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ABSTRACT

Performance and efficiency of running modern Deep Neu-
ral Networks (DNNs) are heavily bounded by data move-
ment. To mitigate the data movement bottlenecks, recent
DNN inference accelerator designs widely adopt aggres-
sive compression techniques and sparse-skipping mecha-
nisms. These mechanisms avoid transferring or computing
with zero-valued weights or activations to save time and
energy. However, such sparse-skipping logic involves large
input buffers and irregular data access patterns, thus pre-
cluding many energy-efficient data reuse opportunities and
dataflows. In this work, we propose Cascading Structured
Pruning (CSP), a technique that preserves significantly more
data reuse opportunities for higher energy efficiency while
maintaining comparable performance relative to recent sparse
architectures such as SparTen. CSP includes the following
two components: At algorithm level, CSP-A induces a pre-
dictable sparsity pattern that allows for low-overhead com-
pression of weight data and sequential access to both acti-
vation and weight data. At architecture level, CSP-H lever-
ages CSP-A’s induced sparsity pattern with a novel dataflow
to access unique activation data only once, thus removing
the demand for large input buffers. Each CSP-H processing
element (PE) employs a novel accumulation buffer design
and a counter-based sparse-skipping mechanism to support
the dataflow with minimum controller overhead. We verify
our approach on several representative models. Our simu-
lated results show that CSP achieves on average 15× energy
efficiency improvement over SparTen with comparable or
superior speedup under most evaluations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISCA ’22, June 18–22, 2022, New York, NY, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527419

CCS CONCEPTS

• Computer systems organization → Single instruction, mul-

tiple data; Systolic arrays; Real-time system architecture.

KEYWORDS

MLAcceleration,Model Compression, Hardware/software co-design,

Low Power Microarchitecture

ACM Reference Format:

Edward Hanson, Shiyu Li, Hai ‘Helen’ Li, and Yiran Chen. 2022. Cascading

Structured Pruning: Enabling High Data Reuse for Sparse DNNAccelerators.

In The 49th Annual International Symposium on Computer Architecture (ISCA

’22), June 18–22, 2022, New York, NY, USA.ACM,NewYork, NY, USA, 14 pages.

https://doi.org/10.1145/3470496.3527419

1 INTRODUCTION

Deep Neural Networks (DNNs) are increasingly prevalent
due to their use on a wide range of applications. DNNs con-
sist primarily of two layer types—convolutional and fully-
connected—that have vastly different data movement-related
bottlenecks. Fully-connected layers are known for having
a large number of parameters, causing it to be weight-data
dominant.Meanwhile, convolutional layers reuse theweights
across feature maps. This sliding-window nature of convolu-
tional layers causes it to be activation-data dominant.
Many recent accelerators aim to solve the data move-

ment bottleneck using various approaches. Works such as
Cambricon-X [38] leverage weight sparsity by holding the
model in a compressed format, thus skipping ineffectual
weights. Other works [5, 37, 41] additionally induce weight
sparsity in a specialized manner that benefits the accelerator.
However, the induced weight sparsity of these approaches
only benefit regularity of the data and do not target the data
reuse opportunities across processing elements (PEs).

Another approach to reducing data movement is real-time
compression of activation data. As shown in Fig. 1, repeated
activation data accesses comprise the bulk of data movement
energy. These works, including SparTen [10], SCNN [28],
EIE [11], and Cnvlutin [2], target the inherent sparsity of fea-
ture maps induced by nonlinear layers such as ReLU. Unlike
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weights, the sparsity of activations are not known ahead of
time, so accelerators that target activation sparsity rely on
complex mechanisms such as content addressable memory
(CAM) to identify ineffectual activations. This procedure in-
creases complexity of the controller and limits options for effi-
cient dataflows. Additionally, large input buffers are required
to store and locate ineffectual activations, thus increasing
the footprint of the accelerator. For example, SparTen allo-
cates 0.97𝐾𝐵 per multiply-and-accumulate (MAC) unit while
Cambricon-S allocates 2.01𝐾𝐵 per MAC. The additional sav-
ings produced by skipping activation data may not be worth
these area and static power overheads. In fact, as shown
by ExTensor [16], improved performance of sparse tensor
processing does not necessarily come from the magnitude of
sparsity; rather, it comes from the sparsity pattern.
Motivated by these observations, we present Cascading

Structured Pruning (CSP). CSP is a collaborative approach
at the algorithm (CSP-A) and hardware levels (CSP-H). To
reduce the storage demands and data movement of weights,
CSP-A structurally prunes the weights. The key distinction of
CSP-A from previous approaches is that the induced weight
sparsity preserves the sequential access of activation data by
considering the temporal progression of the dataflow. Then,
CSP-H employs a novel dataflow to exploit the compressed
weight format and sequential activation data accesses to
eliminate redundant activation reads. Rather than skipping
ineffectual activations, CSP-H reduces activation data move-
ment energy by maximally reusing activation data across
its PEs and limiting the movement of partial sums to within
each PE. The main contributions of our work include:

• We introduce a novel structured pruning algorithm
called CSP-A. CSP-A removes subsequent weights that
correspond to the same coordinate of a tensor product
across timesteps of a dataflow. The resulting sparse
weight structure enables sequential access of the acti-
vation data.

• We propose the CSP-H accelerator. CSP-H leverages
the sparse weight structures induced by CSP-A with
two novel dataflows for one-time access of activation
data. The PEs of CSP-H employ a new accumulation
buffer to support the dataflowwith low controller com-
plexity.

• We analyze opportunities to further improve the area
and energy efficiency of the PEs via periodic partial
sum truncation. Results show that periodically trun-
cating the partial sums to lower bit-widths incurs neg-
ligible accuracy loss.

We verify our approach on various representative models,
including AlexNet [19], VGGNet [32], ResNet [13], Incep-
tion [34], and Transformer [35]. We then compare our design
to state-of-the-art accelerators, including Cambricon-S [41]

Figure 1: Data movement-related energy on ResNet-50.
(Top) Layer-wise. (Bottom) Unique vs. re-fetched data.

and SparTen [10]. Results show that CSP achieves on aver-
age 15× energy efficiency over SparTen while maintaining
comparable speedup under most evaluations.

2 BACKGROUND AND MOTIVATION

2.1 Sparse DNN Processing

Before discussing recent approaches to sparse tensor process-
ing, we first review key terminologies. The computationally
dominant layers of a DNN involve input feature map (IFM)
and filter tensors, where individual elements of IFMs and
filters are called activations and weights, respectively. Filters
and feature maps are comprised of kernels and channels, re-
spectively. The spatial position of each element in a kernel
or channel is called a pixel. In this work, we define a chunk to
be a collection of filters and a pass to be a single instance of
tensor mapping to the hardware. For example, if a PE array
pins the filters to the PEs (i.e. weight stationary), a single
pass concludes when all computations related to this set of
weights are complete. The primary operation of these layers
are matrix multiplications of the IFMs and filters to produce
output feature maps (OFM). Using a dense representation of
IFMs and tensors, accessing individual elements is straight-
forward because they can be stored sequentially in memory.
However, DNN filter tensors are known to be around 50−90%
sparse [16]; popular activation functions such as ReLU in-
troduces many zeroes into IFMs while filters often contain
many redundancies that are removed using popular pruning
methods [9, 12, 14, 15, 23]. To incur lower memory footprint
and less compute, the tensors can be stored and executed in
compressed formats such as Compressed Sparse Row (CSR)
or using bit-masks. No matter the chosen compressed format,
tensor compression introduces an additional structure that
preserves the location (i.e., coordinate) of non-zero values.
Sparse tensors can be exploited for speedup by remov-

ing ineffectual computations. In the context of computing
DNN matrix multiplications, ineffectual computations come
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from multiplications involving a zero-value activation, zero-
value weight, or both. As discussed in ExTensor [16], matrix
multiplications are computed by multiplying matching co-
ordinates between the unrolled IFMs and unrolled filters
matrices and summing the products at each output pixel.
Only products involving coordinates of nonzero elements
impact the final result – these tuples of effectual coordinates
are called intersections. We leverage the temporal progression
of dataflows by pushing intersections towards the beginning of
the chunk-wise computation, which we thoroughly discuss
in Section 3. Conversely all pruned coordinates are pushed
towards the latter portion of the computation, which allows
us to use an early stop mechanism, rather than a costly
sparse-skipping mechanism (Section 5).

2.2 Motivation

Although convolutional filters have a relatively lower num-
ber of weights, they incur a large amount of activation data
reuse, causing activation data movement to dominate en-
ergy cost. As shown in MAESTRO [21], the bulk of on-chip
and off-chip energy consumption comes from data move-
ment and large on-chip buffers (i.e. > 90%). In fact, most of
this energy cost comes from PEs re-fetching activation data
from on-chip and off-chip buffers, shown in Fig. 1. The large
on-chip buffer characteristic is especially true with 2-way,
unstructured sparse accelerators, such as Cambricon-S [41]
and SparTen [10], that rely on complex sparse-skipping logic
to search and squeeze all ineffectual activations stored in the
buffers. The unstructured sparse activation data targeted by
these accelerators leads to irregular access patterns of input
feature maps, which limits reuse opportunities across the par-
allel PEs. The underlying reason for these inefficient access
patterns is simple – although a given intersect of the sparse
computation is pruned, subsequent computations may still
involve the intersect, generating irregularity between subse-
quent passes. This motivates us to propose a new pruning
method called CSP-A. Under CSP-A, pruned intersections
pertaining to a specific activation are maintained for subse-
quent filters. Section 3 details the proposed algorithm.

3 CASCADING STRUCTURED PRUNING

In this section, we give the formulation as well as the in-
tuition of CSP-A. When processing a convolutional layer,
activation data is reused across spatial positions or across
filters. Because the structure of a kernel does not change
during inference, the coordinate of ineffectual weights re-
mains constant within a kernel. However, the same cannot
be said across filters; subsequent computation passes may
need to consider the aforementioned coordinate for the next
filters, which causes irregularity in activation data access.
Therefore, we design a novel pruning method that pushes
all pruned weights towards the later filters, thus preventing

M = c_in * k^2 # Define num. filter rows
arr_w = 4 # Define HW mapping param.
for(c=0; c<c_out; C+=arr_w) # Each cascade
for(r=0; r<M; r++) # Each filter row
if(l1_norm(W[r][c:-1]) < d[n]) # Pruning threshold
W[r][c:-1] = 0 # Prune cascade of sub-rows

Figure 2: Cascading Structured Pruning. Sub-row ex-
ample in yellow.

subsequent computation passes from needing to consider
coordinates that were pruned in the earlier filters.

3.1 Terminology

Now, we recall and define key notation used in this work.
Suppose a layer has 𝑐𝑜𝑢𝑡 filters. Each filter has 𝑐𝑖𝑛 channels
and kernel size of 𝑘2. Also, let 𝑀 represent the number of
elements in each filter, where 𝑀 = 𝑐𝑖𝑛 × 𝑘2. As shown in
Fig. 2, the weight tensor is flattened into a 2Dmatrix with the
shape of 𝑐𝑖𝑛𝑘

2 × 𝑐𝑜𝑢𝑡 = 𝑀 × 𝑐𝑜𝑢𝑡 . Each row spans 𝑐𝑜𝑢𝑡 filters
and represents the same location in each filter. The filters are
separated into N groups (called chunks) and the portion of
the filter row that corresponds to this group of filters is called
a sub-row. Lastly, we define cascade𝐶 〈𝑛〉 as the collection of
filters spanning chunk 𝑛 to the last chunk. Notice that the
weight tensor can be flattened across any of its dimensions
to produce a 2D matrix; we choose these specific dimensions
in this case study because they align with popular dataflows,
such as output stationary (OS) and weight stationary (WS).
This scheme also applies to fully-connected (FC) layers by
representing the tensor as 𝑀 = 𝑓𝑖𝑛 columns and 𝑓𝑜𝑢𝑡 rows.
All blackened squares in Fig. 2 represent pruned weights.
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3.2 Model Training

To achieve the desired sparsity structure, we utilize group
LASSO from structured sparsity learning [36] (SSL) at the
granularity of a cascade rather than individual chunks. Al-
though previous works apply group LASSO at various granu-
larity, our work is the first to apply group LASSO at overlap-
ping regions of the filter by considering the temporal aspect
of dataflow. The regularization term is defined as

𝑅(𝑊𝑙 ) = 𝜆
𝑁−1∑
𝑖=0

𝑀−1∑
𝑗=0

| | 𝑤 𝑗, [𝑖:𝑁 ] | |2, (1)

where𝑤 𝑗, [𝑖:𝑁 ] is the 𝑗-th row of the 𝑖-th cascade and 𝜆 is the
regularization strength.
Despite Equation 1 achieving the desired regularization

pattern in practice, it also heavily skews the regularization
term to penalize later filters. Take Fig. 3 for example. A filter
tensor containing four chunks will have four cascades. The
largest cascade, 𝐶0, will apply the regularization term to all
four chunks. The next largest cascade, 𝐶1, does the same
to the latter three chunks and so on. Therefore, the total
number of times that the regularization term is applied to a
filter tensor with 𝑁 chunks is equal to

𝑅𝑇 =
𝑁−1∑
𝑖=0

(𝑁 − 𝑖) =
𝑁 (𝑁 + 1)

2
. (2)

Here, the last chunk is affected by the regularization terms
for all cascades, thus over-penalizing the last chunk. With
this skewed regularization penalty, later filters are unfairly
penalized, thus risking accuracy degradation. Therefore, we
augment Equation 1 to scale the regularization strength of
each cascade. For a given cascade, we prefer smaller cascades
to penalize its chunks less (i.e., regularization term is scaled
to its length). Therefore, we set the numerator of the scaling
factor for the 𝑛-th chunk to be

𝑅𝐶𝑛 = 𝑁 − 𝑛. (3)

Incorporating the scaling factor to Equation 1, the updated
regularization function becomes

𝑅(𝑊𝑙 ) = 𝜆
𝑁−1∑
𝑖=0

𝑀−1∑
𝑗=0

( | | 𝑤 𝑗, [𝑖:𝑁 ] | |2 ×
𝑅𝐶𝑖

𝑅𝑇
). (4)

4
3
2
1

sum = 4(4+1)
2

Row of Unrolled Filter Tensor
Highest penaltyLowest penalty

Figure 3: Over-regularization penalty on later chunks.

Pruning and Fine-tuning.Once trainedwith the regular-
ization term, the model is ready to be pruned to exhibit CSP
sparsity characteristic. Motivated by SSL, we prune based
on the 𝐿1 norm of the 𝐿2 norm using standard deviation.
Specifically, we set

𝛿𝑛 = 𝑆𝑇𝐷 (𝑤 [0:𝑀−1], [𝑛:(𝑛+1) ] ) × 𝑞, (5)

where 𝑞 is a hyper-parameter for tuning the pruning thresh-
old. Pseudo-code for CSP-A pruning is shown in Fig. 2. Once
pruned, the model is then fine-tuned to regain accuracy loss.
The overhead of fine-tuning process is 20-50% of a stan-
dard training process, e.g., 100 epochs for CIFAR10 and 50
epochs for ImageNet. This overhead is reasonable for the
target workload because models only need to be trained once
before being employed for inference tasks indefinitely.

3.3 Compressed Representation

Once the filter tensors exhibit CSP sparsity behavior, they
can be compressed in a way that enables sequential access
of both activation and weight data in a fashion similar to
CSR, but while removing indirect addressing resulting from
CSR’s row and column pointers. Instead of using an array of
pointers, we can simply record the number of chunks within
each filter row within a chunk counts array. The weight ma-
trix can then be stacked such that consecutive unpruned
chunks of a filter row are grouped. Because the resulting
representation interleaves chunks within each filter row, we
call this compressed format weaved compression. This format
allows us to design a simple early stop mechanism rather
than a complex sparsity skipping mechanism in hardware.
This format can then be extended to logically group multiple

non-zero filter rows (𝑇 of them) to support different feeding
patterns in the dataflow (detailed in Sections 5.3 and 5.4).
Fig. 4 depicts the resulting compressed format of the work-
ing example in Fig. 2 with two example filter row grouping,
T=1 and T=2.

. . . . . .

T=1 T=2

2,0,1,4,3,...,1
Chunk Counts

Filter 
row  
idx.: 0

0
2
3
3
3
3
4
4
4

M-1

0
2
0
3
4
3
4
3
4
3

M-1

Figure 4: Weaved Compressed Format.
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4 DESIRED BEHAVIOR

CSP-A conceptually shrinks the unfolded filter tensor across
subsequent passes. Fig. 5(a) displays this behavior using a
weight-stationary (WS) PE array. All activations that are fed
into the PE array’s rows are propagated until it encounters a
pruned weight. Once this happens, the activation data is no
longer needed by subsequent PEs, illustrated with the red
‘X’. Conversely, all previous PEs are guaranteed to require
the activation. This scheme constrains the pruning behavior
to enable a sequential activation data feeding pattern.

From the above example, it is clear that CSP significantly
reduces control complexity of a sparse accelerator by pro-
viding a useful constraint to the sparsity structure. In other
words, we can now exploit weight sparsity using an early

stop mechanism rather than a sparse-skipping one. How-
ever, it is equally important to identify a suitable parallelized
compute scheme to maximally leverage CSP’s reduced com-
plexity to improve accelerator performance and efficiency.
As an exercise, we present the Leader-Follower pipeline,
illustrated in Fig. 5(a). Here, the leader PE array processes
a pass of activation data on the earliest chunk of the filter
tensor. Each PE row corresponds to a filter row, which is
distinguished by the varying shades of red in the figure for
the first batch of filter rows. The leader array then propa-
gates its activations to the follower array, thus improving the
activation data reuse by up to the width of the array (𝑎𝑟𝑟𝑤).
Upon encountering a pruned sub-row, the follower array
must fetch activations for the next filter row. Although this
scheme enables pipelining of PE array structures, it suffers
from two major issues. (1) Bandwidth demand of the global
activation buffer scales linearly with the number of pipelined
PE arrays. (2) Without adequate reorganization of the filter
rows, PE stalls (depicted by PEs marked with ‘ST’) are almost
guaranteed due to the load difference across the arrays.
Next, we present the Serial Cascading PE array, illus-

trated in Fig. 5(b). Here, the PE array interleaves computa-
tion for all chunks using an output stationary (OS) dataflow.
For visual simplicity, we align all weights and activations
in the figure, although a real implementation may stagger
the inputs. Each PE holds all partial sums corresponding to
its filter column within each chunk while individual input
activations are held within each PE and continually reused
until the first pruned chunk is reached. Although this for-
mat cannot benefit from inter-PE-array pipelining like the
Follower-Leader configuration, it is stall-free and enables
one-time activation read without moving the partial sums
between the PEs. In the next section, we detail the microar-
chitecture to implement the Serial Cascading PE array.

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 0

4 4 4 4

2 2 2 2

3 3 3 3

ST ST ST ST

ST ST ST ST

ST ST ST ST

3 3 3 3

5 5 5 5

6 6 6 6

2 2 2 2

3 3 3 3

G
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l A
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Figure 5: Example CSP-enabled parallel architectures.
(a) Leader-Follower. (b) Serial Cascading.

5 CASCADING MICROARCHITECTURE

In this section, we detail the implementation of CSP-H. CSP-
H employs the Serial Cascading behavior discussed in Sec-
tion 4. First, we discuss a novel accumulation buffer com-
posed of circular register bins; this structure holds partial
sums for all chunks of a filter row in an output-stationary
manner, which is crucial to supporting Serial Cascading.
Next, we explore several register bin optimizations and de-
tail the implementation of a PE. Lastly, we tie the target
behavior and PE design together with two new dataflows
called Input pseudo-Output/-Weight Stationary (IpOS and
IpWS, respectively).

5.1 Circular Register Bins

As defined in Section 4, we aim to maximally reuse input acti-
vations across all chunks. Using conventional dataflows, only
one chunk of output channels (i.e., filters) can be mapped
onto the PE array at a time. To support multi-chunkmapping,
we expand the partial sum accumulation register within each
PE. The most straightforward implementation would be to
simply add more accumulation registers with a mechanism
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Figure 6: CSP-H, PE, and RegBin microarchitecture.

to arbitrarily select among them (i.e., MUX). However, com-
plexity of MUXes does not scale well. Coupled with the fact
that read-modify-write (RMW) of partial sums is on the crit-
ical path of single-cycle MAC operations, depending on a
high-latency arbitrary switching mechanism would degrade
performance of a PE. Instead, we require a scalable solution
that would support as many concurrent chunks as possible
without impacting PE performance.

Expanded Accumulation Buffer. Notice from Fig. 5(b)
that the the defined chunk-wisemapping is sequential, which
reflects the access pattern for each accumulation register. We
leverage this sequential RMW access pattern by implement-
ing a circular accumulation buffer. As the MACs for each
chunk are processed, partial sums are propagated through
the circular buffer and only the head of the buffer needs to
be accessed for accumulation. In order to support arbitrary
length pruned filter rows, the circular buffer needs to be
separated into segments called register bins (RegBin).

Fig. 6 depicts the overall accelerator, accumulation buffer,
and RegBin microarchitecture. Individual RegBins are im-
plemented as circular buffers that only propagate partial
sums upon receiving an enable signal and encountering a
requested chunk size greater than a specified threshold. FSM-
based control logic iterates the current chunk index to enable
specific RegBins for RMW. Each RegBin must be sized accord-
ingly to support stall-free computation. Consider Fig. 7. Here,
the highlighted registers are the ones accessed for one MAC
operation while red arrows signify a rotate of the RegBin. If
the chunk size for a given cascade only reaches the head of a
RegBin (i.e., cycle 1), the partial sum data present at the head
can be directly accessed without triggering the rotate logic
of the RegBin; this saves energy related to switching power
by avoiding needlessly propagating data through the RegBin.
However, in the worst case, the chunk size of the cascade
reaches only the second register in the RegBin (i.e., cycle 4).
In this case, the RegBin must complete a full rotation on-time
before computations of the next filter row require partial
sum data from that RegBin (i.e., cycle 7). As a result, we
size consecutive RegBins exponentially. Specifically, given a
RegBin 𝑅𝐵𝑏 , 𝑏 ∈ N0, we determine its length as

𝑙𝑒𝑛(𝑅𝐵𝑏) = 2𝑏+1. (6)

In total, the proposed accumulation buffer contains five Reg-
Bins, allowing it to span 2 + 22 + 23 + 24 + 25 = 62 chunks.
Assuming an array width of 𝑎𝑟𝑟𝑤 = 32, this is equivalent to
supporting up to 1,984 concurrent filters. Most modern DNN
layers contain at most 1,024 filters, so the proposed design
comfortably supports the common case.
Internal to each RegBin is counter-based FSM that lever-

ages the sequential access patterns to minimize complexity.
A decrementing counter is preset once the FSM receives
𝑐ℎ𝑢𝑛𝑘 𝑐𝑜𝑢𝑛𝑡 > 𝑟𝑜𝑡_𝑡𝑟𝑒𝑠ℎ, where the rotate threshold for a
given RegBin 𝑏 is specified by

𝑟𝑜𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑏 =

{
0 if 𝑏 = 0

2𝑏+1 if 𝑏 ≥ 1
. (7)

While the value of the counter is nonzero, the RegBin con-
tinues to circulate, even when the RegBin is not selected
by the accumulation buffer for RMW; this allows the Reg-
Bin to reset on-time while waiting for the next filter row. If
the RegBin is enabled and rotating, the RMW changes to a
read-modify-shift (RMS), where the last register is directly
written to during the circular shift, thus maintaining correct-
ness without adding another stage to the RMW operation.

Flushing Accumulation Buffer. Now that we have cov-
ered the loading and compute mechanisms of the accumula-
tion buffer, it is equally important to discuss the offloading

mechanism. Efficiently offloading the accumulated activa-
tions is important to minimize the stall between passes. In
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Figure 7: Running example of circular RegBin stall-free access.

a conventional PE array architecture, the accumulated ac-
tivations are propagated between PEs towards the global
buffer designated to hold the outputs; this is easy because
at most one output is held within each PE, thus limiting the
bandwidth requirement of the global buffer to the dimen-
sion of the PE array. In contrast, the proposed expanded
accumulation buffer may store up to 62 output activations
per PE. One direct approach to flushing these buffers is to
place all entries onto a wide bus, thus maintaining the sin-
gle cycle flush of the conventional architecture. However,
the bandwidth demand of the output global buffer would
increase by 62×, which would severely limit the scalability
of the PE array. On the other extreme, we could take a true
serial approach and flush the accumulation buffers one entry
at a time; but, this could stall the next pass by a number of
cycles equal to the size of the largest dirty RegBin. Instead,
we avoid both of these penalties through again leveraging
the sequential RMW access pattern by serially flushing all
𝐵 RegBins at the same time. In other words, each RegBin
flushes its outputs serially, so the flush output of a RegBin
is only 8-bit. All RegBins flush at the same time with a total
drain bus bandwidth of (8 × 𝐵)-bit. RegBins with the same
ID (e.g., 𝑏 = 0, 1, ...) in subsequent PEs buffer the outputs of
the previous PE while simultaneously draining its own. Here,
the flushing procedure would only incur a two cycle penalty
(i.e., equal to the size of the first RegBin) while allowing the
next pass’ computation to overlap with the flushing.

5.2 Register Bin Optimizations

The proposed circular RegBins enable efficient activation
and partial sum reuse, but are prone to significantly increas-
ing area and power consumption within each PE. Although
state-of-the-art edge DNN accelerators are able to leverage
8-bit input activation and weight quantization, partial sums
still require significantly higher precision to maintain high
accuracy. As discussed Sze et al. [33], the required precision
for partial sums is typically 26 − 32 bits for popular DNNs.
This precision requirement significantly increases the area
and power consumption of the register-based accumulation

buffer and necessitates some hardware-algorithm optimiza-
tions.
Periodic Partial Sum Truncation. Truncating the par-

tial sums will significantly reduce the size of the accumu-
lation buffer, thus reducing area and power cost. However,
naïvely reducing partial sum precision may incur signifi-
cant accumulation error and degrade model accuracy. To
address this we introduce an Intermediate Partial Sum Regis-

ter (IR) between the MAC unit and RegBin, shown in Fig. 6.
In conjunction, we design two new dataflows (discussed in
Section 5.3 and 5.4) so that each chunk can accumulate up to
𝑇 MACs at full precision prior to truncating the partial sum.
Here, 𝑇 is the number of filter rows concurrently processed
by the accelerator and grouped by weaved compression, and
is typically set to𝑇 = 𝑎𝑟𝑟𝑤 to align with the PE array dimen-
sions. This approach recovers almost all accuracy loss from

partial sum truncation while significantly reducing area and

power cost of each PE. Section 7.2 details this accuracy-power
trade-off.

Lower Switching Activity. By introducing the interme-
diate partial sum buffer, the circular RegBins are now given
ample time to propagate partial sums in between chunks.
Rather than using additional time to further scale the RegBins
beyond the limit set by Equation 6, we maintain the current
configuration and allow the controller FSMs to update once
every 𝑇 cycles. This significantly reduces switching activity,
thus reducing dynamic power.

Clock Gating. Lastly, we apply a simple yet effective tech-
nique to further reduce power of the accumulation buffer.
Most filter rows of each layer do not require accessing the
costly 𝑅𝐵4 due to the high chunk pruning rate. In fact, later
RegBins are accessed at a lower rate due because CSP-A
penalizes the later non-zero chunks more. Due to the ex-
ponential scaling of the RegBins, 𝑅𝐵4 consumes almost as
much power as the previous RegBins combined. Thus, we
can further improve power efficiency by applying clock gat-

ing to unused RegBins at a per-pass granularity. The power
efficiency is further improved using this technique under
higher CSP sparsity rates. We discuss results on RegBin ac-
cess frequencies in Section 7.6.
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a b

for(a=0; a<(OFM_h*OFM_w/arr_h); a++) # Each group of OFM coords.
for(Tr=0; Tr<(M/T); Tr++) # Each grouped T filter rows
chunks = max(chunk_cnts[Tr*T:(Tr+1)*T]) # Total non-zero chunks in Tr
for(n=0; n<chunks; n++) # Each non-zero chunk
# ---- Parallelized by PE array ---- #
for_all(w=0; w<arr_w; w++) # Each PE array col
for_all(h=0; h<arr_h; h++) # Each PE array row
for(sr=0; sr<T; sr++) # Each sub-row
if(w[n*N+w, Tr*T+sr]==0) # Skip pruned sub-rows
continue

# OFM has shape [c_out, (OFM_h*OFM_w)]
# w has shape [c_out, M]
# IFM unrolled to shape [OFM_h*OFM_w, c_l*k*k]
OFM[n*N+w, a*arr_h+h] += w[n*N+w, Tr*T+sr] \

* IFM[a*arr_h+h, Tr*T+sr]

for(a=0; a<(f_in/(arr_h*T)); a++) # Each group of in_features
for(Tr=0; Tr<T; Tr++) # Each grouped T filter rows
po = a*arr_h*T+Tr*T
chunks = max(chunk_cnts[po:(po+1)*T]) # Total non-zero chunks in Tr
for(n=0; n<chunks; n++) # Each non-zero chunk
for(t=0; t<T; t++) # Each psum set before truncation
po2 = a*arr_h*T+t*T
# ---- Parallelized by PE array ----#
for_all(w=0; w<arr_w; w++) # Each PE array col
for_all(sr=0; sr<arr_h; sr++) # Each sub-row
# OFM has shape [f_out]
# w has shape [f_out, f_in]
# IFM has to shape [f_in]
OFM[n*N+w] += w[n*N+w, po2+sr] * IFM[po2+sr]

accumulate_psums() # Accumulate psums within cols

Figure 8: (a) Input pseudo-Output Stationary Dataflow. (b) Input pseudo-Weight Stationary Dataflow.

5.3 Dataflow: Input pseudo-Output Stationary

The combination of the Serial Cascading behavior and Inter-

mediate Partial Sum Truncation informs the design of a new
dataflow called Input pseudo-Output Stationary (IpOS). One
computation loop of IpOS is illustrated in Fig. 8(a). Fig. 8 as-
sumes the same sparsity pattern as Fig. 2 and each time step
shows an explicit mapping between the yellow-highlighted
filter elements and the input features. For the first 𝑇 cycles
of a group of filter rows (i.e., 𝑇𝑟 ), activation and weight data
are fed into the PE array under the standard OS dataflow.
After 𝑇 cycles, partial sums are truncated and stored in the
RegBins. The PE FSMs are then updated to prepare for the
next chunk (i.e., ‘RB Step’). Meanwhile,𝑇 −|𝑃𝑇𝑟,𝑛 | activations
are recycled within their respective rows. Here, we consider
|𝑃𝑇𝑟,𝑛 | to be the number of subrows skipped during the 𝑛-th
chunk of the 𝑇𝑟 -th group of filter rows. Because of the se-
quential access of activation data, the global controller can
decrement the 𝑐ℎ𝑢𝑛𝑘 𝑐𝑜𝑢𝑛𝑡 for each filter row to determine
which PE to recycle activation data from. After 𝑇 − |𝑃𝑇𝑟,𝑛 |
cycles, partial sums of the next chunk are computed, and the
process repeats until this set of partial sums of all chunks are
computed. Specifically, this process of recycling activation
data continues until the number of non-zero chunks, signi-
fied by 𝑐ℎ𝑢𝑛𝑘 𝑐𝑜𝑢𝑛𝑡 , for all 𝑇 filters rows is reached. Upon
reaching 𝑐ℎ𝑢𝑛𝑘 𝑐𝑜𝑢𝑛𝑡 , RegBin counters restart to operate on
𝑅𝐵0 in preparation for the next set of 𝑇 filter rows (i.e., ‘RB
Restart’). Once all filter rows are processed, this concludes
one iteration of IpOS. Each iteration targets distinct pixels
of the OFM, similar to the conventional OS dataflow, and all
iterations are sequentially computed for a layer.

5.4 Dataflow: Input pseudo-Weight Stationary

For any DNN layer that is efficiently supported, IpOS is the
preferred dataflow because utilization of all PEs is not af-
fected by the differences in sparsity across the sub-rows.
However, not all layer types can be efficiently mapped onto
an OS-like dataflow. An example are fully-connected (FC) lay-
ers, which make up the majority of computations in popular
DNNs like the Transformer [35]. FC layers have no concept
of spatial dimension, which would reduce the utilization of
the PE array using IpOS dataflow to only a single row. This
issue can be avoided by unrolling the filters directly onto the
PEs under a WS-like dataflow. Enter the Input pseudo-Weight

Stationary (IpWS) dataflow, illustrated in Fig. 8(b). Unlike
IpOS, IpWS requires the weights to be unicasted to the PEs.
Although this procedure has a larger bandwidth requirement
for the filter GLB, we can coalesce the memory accesses to
avoid introducing additional ports to the GLB; this can be
done by reordering the weights in memory ahead of time.
The rest of the dataflow is similar to IpOS with some key
differences. Each iteration is now equivalent to the number
of input channels divided by the product of 𝑎𝑟𝑟ℎ and 𝑇 . An-
other key difference is that we must include another step,
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒_𝑝𝑠𝑢𝑚𝑠 (), to ensure that the minimum number
of accumulations between each partial sum truncation is met.
This can be done by accumulating alternating rows of partial
sums within each column, introducing a single cycle delay
between each set of 𝑇 sub-rows. The last difference is that
IpWS has the potential to suffer from PE under-utilization
similar to the Leader-Follower pipeline shown in Section 4.
To minimize this underutilization, we greedily reorder the
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filter rows from least to most sparse; this increases the likeli-
hood that sub-rows for each chunk share the same sparsity.

6 EVALUATION METHODOLOGY

To evaluate CSP, we analyze the impact of its components,
CSP-A and CSP-H, both separately and combined. Firstly, we
validate CSP-A’s impact on model performance and sparsity.
Then, we analyze the optimal truncation period for negligible
accuracy degradation; this informs the appropriate values
for both 𝑎𝑟𝑟𝑤 and 𝑇 . Then, we compare CSP-H to recent
relevant works and investigate our key sources of energy
savings.

6.1 Model Performance Validation

To validate CSP-A’s impact on model performance and spar-
sity, several representative models and datasets are selected
to span a wide range of DNN layer types and complex-
ity. Specifically, the selected models are AlexNet [19], VG-
GNet [32], ResNet [13], Inception [34], and Transformer [35].
AlexNet is a classic Convolutional Neural Network (CNN)
that incorporates a large kernel size, 11 × 11, for the first
layer. VGGNet is another classic CNN with repeating, small
3 × 3 convolutional kernels. ResNet is most known for its
bottleneck layers and residual connections, which are layers
consisting of 1×1 kernels that connect nonconsecutive layers.
Inception is the most complex model of the chosen CNNs;
it employs branches, aggressive residual connections, and
various kernel shapes. The Transformer employs a collection
of multi-headed attention and feed-forward layers, which
can be conceptualized as FC layers. In terms of datasets, we
choose CIFAR-10 [18], ImageNet [7], and WMT‘16 German
to English Translation. While image classification is scored
using the percentage of correct classifications, translation
quality is scored using BLEU [26], which measures the sim-
ilarity between machine-translated text to a set of verified
translations.
The selected CNN models are trained using Stochastic

Gradient Descent (SGD), nesterov momentum of 0.9, initial
learning rate of 0.1, and with cosine annealing. CIFAR-10
models are trained from scratch for 200 epochs with reg-
ularization strength of 0.01 and 0.0005 weight decay. The
models are then pruned with a pruning threshold multiplier
of 𝑞 = 0.75 and fine-tuned for 100 epochs. On ImageNet, we
use a pretrained model and retrain with regularization for 60
epochs with regularization strength of 0.0001, and using the
ADAM optimizer. Fine-tuning phase lasts for 50 epochs. All
other hyper-parameters are consistent with CIFAR-10. On
WMT, the Transformer is trained from scratch with the same
hyper-parameters from the original paper [35], regulariza-
tion strength of 1, and for 400 epochs; it is then fine-tuned
for 100 epochs. The chunk size used for CSP-A regularization
and pruning is set to 32 for all models.

6.2 Architecture Modelling and Comparison

Baseline Accelerators. DNN inference acceleration is a
well-studied area and encompasses a rich diversity of ap-
proaches. For this reason, we select several accelerators that
target efficient DNN inference from different angles. Dian-
Nao [3] is one of the earliest inference accelerators that
leverages 3-level memory and targets the dominant MAC op-
eration for high temporal data reuse and low complexity. It
targets dense networks and is therefore a good baseline to ob-
serve the impact of sparsity-aware approaches. Cambricon-
X [38] holds sparse CNNweights in a compressed format and
applies efficient indexing to reduce activation datamovement
cost and allowing it to operate as a 1-way sparse acceler-
ator. SparTen [10] implements 2-way compressed format
using bit-masks in addition to employing offline and on-
line load balancing schemes for improved utilization and
lower data movement with significantly lower compute cy-
cles. Cambricon-S [41] combines structured pruning, local
quantization, and 1-way sparse computation skipping, mak-
ing it a strong candidate to compare against our structured
sparse approach. Each of these works have a common goal
of accelerating DNN inference, which places end-to-end la-
tency and energy efficiency as first-class priorities in our
main analysis.
Architecture Modelling. All accelerators are modeled

using cycle-accurate simulation to obtain cycle count and
data movement traces on CSP-A-trained models. To sim-
ulate CSP-H, we modify SCALE-Sim [30] and implement
the IpOS and IpWS dataflows, PE architecture, and weaved
compressed format. Specifically, after training the models
using CSP-A, we export the filters and feature maps of each
layer, and apply weaved compression to the weights. The
layer-wise data are then fed into the modified simulator to
obtain cycle-accurate measurements. For DianNao, we use
the Timeloop [27] simulator. Because this work does not
target unstructured sparsity, we structurally prune entire
ineffectual filters from the models to enhance their baseline
results without modifying their implementation. Cambricon-
X, Cambricon-S and SparTen do not have open-source simu-
lation tool that we can leverage. Instead, we closely follow
the designs discussed in these works to implement in-house

Table 1: Hardware Parameters.

Accelerator Off-Chip Mem. Global Mem. (pJ) Number PEs Mem./PE MACs/PE B/MAC

DianNao NB: 36 KB (1.51 rd) 64 2 KB 16 0.195 KB

SB: 36 KB (2.98 wt)

Cambricon-X NBin: 36 KB (1.51 rd) 64 2 KB 16 0.195 KB

NBout: 36 KB (2.98 wt)

SparTen DDR3 N/A 1024 0.76 KB 1 0.778 KB

1 GB NBin: 32 KB (1.44 rd)

Cambricon-S 64-bit bus NBout: 32 KB (2.64 wt) 64 32 KB 16 2.070 KB

800 MHz SIB: 8 KB (1.01 rd)

Per-Byte Energy: InAct: 2 KB (0.84 rd) A&W: 2 B

Ours 766 pJ rd Wgt: 50 KB (1.76 rd) 1024 IR: 4 B 1 0.137 KB

780 pJ wt OutAct: 20 KB (2.83 wt) Accum.: 62 B
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simulators. Lastly, because Cambricon-S is a cooperative
algorithm-architecture approach, all models are re-trained
using Cambricon-S’ method. Performance and power con-
sumption are scaled to match the PE count and global mem-
ory constraints presented in TABLE 1.
TABLE 1 presents the configurations for all accelerators

used in this work. Two important parameters that directly
influence computation throughput and data movement are
MAC unit count and global buffer size. Therefore, for
fair comparison, we constrain all accelerators to use 1024
parallel MAC units and 72 𝐾𝐵 of global buffer space. Note
that local buffers (i.e., exclusive to each PE) are tied to the
specific architecture, so modifying this value may unfairly
disadvantage the baselines. Instead, we compare the ratio
of total buffer-per-MAC and consider it in our overall
analysis. Less buffering per MAC is more area- and memory-
efficient.

All accelerators are scaled to a clock frequency of 300𝑀𝐻𝑧,
65 𝑛𝑚 technology node, and 8-bit computation for compara-
bility. CSP-H is synthesized for area and power estimation
using Synopsys Design Compiler and TSMC 65 𝑛𝑚 library.
Clock gating is implemented via latches and is included in the
synthesized results. For high fidelity dynamic power estima-
tion of our work, we simulate a sample workload inModelSim
and extract the switching activity (.saif) file. Because repli-
cating this method for all baseline accelerators would require
significant engineering effort, we instead conservatively esti-
mate dynamic power of baseline accelerators with a per-MAC
consumption of 0.081 pJ; this is extracted by synthesizing a
MAC unit and averaging its dynamic power. Global buffers
and off-chip memory are modelled using CACTI as SRAM
and DRAM, respectively. Global and off-chip memory energy
is computed by multiplying the number of accesses by the
unit-energy cost of reads or writes. TABLE 1 reports the per-
Byte access energy of each memory module. On-chip leakage
power of the memory is also considered, but off-chip leakage
power is not considered because it may be shared by other
system components. Lastly, energy efficiency is computed
as the number of inferences per unit energy.

7 RESULTS

7.1 CSP-A Evaluation

Accuracy and parameter sparsity of all trained models are
shown in TABLE 2. Here, ‘Base Acc.’ refers to the accuracy
of the pretrained model; meanwhile, ‘Final Acc.’ is the final
model accuracy after pruning and fine-tuning. Also, ‘Param.
Spar.’ refers to the percentage of zero-valued weights of the
targeted layers. To separate the efficacy of our algorithm
and architecture on convolutional and FC layers, we target
only the convolutional layers for the CNN models and the
FC layers for the Transformer. On CIFAR-10, we achieved

Table 2: Model accuracy and sparsity of CSP-A.

Dataset Model Method
Base Acc. Final Acc. Δ𝐴𝑐𝑐. Param. Spar.

(%/BLEU) (%/BLEU) (%/BLEU) (%)

CIFAR-10 VGG-16 [41] 92.08 93.41 +1.33 87.5

Ours 92.08 92.39 +0.31 87.58

ResNet-50 [41] 93.57 94.34 +0.77 73.66

Ours 93.57 93.54 -0.03 73.91

InceptionV3 [41] 93.79 93.93 +0.14 93.76

Ours 93.79 93.75 -0.04 95.56

ImageNet AlexNet [36] 57.37 57.47 +0.10 33.38

[41] 56.55 56.84 -0.29 74.79

Ours 56.55 56.72 +0.17 49.02

VGG-16 [41] 71.59 71.27 -0.32 64.45

Ours 71.59 71.24 -0.35 73.72

WMT‘16 Transformer [4] 28.09 27.65 -0.44 30.00

(DE-EN) [36] 25.61 21.38 -4.23 72.67

[41] 25.61 23.64 -1.97 54.68

l2-reg-flat 25.61 23.26 -0.35 72.46

Ours-8 25.61 29.37 +3.76 79.48

Ours-16 25.61 35.91 +10.30 83.00

Ours-32 25.61 35.28 +9.67 84.39

Ours-64 25.61 25.55 -0.06 82.35

Ours-128 25.61 30.12 +4.51 55.87

over 70% parameter sparsity on all models with accuracy
loss under 0.05%. InceptionV3 is able to be pruned particu-
larly well (over 95% sparsity). Cambricon-S’ pruning method
achieves higher accuracy with similar sparsity on CIFAR-10
models because it applies pruning at a finer granularity than
CSP-A. On ImageNet, we achieved a lower sparsity of at least
49% while keeping accuracy degradation to below 0.5%. The
lower sparsity here is attributed to the increased complexity
of the ImageNet dataset. Lastly, our method is able to pro-
duce impressive results on the Transformer, with a sparsity
of 84% and improvement to the BLEU score by 9.6, an im-
provement of about 38%. In comparison, transformers.zip [4],
a method that relies on iterative magnitude pruning, is only
able to prune 30% with negligible accuracy loss because it
does not utilize parameter regularization during training. To
better understand the source of this performance improve-
ment, we include additional results using SSL [36] across the
output-channel dimension, unstructured 𝐿2 regularization,
and CSP-A with varying chunk size, all with similar spar-
sity strength and pruning threshold. As shown in TABLE 2,
SSL across the output-channel dimension (which is equiva-
lent to CSP-A with chunk size set to the number of output
channels) significantly degrades the BLEU score with com-
parable sparsity to Ours. Simply applying 𝐿2 regularization
for unstructured sparsity gives significantly less accuracy
degradation. Meanwhile, BLEU score gains from varying the
chunk size parameter between 8 to 128 (i.e., Ours-8 to Ours-
128 in the table) suggests that the ‘sweet spot’ for pruning
the models attention heads across the attention heads dimen-
sion is related to the key dimension, 𝑑𝐾 = 64. When setting
the chunk size to 𝑑𝐾 , entire sub-rows of heads are pruned.
These results suggest that there is an interaction between
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Figure 9: Periodic Partial Sum Truncation. ‘D’:dense,
‘S’:sparse, followed by precision of the RegBins.

the pruning granularity and the key dimension of the multi-
headed attention layers, where enforcing CSP-A sparsity
behavior can influence the performance of the attention.

7.2 Periodic Truncation

Whenever a microarchitectural change induces error in com-
putation, it is important to carefully examine and tune the
magnitude of accuracy loss. By truncating the partial sum
registers, we introduce a energy-accuracy trade-off. Fig. 9
illustrates the accuracy curve while Fig. 12 illustrates the
energy consumed by the PE array for the different partial
sum register configurations. Accuracy loss is normalized to
the full-precision scenario and is computed on ResNet-50.
As expected, directly reducing RegBin precision from 30- to
8-bit (i.e., 𝑇 = 1) greatly reduces energy consumption of the
PE (i.e., roughly 2.8×), but induces a significant accuracy
loss of 28%. By incorporating an IR to increase the period in
which partial sums are truncated, we can recover most of
the accuracy loss while simultaneously reducing energy con-
sumption of the RegBins. Assuming a truncation period of
32 (which corresponds to𝑇 = 𝑎𝑟𝑟𝑤 ), accuracy loss is reduced
to 0.21%. Also, by reducing the frequency that RegBins are
accessed, overall PE power is reduced by 5.3×.

Now, we discuss the minimum truncation period for neg-
ligible accuracy loss. At a truncation period of 𝑇 = 1, it is
assumed that the IR is completely bypassed and RegBins are
directly accessed each cycle. Accuracy loss is normalized to
the 30-bit precision scenario. As shown in this figure, accu-
racy loss quickly drops as truncation period increases. At
the nominal truncation period of 32, accuracy loss is reduced
to 0.21%. We can further decrease the accuracy loss by in-
creasing truncation period. However, raising the truncation
period to larger than 𝑎𝑟𝑟𝑤 will require buffering of the addi-
tional activation data to maintain IpOS or IpWS dataflows.
Instead, by introducing one additional activation buffer for
each PE, accuracy loss can be further decreased to 0.03%
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Figure 10: Overall Results. *Uses separately trained
model.

at the cost of slightly increased area and complexity. Ac-
curacy loss can also be mitigated by incorporating partial
sum truncation inside the model training loop. Because the
current accuracy loss is negligible (i.e., 0.03%), we leave this
algorithmic approach for future work.

7.3 Accelerator Performance

Using the observations from Section 7.2, we choose 𝑎𝑟𝑟𝑤 =
32 with two activation input registers for a truncation period
of 𝑇 = 64. Overall results of the experiment are shown in
Fig. 10. This figure displays the energy efficiency and speedup
of all accelerators on the evaluated models, normalized to
DianNao. We also include results of SparTen assuming dense
execution as an additional baseline. On amajority of the mod-
els, CSP-H significantly improves overall energy efficiency
over all baselines. Overall improvement on Transformer is
lower because its FC layers tend to be weight data domi-
nant rather than activation data dominant. Regardless of
the number of activation data re-fetches avoided, all designs
must incur the cost of reading the Transformer’s large num-
ber of weights. By minimizing partial sum and activation
data movement with the proposed IpOS and IpWS dataflows,
CSP-H achieves an average 7.7× and 15× improvement in
energy efficiency compared to Cambricon-X and SparTen,
respectively, and on average 5× improvement compared to
Cambricon-S. CSP-H guarantees one-time activation data
access and limits partial sum movement to within its PEs;
CSP-H also reuses activation data across all PEs and does not
rely on large input buffers, thus improving overall energy
efficiency. In contrast, SparTen’s clusters are specifically de-
signed to work independently and operate on unique slices
of the output map; this results in each of the (32) clusters
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Figure 11: Energy Breakdown and Data Traffic.

redundantly accessing overlapped data from the input maps,
which eclipses SparTen’s nominal 50% activation movement
savings achieved by compression.

In terms of speedup, CSP-H delivers comparable or supe-
rior performance to most of the state-of-the-art baselines,
but has slowdowns of 1.4× compared to SparTen. SparTen
achieves this speedup by emphasizing load balance within
its independent clusters while skipping all ineffectual com-
putations from zero-valued inputs and weights. CSP-H, on
the other hand, only skips computations with zero-valued
weights and relies on a simple greedy load-balancing scheme
for its IpWS dataflow. Despite being 1.4× slower than SparTen,
CSP-H experiences a 15× energy efficiency benefit. Because
CSP’s primary goal is to tackle energy inefficiency by re-
moving redundant data accesses, we find the trade-off to
be significantly in our favor. Additionally, the huge gap
in 𝐵𝑢𝑓 𝑓 𝑒𝑟/𝑀𝐴𝐶 (shown in TABLE 1) between CSP-H and
SparTen shows that we have extra budget to potentially hold
more activation data by increasing the size of the activation
GLB. Future works can exploit this extra capacity budget by
pre-fetching more activation data and employing a sparse
activation skipping mechanism on top of CSP-A to bridge
the performance gap.

7.4 Activation Re-Fetch Energy Comparison

To further highlight the key sources of energy consumption
for each of the accelerators, we isolate the energy consumed
by refetching activation data (i.e., IFM RR) during a single
VGG-16 inference in Fig. 11. Because DianNao does not com-
press the filter tensors, all activation data must be re-fetched
for consecutive intersections in the convolution operation,
leading to over 65% off-chip re-fetch energy. SparTen’s inabil-
ity to reuse activation data across its clusters due to its irreg-
ular IFM access pattern and independent clusters causes it to
spend nearly 60% of its inference energy re-fetching off-chip
activation data. Cambricon-X and Cambricon-S perform sig-
nificantly better in terms of off-chip activation data re-fetch
energy, but their buffer controller, BCFU/NSM, consumes a
significant amount of energy locating and re-transporting
non-zero activation data for unique intersections pertaining
to individual PEs. To expose the benefits of the proposed
IpOS dataflow, we include another data point (i.e., OS + CSR
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Compression) that applies standard CSR compression on top
of an OS dataflow given the same hardware configurations;
here, the amount of off-chip activation data is still significant
(> 40%). As shown in Fig. 11, CSP-H completely removes all
activation re-fetches, causing unique off-chip activation data
fetches (i.e., IFM U) to dominate the overall energy consump-
tion, which is an unavoidable cost regardless of accelerator
design.

7.5 Component Breakdown

Fig. 12 shows the PE array area and end-to-end energy break-
down of one inference run on ResNet-50. ‘Vanilla’ refers to
a conventional OS dataflow accelerator; here, it is clear to
see two main characteristics: (1) off-chip data movement
dominates the energy cost and (2) movement of activation
data (specifically from the IFMs) composes a majority of off-
chip energy cost. The other PE configurations explored in
this figure pertain the various iterations of CSP-H discussed
in this work. By leveraging CSP-A and proposed dataflows,
all iterations of CSP-H significantly reduce off-chip data
movement, and thus address the largest dissipator of energy.
‘30-bit Psum’ configuration trades lower off-chip energy for
high PE array energy due to the large power cost of the large
partial sum buffers. Meanwhile the ‘8-bit Psum’ configura-
tions decrease the PE array’s area and power by roughly 3×.
These results are consistent with Section 7.2.
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7.6 RegBin access frequency

Fig. 13 illustrates the access frequency of each RegBin during
an inference of all representative models, as well as the aver-
age power savings resulting from clock gating. As expected
𝑅𝐵0 is used 100% of the time because it is the first RegBin
that must be accessed to accumulate the intersections from
each filter row. Meanwhile 𝑅𝐵4 is activated less than 11%
of the time for all runs. For models that achieve high prune
rate, the frequency of 𝑅𝐵4 access drops to zero, signifying
that 𝑅𝐵4 is unused. We further lower power of each PE by
clock gating unused RegBins at a per-pass granularity and
include it in the synthesized results. This produces an av-
erage power savings of 0.574𝑚𝑊 for each PE, reducing the
power consumption of each PE by 46%.

8 RELATEDWORKS

Sparse DNN inference and structured pruning arewell-studied
areas with a rich collection of approaches. Recent works
can be categorized by the sparsity granularity and type
that they target. In terms of granularity, accelerators can
exploit bit-wise sparsity via bit-serial computation [1, 31],
unstructured element-wise sparsity of either activations or
weights [2, 5, 6, 8, 11, 20, 29, 38], or structured sparsity via a
co-designed pruning algorithm [17, 37, 41]. BitPruner [39]
applies structured bit-wise pruning to benefit bit-serial ar-
chitectures. Our approach also falls under the structured
pruning category, but with one key distinction: the pruning
framework is closely designed with the dataflow. In fact,
CSP-A is orthogonal to BitPruner in that CSP-A can enhance
BitPruner to achieve a cascading sparsity pattern, which can
further improve the data reuse capabilities of the accelerator.
To train the structured-sparse DNNs, algorithm-only meth-
ods like group LASSO [36], group-wise brain damage [22],
and Mao et al. [25] optimize the trade-off between sparsity
and accuracy while generating sparsity patterns that map
well to a DNN accelerator. Unlike CSP, they do not consider
the temporal aspect of the architecture’s dataflow.
In terms of sparsity type, sparse DNN accelerators can

target sparsity of the activations or weights (i.e., 1-way spar-
sity), or both (i.e., 2-way sparsity). Recent works that target
2-way sparsity are able to extract higher performance and
energy efficiency [10, 16, 28, 40], but they rely solely on spar-
sity skipping to achieve higher performance proportional
to tensor sparsity. CSP avoids sparsity skipping logic and
instead incorporates an early stop mechanism based on the
induced sparsity pattern. Sanger [24] is another 2-way sparse
approach that targets the dynamic structures of attention-
based models (i.e., Logit and Attend operators); it dynami-
cally applies fine-grained structure pruning with a dataflow
that is well suited for Logit and Attend operators. CSP-A is
not a dynamic pruning method and instead targets the static

elements of the attention layers, thus treating the Logit and
Attend operators as dense.

9 CONCLUSION

This paper presents Cascading Structured Pruning, which
flexibly prunes filter tensors in a structured manner while
enabling contiguous activation data access pattern. Contigu-
ous activation data creates the opportunity for compression
schemes and dataflows with sequential activation access for
improved data reuse. From the algorithm side, CSP-A induces
this cascading pruned behavior by enforcing pruned weights
that would be mapped to the same coordinates across sub-
sequent timesteps of the inference dataflow. Once pruned,
model sparsity ranges from 49− 96% with an accuracy degra-
dation of less than 0.5% after pruning and fine-tuning. The
hardware, CSP-H, then exploits the cascading pruned behav-
ior with two novel dataflows to enforce one-time activation
data access and limit movement of partial sums to within
each PE. We then introduce a novel PE design that peri-
odically truncates partial sums for minimal accuracy loss
with lower power and area footprint than the straightfor-
ward approach. Our results show that CSP-H applied to CSP-
A-trained models improves energy efficiency compared to
state-of-the-art accelerators, all with comparable or superior
speedup under most evaluations.
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