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ABSTRACT. We give a generators-and-relations description of differential graded algebras
recently introduced by Ozsvéath and Szabé for the computation of knot Floer homology. We
also compute the homology of these algebras and determine when they are formal.
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1. INTRODUCTION

Heegaard Floer homology [0Sz04c, OSz04b] is a powerful family of invariants for 3- and
4-manifolds. It originated from the study of Seiberg-Witten theory and Donaldson theory,
although its methods involve holomorphic curves rather than gauge theory, and it shares
these theories’ applicability to the exotic world of smooth 4-manifolds. Compared with its
gauge-theoretic relatives, Heegaard Floer homology is often the easiest for computations,
and many forms of Heegaard Floer homology have now been given combinatorial definitions.

One form of Heegaard Floer homology, called knot Floer homology (or HFK), assigns
graded abelian groups to knots and links in 3-manifolds [OSz04a, Ras03]. Like Khovanov
homology [KhoO0], HF K is especially well-adapted to the study of problems in knot the-
ory with a 4-dimensional character, such as the structure of the knot concordance group.
There are many interesting similarities between H FFK and Khovanov homology; for exam-
ple, while the Euler characteristic of Khovanov homology is the Jones polynomial, the Euler
characteristic of HF'K is the Alexander polynomial.

Combined with constructions of the Jones and Alexander polynomial from the represen-
tation theory of U,(sl(2)) and U,(gl(1]1)) respectively, this analogy suggests a close link
between Heegaard Floer homology and categorifications of the Witten—Reshetikhin—Turaev
topological quantum field theory (TQFT) invariants, see e.g. [Ras05, DGRO06]. Indeed,
both Donaldson-Floer theories in 4 dimensions and Witten-Reshetikhin—Turaev theories in
3 dimensions were initial motivations for the mathematical study of TQFTs, and Heegaard
Floer homology offers a promising framework for understanding the relationship between
these two types of theories.

Among Heegaard Floer theories, HF K admits an especially wide variety of combinatorial
descriptions, some allowing very fast computations. In particular, Ozsvath—Szabd have a
computer program [OSzb| that can compete with Bar-Natan’s fast Khovanov homology
program [BNO7]. Ozsvath—Szabd’s program can quickly compute HF'K for most knots with
up to around 40 or 50 crossings, and can even handle the larger 90+ crossing examples from
the paper [FGMW10].

Ozsvéth—Szabd’s program is based on an exciting new description of H F'K [0Sz18, OSz17,
OSza, OSzc] in the algebraic language of bordered Floer homology, an extended TQFT
approach to Heegaard Floer homology. We will refer to Ozsvath—Szabd’s theory here as the
Kauffman-states functor, since to tangles it assigns bimodules whose tensor product for a
closed knot projection is a complex with generators in bijection with Kauffman states for
the projection as defined in [Kau83].

The Kauffman states are a very natural set of generators; some readers may be more
familiar with them as spanning trees of the Tait graph of a knot projection. Ozsvath—Szabd’s
crossing bimodules have an equally natural set of generators: by the results of [Man19], they
are in bijection with nonzero matrix entries in a certain canonical-basis representation of the
U, (gl(1]1))-linear map associated to the crossing. Thus, the Kauffman-states functor yields
a categorification of this U, (gl(1|1)) representation theory that is “minimal” in some sense.

In this paper, we study the algebras B(n, k,S) over which Ozsvath-Szab6 define their
tangle bimodules in [OSz18]. These are defined by taking quotients of and adjoining variables
to a set of algebras that Ozsvath—Szabé call By(n, k); the algebras By(n, k) also appear in
Alishahi-Dowlin’s recent work [AD18]. We start by giving a description of By(n, k) in terms
of generators and relations.
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Theorem 1.1. The algebra By(n, k) is isomorphic to the path algebra of the quiver I'(n, k)
of Definition 2.12 modulo the two-sided ideal generated by the set of relations given there.

We prove Theorem 1.1 by defining explicit isomorphisms between the two sides, illustrated
with figures. From this description of By(n,k) we deduce a description of the algebras

B(n,k,S), stated below.

Theorem 1.2. The (differential graded) algebra B(n, k,S) is isomorphic to the path algebra
of the quiver I'(n, k,S) of Definition 3.7, modulo the two-sided ideal generated by the set of
relations given in Definitions 2.12, 3.4, and 3.7, with differential given in Definition 3.7 and
gradings given in Section 3.3.

Theorem 1.2 generalizes the path-algebra descriptions of B(n, k,S) for n = 1,2 given in
[0Sz18, Section 3.5]. Theorems 1.1 and 1.2 have already seen use in [Manl9, Manl7], as
well as in [AD18, Section 4.1]. Theorem 1.2 will be especially useful in [MMW19], where we
use it to define a quasi-isomorphism from B(n, k,S) to a certain generalized strands algebra
A(n,k,S) as discussed in the motivational section below.

We show how to define Ozsvath—Szabd’s two algebra symmetries R and o in terms of quiver
generators and relations. We also give quiver descriptions for idempotent-truncated versions
of Ozsvath—Szabd’s algebras; see Proposition 4.19. Derived categories of these truncations
were shown to categorify representations of U, (gl(1]1)) in [Man19].

Our next result computes the homology of B(n, k,S).

Theorem 1.3. As a chain complex, B(n,k,S) is a direct sum of complexes I.B(n, k,S)I,
forx,y in a finite set V(n, k) defined in Section 2.2.1, and a basis for H,(I:8(n, k,S)1y) is

as described in Theorem 5.4.

Theorem 1.3 allows us to compute the homology of the truncated algebras as well. Finally,
we determine when B(n, k,S) is formal.

Theorem 1.4. The differential graded algebra B(n,k,S) is formal if and only if S = & or
ke {0,n,n+ 1}.

We have similar results for the truncated algebras, which are a bit more interesting; see
Theorems 5.13, 5.14, and 5.17. In the cases where B(n, k, S) or its truncations are not formal,
we give examples of higher A, actions on their homology which must be nonzero, but we do
not attempt to characterize all such actions. An explicit description of these actions might
be useful for the further algebraic study of B(n, k,S).

Motivation and further directions. This paper is the first in a series of at least three,
including [MMW19] and [MMW]. The Kauffman-states functor is motivated by holomorphic
curve counting as in bordered Floer homology, and such counting can be used to prove its
relationship with HF K as Ozsvath-Szab6 will show in [OSza]. The Heegaard diagrams in
which one counts these curves can be viewed in terms of a natural topological framework
generalizing Zarev’s bordered sutured Floer homology [Zar09]. No attempt has been made
to define bordered Floer homology analytically in this level of generality; this is expected
to be quite difficult, with the Kauffman-states functor and Lipshitz—Ozsvath—Thurston’s
forthcoming “bordered HF~” theory for 3-manifolds [LOT| with torus boundary arising as
special cases.

Unlike in [LOT], A, deformations are not required for the algebras in [O0Sz18], suggesting
that the generalized bordered sutured theory hypothesized above should assign a reasonable



4 ANDREW MANION, MARCO MARENGON, AND MICHAEL WILLIS

generalization of the usual bordered strands algebras to the topological data motivating the
algebras B(n, k,S). However, this reasonable generalization gives algebras that are larger
than B(n,k,S), with nontrivial differential even when & = @ (the meaning of S will be
discussed below in Section 3.2).

In [MMW19], we construct the reasonably-generalized strands algebra mentioned above,
in the case relevant for the Kauffman-states functor (this algebra is a special case of more
general strands algebras that will be constructed by Raphaél Rouquier and the first named
author in [MR]). We call this algebra A(n, k,S), and we prove some useful properties about
it. We define gradings on A(n,k,S) combinatorially and show how these gradings arise
naturally from the group-valued gradings typical of the general bordered Floer setup.

We then exhibit a quasi-isomorphism ® from B(n, k,S) to A(n, k,S), giving evidence that
the algebraic structure of the Kauffman-states functor may indeed be part of a generalization
of bordered sutured Floer homology as mentioned above. Theorems 1.2 and 1.3 in this
paper are key elements of the construction; we use the generators-and-relations description
of B(n, k,S) to define the homomorphism ® out of it, and we use Theorem 1.3 to help show
® is a quasi-isomorphism. We also define symmetries on A(n, k, S) analogous to Ozsvath—
Szabd’s and show that ® preserves them.

In [MMW], which is in preparation, we will discuss bimodules in the context of [MMW19].
In the language of bordered Floer homology, we will construct DA bimodules for positive and
negative crossings such that, after applying induction and restriction functors appropriately,
we have a homotopy equivalence between the DA bimodules we construct and the ones
constructed in [0Sz18].

In this paper as well as [MMW19, MMW]|, we work with the algebras of [0Sz18]. Ozsvath—
Szabo use algebras that are related, but different to varying degrees, in [0Sz17, OSza, OSzc].
It would be very interesting to find strands algebra interpretations for any of these relatives
of B(n, k,S); to us, it seems like the strands interpretation is most immediate for the original
algebra B(n, k, S).

Following [OSz18] as well as the general convention in bordered Floer homology, we will
work over the field Fy. There are serious analytic difficulties that arise in bordered Floer
homology when working over Z. While it is plausible that our algebraic results could be
formulated over Z, the Fy versions would still be more directly comparable to a generalized

bordered sutured theory as discussed above, unless one could also formulate that theory over
7.

Organization. In Section 2 we give an alternative quiver description of Ozsvath-Szabd’s
algebra By(n, k), and prove Theorem 1.1. We discuss the quotient B(n, k) of By(n, k) and
the more general algebra B(n,k,S) in Section 3. Corollary 3.14 concludes the proof of
Theorem 1.2.

When working with algebras (like By(n, k) and B(n, k,S)) that come with a distinguished
collection of idempotents, we freely make use of the perspective of differential graded cat-
egories. For the reader’s convenience, a review of the relevant category theory is included
in Appendix A. In Section 4, we use Ozsvath—Szabd’s notion of “generating intervals” to
give a decomposition theorem (Corollary 4.16) for Hom-spaces in the category associated
to B(n,k,S). In Section 5 we use this decomposition theorem to compute the homology
of B(n,k,S), proving Theorem 1.3. We also investigate formality in Section 5, proving
Theorem 1.4 and its analogues for the truncated algebras.
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2. QUIVER DESCRIPTIONS OF OZSVATH-SZABO’S ALGEBRA B
2.1. Quiver algebras.

Definition 2.1. Let I' be a finite directed graph, allowed to have loops and multi-edges,
and let V' and E denote the sets of vertices and edges (or arrows) of I' respectively. A path
v in ' is given by a finite sequence of edges, written v = (y1,...,7) (when [ = 1 we omit
the parentheses), such that for all i = 1,...,] — 1, the ending vertex of 7; coincides with
the starting vertex of ;1. The start of a path v = (v1,...,7) is the starting vertex of ~,
denoted by v;. Likewise the end of ~ is the ending vertex of 7;, denoted by v; ;. The number
[ is called the length of .

For every vertex v € V, there is a distinguished path I, from v to v of length 0, given by
the empty sequence of edges.

Given a finite directed graph I'; one can construct the path algebra over I with coefficients
in a commutative ring k (in this paper, k will always be either the two element field Fy or a
polynomial ring over [Fy). The path I, induces a (distinguished) idempotent in this algebra.
In order to remember that this algebra comes with a set of distinguished idempotents, we
can use the category defined below. For a review of some definitions concerning algebras and
categories (e.g. k-linear category), see Appendix A. Note that for us a k-algebra is a ring A
equipped with a ring homomorphism k — A; see Remark A.1.

Definition 2.2. Let I be a finite directed graph as above and let k be a commutative ring.
Define kI" to be the k-linear category whose objects are vertices v € V of I and such that for
two vertices vy, vo € V', Homyr (vg, v1) is the free k-module formally spanned by all paths in T’
from v; to vy. Composition of morphisms in I' is given by concatenation of paths, extended
linearly over k, and identity morphisms I, for v € V' are given by the “empty” paths I,.

Remark 2.3. The reversal of directions in Definition 2.2 is intentional; one wants composi-
tions fg in a category, thought of as “f after ¢g,” to agree with multiplications ab in a path

algebra, thought of as “b after a” and determined by edges v; — v LN vy in I,

As defined in Section A.3, we have an I-algebra Alg,;, where I = kY. This algebra is
called the path algebra of T'; we will denote it by Path(I'). When the coefficient ring k is
not clear from the context, we will denote it by Pathy(T"). The set {I,|v € V'} is a set of
pairwise orthogonal idempotents in Path(T"): for all v, v" € V' we have

. o
L1, = I, 1fv—2‘1
0 otherwise.

The identity element of Path(I") is >, L.

The edges of ' give a natural set of multiplicative generators for Path(I"); paths in ' as
defined in Definition 2.1 give a basis for Path(I") as a free module over k.

More generally, as explained in detail in Appendix A, given a k-linear category C with
(finite) object set V, one can form a corresponding I-algebra Alg, by summing over the
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morphism spaces. The composition of the inclusion of constant functions k — 1 with the
ring homomorphism I — Alg, has image contained in the center of Alg.. Vice versa, given
an T-algebra A such that the natural map k — I — A has image in Z(.A), one can form
a k-linear category Cat 4 with object set V. Moreover, functors between k-linear categories
that are the identity on objects correspond to [-algebra homomorphisms.

Remark 2.4. We will often refer to certain functors as being equivalent to algebra homo-
morphisms; we assume without further mention that all functors discussed in this context
are the identity on objects. Also, when discussing algebras A over I = k" for a finite set V/,
we will assume that the natural map k — I — A has image in Z(A).

Definition 2.5. Let I' be a directed graph with vertex set V. For v,v" € V, let R, be a
subset of Homyr(v',v). Let R be the union of R, over all v,v" € V, viewed as a subset of
Path(T"); we will call R a set of relations. Let T =k as usual. We define the quiver algebra
with relations Quiv(I",R) to be the I-algebra
Path(T")

Ir
where Zr is the two-sided ideal generated by the relation set /R. We have a corresponding
category Catquiv(r,r) With object set V.

Quiv(T', R) =

The edges of I" still give a natural set of multiplicative generators for Quiv(I', R). Paths in
I" give a spanning set for Quiv(I', R) over k; since we have imposed relations, the set of paths
in I' might no longer be linearly independent. We will refer to elements of this spanning set
as path-like elements or additive generators of Quiv(I’, R).

The following proposition is standard.

Proposition 2.6. Let I' be a finite directed graph with vertex set V and edge set E. Let C
be any k-linear category whose set of objects is V. Suppose that for each edge v € E starting
at v1 and ending at vy, we have a morphism F(v) : vo — vy in C. Then, there is a unique
k-linear functor from kI' to C sending v to v for all v € V' and sending v to F(v) for all
veEE.

This functor gives us a homomorphism of I-algebras from Path(I") to Alg.. If this homo-
morphism sends R C Path(I") to zero, we get a homomorphism of I-algebras from Quiv(I", R)
to Alge, or equivalently a functor from Catquivrr) to C.

It will be convenient to have dg (i.e. differential graded) versions of the above construc-
tions; the proofs of the below propositions are left to the reader. We discuss gradings first.

Proposition 2.7. Let I', V, and R be as in Definition 2.5, and let G be a group. Suppose
that for each edge v of T', we are given an element deg(vy) € G. Extend deg multiplicatively to
a map from paths in I" to G. Assume that each relation r € R is a sum of paths with the same
degree. Then deg gives Quiv(I', R) the structure of a G-graded I-algebra (see Appendiz A.1
for a brief review of our grading conventions).

Next we discuss the differential.

Proposition 2.8. Let ', V', and R be as in Definition 2.5. Suppose we are given an element
() of Ix Path(I")L, for each edge vy of I' from a vertex x to another vertex'y. Extend O to
Path(T") linearly and using the Leibniz rule. Assume that O(R) = 0 and that 9*(y) = 0 for
each edge v. Then 0 gives Quiv([', R) the structure of a differential 1-algebra.
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If Quiv(I', R) has a G-grading for some group G, we have A € Z(G), and 0 is homogeneous
of degree X7, then O gives Quiv(T', R) the structure of a (G, \)-graded dg T-algebra. If the
G-grading on Quiv(T', R) comes from Proposition 2.7, then O is homogeneous of degree A~*
as long as O(7y) is homogeneous of degree A\t deg(~y) for each edge v of T.

There are graded, differential, and dg analogues of Proposition 2.6.

2.2. The algebra By(n, k). In this section we present two quiver descriptions for the algebra
By(n, k) from [OSz18]. The first of these will be a direct translation of the definition in that
paper. Proving that the second description is equivalent to the first will be the goal of
Section 2.4.

2.2.1. I-states. Throughout the paper, let [0,n] denote the set {0,1,2,...,n}. Ozsvath—
Szabé [0Sz18, Section 3.1] define an I-state to be a subset x of [0,n] with || = k. By
convention, we write the elements of an I-state x in increasing order as x = {z1,..., 2%}
with x; < -+ < x. Let V(n, k) be the set of I-states for a given n and k. The algebras
By(n, k) and B(n, k) can be viewed as algebras over F;/("’k)
idempotents and denote it by I(n, k).

. we will call Fy ™" the ring of

Definition 2.9 ([0Sz18, Section 3.1]). Let x,y € V(n,k). The minimal relative weight
vector v(X,y) = (v1(X,¥), ..., 0.(X,y)) € Z" is defined by the formula

vi(x,y) = ly 0 [i,n]| =[x N i, n]].
The minimal relative grading vector |v|(x,y) is defined by |v];(x,y) = |vi(x,y)].
It is straightforward to check that, for x,y,z € V(n, k), we have
(2.1) v(x,z) =v(x,y) + v(y, z).
The functions |v|; are not additive in general, but they are subadditive.

Proposition 2.10 ([0Sz18, Section 3.1]). For x,y,z € V(n,k) and 1 < i <n, |v|;(y,z) —
lv|i(x,2) + |v|:(x,y) is a nonnegative even integer.

2.2.2. The algebras. We start with a simple rephrasing of Ozsvath—Szabd’s definition of
By(n, k) (see [0Sz18, Section 3.1]).

Definition 2.11. Let K(n,k) denote the complete directed graph with vertex set V
V(n,k) (this graph has a unique edge from x to y for every ordered pair (x,y) € V
Denote the edge in K (n, k) from x to y by fxy. Write Path(K(n, k)) for Algg, i, 1,.16(n,
Let Ri C Path(K(n,k)) denote the set of elements

Feytya— H Ui(lv\i(y,z)fIvli(x,Z)Hv\i(x,y))/foJ

)
k):

for all ordered triples (x,y,z) € V3. Define
Bo(n, k) := Quiv(K (n, k), Rk),

an algebra over Fy[Uy,...,U,)V™"; we have an Fo[Uy,...,U,]-linear category Catp,nr)
with set of objects V(n,k). One can check that for x,y € V(n, k), the Fy[Uy, ..., U,]-
linear map ¢*¥ from Fo[Uy, ..., U,| to I:By(n, k)I, sending 1 to fxy is a bijection. Thus,
Quiv(K (n, k), Rk) agrees with Ozsvath—Szabd’s definition of By(n, k).
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U W N =
m\%\w\wMo
°

x = {0,2,5} y = {2,3,4}
FIGURE 1. Elements x and y of V (5, 3) viewed as dots occupying regions.

We now give an alternate definition of By(n, k); we will prove below that the algebra
Quiv(I'(n, k), R) constructed in the following definition is isomorphic to By(n, k).

Definition 2.12. The directed graph I'(n, k) has vertex set V = V(n, k). Its arrows are
given as follows:
e For vertices x with i —1 € x and i ¢ x, there is an arrow from x to (x\ {i — 1})U{i},
said to have label R;.
e For vertices x with i € x and i —1 ¢ x, there is an arrow from x to (x\ {i})U{i — 1},
said to have label L,.
e For all vertices x and all ¢ between 1 and n, there is an arrow from x to x, said to
have label U;.
We write Path(I'(n, k)) for Algg,p, ). To each basis element v of Path(I'(n, k)), we can
associate a (non-commutative) monomial () in the letters R;, L;, and U; for 1 < ¢ < n.
Note that two paths v,~" with the same monomial and starting at the same vertex are equal.
We then extend p Fo-linearly to each element of Path(I'(n, k)). For every pair of vertices x
and y, we define Ry, C Hom(y,x) C Path(I'(n, k)) to be the set of elements v € Hom(y, x)
such that u() is equal to one of the following:
(1) RU; — U;R;, L;U; —U;L;, or U;U; — U;U; (the “U central relations”),
(2) R;L; — U; or L;R; — U; (the “loop relations”),
(3) RiR;—R;R;, L,Lj—L;L; or R;L;— L;R; for [i—j| > 1 (the “distant commutation
relations”).
The minus signs could equally well be plus signs, since we are working over F,. We
have an I(n, k)-algebra Quiv(I'(n, k), R), where R = |J, , Rx,y, and an Fo-linear category
Catquiv(r(n,k),r) With object set V(n, k). Using the edges of I'(n, k) with label U;, we can
give Quiv(I'(n, k), R) the structure of an algebra over Fy[Uy, ..., U,]V (™. The relations (1)
imply that the natural map Fo[Uy,...,U,] — Fo[Uy, ..., U,V ™% — Quiv(['(n, k), R) has
image in the center of Quiv(I'(n,k),R). Equivalently, we can view Catquiv(r(n,k),r) as an
Fy[Uy, ..., U,l-linear category.

2.3. Graphical interpretations. In this section we will give graphical interpretations of
the algebras Quiv(K(n,k), Rk) and Quiv(I'(n, k), R). In both interpretations we follow
[OSz18] and interpret an I-state x as a choice of “occupied” regions between n lines, illus-
trated with dots as in Figure 1.

Remark 2.13. Our graphical conventions can be obtained from those used in [0Sz18, OSz17]
by 90° rotation clockwise. We perform this rotation to match Lipshitz—Ozsvath—Thurston
and Zarev’s conventions for strands pictures in bordered Floer homology; see [MMWT19]
where we construct a quasi-isomorphism from B(n, k,S) to a generalized strands algebra.
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FIGURE 2. Graphical interpretation of Quiv(K(n,k),Rk), for n = 5 and
k = 3. We have x = {0,2,5}, y = {2,3,4}, and z = {0, 4, 5}.

2.3.1. Graphical interpretation of Quiv(K (n, k), Ri). We start with an interpretation of the
algebra Quiv(K(n, k), Rk). The generator fxy of K(n, k) is interpreted as a motion “all
at once” of the dots comprising x to the dots comprising y; see the top line of Figure 2.
Multiplying fxy with f, , always gives fx, times a monomial p in the U; variables which
can be described graphically as follows. Draw the picture for fx, on the left of the picture
for fy,. The power of U; in p equals the number of distinct bigons with one edge on line ¢
and the other edge on a motion of a dot in the concatenated picture. See Figure 2 for an
illustration.

2.3.2. Graphical interpretation of Quiv(I'(n, k), R). Now we give a graphical interpretation
of the algebra Quiv(I'(n, k), R); see Figure 3. A path in I'(n, k) from x to y is interpreted
as a motion “one dot-step at a time” of the dots comprising x to the dots comprising y. An
edge labeled R; moves a dot downwards one step; an edge labeled L; moves a dot upwards
one step (we suggest the mnemonics “Lift” and “loweR”). An edge labeled U; does not move
the dots at all, but we record that a U; edge has been traversed. The basic idempotent I, can
be interpreted as a stationary motion of the dots from x to itself. See also [O0Sz18, Remark
3.1].

Note that during the motion of dots represented by any path v in I'(n, k), there are never
two dots in the same region between lines at any moment in the motion. The relations
R C Path(I') can be described in terms of motions as follows (see Figure 4):
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FIGURE 3. Graphical interpretation of Quiv(I'(n, k), R), for n =5 and k = 3.

(1) Each U; loop commutes with all other moves (this is the meaning of the U central
relations),

(2) A dot passing back and forth through the i*! line is equivalent to a U; loop (this is
the meaning of the loop relations),

(3) If two dots can each be moved by one slot independently of each other, then the order
in which they are moved does not matter and thus they can be viewed as moving at
the same time (this is the meaning of the distant commutation relations).

The next lemma says that the relative weight vector v(x,y) counts (with sign) the number
of dots passing through each line in any path v from x to y.

Lemma 2.14. Let x,y € V(n,k). Given any path v in I'(n, k) from x to 'y, we have

vi(x,y) = pi(y) — Mi(7)
where p;(y) (respectively A\i(7y)) counts the number of edges labeled R; (respectively L;) in the
path .

Proof. By additivity of the right hand side of the formula under concatenation of paths, and
by equation (2.1), we can assume that the path v consists of a single edge. The formula is
true when this edge has label R;, L;, or U; (for both j = ¢ and j # i), as one can easily
check from Definition 2.12. 0

For a path 7 in I'(n, k), represented visually by a motion of dots occurring one dot at a
time, let F'(y) denote the same motion with all dots moving simultaneously (we will define
F rigorously below). If x 2 y 2% z are minimal-length paths in T'(n, k), then Lemma 2.14
implies that the quantity (|v|;(y,z) — |v|:i(x,2z) + |v|;(x,y))/2 counts extraneous pairs R;, L;
in the concatenation v;v2 (which the relations declare should be equivalent to U; loops). This
quantity is also the exponent of U; appearing in the relations of Definition 2.11 for By(n, k)
when one computes the product F(y1)F (7).
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FIGURE 4. Relations in R, viewed as motions as in Figure 3.

Thus it is visually plausible that the “forget-the-ordering” map F' should be an algebra ho-
momorphism from Quiv(I'(n, k), Rk) to By(n, k) (we will prove this fact in Proposition 2.18).
To prove that F' is a surjection, we just need to exhibit a path from x to y in I'(n, k), for all
x,y € V(n, k), whose image under F is the generator fx, of By(n, k); the existence of such
a path is visually clear.

We will prove that F' is injective by constructing an inverse function G to F. For each
pair x,y of elements of V(n, k), we will need to pick an explicit path 7y in the preimage
F~(fxy), and we will need to show that the function G(fxy) := 7xy respects the relations
of Definition 2.11. These will be the main technical tasks required to prove that By(n, k)
and Quiv(['(n, k), R) describe the same algebra, which is the goal of Section 2.4.

Remark 2.15. The graphical descriptions given in this section appear to share some similar-
ities with Petkova—Vértesi’s graphical descriptions of their algebras in [PV16]. The algebras
in [PV16] are also motivated by bordered Floer homology, although they arise from a sub-
stantially different Heegaard diagram than the one related to Ozsvath—Szabd’s algebras (see
e.g. [MMW19, Figure 1]). It would be interesting to investigate connections between these
algebras.

2.4. Equivalence of descriptions.
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2.4.1. An intermediate description. We want to show that By(n, k) and Quiv(I'(n, k), R) are
isomorphic as Fo[Uy, ..., Un]V(”’k)—algebraS. To do so, it is convenient to introduce a third
description of the same algebra.

Definition 2.16. Let I'y(n, k) be the directed graph I'(n, k) with all edges labeled U; re-
moved. Let Ry C Pathg,u, ... v, (I'v(n, k)) be defined analogously to R C Pathg, (I'(n, k))
from Definition 2.12, without elements of type (1), and interpreting any instance of U; in a
loop relation as a coefficient in Fy[Uy, ..., U,] rather than a label for an edge.

Recall the discussion after Definition 2.12 about viewing Catquiv(r(n,k),z) as being linear
over Fy[Uy, ..., U,]. The following lemma essentially says that this viewpoint is equivalent
to building the category using Quiv(I'y(n, k), Ry) rather than Quiv(I'(n, k), R).

Lemma 2.17. We have an isomorphism of FoUy, ..., U,]-linear categories

Catquiv(r(ntR) — CatQuis(Ty (b Re) -
Equivalently, we have an isomorphism of Fo[Uy, ..., U,V ™ -algebras
Quiv(D(n, k), R) = Quiv(T'y(n, k), Ry).
Proof. By Proposition 2.6, we have an Fa-linear functor

¢ :Fol'(n, k) — Catquiv(ry (nk),Ro)

defined as the identity on objects and by sending any edge (from some vertex v to itself)
labeled by U; to the corresponding empty path I, in Quiv(I'y(n, k), Ry) with coefficient Uy,

which gives the morphism v Y vin CatQuiv(ry (n,k),Ry)- The functor ¢ is defined to be the
identity on all other edges. Incorporating the relations, ¢ induces an Fa-linear functor

¢ = CatQuiv(r(nk),R) = Catquiv(Ty (nk),Re);

one can check that Eis in fact Fy[Uy, ..., U,]-linear when viewing Catquiv(r(n,k),R) 88 an
Fy[Uy, ..., U,l-linear category as discussed after Definition 2.12.
Similarly, we can build an Fy-linear functor

f : ]Fg[Ul, cey Un]FU(n, k) — CatQuiv(p(n,k),R)

by sending all objects v to themselves, and sending any morphism in Fy[Uy, ..., U,|T'y(n, k)
(which is an Fy[Uy, ..., U,]-linear combination of paths) to the corresponding morphism in
Catquiv(r(n,k),R), €xcept that coefficients U; are reinterpreted as concatenation with an edge
labeled U;. Because the U;-edges exist at every vertex and commute with all others in
Quiv(I'(n, k), R), this assignment is well-defined independently of the choice of ordering.
Our functor £ induces an Fy-linear functor

€ Catquiv(ry (nk)Ry) = CatQuivr(nk),R)

and again one can check that gis Fy[Uy, ..., U,]-linear when viewing Catquiv(r(n,k),R) as an
Fy[Uy, ..., U,)-linear category.

By construction, Z and { are inverse isomorphisms of Fo[Uq, ..., U,]-linear categories be-
tween Catquiv(r(nk),r) and Catquiv(ry (n,k),Ry), Proving the claim. O

Thus, it suffices to show that By(n, k) and Quiv(I'y(n, k), Ry) are isomorphic as algebras
over Fo[Uy, ..., U,V ™),
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2.4.2. Constructing the forward homomorphism. Let x,y € V(n,k). For any edge e of
I'y(n, k) from x to y, define F(e) = fxy € Homcat(,,, (¥:X). By Proposition 2.6, I ex-
tends uniquely to an Fy[Uy,. .., U,]-linear functor from Fy[Uy, ..., U,T'y(n, k) to Catpgy(n),
or equivalently a homomorphism of Fy[Uy, ..., U,]Y ™" algebras from Path(I'y(n,k)) to
BO (TL, k?) .

Proposition 2.18. The homomorphism of Fo[Uy, ..., U,V ™* -algebras
F Path(FU(n, k‘)) — Bg(n, k’)
sends each element of Ry C Path(I'y(n, k)) to zero.

Proof. First, consider an element of Ry of the form (v, 7,) — U;Ix, where 7, is an edge from
x to y with label R; and 7, is an edge from y to x with label L;. By Lemma 2.14, we have
[vi(x,y) = |v|;(y,x) = 1 and |v|;(x,y) = |v|;(y,x) = 0 for j # i. Since |v;|(x,x) = 0 for all
7, we have

F(Vl)F(fYQ) = fx,yfy,x = Uifx,x = UzF([x)
The argument for elements of Ry of the form (y1,72) — U;Ix where v has label L; and 7,
has label R; is similar.

Next, consider an element of Ry of the form (71, 72) — (73,74) where ~; is an edge from x
to y with label R;, 7 is an edge from y to z with label R;, 5 is an edge from x to y’ with
label R;, 74 is an edge from y’ to z with label R;, and |i — j| > 1. Again, by Lemma 2.14
we have

|U|i(X7 Y) = |U|j(y’z) = |U|i<x’ Z) - |U|j(X,Z) =1
By the same lemma we also have |v];(x,y) = |v]i(y,2) = 0 as well as |v];(x,y) = |v|i(x,2) =
|v|i(y,z) =0 for all [ # 4, j. It follows that

F(/yl)F(’y?) = fx,yfy,z = fx,z'
A parallel argument shows that F(v3)F(v4) = fxz, so we have F(y1)F(y2) = F(v3)F(74).

The rest of the cases are similar to this one. O

As a result we have a homomorphism of Fy[Uy, ..., U]V (™" -algebras
F:Quiv(l'y(n, k), Ry) — Bo(n, k).

2.4.3. Constructing the inverse homomorphism. In this section, we will define a homomor-
phism of Fo[Uy, ..., U,]V™*-algebras G : By(n, k) — Quiv(I'y(n, k), Ry), or equivalently an
Fo[Uy, ..., Uyl-linear functor from Catg, (k) to Catquiviry (nk),Ro)-

We start by defining an Fy[Uy, .. ., U,]-linear functor

G Fg [Ul, cey Un]K(n, k’) — CatQuiV(pU(n,k),’RU) .

By Proposition 2.6, it suffices to choose, for all pairs (x,y) € V(n, k)?, a path 75y in Ty (n, k)
from x to y. We will further require that F(yxy) = fxy. We will choose 7y recursively,
but we need a few results first. The proof of the following lemma is left to the reader.

Lemma 2.19. Forx € V(n, k), suppose |l € x and | < m <n such that xN[l,m] = {l}. Let
x' = (x\ {l})U{m}. There exists a path v from x to x" in I'y(n, k) whose edges are labeled
Rii1,..., Ry, in order. The path ~y is the unique path from x to x' with this property.

Lemma 2.20. Under the assumptions of Lemma 2.19, let x = x!,x%,...,xP = x' be the

sequence of vertices traversed in the path vy of that lemma. We have fxx = fxix2 -+ fxr-1xp-
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Proof. Induct on p > 2; the case p = 2 is tautological. Assume that

fxl,xP*1 = fxl,x27 T 7fo*2,xP*1'

It suffices to show that fy1 x» = fyt xp-1 fxr-1 0. Forl+1 <i <m—1, we have |v];(x!,x?) = 1,
lv];(x!, xP71) = 1, and |v|;(x*7!,x?) = 0 by Lemma 2.14. For i = m, we have |v|;(x!,x?) =

1, |oli(x}, xP~1) = 0, and |v|;(xP~1,xP) = 1. For i ¢ [l + 1,m], we have |v|;(x!,xP) =
lv];(x!,xP~1) = |u|;(x*~,xP) = 0. Thus, the lemma follows from the relations defining
multiplication in By(n, k). O

Corollary 2.21. Under the assumptions of Lemma 2.19, we have F(v) = fxx/, where v is
the path constructed in that lemma and F was defined in Section 2.4.2.

Proof. Write v = (Y11, - - -, Ym) Where v; has label R;. We have F(y) = F(y41) -+ F(ym) =
Jxtx2 -+ fxr—1xp, Which equals fx by Lemma 2.20. 0

Lemma 2.22. Let x,y € V(n, k) with x, < y, for some a € [1,k]; let a be the mazimal such
index. We have X N [2q,Ya] = {xa}.

Proof. Suppose x;, € x satisfies z, < x, < y,. We have a < b, so y, < y,. Thus, x;, < y, < ¥,
contradicting the maximality of a. O

Corollary 2.23. Under the assumptions of Lemma 2.22, let x' = (x \ {zo.}) U {ya}. We
have fxy = fxx fx'y-

Proof. For 1 < i < n, we want to show that |v|;(x,y) = |v|;(x,X') + |v];(x/,y). First, note
that if i ¢ [z, + 1, 9., then |x' N[, n]| = |x N [i,n]| so that v;(x,x’) = 0 and

oo, y) = |ly (Vi = [ ]l = [y 01 il = [0 ] | = ol (¢ )+ 0

as desired. Meanwhile, if i € [z, + 1, y,], we must have v;(x,x’) = 1. Furthermore, Lemma
2.22 ensures that x! = y, is the smallest element of x’ that is greater than or equal to 1,
which in turn forces v;(x’,y) > 0. Thus the additivity of v; shows that v;(x,y) > 0 as well,
and then the desired equality is immediate from the additivity of v;. O

There are also “upward-moving” versions of the above results involving edges labeled L;
rather than R;.

Lemma 2.24. Forx € V(n, k), suppose | € x and 0 < m < [ such that xN[m,l] = {l}. Let
x' = (x\ {l})U{m}. There exists a path v from x to x" in I'y(n, k) whose edges are labeled
Ly, ..., Ly in order. The path v is the unique path from x to X" with this property.

Lemma 2.25. Under the assumptions of Lemma 2.24, let x = x!,x%,...,xP = x' be the
sequence of vertices traversed in the path v of that lemma. We have fxx = fxix2 -+ fxr—1 xp-

Corollary 2.26. Under the assumptions of Lemma 2.24, we have F(v) = fxx/, where v is
the path constructed in that lemma.

Lemma 2.27. Let x,y € V(n, k) with z, > y, for some a € [1,k]; let a be the minimal such
index. We have X N [Ya, To) = {xa}.

Corollary 2.28. Under the assumptions of Lemma 2.27, let X' = (x \ {x.}) U {ya}. We
have fxy = fxx fx'y-

Now we recursively define a path vy in I'y(n, k) from x to y.
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FIGURE 5. The path 7%, in Example 2.30.

Definition 2.29. Our recursion scheme will involve the quantity k —|xNy|. If this quantity
is zero, then x = y. Define vx = Ix, the identity path at x. Since F' sends identity
morphisms to identity morphisms, we have F'(1xx) = fxx-

Now suppose we have x and y, and that we have constructed 7y y such that F'(yx y) =
fxy for all (x',y") with £ — X' Ny'| < k— |xNy| To define 1y, first suppose that
Ty < Y, for some a € [1,k]. Let a be the maximal such index. By Lemma 2.22, we have
XN [Ta,Ya] = {xa}. Let X' = (x\ {z.})U{y.}. By Lemma 2.19, there exists a unique path -
in 'y (n, k) from x to x’ with edges labeled R, 41, ..., Ry, in order, and we have F/(7) = fxx
by Corollary 2.21. Since k — |x' Ny| < k — [xNy|, we have already constructed a path vy y
from x’ to y with F(yxy) = fxy. Define

Txy =7 Vxy-

We have F'(vxy) = F(7)F(vxy) = fxx fxy, which equals fx, by Corollary 2.23.

If x, > y, for all @ but x # y, let a be the minimal index such that x, > y,. By
Lemma 2.27, we have XN [yq, ¥,] = {2, }. By Lemma 2.24, there exists a unique path 7 from
x to x’ with edges labeled L,,, ..., L,,+1 in order, and we have F'(y) = fxx by Corollary 2.26.
As before, we have already constructed a path vy y from x’ to y with F'(7xy) = fxy. Define

Txy =Wy
We have F(vxy) = F(7)F(7xy) = fxx fxy which equals fyx, by Corollary 2.28.

Example 2.30. Let n = 14 and k£ = 9. For the elements x = {0,1,3,6,7,8,9,10,14} and
y ={1,2,3,4,5,9,10,12,13} of V(n, k), the path 7xy is shown in Figure 5 in the graphical
notation of Section 2.3. Visually speaking, downward motions of dots happen first in vy,
one dot at a time from bottom to top, and then upward motions of dots happen one dot at
a time from top to bottom.
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Definition 2.31. Let
G : ]FQ [Ul, cey Un]K(n, /{Z) — CatQuiv(FU(n,k),RU)

be the unique Fy[Uy,. .., U,]-linear functor that is the identity on objects and such that
G(fx,y) is the morphism in Catquiv(ry, (n,k),Ry) tepresented by vy y for all edges fxy in K (n, k).
We have a corresponding homomorphism

G : Path(K(n,k)) — Quiv(I'y(n, k), Ry)
of Fo[Uy,. .., Un]v("’k)—algebras.

2.4.4. Proving that the inverse homomorphism is well-defined. In this section, we will show
that the homomorphism G of Definition 2.31 descends to a homomorphism G : By(n, k) —
Quiv(T'y(n, k), Ry); in Section 2.4.5 below, we will show that G is the inverse of F' :
Quiv(T'y(n, k), Ry) — Bo(n, k). We start with some definitions and basic lemmas.

Definition 2.32. If x,y € V(n, k) with z, < y, for some a € [1, k] and z}, = y; for all b # a,
we will call v, an R-segment. We define L-segments similarly.

We note the following consequences of Definitions 2.29 and 2.32.

Corollary 2.33. If 7xy is an R-segment or an L-segment, then 7« is the path constructed
m Lemma 2.19 or 2.24 respectively.

Corollary 2.34. For anyx,y € V(n, k), either vy is trivial or we can write Vxy = Yx.x'Vx'y
where:

(1) vxx is an R-segment or an L-segment;

(2) X' Ny|[>[xNyl;

(3) if yxx is an R-segment then y, = x), for the index a with x, < xl, and y, < x} for
all b > a;

(4) if yxx is an L-segment then y, = !, for the index a with !, < x,, yp < x}, for all b,
and yp = x;, for all b < a.

Lemma 2.35. If v x and vy x» are both R-segments, then in Quiv(I'y(n, k), Ry), the ele-
ment YxxVx' x5 equal to a monomial in the U; variables times yx <. The same statement
holds if yxx and/or yx x» is an L-segment rather than an R-segment.

Proof. The proof is a case-by-case analysis that is left to the reader. See Figures 6 and 7 when
multiplying two R-segments, Figure 8 when multiplying an R-segment by an L-segment, and
Figure 9 for one case of multiplying an L-segment by an R-segment. Multiplying two L-
segments is similar to multiplying two R-segments. 0

Lemma 2.36. If vxx is an R-segment or an L-segment and'y € V(n, k) is arbitrary, then
in Quiv(I'y(n, k), Ry), the element vx xVxry 15 equal to a monomial in the U; variables times

Tx,y-

Proof. We will induct on k& — |[x' Ny|. When X’ =y, we have 1x x7xy = Yxx' = Tx.y-

For the inductive step, decompose Yy y as Yx x"Vxy as in Corollary 2.34. Since 7y and
Vx' x are R-segments or L-segments, Lemma 2.35 implies that yx x7x x» equals a monomial
in the U; variables times v« in Quiv(I'y(n, k), Ry). If vxxv is trivial, an R-segment, or
an L-segment, we are done by induction because |x” Ny| > |x' Ny|. Otherwise yx xVx’ x”
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FIGURE 7. Products of two R-segments in Lemma 2.35: final case.

is a product of two R-segments, two L-segments, an R-segment and an L-segment, or an
L-segment and an R-segment.

First assume that vxx and x x» are R-segments but that s x» is not an R-segment.
We can write vxx7 = YxxVx x7 Where both factors are R-segments and we have z, < 77,
7, < xy, and b < a. By induction, vz x»7x7y is equal to a monomial in the U; variables
times vx y in Quiv(I'y(n, k), Ry). Note that if ¢ > a, then y. < 27 = 7., by item (3) of
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Corollary 2.34. Thus, we have 7xy = 7x % V% ,y by the recursive definition of 7xy. The case
when v x and 7y x» are both L-segments but 7x x# is not an L-segment is similar.
Next, suppose that yx x is an R-segment, x x# is an L-segment, and ~yx x is

e nontrivial,
e not an R-segment, and
e not an L-segment.

In this case we have Yxy = 7x x'Vxy by item (4) of Corollary 2.34 and the recursive definition
of Yxy-
Finally, suppose that v« x is an L-segment, vy x# is an R-segment, and 7y x» is

e nontrivial,

e not an R-segment, and

e not an L-segment.
We can write vx x» = Yx.% Vx/x Where vy % is an R-segment, vz x is an L-segment, x, < 7,
and z; < z;. By induction, vz x#7yx7y is equal to a monomial in the U; variables times
Y5y in Quiv(l'y(n, k), Ry). For ¢ > a, we have y. < 2!/ < 7/ by item (3) of Corollary 2.34
together with the fact that 7% x» is an L-segment. Thus, 7xy = 1x%x 7%y by the recursive
definition of 74y, proving the lemma. O

Proposition 2.37. If x,y,z € V(n,k), then vxyVy, is equal to a monomial in the U;
variables times v« , in Quiv(l'y(n, k), Ry).

Proof. We will induct on k — |x Ny|. When x =y, we have VxyYyz = Vyz = Yxz- For the
inductive step, decompose Vxy as Yxy = Vxx'Vx/,y Using Corollary 2.34; in particular, vy x is
an R-segment or an L-segment. We have [x' Ny| > |[xNy]|, so by induction, vy y7y,, equals
a monomial in the U; variables times vy , in Quiv(I'y(n, k), Ry). By Lemma 2.36, Yx x V' 2
equals a monomial in the U; variables times vy, in Quiv(I'y(n, k), Ry). O

Corollary 2.38. The monomial in Proposition 2.87 is [[I_, Ui 7Pzl ex))/2

Proof. Let M denote the monomial in question. Applying the functor F' from Section 2.4.2
in Proposition 2.37, we get F(Vxy)F (Vyz) = MF(7x,,) in Catgymr), i-e. fxyfyz = M fxz.
We also know that

v|i(y,z)—|v|;i(x,2)+]|v]i (x, 2
Fryfya :HUi(\ i (y,2)—Iv]i(x,2)+|v]i(x,y))/ fxa

i=1

by the relations defining By(n, k). Since {fx.} is a basis for
HomcatBO(n,k) (z,x) = Fo[Uy,...,U,]
as a free module over Fy[Uy, . .., U,|, we conclude that M is given by the stated formula. [

Corollary 2.39. The homomorphism G : Path(K (n, k)) — Quiv(I'y(n, k), Ry) descends to
a homomorphism of Fo[Uy, ..., U,V ™ -algebras G : By(n, k) — Quiv(T'y(n, k), Ry).

Equivalently, we have a Fy[Uy, ..., Uy]-linear functor G : Catp,(n k) — CatqQuiv(ry (nk),Ry)-

2.4.5. Equivalence of descriptions. The following corollary concludes the proof of Theorem
1.1.
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Corollary 2.40. The homomorphisms
F: Quiv(l'y(n, k), Ry) — Bo(n, k)

from Section 2.4.2 and
G : By(n, k) = Quiv(T'y(n, k), Ry)

from Sections 2.4.3 and 2.4.4 are inverse isomorphisms of Fo[Uy, ..., U]V ™) -algebras.
FEquivalently, F' and G can be viewed as inverse isomorphisms of Fa[Uy, ..., Uy|-linear
categories.

Proof. By Definitions 2.29 and 2.31, we have FG(fxy) = fxy for all x,y € V(n, k), so it
suffices to show that GF(y) = v for every edge v of I'y(n, k). If x and y are connected by
an edge v, then v« y = 7. Thus, we have GF(y) = G(fxy) = 7xy = 7 as desired. O

By Lemma 2.17, F' and G give us inverse isomorphisms of Fy[Uy, ..., U,]" ™" algebras
between By(n, k) and Quiv(I'(n, k), R).

Remark 2.41. Below, we will often abuse notation and write F' and G for these isomor-
phisms, rather than working with 'y (n, k).

3. A QUIVER DESCRIPTION OF OZSVATH-SZABO’S ALGEBRA B

3.1. The algebras B(n, k). While the algebra By(n, k) can be useful on its own (it is related
to the degree-zero part of Ozsvath—Szabd’s “Pong algebra” [OSzc| and appears in [AD18]),
Ozsvath—Szabd work primarily with a quotient B(n, k) of By(n, k) in [OSz18]. They define
this quotient in [0Sz18, Definition 3.4]; we will give an equivalent description in terms of
the quiver I'(n, k). First, we review Ozsvath-Szabd’s definition.

Definition 3.1 (page 1115 of [OSz18]). Define an element R; of By(n, k) by
Ri = Z fx,y>
xeV(n,k), xN{i—1,i}={i—1}
where for a given x, we take y = (x \ {¢ — 1}) U {¢}. Similarly, define
Lz’ = Z fx,ya
x€V(n,k), xN{i—1,3}={i}
where for a given x, we take y = (x \ {¢}) U {i — 1}. Define
U= Y Ufxx
x€V (n,k)

Remark 3.2. We abuse notation by writing U; both for an element of By(n, k) and for an
element of Fo[Uy,...,U,], on top of our further use of R;, L;, and U; for labels of edges in
['(n, k). We think this notation is well-motivated despite the potential risk of confusion.

Definition 3.3 (Definition 3.4 of [0Sz18]). The algebra B(n, k) is the quotient of By(n, k)
by the two-sided ideal generated by the following elements:

[} RiRi—‘rl and Li—l—lLi for 1 S 1 S n—1

o LU, for 1 <i<mnandxeV(n k) withxn{i—1,i} =2.
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V(n,k :
(nk)  since

More specifically, B(n,k) may be viewed as an algebra over Fy[Uy, ..., U,]
Bo(n, k) has this structure.
We now give a quiver description for B(n, k). Recall that to a path v in I'(n, k), we

associate a noncommutative monomial p(y) in the letters R;, L;, and U; for 1 <i < mn.

Definition 3.4. Define R to be the union of R C Path(I'(n, k)) with the set of paths ~ such
that u(v) is one of the following monomials for some i:
(1) R;R;y1 or Lii1L; (the “two-line pass relations”),
(2) U; if v is a loop at a vertex x € V(n, k) with xN {i — 1,i} = @ (the “U vanishing
relations”).

We can view the quotient Quiv(I'(n, k), R) of Path(I'(n, k)) by the two-sided ideal gener-
ated by R as an algebra over Fy[Uy, ..., U,]V (™).

Lemma 3.5. The isomorphisms F and G from Corollary 2.40 (see also Remark 2.41) de-
scend to isomorphisms of Fo[Uy, ..., U,V ™) -algebras between Quiv(T'(n, k), R) and B(n, k).

Proof. By Corollary 2.40, F' and G descend to isomorphisms between Quiv(I'(n, k), R) and
the quotient of By(n, k) by the two-sided ideal Z5 generated by the image under F' of R C
Path(I'(n, k)). The elements listed in Definition 3.3 are sums of generators of Z5, so they
are in Zz. Conversely, any generator of Zz can be obtained from an element listed in
Definition 3.3 via left multiplication by Iy for some x € V(n, k). O

Definition 3.4 can be understood visually in the same way as Definition 2.12, with the new
relations imposing the following new restrictions:

(1) If a dot moves twice in the same direction, then the result is zero (the two-line pass
relations),
(2) U; loops are zero at vertices x having x N {i — 1,7} = & (the U vanishing relations).

See Figure 10 for an illustration.

3.2. The algebras B(n,k,S) for general orientations. In [0Sz18], bimodules over the
algebra B(n, k) are assigned to braids oriented downwards (for us, these braids point left-
wards; see Remark 2.13). For more general orientations, Ozsvath-Szab6 define dg algebras
B(n,k,S) in [0Sz18, Section 3.3]. We review the definitions of these dg algebras below.

Let S be a subset of [1,n]; we think of [1,n] as the left or right endpoints of a tangle
projection (numbered from top to bottom, or from left to right in Ozsvath—Szabd’s conven-
tions), and then i € S if and only if the projection is oriented rightwards through point
i.

Definition 3.6 (Section 3.3, [OSz18]). For & C [1,n] and 0 < k < n, the dg algebra
B(n,k,S) is defined to be the tensor product of B(n, k) with an exterior algebra in variables
C; for i € S, where 0(C;) = U; = erv(n,k) L.U;. More concisely,

B(n,k)[C;|i € S]
(C? =0, 9(C) = U)ies
We may identify B(n, k) with B(n, k, @). Gradings will be defined in Section 3.3 below.

B(n,k,S) =

Generalizing the description of B(n, k) as Quiv(I'(n, k), R), we can give a quiver description

of B(n, k,S).
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FIGURE 10. Relations defining B(n, k) as a quotient of By(n, k): some examples.

Definition 3.7. Let I'(n, k, S) be obtained from I'(n, k) by adding an arrow from x to itself,
for all x € V(n, k) and for each ¢ € S, with a new type of label C;. To the relation set R,
we add the set of elements v such that u(7y) is equal to one of the following:

e C? (the “C? vanishing relations”),

o A+ AC; for any label A= R;, L;, U, or C; (the “C central relations”).

Let 755 denote this new relation set. We declare that for each arrow labeled C; at a ver-
tex x, the differential of the corresponding generator of Quiv(I'(n,k,S),Rs) is the arrow
labeled U; at the vertex x. By Proposition 2.8, we get a differential algebra structure on

Quiv(I'(n, k,S), Rs).
We will also use the notation ﬁxyyyg = Rs N1, Path(I'(n, k)1, .

Proposition 3.8. The isomorphisms F and G' from Lemma 3.5 extend to isomorphisms of
differential algebras over Fy[Uy, ..., U,V ™) between B(n, k,S) and Quiv(I'(n, k,S), Rs).

Proof. One can extend F by sending the C; loops at x in I'(n, k, S) to the elements I,C; in
B(n,k,S), while G sends C; € B(n, k,S) to the sum of C; loops at all x in I'(n, k,S). By
the differential analogue of Proposition 2.6, the maps F' and G are still inverse isomorphisms
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of differential algebras; the new relations on each side are satisfied on the other and the
extended maps F' and G respect the differential. 0

3.3. Alexander and Maslov gradings. In [0Sz18, Section 3.4], Ozsvath—Szabé define an
Alexander multi-grading w by (%Z)n and a Maslov grading m by Z on B(n, k,S) which we
review below. However, we begin with an “unrefined” version of the Alexander multi-grading
which is not mentioned in [0Sz18].

Definition 3.9. The unrefined Alezander multi-grading on B(n,k,S) is a grading by Z*"
denoted by w" and defined as follows. Write 71, 81, . .., Tn, 3n for the standard basis of Z>".
For 1 <i <n and an edge 7 of I'(n, k, S), we set

w'(7y) := 7; if v has label R;
w™ () := F; if v has label L;
w™(y) := 7; + B; if v has label U; or C;.

For v = (71,...,7), we define the unrefined Alexander multi-degree w"(7) to be
I
w(y) = 3 w(y)
j=1

Since cach element of Rs C Path(I'(n, k,S)) is w™-homogeneous, we get an Alexander
multi-grading by Z** on B(n, k,S) = Quiv(I'(n, k,S), Rs) by Proposition 2.7.

We can pass from the unrefined Alexander multi-grading to the “refined” version of
Ozsvath—Szabd as in the following definition.

Definition 3.10 ([OSz18, Section 3.4]). The (refined) Alexander multi-grading on B(n, k,S)
is a grading by (%Z)n denoted by w and defined as follows. Write ey, ..., e, for the standard
basis elements of Z". Let ¢ : Z*" — (1Z)n denote the homomorphism defined by setting

2

o(m) = p(Bi) = %ei for all 1 < i < n, where 7;, 5; form the basis for Z*" as in Definition 3.9.

Then we define w := @ o w"™. Explicitly, for an edge v of I'(n, k,S) representing an element
of B(n, k,S), we have

w(y) = %ei if v has label R; or L;

w(7y) := e; if v has label U; or C;.
We will also use the notation w;(a) to denote the coefficient of w(a) on the basis element e;.

We will often refer to the refined Alexander multi-grading as simply the Alexander multi-
grading.

Remark 3.11. In [Man17], the meaning of “refined” and “unrefined” grading was reversed.
Here we use terminology following [LOT18, Section 3.3 in line with [MMW19] where we
relate the gradings on Ozsvath—Szabd’s algebras with group-valued gradings on strands al-
gebras.

Going one step further, we can collapse the Alexander multi-grading to a single Alexander
grading by 37Z.
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Definition 3.12 (Equation 3.8 of [0Sz18]). The (single) Alexander grading on B(n,k,S) is
a grading by %Z defined by

Alex(7) == > wi(y) + Y _wi(y).
€S ¢S
Finally, we define homological gradings, also known as Maslov gradings.

Definition 3.13 (Equation 3.9 of [0Sz18]). For a path v in I'(n, k, S), we define the Maslov
degree of v to be

m(7y) = #c(y) — 2 Z wi(7),

where #¢(7) is the number of edges in 7 labeled C; for some i € S. Concretely, if v is a
single edge we have:

e m(7y) = 0 if v has label R;, L;, or U; and i ¢ S,

e m(y) = —1if v has label R;, L;, or C; and i € S, and

e m(y) = —2if v has label U; and i € S.

The following corollary concludes the proof of Theorem 1.2.

Corollary 3.14. When using the refined or single Alexander gradings, together with the
Maslov grading, the isomorphisms F' and G from Proposition 3.8 are isomorphisms of dg

algebras over Fy[Uy, ..., U,V ™R between B(n,k,S) and Quiv(I'(n, k,S), ﬁg)

Proof. By Proposition 3.8, we only need to check that F' preserves gradings (we have G =
F~1). Translating Ozsvath-Szabd’s definition of the Alexander multi-grading from [0Sz18,
Section 3.4] into our terminology, let

a = U{l -..U;nfx,y

be a generator of B(n, k). Ozsvath-Szabd define the Alexander multi-degree of a to have i

component equal to the quantity they call w;(a), which in our notation is r; + w More
generally, for a generator
a=Cy - CuUM U™ fry

of B(n,k,S) (with i1,...,74 € §), Ozsvath-Szabo define the degree of a by declaring that
C; contributes 1 to the i*® component of the Alexander multi-degree and 0 to all other
components. One can check that for an edge v of I'(n, k, S) labeled R;, L;, U;, or C;, the
Alexander multi-degree of v from Definition 3.10 agrees with Ozsvath-Szabd’s Alexander
multi-degree of F(vy) € B(n,k,S); indeed, a similar computation is given in the second
paragraph of [OSz18, Section 3.4] for the elements R;, L;, and U; of Definition 3.1.

Our single Alexander degree and Ozsvath—Szabd’s are obtained from the Alexander multi-
degrees by the same specialization, so F' preserves single Alexander degrees as well. Finally,
since F' preserves Alexander multi-degrees and the number of C; variables, F' also preserves
Maslov degrees. O

Ozsvath—Szabd do not discuss the unrefined Alexander multi-grading, so there is no need
for a comparison result in this case.

Remark 3.15. Using Propositions 2.7 and 2.8, one can package the Maslov grading and the
Alexander multi-grading into a grading by (G, \) as in Section A.1, with G = Z @ (%Z)n
and A = (1,0). One can also package the Maslov grading with the unrefined grading of
Definition 3.9 or the single Alexander grading of Definition 3.12 similarly.
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3.4. Idempotent-truncated algebras. As in [0Sz18, Section 12|, one can define dg alge-
bras related to B(n, k,S) by taking full subcategories of Catp(,k,s)-

Definition 3.16. Define algebras B,.(n, k,S), B(n, k,S), and B'(n, k,S) as follows:
o B.(n,k,S) := Algg where B, is the full dg subcategory of Catg(,.s) on objects
x € V(n,k) with 0 ¢ x; call the set of these objects V,.(n, k).
e Bi(n,k,S) := Algp, where B; is the full dg subcategory of Catp(,ks) on objects
x € V(n, k) with n ¢ x; call the set of these objects Vj(n, k).
o B'(n,k,S) := Algp where B’ is the full dg subcategory of Catg(,i.s) on objects
x € V(n, k) with 0,n ¢ x; call the set of these objects V'(n, k).

Without reference to categories, we can write B,.(n, k,S) as

(x%;x Ix) B(n, k,S) (X%;X Ix> ,

and similarly for By(n, k,S) and B'(n, k,S). The gradings on B(n, k,S) give rise to gradings
on the idempotent-truncated algebras B,.(n, k,S), Bi(n, k,S), and B'(n, k,S).

Remark 3.17. In [Manl9], the algebras B,.(n, k,S) and Bj(n, k,S) were called C,.(n, k,S)
and Ci(n, k,S), following old notation of Ozsvath—Szabd, and shown to categorify tensor
products V® of the vector representation V' of U,(gl(1]1)) and its dual (depending on the
orientations S).

Quiver descriptions of B,.(n, k,S), By(n, k,S), and B'(n, k,S) will be given in Section 4.4,
once we have reviewed [0Sz18, Proposition 3.7] (see Proposition 4.11 below).

4. THE STRUCTURE OF HOM-SPACES

4.1. Far pairs of vertices and crossed lines. The visual interpretation of Section 2.3
motivates the following definitions.

Definition 4.1 ([OSz18], Definition 3.5). Vertices x,y € V(n, k) are far (from each other)
if there is some a € [1, k] such that |z, — y,| > 1. Otherwise they are not far.

Note that if x and y are not far, then v;(x,y) € {—1,0,1} for all i € [1,n]. It follows from
[0Sz18, Proposition 3.7] that if x and y are far from each other then I,5(n, k, S)I, = 0; we
will review this proposition below.

The terminology in the next definitions is also due to Ozsvath—Szabd, although it does
not appear explicitly in [OSz18].

Definition 4.2. Let x,y € V(n,k) and suppose x and y are not far. In terms of the
graphical interpretation from Section 2.3, indices i € [1,n] correspond to horizontal lines,
arranged in parallel and numbered from top to bottom. We say that line ¢ is a crossed line
if v;(x,y) # 0, and we let CLxy = {7 € [1,n]|v;(x,y) # 0} denote the set of crossed lines
from x to y.

By Lemma 2.14, if i € CLy, then every path v in I'(n, k) from x to y contains at least
one edge labeled R; or L;; the converse is also true. Thus, graphically speaking, we have
t € CLy,y if and only if every motion of dots from x to y involves a dot crossing over line <.

Definition 4.3. Let x,y € V(n,k). A coordinate i € [0,n]\ (xNy) is called a not-fully-used
coordinate. Coordinates ¢ € x Ny are called fully-used coordinates.
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Visually, elements of [0, n] correspond to the regions between and outside the horizontal
lines in Definition 4.2. A coordinate is fully-used if both x and y have a dot in the corre-
sponding region. Note that this does not ensure that this dot was “stationary” in a minimal
motion from x to y; algebraically, a coordinate i € [0, n| is fully used if i = z, = y; for some
a,b € [1, k|, but we may have a # b.

4.2. The structure of B(n,k,S) via generating intervals. Given two vertices x,y €
V(n, k) that are not far, there is a helpful way of describing the relations in I, B(n, k, S)Iy,
as discussed in [OSz18, Section 3.2]. The main idea is as follows. An additive generator
a € IuB(n, k,S)I, can be represented by a path v € I'(n, k,S) from x to y. Modulo the
relations, one may be able to replace some U;-loops in 7y by sequences of edges labeled (R;, L;)
or (L;, R;). In this way, one may get a new path +' representing a that passes through a
new vertex X’ (not passed through by ). If X’ N {j — 1,j} = & for some j and +' contains
a U; loop, one can then commute this U; loop past other edges of 4/ until it is based at
x', implying that 4 = 0 and thus a = 0. Fortunately, the cases where this occurs can be
summarized in a simple way with the help of the following definition.

Definition 4.4 (Definition 3.6 of [0Sz18]). Let x,y € V(n, k) and suppose that x and y are
not far. A generating interval for x and y is a sequence of coordinates [j + 1,7 + ] C [0, n]
such that:

e The coordinates 7 and j + [ are not fully used, but the coordinate t is fully used for
j<t<yg+lI.
e CLiyN[j+1,7j+1] =@, ie. all of the dots between lines j + 1 and j + [ can be
viewed as “stationary” (see Definition 4.2).
We say the length of a generating interval G = [j+ 1,j+ ] isl. U G = [j+ 1,7+
is a generating interval, it has an associated (commutative) monomial pg in the variables
Ul, ceey Un defined by PG = Uj+1 cee Uj+l‘

Visually, a generating interval is a sequence of lines surrounding stationary dots for the
minimal motion from x to y, with each region on either end of the interval being empty in
either x or y.

Example 4.5. Let x ={0,1,3,5,7,8,9,11,14} and y = {1,2,3,4,6,9,10,12,13}; x and y
are elements of V(14,9) that are not far (the similar-looking elements in Example 2.30 are
far). Crossed lines between x and y are shown in red in Figure 11. Not-fully-used coordinates
are indicated with green circles to the right of the figure, and the generating intervals are

also shown to the right. The monomials pgs for the generating intervals G are UsUy, Uy, Us,
U11, and U13.

In analogy to Definition 4.4, we define a variant of generating intervals, which we call edge
intervals.

Definition 4.6. Let x,y € V(n, k) be I-states that are not far. For 1 <[ < n, we say that
[[1,1] is a left edge interval for x and y if the coordinate [ is not fully used, but the coordinate
t is fully used for 0 <t < [. Note that in this case, up to coordinate [ there are no crossed
lines, i.e. all of the dots above line [ can be viewed as stationary. We say the length of a left
edge interval G = [[1,1] is [.

Definition 4.7. Let x,y € V(n, k) be I-states that are not far. For 1 <1 < n, we say that
[n—141,n]] is a right edge interval for x and y if the coordinate n — [ is not fully used, but
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FI1GURE 11. Crossed lines, not-fully-used coordinates, and generating intervals
in Example 4.5.

the coordinate t is fully used for n — [+ 1 <t < n. In this case, after coordinate n — [ there
are no crossed lines, i.e. all of the dots below line n — [ 4+ 1 can be viewed as stationary. We
say the length of a right edge interval G = [n — [ + 1,n]] is [.

Definition 4.8. Let x =y = [0,n] € V(n,n + 1). We say that [[1,n]] is a two-faced edge
interval for x and y, with length n + 1.

Note that for x = y = [0,n], all coordinates t € [0,n] are fully-used, and there are no
crossed lines from x to y.

Proposition 4.9. Given x,y € V(n,k) not far, for each i € [1,n] ezxactly one of the
following s true:

(1) i € CLxy (line i is crossed);
(2) there exists a unique generating interval G such that i € G;
(3) there exists a unique (left, right, or two-faced) edge interval G such that i € G.

We will prove Proposition 4.9 with the help of the following lemma.
Lemma 4.10. Suppose that x,y € V(n, k) are not far and fixi € [1,n] \ CLxy. Then:

(1) i belongs to a generating interval [j + 1,7 + | if and only if there exist a coordinate
t <i—1 and a coordinate t' > i that are not fully used. In this case we have

(4.1) j=max{t <i— 1|t is not fully used},
[ =min{t >i|t is not fully used} — j.

(2) i belongs to a left edge interval [[1,1] if and only if all coordinates t < i — 1 are fully
used and there exists a non-fully used coordinate t' > i. In this case we have

[ =min {t > i|t is not fully used} .

(3) i belongs to a right edge interval [n — 1 + 1,n]] if and only if there exists a non-fully
used coordinate t < i — 1 and all coordinates t' > i are fully used. In this case we
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have
l=n—max{t <i— 1|t is not fully used} .

(4) i belongs to a two-faced edge interval [[1,n]] if and only if all coordinates are fully
used.

Proof. We only prove (1), since the proof in the other cases requires only straightforward
variations. First, if ¢ belongs to a generating interval [j + 1,5 + [], then j and j + [ are
non-fully-used coordinates satisfying j <i— 1 and j + 1 > ¢. Moreover, from Definition 4.4,
j and [ must be given by the formulas in equation (4.1).

Conversely, suppose that there exist a coordinate ¢ < i — 1 and a coordinate ¢’ > i that
are not fully used. Then j and [ from equation (4.1) are well defined. Recall that line i
is not crossed, that is, v;(x,y) = 0. It follows that v, (x,y) = 0 for all t € [j + 1,7 — 1],
since v;(x,y) = 0 and all coordinates between j 4+ 1 and ¢ — 1 are fully used. Analogously,
v (x,y) = 0 for all t € [i,j+1]. Then, by definition, the interval [j + 1,7 + (] is a generating
interval containing i. 0

Proof of Proposition 4.9. If line 7 is crossed, then, by Definitions 4.4, 4.6, 4.7 and 4.8, i does
not belong to any generating or edge interval. Thus, (1) is true and (2) and (3) are false in
this case.

Now suppose that line 7 is not crossed. Note that we must be in exactly one of the following
4 cases:

(1) there exist a coordinate t < i — 1 and a coordinate ¢’ > ¢ that are not fully used;

(2) all coordinates t < i — 1 are fully used and there exists a non-fully used coordinate
t' >

(3) there exists a non-fully used coordinate ¢ < i — 1 and all coordinates t' > i are fully
used;

(4) all coordinates are fully used.

By Lemma 4.10 there exists exactly one generating or edge interval containing ¢, so we are
done. 0

The following proposition from [OSz18] shows that generating intervals provide all the
relations within I,B(n, k)I,.

Proposition 4.11 ([OSz18, Proposition 3.7]). For x,y € V(n,k), let ¢ = ¢™Y be the
isomorphism of Fo[Uy, . .., Uy,|-modules from Definition 2.11. Its inverse

¢71 : IxBo(n, k)Iy — FQ[Ul, RPN Un]
mduces an isomorphism

if x and y are far
otherwise.

N 0
ot IB(n, k)I, — { Fa[Ut,...,Un]

(pc | G generating interval)

Thus, a basis over Fy for I.B(n, k)1 is given by the elements ¢(p) where p is a monomial in
Uy, ..., U, that is not divisible by pg for any generating interval G for x andy. It follows that
a basis for I.B(n, k, S)I, is given by elements ¢(p) times square-free monomials in variables

C; forie S.
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Corollary 4.12. Under the isomorphism
FolUy, ..., Uy
(pc)

a monomial U - - U™ gets sent to Yy - Vxy where vxy is the path from Definition 2.29 and
vu s a product of U; loops at x with multiplicities r;.

2 LB(n, )T, S I Quiv(T(n, k), R)L,

Corollary 4.12 will be useful in [MMW19] when proving that the algebra map
o : B(n,k,S) = An, k,S)

constructed in that paper is a quasi-isomorphism in the case § = &.

4.3. A splitting theorem. Proposition 4.11 implies that I.B(n, k, S)I, decomposes as a
tensor product of chain complexes. First, we introduce special cases of Ozsvath—Szabd’s
algebras that we will call generating algebras and edge algebras.

Definition 4.13. For [ > 0 and S C [1,1], define the generating algebra B(l,S) to be
B(1,8) =T yB(l, 1 —1,8)1-q).

Similarly, define the left edge algebra By(1,S) to be Ijg;—1B(1, 1, S)I -1}, and define the right
edge algebra B,(1,S) to be Iy yB(l,1,8)Ij1 . Define the two-faced edge algebra By,(l,S) to
be B(l,1 +1,S).

Now let x,y € V(n, k) be not far. Based on the structure of the generating intervals and
edge intervals for x and y, we introduce a regrading of the generating and edge algebras
B(l,8) and B,(l,S). This regrading will be used primarily in Corollary 4.16.

Let [j1+1,71+04], ..., [js+1, Js+ 1] be the generating intervals for x and y (see Definition
4.4), of lengths Iy, ..., I, respectively, ordered so that j; < -+ < j.

Definition 4.14. If G = [j, + 1, j, + l,] is a generating interval for x and y, consider the
dg algebra

Lot tjotta-1B(1n,la — 1,8 N G)Ljj i1 it —1)-
If I, = 1, note that this algebra is F5. We have a canonical isomorphism
(4.2) Y6 jortjarta-B(,la = 1,8 N G)jjuit jutia—1) — Bllas Sa),
by a simple re-indexing of the regions [0, 7| (omitting the ones outside [j4, jo + la]), Where
Soi={i—Jjul1 € SNGY.

Redefine the Alexander multi-gradings on B(l,,S,) by shifting the indices by j,, so that
Tis Bi ¥ Titjas Bitj. and the isomorphism preserves the Maslov grading and all Alexander
gradings from Section 3.3. Similarly, if G = [n — l,41 + 1,n]] is a right edge interval for x
and y, there is a canonical isomorphism

(4.3) Ve Loty 1B by, SN = lysr + L0 iy, 1.0 — Bpllor1s Spn),
where

Spr1={i—n+h|ieSN[n—1l+1,nl}
Modify the Alexander gradings on Ep(lb.i_l, Spi1) so that Y preserves them as above.
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If G =[[1,ly] is a left edge interval for x and y, then there is a canonical isomorphism
(4.4) Ve Tog-1B(n, lo, SN [1, l])Xjo10-1) — Bi(lo, So),

defined as above. By analogy with the previous cases, we set Sy := S N [1,[y]. Note that
there is no need to redefine the Alexander multi-grading on FA(IO, Sp) in this case, because
e already preserves it. If G = [[1,n]] is a two-faced edge interval for x and y, then
E)\p(n, S) =T B(n,n+1,5)Ij, by definition.

Definition 4.15. We define a dg algebra for the crossed lines from x to y (see Definition
4.2), denoted by BE5(S), as follows:

Bet(s) i FalUili € CLIC; ) € CLay N ]
= (CJ27 aC] - U])

The differential is zero on all terms other than C; as shown. We define an Alexander multi-
grading on B,C(‘;,(S) by setting

w;(1) = % ifie C.L:X’y
0 otherwise
and declaring that multiplication by either U; or C; increases w; by 0;; for all j € CLxy
(j € CLxy NS for the variables C;) and ¢ € [1,n]. We define a Maslov grading on BZ5(S)

by setting
m(l) = —|CLxy N S|

and declaring that multiplication by U; (respectively C;) decreases m by 2 (respectively 1)
if i € CLxy N'S. Multiplication by U; for j € CLxy \ S has no effect on m.

Corollary 4.16. Let x,y € V(n, k) be not far. Let [j1+ 1,71+ UL],..., [Jo + 1, J6 + ly] e the
generating intervals, of lengths i, ..., 1, respectively, ordered so that j; < --- < jp.
There is an isomorphism of chain complezes

V2 LB(n, k,S)Iy = BL5(S) @ Bo(lo, So) @ B(l1,81) ® - -+ @ B(ly, S) @ Bo(lpr1, Spi1),

where Bo(lo, So) and Bo(lys1,Spy1) are defined as follows:

o If [[1,1o] is a left edge interval for x and y, then we set Bo(ly,So) = Ba(lo,So);
otherwise we set B (ly, Sy) = Fy.

o If [n—lyy1 + 1,n]] is a right edge interval for x and 'y, then we set Bo(lpy1, Spr1) =
Ep(le,SbH); otherwise we set Bo(lyy1,Spi1) = Fo.

o Ifx =y =[0,n] (i.e. [[1,n]] is a two-faced edge interval for x and y), then we set
the target of 1 to be By,(n,S).

The Alexander and Maslov gradings on the right hand side are as specified in Definitions 4.1/
and 4.15.

Corollary 4.16 is useful below when we compute the homology of B(n, k, S). We will prove
an analogous splitting theorem for the strands algebras A(n, k,S) in [MMW19] and use it
for homology computations in parallel fashion.
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Proof. First suppose S = @. By Proposition 4.11, I,B(n, k)I, is isomorphic to FalUs,--Un]

and if there are no edge intervals we can write

b
Fo[Ur, ... Un) 2 Fs[U; i € CLay] @ Q) Fa[Ujusn,- -, Ujot,]
a=1
by Proposition 4.9 (when there are left or right edge intervals we have extra polynomial
factors on the right hand side of the isomorphism). Since each generator pg of the ideal (pg)
involves only U; generators with j, +1 <1 < j, + [,, we have

Fy[Uy, ..., U] , 2 FalUiits - Ujost]
4.5 T T R UiZEC,CX ® Ja+1) ) Y Ja a7
(45) (pc) oAU} v @ (Ujatr*+ Ujotta)

where edge intervals again give extra polynomial factors with no relations. Using Proposi-
tion 4.11 a second time, the tensor product on the right side of (4.5) is isomorphic to the
target of 1 as in the statement of the corollary.

We can thus define 1 to be the isomorphism of (4.5), composed on both sides with isomor-
phisms from Proposition 4.11. By the grading shifts of Definition 4.14, ¢/ is an isomorphism
of graded modules. When S # @&, we define 1 by tensoring both sides with an exterior al-
gebra on {C; |7 € 8} (with appropriate gradings and differentials). We get an isomorphism
of chain complexes as desired. 0]

Remark 4.17. The various tensor factors in Corollary 4.16 can also be given unrefined
Alexander gradings so that the splitting isomorphism ) respects these gradings as well.

4.4. Quiver descriptions of the truncated algebras. Using Proposition 4.11, we can
give quiver descriptions of the truncated algebras B,.(n,k,S), Bi(n,k,S), and B'(n, k,S)
from Definition 3.16.

Definition 4.18. We define quivers and relations for the truncated algebras as follows:
e Let I'.(n, k,S) be the subgraph of I'(n, k, S) on vertices x € V,.(n, k), and let

Rr = U Rx,y,S-
x,y€Vr(n,k)
Define T'y(n, k, S) and R; similarly.
e Let I(n, k,S) be the subgraph of I'(n, k,S) on vertices x € V'(n, k), and let R’ be
the union of Ux7yEV’(n7k) ﬁx’y,s with one additional element U ---U, in Rxxs for
x=[Ln—-1 (ifk=n-1).

Proposition 4.19. The dg algebra homomorphism F from Path(I'.(n, k,S)) to B.(n,k,S)
obtained by restricting the map F from Proposition 3.8 to

Path(I',(n, k,S)) C Path(I'(n, k, S))

induces an isomorphism from Quiv(L,(n,k,S),R,) to B.(n,k,S). Similar statements hold
for Bi(n,k,S) and B'(n,k,S).

Proof. Since the relations in R, hold in B.(n,k,S), it suffices to show that F' induces a
bijection

F : L Quiv(T,(n, k, 8), Ry, — LB.(n, k, S)I,
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for all x,y € V,.(n, k). First, we prove this in the case S = &@.

For surjectivity, note that by Proposition 4.11 (or by definition), I:B,(n, k)1, is spanned
by products of fxy with U; generators. One can check that 7xy = F~'(fxy) is a path in
[',(n, k), and all loops giving rise to U; generators are in I',.(n, k), so F' is surjective.

For injectivity, first note that Lemma 2.35, Lemma 2.36, and Proposition 2.37 also hold
when the elements 7%y in these proofs are viewed as elements of Quiv(I',(n, k), R,) rather
than Quiv(I'y(n, k), Ry). In fact, the case of Quiv(I'.(n, k), R,), like Quiv(I'(n, k), R), is a
bit simpler because R-segments and L-segments with length greater than 1 are zero. The
only thing to check is that all relations used in the proofs of Lemma 2.35, Lemma 2.36, and
Proposition 2.37 are in R C R and this follows from re-examining the proofs.

Since any path v in I'.(n, k) can be written as some U; loops times a product of edges
Txy, We see from these results that v is equivalent modulo ﬁr to 7x,y times some U; loops.
It follows that as Fy[Uy, ..., U,]-modules, I, Quiv(T.(n, k), ﬁT)Iy is isomorphic to w
where J is an ideal in Fo[Uq, ..., U,].

Since F'is well-defined, [J is contained in the ideal generated by the monomials ps for G
a generating interval between x and y. To show that [ is injective, it suffices to show that
each of these monomials is in J. Indeed, writing pg = Ujt1 -+ - Ujy, we consider several
cases.

If xN{j,j+1} =@ (respectively y N {j,j + {} = @), then we can factor ps as the path
Riti-- RjoUjp1Ljyo -+ Ljy in I'y(n, k) based at x (respectively at y). Note that all of the
edges used are indeed in I';(n, k) even in the extreme case that j = 0. Then since j ¢ x
(respectively j ¢ y), the edge labeled U4 in this expression is zero by the U vanishing
relations.

Since G is a generating interval, the only cases that remain are the cases where

xN{j. g+ =lyn{ii+}=1,
but x N {j,7+1} #yN{j,j+1}, which we analyze separately below.

o IfxN{j,j+1l} ={j+i}and yn{j,j+1} = {j}, then v;(x,y) = vj41+1(x,y) = 1 and
the construction of Definition 2.29 ensures that v« contains a pair of consecutive
edges labeled R;;41R;. Let X’ be the vertex common to these two edges; we have
x'N{j,7+1} =@, so we can factorize pg as a path based at x" and get zero.

o IfxN{j,j+Ii}={j}andyn{y,j+ 1} ={j+1}, the argument is similar with v«
containing a pair of consecutive edges labeled L;L;;+1. Let x’ be the vertex common
to these edges; we again have x' N {j,j +{} = @, so we can factorize ps as a path
based at x" and get zero.

It follows that B
F: Quiv(l'.(n, k), R,) — B.(n, k)
is a dg algebra isomorphism as claimed. By adjoining the C; generators on both sides, we
get the statement for general S.
The case of B(n, k,S) is analogous; one uses the factorization

Lisv--- LU B -+ Ry,
the edges of which are included in I'j(n, k).
For B'(n, k,S), the argument needs a minor modification: if k = n—1,sox =y = [1,n—1],
the unique generating interval G' between x and y has pg = U; - - - U,, and none of the U;
generators can be factored into R; and L, generators in I, Quiv(I"(n, k), R')L,. However,
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Ui --- U, was explicitly added as an element of R (and thus J), so it still follows that each
monomial pg is in J. Thus, F is a dg algebra isomorphism in this case as well. O

Remark 4.20. The proof of Proposition 4.19 also gives us an alternate and shorter proof
of Proposition 3.8, relying fundamentally on Proposition 4.11 ([OSz18, Proposition 3.7]).

Our first proof of Proposition 3.8, though, has the advantage that it comes from a quiver
description of the algebra By(n, k), which may be of independent interest and to which
[0Sz18, Proposition 3.7] does not apply.

4.5. Symmetries. In [OSz18, Section 3.6], Ozsvath—Szab6 exhibit two symmetries of the
algebras B(n, k,S), taking the form of algebra isomorphisms

p:B(n,k,8) — B(n, k,p(S))
and

o:B(n,k,S)— B(n,k,S)P,
where

p(§)={n+1—-1il|ieS}.
Ozsvath and Szabo refer to the first symmetry as R rather than p. We use the latter to avoid
confusion with the relation ideals in the quiver description of B(n,k,S). In the language
of Definition 2.11, we can describe these symmetries as follows; first, define p : V(n, k) —
V(n, k) by
p(x) ={n—ala € x}.

Definition 4.21 (Section 3.6 of [0Sz18]). The isomorphism p : B(n, k) — B(n, k) is induced
from the isomorphism p : By(n, k) = By(n, k) sending Uy" - - U™ fxy to U™ - UN fox) p(y)-
The isomorphism p : B(n,k,S) — B(n,k, p(S)) is induced from p : B(n,k) — B(n,k) by
sending C; to Cp1q_;.

We can view p as an isomorphism of Fy[Uy, ..., U]V (™ algebras if we modify the left
and right actions of Fo[Uy, ..., U,]V™* on B(n,k, p(S)) by precomposing them with the
endomorphism of Fy[Uy, ..., U,]V ™ sending U; to U,41_; and x to p(x). One can check

that p is an involution, i.e. p? = id; this makes sense because p is defined for all S.
Definition 4.22 (Section 3.6 of [OSz18]). The involution o : B(n, k,S) — B(n, k, S)°? sends
Ut U fry = UM U fy s

and it sends C; to C;. Unlike with p, we can view o as an involution of Fy[U, .. ., Un]v("’k)—
algebras without modifying the actions on either side. One can check that this involution o
sends R; to L;, L; to R;, U; to U;, and C; to C; where R;, L;, U;, and C; are defined as in
Definition 3.1, so that our definition of o agrees with Ozsvath—Szabd’s.

In fact, we can see both symmetries p and o from the perspective of Quiv(I'(n, &k, S), ﬁg)

Definition 4.23. Define an involution of directed graphs p : I'(n, k,S) — I'(n, k, p(S)) by
sending an edge v from x to y in V(n, k) labeled R;, L;, U;, or C; to the unique edge from
p(x) to p(y) labeled Ly,y1_i, Rpy1—i, Uns1-i, or Cpi1_; respectively.

The involution p induces an involution of path algebras

p: Path(I(n, k,S)) = Path(I'(n, k, p(S))),
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at least as algebras over Fy. We can view p as an involution of Fy[Uy, . . ., U,]V ™*)-algebras if
we precompose the usual left and right actions of Fo[Uy, ..., U,]V™* on Path(I'(n, k, p(S)))
with the involution of Fy[Uy, ..., U,]"V ™" sending x to p(x) and sending U; to Uy,11_;.

Proposition 4.24. The involution p : Path(I'(n,k,S)) = Path(I'(n, k, p(S))) sends the
relation set Rs to the relation set R, s).

Proof. One can check that the image under p of each relation in Rs listed in Definitions
2.12, 3.4, and 3.7 is also listed in one of these definitions for R ,s). O

It follows from Proposition 4.24 that p induces an involution
p: Quiv(T(n, k,S), Rs) = Quiv(T(n, k, p(S)), Rp(s))

of Fy-algebras, or of Fy[Uy, . .., Un]V(”7k)—algebras if we modify the left and right actions on
the right-hand side as discussed below Definition 4.23. We have p o d = 0 o p (it suffices to
check that p(0(C;)) = 0(p(C;))), so p is an involution of differential algebras.

Finally, Definition 3.13 implies that p preserves the Maslov grading. If we postcompose
the unrefined Alexander multi-degree function on the right-hand side with the involution of
Z2" sending 7; to 3,41—; and sending 3; to T,41_i, then p preserves the unrefined Alexander
multi-grading as well. Similar statements hold for the refined Alexander multi-grading and
the single Alexander grading, so that in any case we may view p as an involution of dg
algebras over Fy[Uy, ..., U,V (k).

Proposition 4.25. The isomorphisms F and G between Quiv(I'(n, k,S), 7€5) and B(n, k,S)
from Proposition 3.8 intertwine the symmetry p of Quiv(I'(n, k,S), Rs) with Ozsvdth—-Szabd’s
first symmetry of B(n, k,S), which we also denote by p as discussed above.

Proof. We only need to prove the result for F, since G = F~!. If 7 is an edge in I'(n, k, S)
from x to y with label R;, then F(v) = fxy, so p(F (7)) = fox)py)- The edge p(7)
in I'(n,k, p(S)) from p(x) to p(y) is the unique such edge (and its label is L,41-;), so
F(p(7)) = fox).py) and we have p(F(v)) = F(p(7)). If v has label L; rather than R;, the
proof is similar.

Let v be an edge in I'(n, k,S) from x to x with label U;. We have F(v) = U, fxx, so

p(F(’}/)) = Un+1fifp(x),p(x)-
The edge p(vy) from p(x) to p(x) has label U, ;1_;, so we have
F(ﬂ(’y)) = Un+1fifp(x),p(x)

and thus p(F(7)) = F(p(7))-
Finally, F' sends C; to C;, and p(C;) = C,+1—; on both sides. Since F' and p are multi-

plicative, it follows that po F' = F o p. U

Note that x € V,(n, k) if and only if p(x) € Vi(n, k); similarly, x € V'(n, k) if and only if
p(x) € V'(n, k). Thus, the following proposition is immediate.

Proposition 4.26. The symmetry p: B(n,k,S) — B(n, k, p(S)) restricts to isomorphisms
p:By(n,k,S) = Bin, k, p(S)),
p:Bi(n, k,8) = B.(n, k,p(S)), and
p:B(n,k,.S) = Bn,k, p(S)).
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Edges of I',.(n, k, S) are mapped to edges of I';(n, k, p(S)) by p and vice versa; elements of
ﬁr are mapped to elements of 751 and vice versa. Thus, the symmetry p is apparent in our
quiver descriptions of B,(n, k,S) and B(n, k, p(S)); the same is true for B'(n, k,S).

Now we will consider Ozsvath-Szabd’s second symmetry o, relating B(n, k,S) and its
opposite algebra. Note that the opposite I'P of a directed graph I' can be defined by
reversing the orientation of all edges in I". Each edge of I'P keeps the same label as it had
in . We have identifications (FyI")°P = Fo(I'°P) of path categories, and similarly for path
algebras.

Definition 4.27. Define an automorphism of directed graphs o : I'(n, k,S) — I'(n, k,S)°P
as follows:

e For a vertex x € V(n, k) of I'(n, k, S), define o(x) = x.

e For an edge v from x to y in ['(n, k,S) labeled R;, L;, U;, or C;, define o(7) to be

the unique edge from x to y in I'(n, k, S)°P labeled L;, R;, U;, or C; respectively.

As with p, one can check that o is an involution, so o induces an involution of path cat-
egories o : Fol'(n,k,S) =N Fol'(n, k,8)° and thus an involution of path algebras o :
Path(I'(n, k,S)) = Path(I'(n, k, S)°P). Unlike with p, the involution o is Fo[Uy,. .., U,V (k-
linear without modification of the actions on either side.

Note that we may view R as a set of elements in Path(I'(n, k, S))°P, and the quotient of
the opposite algebra by the ideal generated by this set can be identified with the opposite
algebra of the original quotient.

Proposition 4.28. The involution o : Path(I'(n, k,S)) = Path(T(n, k,S))P sends the
relation set Rs to the relation set Rgs.

Proof. As with p, one can check that the image under o of each relation in Rs is also a
relation in Rs. For example, o( R;R;11) is L;L;y1 where the product is taken in the opposite
algebra; this is the element we would more typically call L;.1L;, and it is an element of
Rs. O

Thus, o induces an involution
o : Quiv(T'(n, k:,S),ﬁg) =N Quiv(T'(n, k,S),ﬁg)Op

of Fy[Uy, ..., U,]V(™F-algebras. We have 00 d = 0 o 0, so o is an involution of differential
algebras, and o preserves the Maslov grading. If we postcompose the unrefined Alexander
multi-degree function on the right-hand side with the involution of Z?" sending 7; to 8; and
sending (3; to 7;, then o preserves the unrefined Alexander multi-grading, so o is an involution
of dg algebras over Fy[Uy, ..., U,]V (™) Similar statements hold for the refined and single
Alexander gradings.

Proposition 4.29. The isomorphisms F and G between Quiv(F(n,Nk:, S), 7%3) and B(n, k,S)

from Proposition 3.8 intertwine the symmetry o of Quiv(I'(n, k,S), Rs) with Ozsvdth-Szabd’s
symmetry o of B(n, k,S).

Proof. The proof is similar to that of Proposition 4.25. Again, we only need to prove the
result for F. If v is an edge in I'(n, k,S) from x to y with label R;, then F(v) = fxy, so
o(F(v)) = fyx. The edge o(y) in I'(n, k,S)°? from x to y is the unique such edge (and its
label is L;), so F(o(7)) = fyx and we have o(F()) = F(o(7)). If v has label L; rather than
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R;, the proof is similar. For an edge v in I'(n, k,S) with label U; or C;, we have o(y) = v
and o(F(v)) = F(v). Since o and F' are multiplicative, it follows that oo F' = F o o. O
Like with p, the symmetry o can be restricted to the truncated algebras.
Proposition 4.30. The symmetry o: B(n,k,S) — B(n, k,S)°P restricts to isomorphisms
0: B,(n,k,8) = B,(n,k,S)*,
0: By(n, k,S) = Bi(n,k,S), and
0:B(n,k,S) = B(n, k8.

Again, the symmetry o is apparent in our quiver descriptions of the truncated algebras.
Note that p oo = oo p, properly interpreted. In [MMW19], we will define analogues of the
symmetries p and o for the strands algebras defined there and interpret them geometrically
in terms of rotations of strands pictures.

5. HoMmoLoGY OF OzSVATH-SZABO’S ALGEBRAS

When S # @, the algebra B(n,k,S) has a differential; in Section 5.1 we compute its
homology, and in Section 5.2 we discuss formality and higher products.

5.1. Homology computations. Let x,y € V(n,k). By Corollary 4.16, I.B(n,k,S)I,
decomposes as a tensor product over Fy of the crossed line complex Bgﬁ,(S ) with chain com-
plexes B(l,,S,) for each generating interval [j,+1, j,+14] as well as By (o, Sp), Ep(le, Spi1),
and B,,(n,S) for various types of edge intervals.

We will compute the homology of the factors appearing in this tensor product; we start
with BZ% (S).

Lemma 5.1. Fiz 0 < k <n,x,y € V(n,k), and S C [1,n]. A basis for the homology of the
crossed line complex Bf;Ly(S) is given by monomials in the variables U; € CLxy \'S.

Proof. B5,(S) can be decomposed as a tensor product having a factor Fo[U;] for each i €
CLxy\S and a factor LCJ]) for each j € CLxyNS. Both types have easily computable

(C3=0, 0C;=U;
homology; the Kiinneth theorem allows us to combine them to compute H,(BS5(S)) and
see that the basis elements are as described. U

Next we consider the complexes for edge intervals.

Lemma 5.2. Forn >0 and § C [1,n], a basis for the homology of any of the edge-interval
complexes By(n,S), B,(n,S), or By,(n,S) is given by elements [¢(p)] (in the notation of
Proposition 4.11) where p is a monomial in the variables U; for i ¢ S.

Proof. Similarly to Lemma 5.1, By(n,S) is isomorphic via the map ¢ of Proposition 4.11 to
a tensor product of complexes Fa[U;] for each ¢ € [1,n]\ S and (C?E)[f]% for each j € S.
The same argument works for B,(n,S) and B,,(n,S). O

We now consider the case of generating intervals, which are a bit more complicated.

Lemma 5.3. Forn >0 and S = {iy,...,4} C [1,n], a basis for the homology of B(n,S) is
given by:
o clements [¢(p)| where p is a monomial in the variables U; fori ¢ S, together with
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o clements [Cy, ¢(p)] where p is Uy - - - ﬁ; -+~ U, times a monomial in the variables U;
fori¢S.
For the second type of basis element, we could use any C;; fori; € S in place of i1, removing
Ui, instead of U;, from the monomial p; the resulting elements represent the same homology
class.

Proof. Let I = |S|. We will induct on [; recall that B(n, @) 2 F[Uy,..., U]/ (Uy---U,).
Forl=1,s08= {i} for some i, the complex B (n,S) is isomorphic to the mapping cone
of U; : B(n,@) — B(n,@). Since B(n,d) is a complex with vanishing differential, we have

H,.(B(n,S)) = (B(n,2)/im(U;)) @ ker(U;).

A basis for B(n,@)/im(U;) is given by monomials in the variables U; for j # i. A basis
for ker(U;) is given by monomials that are divisible by U; for all j # 4, but not divisible by
U; (otherwise they would be zero). The identification of the homology of the mapping cone
with H,(B(n,S)) sends these monomials to the basis elements stated in the lemma.

Now assume [ > 1; write S = {i1,...,4} and &' = S\ {i;}. The complex B(n,S) is
isomorphic to the mapping cone of U;, : B(n,S') — B(n,S’). Thus, we have a long exact
sequence in homology

v = H,(B(n,S")) = H,(B(n,S)) = H,(B(n,S")) — ---
with connecting map the map [U;,| induced by U;, on homology.
From this long exact sequence, we can extract a short exact sequence
0 — H.(B(n,8"))/im([U;]) = H.(B(n,S)) — ker([U;]) — 0.

Multiplication by [U;] sends a basis vector of H.(B(n,S’)) to another such basis vector.
Moreover, it is straightforward to check that no two basis vectors are sent to the same one.

Thus, ker([U;,]) = 0 and
H.(B(n,S)) = H.(B(n,8))/ im([U;)).

A basis for this quotient is given by basis elements for H,(B(n,S’)) that are not equal to
another basis element times U;,; by induction, these are the basis elements stated in the
lemma. ([l

We can assemble the results above to compute the homology of B(n, k,S) in general.

Theorem 5.4. Let x,y € V(n, k) be not far. Let [j1 + 1,51 + U], ..., [Jo + 1,75 + ly] be the
generating intervals from x toy. For 1 < a <b, let i, be an element of [jo + 1,7a + 1] NS,
if such an element exists.

For a generating interval G = [jo + 1, ja + o], write p, for pe (as defined above in Sec-
tion 4.2). Abusing notation slightly, a basis for It H.(B(n, k,S))1Ly is given by the elements

b €a
) (pH (%) )

where €, € {0,1} is zero if SN [jo + 1, jo + la) = D and p is a monomial in the variables U;
fori ¢ S, not divisible by pg for any generating interval G (this condition is only relevant
for generating intervals disjoint from S ).

Note that, as discussed in Remark A.19 in the appendix, it does not matter whether we

write Iy H.(B(n, k, S))1, or H,(I«B(n, k,S)L).
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Proof. By the Kiinneth formula for the homology of a tensor product of chain complexes
over [Fy, the isomorphism ¢ of Corollary 4.16 induces an isomorphism

Qﬂi IXH*(B(R, k,S))Iy ;) FQ[Ul |Z S Cﬁxy \ S] ® H*(EO(ZO,SO)) & H*(F(ll,Sl)) &
® H.(B(ly, Sp)) @ Ho(Bo(lpr1,Spi1)),

where CLxy is the set of crossed lines from x to y as usual. We can get a basis for
I.H.(B(n, k,S))I, by taking the product of bases for each tensor factor. Using the bases of
Lemmas 5.1, 5.2, and 5.3, we get the basis stated in the theorem. O

Each summand I.B,(n, k, S)I, is a summand of B(n, k,S) (there are just fewer summands
in B,.(n,k,S)), and the same is true for the other truncated algebras. Thus, the homology
of the truncated algebras follows from Theorem 5.4.

5.2. Formality and Massey products. Let A be a dg algebra. By homological pertur-
bation theory (see e.g. [LOT15, Corollary 2.1.18] and the references therein), A is A
homotopy equivalent to H,(A) where the multiplication on H,(A) is supplemented by cer-
tain higher A., actions. If one has such an equivalence when taking the extra A, actions
on H,(A) to be zero, then A is called formal. Instead of an A, homotopy equivalence, one
can ask for a zig-zag pattern of dg quasi-isomorphisms connecting A and H,(A).

Remark 5.5. The equivalence of these two notions of formality is a standard result at least
for k-algebras defined as rings A equipped with ring homomorphisms from k to Z(.A); see
[Lun10, Corollary 2.9]. Presumably the equivalence also holds in our setting, although we
do not need this fact for our results. By [LHO03, Theorem 9.2.0.4, (b)=-(a)], a dg quasi-
isomorphism is an 4., homotopy equivalence under our definitions; the same therefore holds
for a more general zig-zag of dg quasi-isomorphisms. When proving algebras are formal, we
will always exhibit zig-zags of dg quasi-isomorphisms. When obstructing formality, we will
always obstruct A, formality.

The higher A, actions induced on H,(A) are not canonical in general. However, certain
higher actions on H,(A) (“Massey products”) are canonical and thus obstruct formality.
We will use the notion of “Massey admissible sequences” described by Lipshitz—Ozsvath—
Thurston in [LOT15, Definition 2.1.21] to identify Massey products on H,(B(n,k,S)) for
some choices of n, k, and S, and we will show that for the remaining choices B(n, k,S) is
formal. We will consider formality for the truncated algebras B,.(n,k,S), B(n,k,S), and
B'(n,k,S) in Section 5.2.1.

Remark 5.6. Throughout this section, we will be using the quiver description for B(n, k, S)
via the graph I'(n, k, §) freely without reference to the isomorphisms F' and G from Sections 2
and 3.

Definition 5.7 (see Definition 2.1.21 of [LOT15]). Let A be a dg algebra (with a homological
grading by Z, and possibly with an additional intrinsic grading) over F} for V finite and
write 1 for a set of A, operations on H,(A) such that (H,(A), ) is A homotopy equivalent
to A. Let (au,...,as) be a finite sequence of elements of H,(A) coming from composable
morphisms in Catg, 4). The sequence is called Massey admissible if the following conditions
hold for all 1 <i < j <m with (i,7) # (1, m):

e The higher product 7z;_; ,(c, ..., ;) is zero.
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o If x,y € V denote the left and right idempotents of o; and «; respectively, the
summand I, H, (A)I, of the homology algebra H,(A) is zero in degree j—i+deg(a;)+
-+ deg(ay).
Integers added to degrees are taken to modify the homological degree while leaving the
intrinsic degree unchanged. Note that the Massey admissibility condition for sequences of
length three does not depend on the choice of 7.

In our case, the homological grading is the Maslov grading of Definition 3.13, while the
refined Alexander multi-grading of Definition 3.10 will be treated as the additional intrinsic
grading (see Remark 5.18 below for a brief discussion of the other grading possibilities).

Remark 5.8. Definition 5.7 is a slight modification of [LOT15, Definition 2.1.21] because
it takes the idempotent structure into account; one can check that [LOT15, Lemma 2.1.22]
still holds in this setting.

If (aq,...,q,) is a Massey admissible sequence, then 1,,(aq,...,a,) can be computed
as in [LOT15, Lemma 2.1.22]. In many cases the result will be nonzero, implying that A
cannot be formal.

We will not attempt to characterize all Massey admissible sequences in H,(B(n, k,S)) or to
determine the higher multiplication completely. We will content ourselves with determining
the cases in which B(n, k,S) is formal. Certain Massey products of length three commonly
appear, and they will help us obstruct formality in many cases.

Lemma 5.9. For1 <k <n-—1and1 <i<n-—1, we have the following Massey admissible
sequences in H.(B(n,k,S)):

o [fi €S, there is a Massey admissible sequence whose elements have labels

([Li], [Ril, [Rina]),

where the brackets |-| denote the homology class of an element of B(n,k,S) with the
given label.
o Ifi+1€S, there is a Massey admissible sequence whose elements have labels

([Rita], [Liga], [La])-

o I[fSN{i,i+ 1} = {i}, there is a Massey admissible sequence whose elements have

labels
([Li], [Ri], [Uin])-

o [fSN{i,i+1} = {i+ 1}, there is a Massey admissible sequence whose elements have
labels

([Rita], [Liga], [U3)).

Proof. Assuming that i € S, let x be any element of V' (n, k) such that xN[i —1,i+ 1] = {i}.
We have a sequence (L;, R;, R;.1) of algebra elements such that the left idempotent of L; is
Ic. Let x3 =%, x0 = (x\ {t}) U{i— 1}, and x3 = (x \ {i}) U {i + 1}.

The products [L;][R;] and [R;][R;+1] are both zero (note that i, must agree with the usual
multiplication induced on H,(B(n, k,S)), and [U;] = 0 because U; = 9(C;)). The homological
degrees of L; and R; are each —1. The Alexander multi-degrees of these elements are each

The homology of I, B(n, k,S)Iy, is zero in homological degree —1 and Alexander multi-
degree e;. Indeed, a basis element for I, H.B(n,k,S)I,, in these degrees would need to
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be a single edge with label C;, but we have 0(C;) # 0 at the idempotent I,,. Meanwhile,
the homology of I,B(n,k,S)I, is zero because x, and x3 are far. Thus, the sequence
([Li], [Ri], [Ri41]) is Massey admissible; the case of ([Rit1], [Lit1],[Li]) when i +1 € S is
similar.

Now assume that SN {i,i + 1} = {i}. Again, let x be any element of V' (n, k) such that
xN[i— 1,7+ 1] = {i}. We have a sequence (L;, R;, U;11) of algebra elements such that the
left idempotent of L; is Ix. Let x; = x and xo = (x\ {i}) U {i — 1}.

As before, the products [L;][R;] and [R;][U;41] are zero; the second product even vanishes
in B(n, k,S) because [i + 1] is a generating interval from x5 to x;. The homological degrees
of L; and R; are each —1; the homological degree of U;,; is 0. The Alexander multi-degrees
of these elements are 5, &, and e;;; respectively.

The homology Iy, H.(B(n, k,S))Ix, is zero in homological degree —1 and Alexander multi-
degree e; for the same reason as above. Since homological degrees are nonpositive and an
edge with Alexander multi-degree § has strictly negative homological degree, the summand
L, B(n, k,S)Iy, of B(n,k,S) is zero in homological degree 0 and Alexander multi-degree 5 +
eir1. Thus, I, H.(B(n, k, S))Iy, is also zero in this degree (note that this argument would not
work if i+1 € S, since the relevant homological degree would be —2 and I, H.(B(n, k, S))1Ly,
would have a basis element labeled [C;;1R;] in this degree).

Thus, the sequence ([L;], [R;], [Uis1]) is Massey admissible; the case of ([Rit1], [Liv1], [Ui])
when SN {i,i+ 1} = {i + 1} is similar. O

Using Lemma 5.9, we can determine when B(n, k,S) is formal.
Theorem 5.10. The dg algebra B(n, k,S) is formal if and only if S = & ork € {0,n,n+1}.

Proof. 1f S = @ or k = 0, then B(n, k,S) has no differential, so it is formal. If &k = n + 1,
then H,(B(n,k,S)) = Fy[U;|i ¢ S| and the inclusion of these polynomials into B(n, k, S) is
a quasi-isomorphism (even a homotopy equivalence).

If & = n, then there are no generating intervals from x to y for any x,y € V(n,n). Thus,
no C; labels appear in the basis for any summand Iy H,(B(n,n,S))I, from Theorem 5.4.
Define a homomorphism from B(n,n,S) to H.(B(n,n,S)) by sending any C; generator to 0
and by sending all other generators (which are contained in ker ) to their homology classes.
For each defining relation of B(n,n,S), either all terms or no terms of the relation involve
a C; generator. Thus, the map is well defined, and it induces an isomorphism on homology
by construction.

On the other hand, assume that S is nonempty and that 1 < k < n—1. If S # {n},
then Lemma 5.9 gives us a Massey admissible sequence ([L;], [R;], [Ri+1]). In the notation
of [LOT15, Lemma 2122], let &)1 = Li7 §12 = Ri) 523 = Ri+17 502 = Ci7 and 613 = 0. We
have ﬂ:}([LZ], [RZ], [Rz—l—l]) = [502523] = [CZRZ+1] by I:LOT]_57 Lemma 2122] Since [Osz—i-l]
is a basis element of Iy H,(B(n, k,S))I, and this product exists for any A, structure 7 on
H.(B(n,k,S)) that is A, homotopy equivalent to B(n, k,S), the algebra B(n, k,S) cannot
be formal.

Similarly, if & # {1}, then we have a product fi5([Rit1], [Lit1], [Li]) = [Cit1Li] from
Lemma 5.9, implying that B(n,k,S) is not formal. We have already covered all pos-
sible cases; for completeness, we note that the remaining items of Lemma 5.9 give us

As([Li], [Ri], [Uig1]) = [CiUsya] and Tig([Riza], [Liga], [U]) = [Cira Uil O

5.2.1. Truncated algebras. We now investigate formality for B,.(n,k,S), Bi(n,k,S), and
B'(n,k,S), starting with B,.(n, k,S). First, we deal with an especially tricky subcase.
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Lemma 5.11. If1 € S, then the dg algebra B,.(n,n — 1,8) is formal.

Proof. If n = 1 the differential is zero, so assume n > 2. Let A be the path algebra of the
subgraph I' 4 of T'.(n,n — 1,S) in which we omit all U; and Cy loops except for a single C4
loop at the vertex x; = [2,n], modulo the two-sided ideal generated by the elements of R,
involving only edges in I' 4. Explicitly, we take the quotient by the following relations:

e U central relations not involving Uy,

e loop relations not involving Uq,

e (' central relations not involving (7,

e (] central relations of the form C,C; = C;C and C1U; = U;C for i # 1 (all occurring
at vertex x1), and

e (C? vanishing relations not involving C; at a vertex other than x;.

Define a homomorphism of dg algebras x : A — B,.(n,n — 1,S) by sending each edge in I"4
to the corresponding generator of B.(n,n — 1,S). Since k sends the relation set for A into
the relation set for B,(n,n — 1,8), k is well-defined.

We want to show that x is a quasi-isomorphism; to do this, we compute the homology of
A. For i e [1,n], let x; = [1,n] \ {i}. We claim that any path in I'4 from x; to x; is equal,
modulo the relations defining A, to a product of U; and Cj loops for [ > 1 with either:

(1) fyxiyx]W or
(2) ’)/Xi,X1017xl,Xj-

First let v be a path in I'4 from x; to x; with no edge labeled C;. Since A has all U
central relations and C' central relations not involving U; or C, v is equal in A to a product
of U; and C; loops for [ > 1 (in any order) with a path 7’ from x; to x; having only R- or
L-labeled edges. If ' has exactly |i — j| edges, then 7' = 7y, «,. If 7" has more than |i — jl|
edges, then it contains a consecutive pair of edges with labels (Ry, Ly) or (L, Ry) for some
k € [2,n]. We can use the loop relations of A to replace 7' with an equivalent shorter path
while adding a U}, loop to the product for «, proving the claim for paths containing no C
edge by induction on the length of ~'.

If 7 is a path in I 4 containing more than one C; edge, let 4" be a subpath of v containing
all edges between two consecutive instances of C (non-inclusive). The starting and ending
vertex of +' are x;, so by the above argument, 7' is equivalent to a product of U; and C,
loops for [ > 2 with the identity path -, x, modulo the relations defining A. The C; central
relations existing in A then imply that ~ is equal in A to a path with two consecutive C}
edges at the vertex x;, which is zero by the one instance of a C? vanishing relation existing
in A.

Finally, if v is a path in I'4 from x; to x; with exactly one C; edge, write v = v'C1v”,
where (] stands for the single-edge path from x; to itself with label C';. By the argument for
paths with no C edges, 7' and 7" are equal in A to 7y, x, and 7, x; respectively, times some
number of U; and Cj loops for [ > 1. Thus, v is equal in A to a product of Vs 1 C1Y1
with U; and Cj loops for [ > 1 as desired.

Thus, products of the elements (1) and (2) above with U, and C; loops for [ > 1 form a
spanning set for I, ALy, over Fy. Choose one such product of each type for each pair of a
monomial in U for [ > 1 and a square-free monomial in C; for [ € [2,n] N'S. We want to
show that the set § of these products is linearly independent over 5, and thus forms a basis
for I, Al .
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Since the algebra homomorphism « : A — B,.(n,n—1,8) is, in particular, an Fa-linear map,
it suffices to show that x maps the elements of /3 to distinct elements of a basis for Iy, 5, (n, n—
1,8)I,. In fact, the image under & of each element of 3 is one of the basis elements for
LB, (n,n — 1,85)I, given in Proposition 4.11 (recall that we have R;--- RyC1Ly---L; =
C1Uy--- U in B.(n,n —1,S)), and one can check that  restricted to (3 is injective.

Therefore, we have a basis of IxiAIxj over [F5. The subset of basis elements that do not
involve C; (i.e. those from (1)) is in differential-preserving bijection with the set of basis
elements for I, _1B(n—1,n—1,8 —1)I4,_; from Proposition 4.11, where S —1 = {I—1|l €
SN [2,n]}. Since x; = [2,n], we have

8(P)/Xz‘7x1 Cl’YXLXj) = 07

so the basis elements for I, Aly, that do involve C; (i.e. those from (2)) are also in
differential-preserving bijection with basis elements for I, 1B(n — 1,n — 1,8 — l)Ixj,l.

Using these bijections, we can deduce a basis for I, H.(A)I, from Theorem 5.4; note that
there are no generating intervals from x; — 1 to x; — 1. The basis elements are p[yx, x,] and
P[Vxi3 C1Yx1 x;] Where p ranges over all monomials in [U;] for I € [2,n]\S. Using Theorem 5.4
again, we see that x sends these elements to a basis for Iy, H.(B.(n,n — 1,S))Iy, (note that
[1,min(4, j)] is the only generating interval from x; to x;). It follows that s is a quasi-
isomorphism.

We can also define a homomorphism of dg algebras A : A — H.(B.(n,n—1,8)) as follows.
Generators of A labeled R;, L;, and U; are in the kernel of 9. The generator of A labeled
(4 is a loop at the vertex x; = [2,n], so it is also in the kernel of 9. Let A send each of
these generators to the homology class of its image under x and send all other generators of
A (loops labeled C) for [ > 1 in S) to zero. Any defining relation in .4 not involving any
such C is in the kernel of k, so it is in the kernel of A. Meanwhile, any defining relation in
A involving some C) (I > 1 in §) is in fact wholly divisible by Cj, and as such gets mapped
to zero as well. Thus, A is well-defined.

To see that A respects the differential, note that H,(B,(n,n — 1,S)) has zero differential,
so it is enough to show that A o @ = 0. Since A is either the zero map or the quotient to
homology on each generator of A, it sends boundaries to zero, i.e. Ao d = 0.

By Theorem 5.4, A sends the basis elements for I, H,(A)I, listed above to a basis for
I H.(B,(n,n — 1,5))L,, so A is a quasi-isomorphism. In summary, we have a zig-zag of
quasi-isomorphisms

B.(n,n—1,8) & A Hy (B (n,n—1,8)),
so B.(n,n —1,8) is formal. O

Remark 5.12. It appears impossible to define a quasi-isomorphism directly from B,.(n,n —
1,[1,n]) to its homology or vice-versa.

Theorem 5.13. The dg algebra B.(n,k,S) is formal if and only if one of the following
conditions holds:

e S=0,8={1}, k=0, ork=n;

ek=n—1andlesS.

Proof. The cases S = &, k = 0, and k = n follow as in Theorem 5.10. The case k =n — 1
and 1 € S follows from Lemma 5.11.
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If S ={1} and k < n, let x,y € V,(n, k) (following the notation of Definition 3.16). By
Theorem 5.4, we have a basis for I, H,(B,(n, k, S))I, consisting of classes [p] where p is a
monomial in the U; variables not divisible by U; or the monomial for any generating interval,
as well as classes [Cy---U;p|] where [1,1] is the first generating interval from x to y. Note
that a generating interval [1,[] exists because k < n. Define a map from I, H,(B,(n, k,S))I,
to IuB,(n, k, S)I, by sending [p] to p and [Cy ---Ujp] to Cy ---Uip. By definition, this map
induces an isomorphism on homology; one can check that it is also compatible with the
multiplication on H.(B,(n,k,S)) and B,(n,k,S). Thus, B,(n,k,S) is quasi-isomorphic to
its homology in this case.

On the other hand, assume SN [2,n] # @ and 1 < k < n — 2. As in the proof of
Theorem 5.10, Lemma 5.9 gives us a canonical higher multiplication fi5([L;], [R;], [Ri+1]) =
[CiR;iy1] or fis([Rit1], [Liva], [Li]]) = [Cis1Ls) for some i, so B,.(n, k,S) is not formal.

Lastly, let kK =n — 1. Assuming that S is nonempty and 1 ¢ S, we show that there exists
a nonzero triple Massey product. Let [ = minS; we must have [ > 1 because 1 ¢ S. We
claim that there is a Massey admissible sequence labeled

(5.1) ([Ri--- Rol, [Ly -~ Ly}, [Uh])

such that the left idempotent of [R;--- Ry| is x; = [1,n] \ {l}. The right idempotent of
[Ly - - - L;] and both the left and right idempotents of [U;] are also x;. The right idempotent
of [R;--- Ry| and the left idempotent of [Ly--- L] are x; = [1,n] \ {1}. The homology
classes [R;--- Rs] and [Lg---L;] both have homological degree —1 and Alexander multi-
degree 3(e2 + - - + ¢;), while [U;] has homological degree 0 and Alexander multi-degree e;.
By Theorem 5.4, I, H.(B,(n,k,S))Iy, vanishes in homological degree —1 and Alexander
multi-degree es + - -+ + ¢, and Iy, H.(B,(n, k,S))Ik, vanishes in homological degree 0 and
Alexander multi-degree e; + %(62 + -+ +¢). Moreover,

o([Bi-- - Ro], [Ly -+ La]) = [Us -+~ Ul = [0(Us - - - Ura G1)] = 0,

and fiy([Leo - - - Ly], [U1]) = 0 because [U;] can be commuted to the left but U; = 0 at the
vertex x; even before taking homology. Thus, the sequence in (5.1) is Massey admissible.
The triple Massey product is computed following [LOT15, Lemma 2.1.22]: let £y = R; - - - Ry,
§i2= Lo Ly, {3 = Uy, {oo = Uy - - - U1 C}, and ;3 = 0. We have

fi3([Bi- -+ Rol, [La - - L, [Uh]) = [€028as] = [Un - Uia .
Note that this element is nonzero in Iy, H.(B.(n,k,S))Ix, by Theorem 5.4, since [1,]] is a

generating interval from x; to itself. U

Using the symmetry p : By(n, k,S) = B.(n, k, p(S)), we can deduce the following theorem
from Theorem 5.13.

Theorem 5.14. The dg algebra Bi(n,k,S) is formal if and only if one of the following
conditions holds:

e S§=0,8S={n}, k=0, ork=n;
ek=n—1andnées.

For the doubly-truncated algebra B'(n, k,S), we again consider an interesting subcase.

Lemma 5.15. If both 1 € S and n € S, the algebra B'(n,n — 2,S) is formal.
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Proof. The algebra is zero if n = 1 and has no differential if n = 2, so assume n > 3. Let x;
denote the vertex [1,n — 1] \ {4}, and let 7;; denote the path v, x,. In parallel fashion to
the proof of Lemma 5.11, we consider the subgraph I'c of I"(n,n — 2,S) in which we omit
all loops with labels Uy, U, C1, C,, except for a single C'; loop at x; and a single C), loop at
X,—1. We will let C be the path algebra of I'c modulo the following relations:

e U central relations not involving U; or U,,

e loop relations not involving U; or U,,

e (' central relations not involving C; or C,,,

e () central relations of the form C,C; = C;Cy and C U; = U;C, for i ¢ {1,n} (all
occurring at vertex xi),

e (, central relations of the form C,C; = C;C, and C,U; = U;C,, for i ¢ {1,n} (all
occurring at vertex X,_1),

e C? vanishing relations not involving C; (respectively C,,) at a vertex other than x;
(respectively x,,_1), and

e the “Pong” relations v;1C171,n-1CnVYn-1 = Yin-1CnYn-1,C1m, for i € [1,n —1].

Unlike in Lemma 5.11, the Pong relations are not in the relation set R/ defining B'(n,n—2,S).
As in Lemma 5.11, we have a well-defined dg algebra homomorphism ' : C — B'(n,n —
2,S) that sends edges of T'c to corresponding generators in B'(n,n — 2,S). While the
Pong relations are not in R/ , they are in the two-sided ideal generated by R/ ; the ele-
ments v;1C171,n-1Cn V-1, and ¥ n—1Cpym—1,1C171; are both equal to C Uy ---U,_1C, in
B'(n,n—2,8).
We again seek a basis for I,CI;. This time around, we consider the following elements:
(1) iy
(2) %,10171,3',
(3) f}/i,nflcnf)/nfl,j}
(4) 7,1C171,0-1Cn 1,5 for i < j, or
<5> ’Vi,n—lcnfyn—l,lclfyl,j fOI' .7 <1
We define a set 5" analogous to  in Lemma 5.11 by choosing, for each monomial in U; and C,
(I # 1,n) not divisible by any C?, a corresponding path of each type above. To prove that /3’
spans Iy CI;, we consider various cases. If we have a path v € Iy, Path(Fc)Ixj that contains
no C4 or C, loops, or only one such loop, then it is equivalent to a U;- and Cj-multiple of
element (1), (2), or (3) as in the proof of Lemma 5.11. Similarly, if v € L, Path(T'¢)Iy; has
two or more C; loops with no C,, loops occurring between them (or C,, loops with no C}
loops between them), then v = 0 in I,CI,, by arguments like those in the proof of Lemma
5.11.
In the genuinely new case where v € I, Path(I'¢)Iy; contains a single C; loop followed by
a single C,, loop (and no other C or C,, loops), the arguments in the proof of Lemma 5.11
allow us to write v as a Uj- and Cj-multiple of v;1C171,,-1CpYn—1,;.- If i < j, we are done (v
is a multiple of element (4)). If i > j, we use the further relations

Vi,lclfyl,nflcnf)/nfl,j = %',jf)/j,lclf}/l,nflcn’ynfl,j
= ’7i7j7j,n—1cn7n—l,10171,j
= Uj+1- - Uz‘%‘,n—10n%—1,10171,j

where the second equality follows from the Pong relations, and the others follow directly
from the definitions and loop relations. We see that v is a U;- and Cj-multiple of element



PRESENTATION AND HOMOLOGY OF BORDERED ALGEBRAS 45

(5). The case where v contains a single C,, loop followed by a single C; loop is handled
similarly.

Finally, in the case that 7 contains two C; loops separated by a C,, loop (or vice versa),
the Pong relations can be used to swap the order of a ('} with a C,,. We get two consecutive
Ch or C), edges, causing v to be zero in C as above.

Thus S’ is a spanning set. The linear independence of the elements in 5’ follows as in
Lemma 5.11, since £ maps each element of §’ to a distinct basis element in B'(n,n — 2,S).
We conclude that 3’ is a basis for I,CI;.

Note that, after fixing x; and x;, we consider only one of the two elements (4) and (5); in
either case, we find the image under ' to be a U;- and Cj-multiple of an element of the form
(ClUQ tee Umin(i,j))(Umax(i,j)+1 te Un,lCn)%J in B’(n, TL—Q, S) The intervals [1, min(i, j)] and
[max(7, j) + 1, n] are precisely the generating intervals in B'(n,n — 2,S) from x; to x;.

Using these facts together with Proposition 4.11 and Theorem 5.4, one can show that '
is a quasi-isomorphism as in the proof of Lemma 5.11. This time the basis of I, H,(C)Iy, is
deduced by comparing I,CIy, to four copies of I, _1B8(n — 2,n — 2,8 — 1)I,,_1; each copy
of the latter complex corresponds to a type of basis element of I,CI; listed above (namely
types (1), (2), (3), or (4)/(5)).

The remainder of the proof follows along the lines of the proof of Lemma 5.11. We have a
well-defined dg algebra homomorphism N : C — H,(B'(n,n—2,8)) that sends edges labeled
C) for | # 1,n to zero and sends all other edges (which are in ker(9)) to the homology classes
of their images under «’. The map )\ is well-defined and respects the differential by the same
arguments as in the proof of Lemma 5.11. Theorem 5.4 is used in a similar fashion to show
that A" maps a basis for I, H.(C)Iy; to a basis for I, H.(B'(n,n — 2,5))L;.

Thus, we again have a zig-zag of quasi-isomorphisms

B(n,n—28) & ¢ H (B (n,n—2,8)),
showing that B'(n,n — 2,S) is formal. O
Remark 5.16. Our terminology in the proof of Lemma 5.15 follows Ozsvath-Szabd. In
their more general “Pong algebra,” to be introduced in [OSzc], the above Pong relations are

not zero. Instead, the Pong algebra is curved, and these relations form the curvature in one
summand of the algebra.

Theorem 5.17. The dg algebra B'(n,k,S) is formal if and only if one of the following
conditions holds:

o S =0 {1}, {n}, or {1,n};
ek=0o0rk=n-—1;
ek=n—2and {l,n} CS.

Proof. The cases § = @ and k = 0 follow as in Theorem 5.10.
When S is nonempty and k = n — 1, a basis for H.(B'(n,n — 1,8§)) is given by elements

€
{p(oﬂU(}—JU”) } where p is a monomial in the U; variables for i ¢ S, € € {0, 1}, and j is any

element of S (the resulting basis element for the homology is independent of the choice of
j)- Choosing one particular j € S, the map sending

CU U\ L, (Gl Un |
p —Uj p —Uj
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FIGURE 12. The torus algebra as described in [HRW16, Figure 4].

is a quasi-isomorphism from H,.(B'(n,n —1,8)) to B'(n,n —1,8).

The case S = {1} is treated as in Theorem 5.13; the case S = {n} follows by applying
the symmetry p. For the case & = {1,n}, only a slight modification is needed: the quasi-
isomorphism sends

e [p| = p,

o [Cr---Up| = Cy---Up,

[ [Ul/ oo Onp] —> Ul/ oo Cnp, and

° [(Cl s UZ)(UZ’ s Cn)p] —> (Cl s Ul)(Ul/ cee Cn)p

The case k =n —2 and {1,1} C S follows from Lemma 5.15. Conversely, we show that in
any of the remaining cases there is a canonical non-vanishing triple Massey product.

IfSN(2,n—1] # @ and 1 < k < n — 3, then Lemma 5.9 gives us a canonical higher
multiplication z5([Ls], [Ri], [Ri1]) = [CiRita] or fig([Rita], [Lita], [Li]]) = [CisaLi] for some
i, so B'(n, k,S) is not formal.

Ilfk=n—-21¢S8, and SN[2,n — 1] is nonempty, then as in the proof of Theorem 5.13
we have a Massey admissible sequence

([Bmins -+ R, [L2+ Linins], [U1])

inducing a non-vanishing triple product. Lastly, if k =n -2, n ¢ S, and SN [2,n — 1] is
nonempty, a symmetric argument shows that

([Lmaxs -+ Lo, [Rn-1 -+ Rimaxs], [Un])

is a Massey admissible sequence with non-vanishing triple product. 0

Remark 5.18. We have used the refined Alexander grading when discussing formality. A
priori, formality of B(n, k,S) when given the unrefined Alexander grading could be stronger
than formality given the refined Alexander grading, which could be stronger than formality
given the single Alexander grading. In fact, one can check that in all cases where formality is
proven above, the results hold even for the unrefined Alexander grading; in particular, all of
our quasi-isomorphisms respect the unrefined grading. However, our arguments for Massey
admissibility break down in the singly graded case, so that non-formality results proved
above do not necessarily hold. It would be interesting to determine whether B(n,k,S)
is sometimes formal when given the single Alexander grading but not formal when given
multiple Alexander gradings.

APPENDIX A. ALGEBRAIC BACKGROUND

In this section, we review some useful algebraic and category-theoretic definitions for
readers who may be unfamiliar with them. For some motivation, consider the familiar “torus
algebra” A(Z,1) from bordered Floer homology, which can be described as the Fy-algebra
of paths in the directed graph of Figure 12 modulo the relations pap; = p3p2 = 0 (path
algebras with relations are discussed more formally in Section 2.1).
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It is often important to remember that A(Z, 1) comes with a distinguished pair of orthog-
onal idempotents, corresponding to the constant paths at the vertices ¢y and ¢1 in Figure 12.
One can remember this fact by viewing A(Z,1) as an algebra over F;?, but an equivalent
and sometimes more natural way to remember the idempotent data is to interpret A(Z,1)
as a category with two objects (corresponding to the basic idempotents). One wants to be
able to recover A(Z, 1) as the direct sum of the (four) morphism spaces in the category. Be-
cause A(Z, 1) is defined over the ground field Fy, these morphism spaces should be Fy-vector
spaces rather than just sets.

Thus, the category corresponding to A(Z,1) should be an Fs-linear category. An [Fs-
linear category is informally a category whose morphism spaces are Fo-vector spaces, rather
than sets, and whose composition maps are Fs-linear maps. If we had a more general dg
algebra instead of A(Z, 1), the corresponding category should be a differential graded, or dg,
category over [Fo, which is informally a category whose morphism spaces are chain complexes
of Fy-vector spaces and whose composition maps are chain maps. We define linear categories
and dg categories in Section A.2; we review our intended relationship between algebras and
categories in Section A.3.

In Section 2.2, we find it useful to work with algebras and categories defined over a poly-
nomial ring Fy[Uy, ..., U,]. Thus we give the below definitions over a general commutative
ring k of characteristic 2.

A.1. Algebras. Let k be a commutative ring of characteristic 2. A k-algebra is a ring A
equipped with a ring homomorphism k — A.

Remark A.1. Equivalently, a k-algebra is a monoid in the monoidal category of (k,k)-
bimodules; see below for some basics on monoidal categories. Note that our definition differs
slightly from another standard definition taking a k-algebra to be a monoid in the monoidal
category of k-modules, or equivalently a ring A equipped with a ring homomorphism from

k to Z(A).

A differential algebra over k is a k-algebra A equipped with a k-linear map 0 : A — A
satisfying 92 = 0 and 9(ab) = (0a)b + a(db) for all a,b € A. If A is a differential k-algebra,
we can take its homology to get a k-algebra H,(A).

Let G be a group and let A be an element of the center of G. A (G, \)-graded differential
graded algebra or dg algebra over k is a differential k-algebra A equipped with a decomposition
A = ©geq Ay as k-modules, such that Ay - Ay C Agy and 9(Ay) C Ay-1, for all g,¢' € G.
If differentials are not present, we can define G-graded k-algebras similarly. If A is a (G, A)-
graded dg k-algebra, its homology H,.(A) is a G-graded k-algebra.

If A and A’ are differential k-algebras, a homomorphism of differential algebras from A
to A’ is a homomorphism f : A — A’ of k-algebras satisfying 0’ o f = fo 0. If A and A’
are (G, \)-graded dg k-algebras, a homomorphism of dg algebras from A to A’ is a homo-
morphism f of differential algebras such that f(Ay) C Aj for all ¢ € G. Homomorphisms
of G-graded k-algebras (without differentials) are defined similarly. We can consider the
following categories:

(k-algebras, homomorphisms)

(G-graded k-algebras, homomorphisms)
(differential k-algebras, homomorphisms)

((G, A)-graded dg k-algebras, homomorphisms).
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A homomorphism f : A — A’ of differential or dg algebras induces a map H.(f) from
H.(A) to H.(A’). Indeed, homology gives us functors H, from (differential k-algebras,
homomorphisms) to (k-algebras, homomorphisms) and from ((G, A)-graded dg k-algebras,
homomorphisms) to (G-graded k-algebras, homomorphisms).

Definition A.2. Let f : A — A’ be a homomorphism of differential or (G, \)-graded dg
algebras over k. If the induced map H,(f) : H.(A) — H.(A) is an isomorphism, f is called
a quasi-isomorphism.

A.2. Linear and dg categories. As mentioned above, it is often convenient to have an
analogue of Section A.1 for categories. In this section we will review the theory of k-
linear categories, G-graded k-linear categories, differential categories, and (G, A)-graded dg
categories. All four of these constructions can be treated in a unified way by viewing them
as categories enriched in four different monoidal categories. We will review what we need of
enriched category theory and apply it to the four examples of interest. For a more detailed
overview, see [EK66, Chapters 2.1 and 2.6].

A.2.1. Monoidal categories. Recall that the Cartesian product M; x M, of two categories
M, and M, has objects and morphisms given by pairs of objects and morphisms of the
two factors, with composition defined componentwise. A monoidal category is a category
M equipped with a functor ® : M x M — M, an object I € M, a natural isomorphism
a: (—®—-)®— = —®(—®—) called the associator, and natural isomorphisms A : I® — — —
and p: — ® I — — called the left and right unitor respectively, satisfying:

as morphisms from ((w ® ) ®y) ® 2z to w ® (z ® (y ® 2)) for all objects w, z,y, z of M (the
pentagon identity) as well as

Pr X ldy = (ldx ®)\y> O Qg Iy

as morphisms from (x ® I) ® y to x ® y for all objects x,y of M (the triangle identity).
Recall that k denotes a commutative ring of characteristic 2.

Example A.3. As with algebras, we will consider four examples:

e The category of k-modules and k-linear maps has a monoidal structure with ® given
by the tensor product of k-modules and I given by k as a module over itself.

e For a group G, the category of G-graded k-modules and degree-preserving k-linear
maps has a similar monoidal structure: we have

(M®N)g:= @ Mg, @ Ng,.
91,92€G:g192=g

The monoidal unit [ is k concentrated in the identity degree.

e The category of differential k-modules and homomorphisms of differential modules
(i.e. k-module maps f with 0o f = f o d) also has a monoidal structure: ® is given
by the tensor product of differential k-modules, and I is given by k as a module over
itself with zero differential.

e The category of (G, \)-graded dg k-modules and homomorphisms of dg modules (i.e.
degree-preserving homomorphisms of differential modules) has a similar monoidal
structure, defined as in the above two items. The monoidal unit [ is k with zero
differential and concentrated in the identity degree.
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A.2.2. Monoidal functors. One can also consider functors between monoidal categories.

Definition A.4. Let (M,®,1,a,p,\) and (M', &', I',d/, p’; ') be monoidal categories. A
(lax) monoidal functor from M to M’ is a triple (H, i, €) where H : M — M’ is a functor,
p:H(—)® H(—) - H(—® —) is a natural transformation of functors from M x M to M’,
and € : I’ — H(I) is a morphism in M’ such that

H(Cy,2) © fhagy,z © (Hay @ 1da() = Haye: © (da) @ ty,2) © Ay me),m)
as morphisms from (H(x) ® H(y)) ® H(z) to H(z ® (y ® 2)) for all objects z,y, z of M,
;I(x) =H(\;)oprzo(e® idg(2))
as morphisms from I’ ® H(x) to H(x) for all objects x of M, and
p/H(:v) = H(pz) 0 iz 0 (idH(Jr) ®/€>
as morphisms from H(x) ®" I’ to H(x) for all objects x of M.
Example A.5. Homology gives us a monoidal functor from (differential k-modules, homo-
morphisms) to (k-modules, k-linear maps) sending a differential k-module N to H,(NN) and
sending a homomorphism of differential modules to the induced map on homology. The
natural transformation p is given by the map from H,(Ny)® H.(Ns) to H,(N1® N3) sending
[n1] ® [ng] to [nq ® ng| for each pair (N7, Ny) of differential k-modules.

We have a similar monoidal functor from ((G, \)-graded dg k-modules, homomorphisms)
to (G-graded k-modules, degree-preserving k-linear maps).

A.2.3. Categories enriched in a monoidal category.
Definition A.6. If (M, ®,1,a, )\, p) is a monoidal category, then a category C' enriched in

M consists of the following data:

e A class of objects Ob C;

e For XY € Ob(, an object Hom(X,Y") of M;

e For X € Ob(C, a morphism jx : [ — Hom(X, X) in M;

e For X,Y,Z € Ob(C, a morphism oy y  : Hom(Y, Z) ® Hom(X,Y) - Hom(X, Z) in
M.

We require that, for W, X,Y, Z € Ob C, we have

ow,x,z © (OX,Y,Z ® idHom(W,X)) = Oowy,z © (idHom(Y,Z) ®OW,X,Y) O YHom(Y,Z),Hom(X,Y),Hom(W,X)

as morphisms in M from (Hom(Y,Z) ® Hom(X,Y')) ® Hom(W, X) to Hom(W, Z). We also
require that, for X, Y € ObC, we have

AHom(X,Y) = Ox,v,y © (Jy ® idHom(x,v))
as morphisms in M from I ® Hom(X,Y) to Hom(X,Y) and

Prom(X,y) = °x,X,y © (IdHom(x,v) ®Jx)
as morphisms in M from Hom(X,Y) ® I to Hom(X,Y).

We will consider four types of enriched category; recall that homomorphisms of differential
and dg k-modules were defined in Example A.3.



50 ANDREW MANION, MARCO MARENGON, AND MICHAEL WILLIS

Example A.7. A k-linear category is a category enriched in (k-modules, k-linear maps). A
G-graded k-linear category is a category enriched in (G-graded k-modules, degree-preserving
k-linear maps).

A differential category over k is a category enriched in (differential k-modules, homo-
morphisms). A (G, \)-graded dg category over k (a.k.a. k-linear dg category) is a category
enriched in ((G, \)-graded dg k-modules, homomorphisms).

A.2.4. Change of enrichment. We can change enrichment via monoidal functors as follows.

Definition A.8. If C' is a category enriched in the monoidal category M and (H, u,€) : M —
M’ is a monoidal functor, we obtain a M’-enriched category C” with the same objects as C
by defining Home (X, Y) = H(Home (X, Y)) for objects X, Y of C. The identity morphisms
J% « Iny = Homer (X, X)) are defined to be

L S H(Ly) 9% H(Home (X, X)) = Homer (X, X).

The composition morphisms are defined as
Home (Y, Z) @ Homer(X,Y) % H(Home(Y, Z) @ Home(X, Y)) 2% Homen (X, 2),
where p1 = HHom¢ (Y,Z),Home (X,Y) -

Example A.9. Given a differential category C' over k, we can get a k-linear category H,(C)
by applying Definition A.8 to the homology monoidal functor from Example A.5. Similarly,
from a (G, A)-graded dg category C over k, we can get a G-graded k-linear category H,(C').

Remark A.10. Concretely, H,(C) is obtained from C' by taking the homology of the mor-
phism spaces of C'. The theory of monoidal functors and change of enrichment ensures that
the resulting k-linear category is well-defined, although one could also check this fact directly.

A.2.5. Enriched functors. We can also consider enriched functors between enriched cate-
gories.

Definition A.11. If C' and C" are categories enriched in a monoidal category M, an enriched
functor F from C to C" is the data of an object F(X) of C' for every object X of C, as
well as a morphism Fxy : Home(X,Y) — Home (F(X), F(Y)) in M for all pairs of objects
(X,Y) of C, such that the diagrams

oX,Y,Z

Home (Y, Z) ® Home (X, Y) Hom¢ (X, Z)
FY,Z®FX,Yl Fx .z

HOHIC/(F(Y), F(Z)) & HOHIC/(F(X), F(Y)) HOIHC/(F(X), F(Z))

CF(X),F(Y),F(2)

and

1

Home (X, X) — . Home (F(X), F(X))
commute for all objects X,Y, Z of C.

Example A.12. We define k-linear functors, G-graded k-linear functors, differential func-
tors, and (G, \)-graded dg functors using the general notion of enriched functor from Defi-
nition A.11.
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One can define composition of enriched functors as well as identity enriched functors in a
natural way. Thus, for a given monoidal category M, we have a category whose objects are
M-enriched categories and whose morphisms are enriched functors. In particular, we have
the following four categories:

e (k-linear categories, k-linear functors)

e (G-graded k-linear categories, G-graded k-linear functors)
o (differential categories over k, differential functors)

e ((G,\)-graded dg categories over k, dg functors).

A.2.6. Changing enrichment on functors. If we change enrichment on categories, we can
change enrichment on functors correspondingly.

Definition A.13. Suppose C' and C’ are M-enriched categories and F : C — (" is an
enriched functor. Let H : M — M’ be a monoidal functor; write H(C') and H(C") for the
M’-enriched categories obtained from C' and C’ by change of enrichment. Define an enriched
functor H(F') : H(C) — H(C") by letting H(F) := F on objects, and defining

H(F)xy : HHom¢(X,Y)) - H(Home (F(X), F(Y)))

tobe H(F)xy := H(Fxy). We leave it to the reader to verify commutativity of the required
diagrams.

Change of enrichment is compatible with composition of enriched functors and identity
enriched functors, so H gives us a functor from (M-enriched categories, enriched functors)
to (M'-enriched categories, enriched functors).

Example A.14. Given a differential functor F' : C' — C’ where C and C’ are differential
categories over k, Definition A.13 gives us a k-linear functor H,(F') : H.(C) — H.(C").
Similarly, if F' is a functor between (G, \)-graded dg categories over k, we get a G-graded
k-linear functor H,(F).

To summarize, homology gives us a functor from (differential categories over k, differential
functors) to (k-linear categories, k-linear functors). In the graded case, it gives us a functor
from ((G, \)-graded dg categories over k, dg functors) to (G-graded k-linear categories, G-
graded k-linear functors).

A.3. Algebras and categories. Let V' be a finite set. Following [Dri04, Appendix C.2], if
C is any k-linear category with object set V', let

Alg, := EB Home (vg, vy).

v1,02€V
We may view Alg, as an algebra over k; multiplication is induced by the composition map
Home (vg, v1) ® Home (vs, v9) — Home(vs, v1)

and is zero when two morphisms are not composable. Since V' is finite, Alg, is unital; the
unit is ., I, where I, € Home(v,v) is the identity morphism. These elements I, are
idempotents in Alg, that are pairwise orthogonal: we have I,, I,, = 0 if v; # vs. Also note
that the natural map k — Alg, has image in the center of Alg., since the morphism spaces
in C are modules over k (not just bimodules).

It can be even more useful to view Alg, as an algebra over I, where I = k" is the ring
of functions from V into k. By slight abuse of notation, denote the basis element of I
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corresponding to v € V' by I, as well. We have a k-algebra homomorphism from I to Alg,
sending I, to I,. Thus, we can view Alg, as an [-algebra; the natural map k — I — Alg, is
the structure map of Alg, as a k-algebra, so it has image in Z(Alg.).

Conversely, if A is a [-algebra such that the natural map k — I — A has image in Z(A),
one can define a k-linear category Cat 4 with set of objects V' by defining Homeyy , (v2, v1) 1=
I,, AL, . The condition on the map k — I — A ensures that composition is a k-linear map
whose domain is a tensor product of k-modules (not just of k-bimodules).

The operations C — Alg, and A — Cat4 extend to inverse equivalences of categories
between (k-linear categories with object set V', k-linear functors that are the identity on
objects) and (I-algebras, homomorphisms), where we assume as usual that I-algebras .4
satisfy the standard condition on k — I — A. Similarly, we have inverse equivalences
of categories between (G-graded k-linear categories with object set V', G-graded k-linear
functors that are the identity on objects) and (G-graded I-algebras, homomorphisms).

Adding in differentials, the same constructions give inverse equivalences of categories be-
tween (differential categories with object set V', differential functors that are the identity on
objects) and (differential algebras over I, homomorphisms) as well as between ((G, \)-graded
dg categories with object set V', dg functors that are the identity on objects) and (dg algebras
over I, homomorphisms).

Remark A.15. Explicitly, if F': C; — Cs is a dg functor that is the identity on objects, then
F gives us a chain map from Homg, (v, v1) to Homg, (ve,v1) for all vy, vy € V', compatible
with composition. These chain maps assemble into a dg I-algebra homomorphism from Alg.,
to Alge,. In the other direction, if f : A; — Aj is a dg I-algebra homomorphism, then f
restricts to a chain map from I,, AL, to I,, AsL,, for all vy, v, € V, giving us a dg functor
from Cat(A4;) to Cat(Ay) that is the identity on objects.

The equivalences Alg and Cat interact with homology as follows.

Proposition A.16. The diagram of functors

Alg

(diff cats with objs V', diff functors id. on objs) o (diff T-algs, homomorphisms)

Alg

(k-linear cats with objs V', k-linear functors id. on objs) ~ (I-algs, homomorphisms)

is commutative up to natural isomorphism of functors. Analogous statements hold when
gradings are present.

Proof. Left to reader. O

Thus, for a dg category C, we have H.(Alg) = Algy, ), and for a dg algebra A, we have
H.(Caty) = CatH*(A).

A.3.1. Orthogonal idempotents. Let A be a k-algebra whose structure map k — A has image
in Z(A); let O be a subset of A consisting of pairwise orthogonal idempotents satisfying
1y = 1ol We can view A as a k©-algebra via the k-algebra homomorphism from k¢
to A sending the basis element of k® corresponding to I € O to the actual element I € A.
The fact that the elements of O are orthogonal idempotents ensures that this k-linear map
respects algebra multiplication; the fact that the elements of O sum to 1 € A ensures that
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it respects the units of the algebras. The natural map k — k® — A is the original structure
map of A, so it has image in Z(A).

Similar statements hold for G-graded, differential, and (G, A)-graded dg algebras over k.
In the presence of a differential, we require that 9(I) = 0 for all I € O. In this case, we
have a homomorphism of differential k-algebras from k© to A, i.e. a differential k?-algebra
structure on A.

Corresponding to the k®-algebra A, by above we have a k-linear category Cat 4 such that
A = Algg, - The isomorphism from A to Algc,,, sends a € A to (IaJ)ys. In particular,
we have the following lemma.

Lemma A.17. Let A be a k-algebra with a finite subset O consisting of pairwise orthogonal
idempotents satisfying 14 = Y ;.o 1. Writing Alge,, as @D, ;LAT, the map

A= @ 1AJ
LJ

a t— (ICLJ)LJ

is an isomorphism of kC-algebras. Similar statements hold for G-graded, differential, and

(G, \)-graded dg algebras over k.

If A has a differential, the homology of A admits a similar decomposition. From the above
isomorphism A — Alg,, _» we get isomorphisms

H*(A) i> H* (AlgCatA) i> AIgH*(CatA) i> AlgCatH*(A)

using Proposition A.16. The first map sends [a] to [(IaJ)rs]. The second map sends this
to ([Iad])ry. The third map sends this to (Ija]J)ry. We get the following analogue of
Lemma A.17.

Lemma A.18. Let A be a differential algebra over k with a finite subset O consisting of pair-
wise orthogonal idempotents satisfying 14 = > .o 1. Writing Algcat,, 4 05 Dy 1H.(A)J,
the map

H,(A) = PIH.(A)T

a] o (T[alT)es

is an isomorphism of k9-algebras. A similar statement holds for (G, \)-graded dg algebras
over k.

Remark A.19. Under the hypotheses of Lemma A.18, let I and J in O be two orthogonal
idempotents. Then, the map above canonically identifies H,(I.AJ) with IH,(.A)J, so we can
use these expressions interchangeably.

A.3.2. Quasi-isomorphisms. We will not need the general notion of quasi-equivalence of dg
categories; the following restricted definition will suffice.

Definition A.20. Let C; and C, be differential categories over k with object set V. Let F' be
a differential functor from C; to Cy that is the identity on objects of C;. We call F' a quasi-
isomorphism if the induced functor H.(F) : H.(C;) — H.(C2) (see Example A.14 above)
is an isomorphism of k-linear categories. We define quasi-isomorphisms of (G, A)-graded
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dg categories similarly, again restricting our attention to functors that are the identity on

objects.

The inverse equivalences between (differential categories over k with object set V', dif-
ferential functors that are the identity on objects) and (differential algebras over I, homo-
morphisms) from Section A.3 send quasi-isomorphisms of differential categories over k to
quasi-isomorphisms of differential algebras over I and vice-versa, by Proposition A.16. Sim-
ilar statements hold in the dg setting.
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