’} of e in which one of {s, s}, but
not both, is in [0,1] x I. It follows that ®;(w) corresponds to [£ ® 4(z) —]([Hom(e, —)]) as
desired. U

4. GLUING AND TQFT

In this section, we prove (a slightly more general version of) Theorem 1.3 from the in-
troduction. Let (F,Sy,S_,A) be a sutured surface and suppose that I; # I, are interval
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F1GURE 16. A standard model for a sutured surface, given by a sphere with
some number of tori connect-summed on, as well as some number of disks
removed and some even number of sutures on each boundary component. The
S, boundary is drawn in orange and the S_ boundary is drawn in black. The
set of blue arcs and circles gives a basis for Hy(F, S1;Fs).

components of S;. Up to homeomorphism, there is a unique way to glue I; to I, and get an
oriented surface F. There are naturally defined subsets S, and S_ of the boundary of F,
intersecting in a set of points A (which is A with the endpoints of I; and I, removed).

Lemma 4.1. We have an isomorphism

A HL(F, 553 F2) & (A Ha(F, 545 F2)) 8 oo (0

(&5)" (B
where the action of (Fo[E]/(E?)®* on A*Hy(F,S.:Fy) comes from the F5[E]/(E2) actions
associated to I, and I, and the action of (F2[E]/(E2)** on F5|E]/(E%) comes from mul-
tiplication. We can choose the isomorphism so that it intertwines the remaining actions of
Fo[E]/(E?) from S, intervals other than Iy or I.

Proof. Pick a homeomorphism between F' and a finite disjoint union of standard sutured
surfaces as shown in Figure 16 (spheres with some number of open disks removed and some
even number of sutures on each boundary component, connect-summed with some number
of tori). Figure 16 also indicates, with blue arcs and circles, a way to choose bases for
Hy(F,S,;F5). One chooses:

e For each torus that was connect-summed on, two circles giving a basis for the first
homology of the torus;

e For all but one of the boundary components intersecting S_ nontrivially, a circle
around the boundary component;

e A continuous map from a connected acyclic graph I'r to the surface F' (an embedding
on each edge of I'r) with one vertex on each component of S,. We will identify I'p
with its image in F.
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€1 €2 % e1 Ues

m

FIGURE 17. Left: arcs e; and e; in the surface F' before gluing. Right: the
arc e; U ey after gluing I to Is.

These circles, together with the edges of ', give a basis for Hy(F, Sy ;Fs), so subsets of this
set of arcs and circles give a basis for A*H;(F,Sy;Fs) consisting of wedge products of basis
elements of Hy(F, S;;Fs).

Now suppose I; and Iy are intervals of S, ; we consider various cases.

Case 1: First, assume I; and I, live on distinct connected components of F. Choose I'p
such that the vertices on I; and I, (say p; and po) are leaves of I'g, i.e. they have degree
1. When gluing F to get F, we can ensure that p; and ps are glued to each other. If we let
e; and e; denote the edges incident with p; and py, and modify I'r by removing py, ps, €1
and e, while adding the edge e; U e; as an embedded arc in F, we get an acyclic graph I'z
embedded in F with one vertex on each component of S;. See Figure 17 for an illustration.

Now, for an element w of A*H;(F,S;;Fy) obtained as a wedge product of basis elements
of Hy(F,S.;F,), the I;-action of E € Fo[E|/(E?) on w is zero if e; is not a wedge factor of
w. Otherwise, write w = e; Aw'; we have F - w = W/'.

The Ir-action of E € Fy[E|/(E?) on A*Hi(F,S;;Fy) is similar; informally, E acts by

®2
“removing ey.” It follows that A*H;(F,S.;Fs) is a free module over (FQ[E]) with an

(E?)

®2
<]%E[2E)]> -basis given by elements e; A es A W' for all wedge products w’ in the other basis

elements (not e; or ey) of Hy(F,S;;Fy). Thus, a basis for

(N PS4 ) 8 gy T

is given by the set of elements e; A es A W', together with the elements e; A w' = ey AW’ (in

each case w’ is a wedge product of basis elements of H;(F,S,;Fy) that are not e; or ey).
Meanwhile, a basis for A*H,(F, S ;Fs) is given by the set of elements (e; U ey) A w' and o’
for the same set of w’. We have a bijection between basis elements given by e; A ey A W' <>
(e1Uey) Aw' and (e Aw' = ey Aw') <> w'; this bijection is illustrated in Figure 18. Thus,
we have an isomorphism of vector spaces as claimed in the statement of the theorem.

To see that this isomorphism intertwines the remaining actions of Fy[E]/(E?) for S,
intervals that are not I; or I, it suffices to consider the actions for the other two intervals
(say I} and I7}) that intersect e; and ey respectively. We will consider the action for I]; the
case of I} is similar. In the terminology used above, there are four types of basis elements
of N*"H{(F,S;;Fy): those of the forms e; Aes Aw', e3 Aw', e Aw', and w'. The I]-action of
E € Fy[E]/(E?) sums over all ways to remove one wedge factor corresponding to an arc with
exactly one endpoint on I7; besides terms that modify ', there is a “remove e;” term that
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F1GURE 18. The bijection on basis elements in the first case of Lemma 4.1.
2 0
€1
€2
FIGURE 19. Left: local model near C for the arcs e; and es. Right: the circle

o after gluing I; to I. In both cases the curved arrow indicates the orientation
on F'; the induced boundary orientation on C'is clockwise in this figure.

sends e A ey Aw’ t0 €3 Aw’ and sends e; Aw’ to w’. When we tensor over (F3[E]/(E2))®* with
the identity map on Fy[E]/(E?), the “remove e,” term of the action of E sends e; A ey A w'’
to ea Aw' = e Aw' and sends e; Aw’ = ey AW’ to zero. On the other hand, as above there
are two types of basis elements of A*H,(F,Sy;F,): those of the form (e; Uey) Aw’ and those
of the form w’. The Ij-action of E has terms modifying w’ in the same way as above, and it
also has “remove e; Ues” terms sending (e; Uey) Aw’ to w’ and sending w’ to zero. It follows
that our choice of isomorphism intertwines the I action of Fy[E]/(E?).

Case 2: Next, assume I; and I, live on the same connected component F’ of F'; without
loss of generality we can assume F' is connected so that F' = F. We consider two further
cases: either I; and I live on the same connected component of OF, or they live on different
connected components of OF.

Case 2-1: First assume I; and I5 live on the same component C' of OF, so that gluing I,
to I3 increases the number of boundary components of F' by one while keeping the genus the
same. When choosing a basis for H;(F,S,;F,) as above, we can choose C' for the unique
not-fully-S, boundary component of F' that does not get a circle around it. We can also
ensure that in the acyclic graph I'r, the vertices p; on I; and py on I, are leaves of I'p.

Case 2-1a: If there are any intervals of S, other than I} and I, or any fully-S, circles,
then p; and ps are incident with distinct edges e; # e5 of I'g; we can furthermore choose I'p
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.

FI1GURE 20. Left: local model near C' for the arc e. Right: the circle o after
gluing I; to Is.

O

so that e; and ey share an endpoint ¢, and such that as embedded submanifolds of F', they
look like the left side of Figure 19 in a small neighborhood of C' and are identical outside this
neighborhood (the picture should be appropriately modified if ¢ lives on the circle C'). As

®2
above, A*H(F,S,;Fy) is free over (%ﬂ) and has four types of basis elements, namely

ertNes AW, eg AW, ea AW, and W'. A basis for

(N R, 13820 sygn i

is given by the elements e; A ex Aw’ along with the elements e; Aw’ = es Aw'. Meanwhile, we

can take I'z to be I'r with the edges e; and ey removed, and when choosing circles around
boundary components to assemble a basis for H;(F, S, ;F,), we can put a circle o around the
component of OF containing the segment of OF that goes from I; to I, when traversing the
boundary in the oriented direction (see the right side of Figure 19). Then A*H,(F, S, F,)
has basis elements of type o A w’ and w’; we identify these with elements of type e; A eg A W'
and e; A w' = ey A W' respectively. This bijection on basis elements gives us an isomorphism
of vector spaces as in the statement of the theorem.

To see that this isomorphism intertwines the remaining actions of Fy[E]/(E?) from S,
intervals other than I; or I, it suffices to consider the interval I that contains the common
endpoint ¢ of e; and ey. The I-action of E € Fy[E|/(E?) on A*H,(F, S, ;F,) has terms that
modify w’ as well as “remove e;” terms sending (e.g.) e; A ey Aw' to es Aw’ and “remove
ey” terms sending (e.g.) €1 A ey Aw' to e; Aw'. When we tensor over (Fy[E]/(E2))*? with
the identity map on Fy[E]/(E?), both the “remove e;” and the “remove e,” terms send
e1Nes Aw' to ep Aw' = ey AW, and they send e; A w' = es AW’ to zero. Since the “remove

7

e;” and “remove ey” terms act in the same way, their contribution to the overall action of

" terms remain. On the other hand, the I-action of E on

FE is zero, and only the “modify w
N*Hy(F,S4;Fy) only modifies w’ in terms of type o A w’ or «’, since o is closed. It follows
that our choice of isomorphism intertwines the I-action of Fy[E]/(E?).

Case 2-1b: Now assume that [; and I, are the only intervals of Sy (but they still live on
the same component C' of OF) and that there are no fully-S, circles; it follows that I'r has
a unique edge e and it connects p; to ps. We can assume e lives in a small neighborhood of

C, and that in this neighborhood it looks like the left side of Figure 20. The I -action and
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FIGURE 21. Left: F before gluing intervals [, I; on the same component of
F but different components of 0F. Right: the glued surface F.

L-action of FE € Fo[E]/(E?) on A*H,(F,Sy;Fy) agree; they both send e A w’ to w’ and send
w’ to zero. Thus

. . Fa[E]
</\ H1<Fv S+7IF2)) ®(1§2E[2E>])®2 (EZ)

is canonically isomorphic to A*H;(F, Sy ;Fs) where no tensor operation is performed. Mean-
while, we can take I'z to be empty, but in assembling a basis for H;(F, Sy;F,), we again put
a circle o around the component of OF containing the segment of OF that goes from I; to
I, when traversing the boundary in the oriented direction (see the right side of Figure 20).
The correspondences e A w' <> 0 Aw' and W' <+ W' give an isomorphism of vector spaces as
in the statement of the theorem. There are no remaining S, intervals, so we do not need to
check that this isomorphism intertwines any actions.

Case 2-2: Next, assume that I; and I, live on different components C; and Cy of OF'; for
visual simplicity, assume that in the model for F' shown in Figure 16, C; and C; are next to
each other. Gluing I; to I decreases the number of boundary components of F' by one and
increases the genus of F' by one.

Case 2-2a: Also assume that there is either at least one S, interval that is not I or I,
or that there is at least one fully-S, circle. As above, p; and p, are incident with distinct
edges e; # ey of I'p, and we can choose I'r so that e; and ey share a vertex ¢ and only
diverge near C; and Cy. We also assume that ] is the unique not-fully-S, boundary circle
of F' that does not get a circle around it as a basis element of Hy(F,S,;Fs). Let o be the
circle around C5; see the left side of Figure 21.

Basis elements for A*H;(F, S;;Fy) can be of the form e; A es AW, e AW, ea AW/, or W'
when we tensor with F5[E]/(E2) over (Fo[E]/(E?))®*, we have a basis whose elements are
of type e; A ea Aw' or e; Aw' = ey Aw'. Meanwhile, we choose a basis for H,(F, S, ,Fy) by
choosing a homeomorphism with the standard surface shown on the right side of Figure 21.
The graph I';z can be understood as I'r with e; and e; removed; we also have basis elements
o and 7 of Hy(F,S,;Fy) where o C F comes from o C F and 7 comes from e; and e,. Basis
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elements of A*H,(F,S,;F,) are of the form 7 Aw’ or w’ where ' is a wedge product of basis
elements for H,(F,S;;Fy) that are not 7. The correspondence e; A ey AW’ ¢ 7 A w' and
(1 Aw' = ea AW') <> W' gives an isomorphism of vector spaces as in the statement of the
theorem. The proof that this isomorphism intertwines the remaining actions of Fo[E]/(E?)
proceeds as above.

Case 2-2b: Finally, assume that I; and I, are the only S, intervals and that there are no
fully-S, circles (while I; and I5 still live on different components of OF). Letting e be the
arc of I'p connecting p; € I} to ps € I, basis elements for A*H;(F, S, ;F,) are of the form
e Aw' or w'. Meanwhile, defining 7 as in Figure 21, basis elements for A*H,(F, S, ;F,) are of
the form 7 Aw’ or w’. The correspondence e Aw' <> 7 Aw' and W’ A w' gives an isomorphism
of vector spaces as in the statement of the theorem, and there are no remaining actions for
this isomorphism to intertwine. 0

Lemma 4.1 implies the following theorem.

Theorem 4.2. Let (F,S5,5_,A) and (F', 5,5, ') be two sutured surfaces. For some
m > 0, choose distinct intervals I, ..., I, of S; and distinct intervals I1, ..., I} of S’.. Use
L, ..., 1, to define an action of (Fo[E]/(E?)®™ on AN*Hy(F,S,;Fs), and similarly for F'.
Let (F,Sy,S_,A) be the sutured surface obtained by gluing I; to I for 1 < j < m (in such
a way that the result is oriented). Then we have an isomorphism

/\*Hl (F, S__;’_, ]FQ) = /\*HI(F, S+, IFQ) ®(F2[E]/(E2))®m /\>,<.[_.Il(_FV7 Sfi—’ Fg)

that intertwines the remaining actions of Fo[E)/(E?) for intervals of S; and S’ that are not
included in {Iy,..., I} or {I{,..., I, }.

Proof. We can write
N Hy(F, 84 F2) ® gy (p2)yem A HL(F, S5 Fa)
as
(N Hi(FUF', 8, USLiF2)) @ ey e F2AE(E?) - @aygygeyor F2l B/ (B2).

where there are m successive tensor products by Fs[E]/(E2) over (Fo[E]/(E%))® (one for
each pair (I, I7)). The result now follows from Lemma 4.1. O

Corollary 4.3. There is a functor from the full subcategory of the 1+1-dimensional oriented
open-closed cobordism category on objects with no closed circles (the “open sector” of the
open-closed cobordism category) to Algg, sending an object with m intervals to the algebra
(Fo[E]/(E*)®™ and sending a morphism (viewed as a sutured surface (F,S.,S_,A)) to
NH(F, S ;Fy) (viewed as a bimodule over tensor products of F5y[E]/(E?) for the input and
output intervals of the morphism).
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FIGURE 22. The open pair-of-pants surface P with sutured structure and
basis {ey, es} for Hy(P, Sy; Fy).

5. THE TENSOR PRODUCT CASE

Figure 22 shows the open pair of pants surface P with a sutured structure (P, Sy, S_, A).
Let e; and ey be the arcs shown in the figure and let I3, I5, and I3 be the S, intervals shown
in the figure. Since {ey, e} is a basis for Hy (P, Sy;Fs), we have a basis {1,e1,e2,e1 A ea}
for A*H;(P,S;;F,). The three actions of Fo[E]/(E?) on A*H;(P,S;;Fy) can be described
as follows:

e For the [;-action, E sends 1+ 0, e; — 1, e — 0, and e; A eg — es.
e For the Ir-action, F sends 1 +— 0, e; — 0, e — 1, and e; A eg — ey.
e For the I3-action, F sends 1 — 0, e; — 1, eo — 1, and e; A ey — €1 + eo.

Using the I; and I, actions to define an action of (Fo[E]/(E2))®* on A*H, (P, S, ;F,), we see
that A*Hy (P, S,;Fy) is a free module of rank 1 over (Fy[E]/(E?))®* with an (FoE]/(E2))%*-
basis given by {e; Aes}. The I3-action of Fy[E]/(E?) is then given by applying the coproduct
A(E)=E®1+1® E, followed by multiplication in (F5[E]/(E2))%”.

Now, if we have sutured surfaces (F”, 5%, S",A’) and (F”, 5", 5", A") with chosen intervals
I" and I" in 5", and S’ respectively, we can glue F' LI F" to P by gluing I’ to I; and I” to I,.
Applying Theorem 4.2 with F} := F' LI F” and F, := P, and letting (F,S,,S_,A) denote
the glued surface, we have

N Hy(F, 555 F2) = (F5[E/(E*) ™ @ gy gy eyye2 ATHLUF U F", Sy U S5 Fy)
> ANH(F U F", S\ U ST Fy)
=~ N Hy(F', S5 Fa) @ N Hy(F”, S5 TFy)

with I3-action of E given by taking A(F) = E® 1 + 1 ® F and then acting on the tensor
product A*H,(F', S ;Fy) @ N H (F", S ;F,). Corollary 1.4 follows from this computation.
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