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ABSTRACT: Machine learning (ML) is viewed as a promising tool for
the prediction of aerobic biodegradation, one of the most important
elimination pathways of organic chemicals from the environment.
However, available models only have small datasets (<3200 records),
make binary classification predictions, evaluate ready biodegradability, and
do not incorporate experimental conditions (e.g., system setup and
reaction time). This study addressed all these limitations by first compiling
a large database of 12,750 records, considering both ready and inherent
biodegradation under different conditions, and then developing regression
and classification models using different chemical representations and ML
algorithms. The best regression model (R2 = 0.54 and root mean square
error of 0.25) and classification model (the prediction accuracy from
85.1%) achieved very good performance. The model interpretation
indicated that the models correctly captured the effects of chemical substructures, following the order of C�O > O�C−O > OH >
CH3 > halogen > branching > N > 6-member ring. The consideration of chemical speciation based on pKa and α notations did not
affect the regression model performance but significantly improved the classification model performance (the accuracy increased to
87.6%). The models also showed large applicability domains and provided reasonable predictions for more than 98% of over 850,000
environmentally relevant chemicals in the Distributed Structure-Searchable Toxicity database. These robust, trustable models were
finally made widely accessible through two free online predictors with graphical user interface.
KEYWORDS: closed bottle test, closed respirometer, CO2 evolution test, DOC die away, EU method C.4, inherent biodegradation,
OECD 301, ready biodegradation

■ INTRODUCTION
Persistent, bioaccumulative, and toxic (PBT) organic chem-
icals are posing increasing risks to the environment. Among
different transformation pathways, aerobic biodegradation is
one of the key processes for the elimination of organic
chemicals from the environment. To develop environmentally
friendly chemicals and conduct accurate chemical risk
assessment, quantifying the aerobic biodegradability of PBT
chemicals is one of the most crucial tasks.1

Many organizations have issued standard methods for
aerobic biodegradation tests, such as the International
Organization for Standardization (ISO), Organization for
Economic Cooperation and Development (OECD), American
Society for Testing and Materials (ASTM International), the
European Union (EU), the Japanese Ministry of International
Trade and Industry (MITI), the National Institute of
Technology and Evaluation (NITE), and the United States
Environmental Protection Agency (EPA). Details about these
methods can be found elsewhere.2,3 These methods are mostly
similar in terms of the scope, experimental setup, and
applicability. As most experimental tests normally last at least

28 days, the cost for testing a sample commonly falls in the
range of 3000−8000 USD or more in the United States
depending on the methods (based on the communication with
the industry). This is a significant financial burden to industries
that need to develop environmentally friendly chemical
products. Therefore, the use of quantitative structure−
biodegradability relationships or machine learning (ML)
approaches for biodegradability prediction has been encour-
aged.1,4−6

A number of studies have reported biodegradation
prediction in the past few decades.1,4,6−24 Among them,
traditional statistical techniques such as linear, nonlinear, and
partial least-squares regressions have been used in approaches
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such as the discriminant-function analysis, group contribution
methods, and chemometric methods.7,25−28 However, the
development of such models usually requires comprehensive
knowledge of the biodegradation mechanisms so that the most
relevant physicochemical properties and/or substructures can
be selected as the model input descriptors. As a result, a large
number of models have been built on only narrowly defined,
specific classes of chemicals with similar structures/properties.
This significantly limits the applicability of these models.28

With the rapid development of artificial intelligence in recent
years, ML has become a popular option because it requires less
domain knowledge and can handle much larger datasets
regardless of whether the chemicals belong to one chemical
class or not. For example, Cheng et al. developed
combinatorial classification models using a support vector
machine (SVM), k-nearest neighbors (KNN), naive Bayes, and
C4.5 decision tree (DT) based on 1440 ready biodegradation
datapoints using the MITI protocol.1 The overall prediction
accuracy for an external test dataset of 164 compounds was
higher than 80%. Mansouri et al. developed multiple ready
biodegradation prediction models using KNN, partial least-
squares discriminant analysis, SVM, and their consensus
models based on 1055 chemicals collected from NITE.4 An
external validation set consisting of 670 chemicals demon-
strated sensitivity and specificity as high as 0.81 and 0.94,
respectively. A recent study gathered all previously published
ready biodegradation data for 2830 compounds from the
literature and combined them with a set of 316 industrial
chemicals.24 Classification models were then built based on the
largest dataset that we are aware of using SVM, random forest
(RF), and naive Bayes and yielded balanced accuracies of
0.72−0.75. In addition, a few computer programs have been
published in the past few years, such as BioWin, MultiCASE,
CATABOL, VEGA, OPERA, and ToxTree, all of which
incorporated biodegradation models and are therefore able to
make biodegradability predictions. Most of them are widely
recognized by both industries and academia. More information
about these tools and other ML studies can be found in
reviews.28−32

However, these models share four major limitations: (1)
containing small numbers of chemicals (from <100 to 3200),

(2) mostly built for binary classification purposes, that is, the
outputs of the models are only 0s (not readily biodegradable)
and 1s (readily biodegradable), (3) only capable of predicting
ready but not inherent biodegradation, and (4) not considering
the effects of experimental conditions, reaction time, and
chemical speciation on biodegradability.1,24

To overcome the above limitations, we first compiled a
comprehensive dataset consisting of 12,750 records for 6032
chemicals. The dataset contained six inputs�chemical
SMILES strings, reaction time (day), guidelines (e.g., OECD
301D), principles (to describe system setup or condition, such
as “closed bottle test” and “DOC die away”), endpoints (ready
or inherent), and reliability levels (1 or 2)�and one output�
the biodegradation percentages. To develop the best regression
model, we compared the performance of 13 ML algorithms, 9
chemical representations, and 6 categorical encoding methods.
The obtained models were carefully interpreted by evaluating
the importance of the chemical substructures and all other
input features using the SHapley Additive exPlanations
(SHAP) method.33 To expand the applicability of this study
and compare it with the published models, we further built
classification models by evaluating the performance of 14 ML
algorithms and one chemical representation (the one used in
the final regression model). The applicability domains (ADs)
of the regression and classification models were defined and
then applied to a large database called Distributed Structure-
Searchable Toxicity (DSSTox), which is operated by the US
EPA and currently contains over 850,000 environmentally
relevant chemicals. Based on the obtained models, two user-
friendly online predictors were made freely available at https://
www.chemai.aropha.com/. The workflow of this study can be
found in Figure 1. For those who have little ML knowledge, we
recommend these reference papers,34,35 which have step-by-
step guidance for building ML models for general environ-
mental applications.

■ METHODS
Dataset Preparation. The experimental data were mainly

collected using the eChem portal (https://www.echemportal.
org/echemportal/property-search), a tool that has access to a
number of databases. Only the experimental data with

Figure 1. Flowchart of this study. Regression (yellow) and classification (green) models were built independently. The mechanistic interpretation
was only performed on the regression model, while the last three steps (blue) , including investigating the effect of chemical speciation, determining
AD, and developing free online predictors, were performed for both models.
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reliability levels 1 (reliable without restriction) and 2 (reliable
with restrictions) were retrieved to ensure high data quality.24

Such restrictions may differ from one datapoint to another but
can be looked up by entering the original webpage where the
record is located. (In the original spreadsheet downloaded
from the eChem portal, each record comes with a hyperlink.
By clicking on this link, one will be redirected to the original
webpage of that record.) All ready and inherent biodegradation
data for aerobic conditions were included. This resulted in a
total of more than 20,000 records. After curation, a dataset
named “RegressionDataset” containing 12,750 data points was
obtained for developing regression models. More details of the
data curation process can be found in Text S1.1. A dataset
called “ClassDataset_original” containing 4593 data points
were obtained for classification models on the basis of the
RegressionDataset. An external validation dataset containing
1546 chemicals, named “ClassDataset_external”, was compiled
from the literature because it would be meaningful to validate
our models using data from a different source. Last, these two
classification datasets were combined to form “ClassDatase-
t_all,” which was later used to build a comprehensive
classification model. More details of the three datasets for
classification models can be found in Text S1.2.
Selection of Optimum Chemical Representation,

Categorical Data Encoder, and ML Algorithm. The type
of chemical representation is one of the most important
considerations in ML modeling as it transforms the raw
chemical structural data into machine-readable information. An
appropriate representation should cover all relevant features of
the chemicals. To develop regression models, we compared
seven molecular fingerprints (FPs, Table S1)�Atom pair,
Topological torsion, Morgan, Pattern, RDK, MACCS, and
PubChem, some with different dimensions�, one set of
molecular descriptors (MDs), and a combination of MACCS
and MDs. The model performance was evaluated based on
root mean square errors (RMSE) and R2 values. More details
can be found in Text S1.3.
In addition to chemicals, the regression models included

other variables/features, including reliability level, endpoint,
guideline, principle, and reaction time as the inputs. More
details of these features can be found in Tables S2 and S3. The
features including endpoint, guideline, and principle are called
categorical data and need to be encoded into numbers before
model training. In this study, we compared six categorical
encoders from the library category_encoders, namely,
BinaryEncoder(), HashingEnoder(), OneHotEncoder(),
OrdinalEncoder(), PolynomialEncoder(), and SumEncoder(),
to examine their impact on the model performance. More
details can be found in Text S1.4.
A total of 13 common ML algorithms (Table S4) were

screened during the regression model development, including
adaptive boosting (AdaB), bagging, DT, a deep neural
network, extra trees, gradient boosting (GradientB), KNN,
Lasso, linear regression (Lr), RF, Ridge, support vector
regression, and XGBoost. As there are numerous research
articles, official documentations, posts, forums, and tutorials
about these algorithms,35 we decided not to give introductions
to them here. Note that all of these algorithms (as well as the
chemical representations) were selected based on the literature
as they were commonly used by other studies for environ-
mental engineering applications.33 However, our study is by far
the most comprehensive in term of the number of algorithms
and chemical representations considered. For example, among

some of the best papers in this area, the numbers of evaluated
algorithms and chemical representations were 4 and 8, 3 and 1,
or 3 and 1.1,4,24

More details on how we screened the chemical representa-
tions, categorical data encoders, and ML algorithms when
developing regression models can be found in Text S1.5.
To develop the classification models, the chemical

representation selected for the final regression model
(MACCS FPs) was used, and a total of 14 classification
algorithms (Table S5) were compared, including AdaB,
bagging, DT, ET, Gaussian Process, GradientB, linear SVM,
Naiv̈e Bayes, Nearest Neighbors, Neural Net (Multi-layer
Perceptron classifier), quadratic discriminant analysis, radial
basis function SVM, RF, and XGBoost. The three datasets
mentioned above (i.e., ClassDataset_original, ClassDatase-
t_external, and ClassDataset_all) were used. The model
performance was evaluated based on different matrices,
including accuracy, sensitivity, specificity, balanced accuracy,
ROC AUC, and f_1. More details can be found in Text S1.6.

Bayesian Optimization, Chemical Similarity Calcula-
tion and Grouping, and Feature Importance Evaluation
by SHAP Analysis. The models developed in this study were
further improved by performing Bayesian optimization for
hyperparameter tuning. Chemical similarity calculation based
on FPs and the Tanimoto index was then carried out for
chemical grouping to ensure high similarities of chemicals
among the training, validation, and test subsets.36 To evaluate
the importance and contribution of different features to
biodegradation, we employed the SHAP method.36 More
details about these processes can be found in Texts S1.7−S1.9.

Individual Ready and Inherent Models, and Knowl-
edge Transfer. To understand whether building a ready
biodegradation model based on the ready biodegradation data
and an inherent biodegradation model based on the inherent
biodegradation data alone could give better prediction
accuracy for either endpoint, we split the original dataset
into ready and inherent biodegradation subsets and built a
ready and an inherent biodegradation model separately. Then,
we applied a technique called “knowledge transfer”37 aiming at
improving the performance of the inherent biodegradation
model using the knowledge learned from the ready
biodegradation model. To achieve that, we first used the
ready biodegradation model to make predictions for the ready
biodegradability of the chemicals in the inherent biodegrada-
tion dataset and then used the predictions as an additional
input feature in the inherent biodegradation dataset to build an
inherent biodegradation model. More details on how we
performed knowledge transfer can be found in Text S1.10 and
Figure S1.

Effect of Chemical Speciation on Biodegradability.
When investigating the effects of chemical speciation on
biodegradation, we did not select the dominant acid/base
species under the experimental pH conditions because (1)
there were 6032 chemicals so it was labor-intensive and (2)
many chemicals had more than one major acid/base species in
the solution. Instead, we used pKa values and/or the α
notations as part of the input features to capture chemical
acid/base behaviors because these values were directly related
to the speciation. As most of the chemicals in this study have
unknown pKa values, we used a high-quality online predictor to
predict pKa.

38 The predictor was built on more than 1.6
million chemicals and could identify up to 144 ionizable
groups (acid or base) with a high prediction accuracy (R2 =

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.2c01764
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c01764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


0.94−0.97 and RMSEs = 0.45−0.81). More details on how we
obtained the pKa values and calculated the corresponding α
notations can be found in Text S1.11.
Model AD and the DSSTox Database. Model AD is

used to evaluate if a model prediction is reliable for a query
chemical. It can be determined by calculating the similarity
between the chemical and every chemical in the training
dataset of the model based on the Tanimoto index (eq S7).
The maximum value among the obtained similarity values was
used as the similarity between the query chemical and the
dataset.36 If this value is higher than the threshold specified for
a model, the chemical is then considered as within the AD, or
the prediction is reliable, and vice versa. In this study, we
determined the ADs for both the regression and classification
models and then applied them to the DSSTox database to
examine the data coverage of these models. More details can
be found in Text S1.12.

■ RESULTS AND DISCUSSION
Datasets for Regression and Classification Models. In

the assembled regression dataset, the input features included
chemical structures described by SMILES strings, reliability
level, endpoint, principle, guideline, and reaction time. The
data distribution shows that 71.1% of the 12,750 records have
a reliability score of 1 (reliable without restrictions), and 90.0%
are ready biodegradation data. The closed respirometer (42.2%
of the records) is the most popular principle, followed by CO2
evolution (22.1%), closed bottle test (20.0%), and DOC die
away (15.7%). Among the guidelines, the OECD methods
including 301B, C, D, and F are the most popular, contributing
to 75.6% of the total records. A summary of the corresponding
principles and endpoints for different guidelines can be found
in Table S3. Figure S2 shows the number of chemicals having
different biodegradation percentages.
For the three classification datasets, ClassDataset_original

(4593 records), ClassDataset_external (1546 records), and
ClassDataset_all (6139 records) all have around 65% of
negative (0s, NRB) and 35% of positive (1s, RB) records
(details in Text S1.2 and Table S6).
Prescreening of ML Algorithms, Categorical En-

coders, and Chemical representations, and Performing
Bayesian Optimization for Regression Models. A
prescreening process was performed for 13 ML algorithms, 6
categorical encoders, and 9 chemical representations when
developing the regression models, and the results are shown in
Figures S3−S6. As it was time consuming and labor intensive
to tune the hyperparameters of all algorithms under different
conditions (categorical encoders and chemical representa-
tions), at this stage, we only used the default hyperparameters
for the prescreening purpose. Overall, XGBoost was found to
be the best algorithm, while ordinal encoder and MACCS FPs
were the best categorical encoder and chemical representation,
respectively. To better understand how MACCS bits represent
chemical structures, we highlighted each bit (substructure) for
phenol, as an example, in Table S7. More results of this
prescreening process can be found in Text S2.1.
After conducting Bayesian optimization (Figure S7 and

Table S8), the regression model achieved an R2 of 0.54 and an
RMSE of 0.25 (equivalent to 25% of biodegradation).
Although the RMSE value is still high considering the
degradation percentage range of 0−100%, this error is mainly
due to the limitations of the standard biodegradation test
guidelines, such as high variability among different tests, within

the same lab or among different labs, for inoculum collected at
different times and/or locations, and using different analytical
methods.39 Therefore, to improve the ML model performance,
future studies are warranted to improve the data quality.
Although this performance may not look as good as those in

some other studies, those studies are based on small numbers
of narrowly defined, specific classes of chemicals (e.g.,
substituted benzenes), on which the models can easily be
built to achieve higher prediction accuracies.22,23,40 However,
those reported models typically have much smaller ADs and
can only be applied to limited numbers of chemicals.
Nevertheless, the medium R2 value of the best regression
model is likely because there is not enough chemical diversity
in the dataset to capture all structure−biodegradation
relationships, despite that >6000 chemicals were incorporated
already (see more discussion below). Future work is warranted
to increase the number of diverse chemicals in the dataset to
further improve the model performance.

Training with Different Sample Sizes to Improve the
Model Performance. The above best regression model was
based on the entire dataset, but it is of great interest to know
whether changing the sample size of the training dataset can
improve the model performance or not (for the prediction
accuracy on the same test set). This is important because ML
models often benefit from big data, but in some cases adding
more data may introduce noise and result in worse model
performance. Toward this goal, we first investigated how the
similarity among the training, validation, and test datasets
impacts the model performance. This was done by building a
series of models using modified sub-datasets that contained
fractions of chemicals whose similarity was above certain
scores, for example, >0.9, >0.8... More details can be found in
Text S2.2. The results suggested that higher similarities among
the training, validation, and test datasets always gave better
model performance (Figure S8), in agreement with other
studies.36,41

For a model built above, while keeping the validation and
test datasets unchanged (e.g., each having 10% of the 5000
records) (Figure S9A), we combined the other 80% of the
5000 records with the “remaining data” (7750) from the pool
of 12,750 records to form an “enhanced training” set and
examined whether this can improve the model performance on
the same test set. As shown in Figures S9B and S10, the
models using the enhanced training sets generally out-
performed those using the original training sets. This is likely
due to the relatively high similarity between the remaining data
and the test set. As the “5000” model was taken as an example,
96.3% of the remaining 7750 data points were observed to
have similarity scores higher than 0.5 when compared to the
test subset in the “5000” model (Figure S11). The inclusion of
these additional chemicals in the training dataset hence should
have provided more structure-biodegradability information to
improve the model performance. This also indicates that there
is no need to build individual models based on sub-datasets of
chemicals in order to achieve better model performance for a
query chemical in real applications. Therefore, the regression
model built above on the whole dataset is used for the rest of
the study unless otherwise noted.

Mechanistic Interpretation (Feature Importance). To
identify the most influential factors on biodegradation, we
calculated the SHAP values for all 171 features, including 166
MACCS FPs, reaction time, guideline, principle, endpoint, and
reliability. As the model development process involved a few

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.2c01764
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01764/suppl_file/es2c01764_si_003.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c01764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


times of random splitting of the data, each experiment may
result in slightly different SHAP values and their rankings.
Therefore, we repeated this analysis five times and calculated
the average SHAP values (feature importance scores). The top
20 most important features (Figures 2A and S12) include 16
chemical substructures, time, principle, guideline, and
endpoint.
Reaction time was found to be the single most important

parameter on biodegradation with the importance score much
higher than those of the second and third features (Figure 2A).
Principle, guideline, and endpoint were ranked the 3rd, 9th,
and 15th, respectively. For the feature “Principle,” CO2
evolution, closed respirometer, and closed bottle tests were
found to have similar SHAP values, much smaller than those of
the DOC die away (Figure 2B), indicating higher percentages
of biodegradation observed using the DOC die away methods.
This is because microorganisms can sometimes utilize a
portion of the organic carbon from the test substance for their
own growth and reproduction, resulting in lower DOC levels
in the solution and therefore higher calculated biodegradation

percentages. This is also the reason that the DOC-based
standard methods usually set a threshold of 70% (not 60% for
other principles) to classify the ready biodegradability.42,43 In
addition, adsorption onto the inoculum or the inner walls of
the reactor may occur for some test substances, which
sometimes cannot be completely corrected by the control
tests and therefore leads to falsely high results. This might also
be the reason for the much wider range of SHAP values for this
principle compared to others.
For the feature “Guideline” (Figure 2C), all ready

biodegradation guidelines except for those based on DOC
die away were observed to have similar SHAP values. This is
reasonable because they were originally designed to be
equivalent except that they can handle chemicals with different
physicochemical properties, such as solubility, volatility, and
absorptivity.42,43 Although the rest five guidelines had
noticeably higher SHAP values, all of them were either
inherent biodegradation guidelines (i.e., OECD 302B and
302C) or the ready ones based on DOC die away (i.e., EU
C.4-A, OECD 301A and 301E). For the feature “Endpoint”

Figure 2. (A) Top 20 most important features based on their mean absolute SHAP values. The box plots show their importance scores while the
red “+” and “−” symbols above the figure indicate positive and negative contributions to the biodegradation, respectively. The numbers following
some of the feature names (all are substructures in MACCS) are their original orders in the MACCS naming system. A: any valid periodic table
element symbol; Q: hetro atoms, any non-C or non-H atom; X: halogens; = : double bond; $: ring bond; !: chain or nonring bond. The SHAP
values for different (B) principles, (C) guidelines, and (D) endpoints. Greater SHAP values suggest larger contributions to the biodegradation. The
guidelines in (C) from left to right (0−12) are OECD 301B (0), OECD 301F (1), OECD 310 (2), OECD 301D (3), OECD 301C (4), EU C.4-D
(5), EU C.4-E (6), OECD 302B (7), OECD 302C (8), EU C.4-A (9), OECD 301A (10), OECD 301E (11), and EU C.4-C (12). In (C), the left
red box indicates the two inherent biodegradation guidelines, while the right red box includes the three ready biodegradation guidelines under the
“DOC die away” system setup.
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(Figure 2D), the “Inherent” tests showed much higher SHAP
values and therefore stronger effects on the observed
biodegradation percentages than the “Ready” tests. This is
expected because inherent tests usually have higher biomass to
test substance ratios than those of the ready tests.42,43 Please
see more discussion later.
As shown in Figure 2A, all 16 chemical substructures that

were ranked among the top 20 were unambiguously classified
to have either positive or negative effects on the
biodegradation. Such results (positive or negative) were
indicated by the individual SHAP values shown in Figure
S12. Among the 16 substructures, only three were found to
have positive effects, that is, C�O (#154), OCO (#123), and
OH (#139). This agrees well with the literature that the
presence of carboxyl or hydroxyl groups can substantially
improve the biodegradability.22,44 The following substructures
were found to have negative effects on biodegradation: rings
(#163, 145, 165, 150), branches (#156, 112, 148, 66),
halogens (#134), nitrogen substituents (#156, 142, 161),
heteroatoms (#138, 148), and methyl group (#149). Most of
them can lower the chemical hydrophilicity and/or electron
density and have been widely reported to have negative effects
on aerobic biodegradation.22,44−47 From the most positive to
the most negative, these substructures were ranked following
the order of C�O > O�C−O > OH > CH3 > halogen >
branching > N > 6-member ring. Similarly, Boethling et al.
reported an order of ester, amide, anhydride > hydroxyl >
carboxyl, epoxide, site of unsaturation > benzene ring, methyl
methylene.45 Therefore, we believe that this model correctly
identified the effects of substructures on aerobic biodegrada-
tion.
The group contribution method has been widely used to

quantify the contributions of functional groups toward aerobic
biodegradation.27,48 To better evaluate the accuracy of the
mechanisms learned by our model, we further compared the
substructure SHAP values with the reported substructure
coefficients in the group contribution method.27 A set of
common substituents on aromatic chemicals (i.e., COOH,
OH, Cl, NO2, NH2 or NH, and SO3H) and aliphatic chemicals
(i.e., COOH, OH, Cl, NH2 or NH, and SO3H) were evaluated.
As most of them appeared in a few hundred to over 3000
records in the dataset, the SHAP values for each substituent
were averaged. A total of six sets of coefficients for these

substituents were collected from the reported linear, nonlinear,
primary, ultimate, MITI linear, and MITI nonlinear biode-
gradation models.27,49 Note that these models were developed
to predict the probability/time frame of biodegradation based
on the group contributions of different substituents and are the
basis of the US EPA’s software EPI Suite for predicting
biodegradability.18 The linear regression of these averaged
SHAP values against the six sets of coefficients had R2 values of
0.73, 0.82, 0.41, 0.37, 0.56, and 0.52, respectively, for the
substituents on aromatic chemicals (Figure 3) and 0.12, 0.05,
0.70, 0.65, 0.92, and 0.91, respectively, for the substituents on
aliphatic chemicals (Figure S13). The detailed coefficient and
the average SHAP values can be found in Tables S9 and S10.
Given the much larger number of chemicals in this study than
in the group contribution method (>6000 vs <300), these
mostly decent correlations suggest that our model was likely
based on a correct understanding of the substructure
contributions/importance to aerobic biodegradation, and is,
hence, trustworthy.
To have a better idea of the occurrence of MACCS

substructures in our database, we summarized the number of
records that have different MACCS bits, as shown in Figure
S14 and Table S11. The predictions for the chemicals that
have at least 10% of their total bits to be among the 20 most
popular bits (Table S11) achieved an RMSE and an R2 of 0.23
and 0.58, respectively. However, these values changed to 0.27
and 0.34, respectively, for the chemicals that have at least 10%
of their total bits to be among the 20 least popular bits (Table
S11). This indicates that the model performed better for
chemicals containing substructures that occur more frequently.
Future studies may consider adding chemicals containing
substructures that have low occurrence frequencies in our
current database so that their contributions/importance to
aerobic biodegradation can be better understood. This can also
in turn expand the model AD.

Individual Ready and Inherent Models, and Knowl-
edge Transfer. The models built so far considered both ready
and inherent biodegradation data. To examine whether
building separate models based on the ready or inherent
data alone could give better prediction accuracy for either
endpoint, we split the original dataset into ready and inherent
subsets and built a ready and an inherent model separately
(details in Text S1.10). The performance of the obtained ready

Figure 3. Plots of the average SHAP values of six common substituents on aromatic chemicals against six sets of group contribution coefficients for
these substituents collected from the reported (A) linear, (B) nonlinear, (C) primary, (D) ultimate, (E) MITI linear, and (F) MITI nonlinear
biodegradation models.27,49
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model was similar to that of the overall model for predicting
ready biodegradation (data not shown). This might be because
the original dataset on which the overall model was built
consisted of mostly ready biodegradation data (90%, Table
S2). As shown in Figure S15, the inherent model only showed
marginal improvement (<0.01 for both RMSE and R2 on the
scale of 0.0−1.0, with the p values of 0.48 and 0.29 (>0.05),
respectively, in ANOVA analyses) over the overall model for
the inherent biodegradability.
When knowledge transfer (using the ready model to predict

the ready biodegradation for the chemicals in the inherent
dataset and then using the predicted results as an additional
input feature in the inherent model) (details in Text S1.10),
poorer model performance was observed compared to the
overall model. Note that employing the data augmentation
technique did not improve the model performance (Text S1.10
and Figure S15). Discussion on the possible reasons can be
found in Text S2.3 and Figures S16 and S17.
As the individual ready and inherent models did not

significantly outperform the overall model, the overall model
was used for the rest of the study.
Classification Models. In addition to regression models,

we developed classification models to expand the application of
this study to when only binary classification is needed (an
industry norm) without specifying the experimental conditions
and reaction time. For the first classification model based on
the dataset ClassDataset_original (data extracted from the
regression dataset), data balancing was first performed (Figure
S18). With MACCS FPs as the chemical representation, a total
of 14 ML algorithms (Table S5) were examined, and XGBoost
was again found to be one of the best algorithms (Figure 4).
Given that it has been used for the regression models, we
selected it as our default algorithm for the classification
models.

When Bayesian optimization was performed for the
hyperparameter tuning, we did not observe improvement in
the model performance. Therefore, the default values were
used (Table S12). The model yielded prediction accuracy,
sensitivity, specificity, balanced accuracy, AUC, and f_1 score
of 85.6, 90.3, 80.4, 85.4, 91.8, and 85.1%, respectively, on the
test set (Table S13), better than most of the reported models
in the literature.1,8,12,21,24 For example, a recent study with the

most comprehensive datasets (3146 chemicals) ever only
achieved balanced accuracies of 72−75%.24 Many other studies
with much smaller datasets showed sensitivities of 61−85%
and specificities of 80−93%.1,4,12,21

To evaluate the model performance on the external dataset
ClassDataset_external (data collected from the literature,
containing 537 1s and 1009 0s), we calculated the similarities
between the chemicals in this dataset and those in the
ClassDataset_original (used for the model development), as
shown in Figure S19. Compared to the chemicals in the
ClassDataset_original, 96.9% of the chemicals in Class-
Dataset_external had similarity scores over 0.6, suggesting
high reliability of the prediction. Indeed, the prediction
accuracy of 84.5% was observed for ClassDataset_external,
very close to the value for the test dataset of Class-
Dataset_original.
The above two datasets were then combined to form

ClassDataset_all, which was used to build a more compre-
hensive classification model called ClassModel_all so that it
can have a larger AD. Following the same procedure, a
prediction accuracy was calculated to be 86.0% for the test set,
similar to that of the ClassModel_original. The results on
other matrices such as sensitivity and specificity can be found
in Table S13. Overall, these results were very similar to those
obtained for the model ClassModel_original. This model is
used for the rest of the study unless otherwise noted.

Effects of Chemical Speciation on Biodegradability.
To examine the effect of chemical acid/base speciation on the
predicted biodegradability, we compared the model perform-
ance with two sets of pKa values and/or α notations for each
chemical added to the input features: (1) 20 pKa values (10 for
acids and 10 for bases) and 22 α notations and (2) 8 pKa
values (4 for acids and 4 for bases) and 10 α notations.
Because adding either set of the features had similar effects on
the model performance (results not shown), we did not try to
decrease the number of pKa values or α notations further. The
results of adding 8 pKa values and 10 α notations are discussed
below.
As shown in Figure 5A, surprisingly, the inclusion of pKa

values and/or α notations did not noticeably improve the
performance of the regression model (reasons unknown).
However, for the classification model built on the dataset
ClassDataset_all (Figure 5B), the performance was signifi-
cantly improved, as indicated by most of the matrices used in
this study, including accuracy (from 85.1 to 87.6%), specificity
(from 80.9 to 87.4%), balanced accuracy (from 84.9 to 87.6%),
AUC (from 92.4 to 94.8%), and f_1 (from 86.2 to 87.9%). The
model performance generally follows the order of “with both
pKa and α” > “with α” > “with pKa” > “without pKa or α.” This
finding demonstrates the importance of chemical speciation in
aerobic biodegradation kinetics.50

Model AD and Application to the Database DSSTox.
The AD of the regression model was determined and shown in
Table 1. The expected prediction accuracy of a query
compound can be found based on its similarity to the model
dataset. For example, if a chemical has a similarity score higher
than 0.9, its expected prediction accuracy can be represented
by an RMSE of 0.14 and an R2 of 0.79. Chemicals with the
similarity score lower than 0.5 was defined as out of AD
because we did not have enough test chemicals in this range to
confidently evaluate the model performance (details in Text
S1.12). Similarly, the AD of the classification model can be
found in Table S15.

Figure 4. Comparison of the performance of 14 ML algorithms using
their default hyperparameters for the development of classification
models.
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As shown in Figure S20 and Table 1, for the regression
model, the similarity calculation shows that 98.5% of the
chemicals in the DSSTox fall into the model AD; 6.7% and
93.3% were predicted to have ≥60% and <60% of
biodegradation, respectively, under the guideline of OECD
301F over 28 days (other model input: “ready” as the
endpoint, “closed respirometer” as the Principle, and “1” as the
reliability). For the classification model, 98.4% of the chemicals
in the DSSTox are within the model AD, and 88.2% were
classified with an expected accuracy of 85.6−88.9% (Figure
S21 and Table S15). 15.6% and 84.4% were classified to be RB
and NRB, respectively.
When the prediction results of both the regression and

classification models were compared, 6.1% of the same
DSSTox chemicals were found to have either ≥60% of
biodegradation (by the regression model) or a “1” (RB) (by
the classification model), while 83.8% of the same DSSTox
chemicals were predicted to have either <60% of biodegrada-
tion or a “0” (NRB). These results demonstrate that the two
models had consistent prediction results for 89.9% of the
DSSTox chemicals. The similarity calculation further revealed
that the 10.1% inconsistent predictions were mostly for
chemicals having low similarity scores (i.e., a larger percentage
of chemicals out of AD) (Figure S22). The detailed prediction
results for each chemical can be found in the Excel file
“DSSTox prediction.xlsx” in the Supporting Information.
Free Online Predictors. To make the models developed

in this study more accessible, we developed two free online
predictors for the regression and classification models
(https://www.chemai.aropha.com/). Although pKa values can

be predicted, they may require further treatment depending on
the nature of the chemicals. This made it difficult to include
pKa in these two predictors. Therefore, the regression and
classification models obtained right before considering pKa and
α notations were used to develop our online predictors. The
predictors accept direct SMILES strings or Excel/CSV files
containing SMILES strings in the column named “SMILES” or
SDF files as the input. For the regression predictor, additional
inputs such as the guideline and principle should also be
provided (select from the dropdown options). Upon submit,
the predictors make predictions and at the same time calculate
the similarities between the query chemicals and the datasets of
the models to evaluate the prediction accuracies. All results are
shown in a downloadable table. In addition, users can
download all related datasets used in this study and the
resulted model files on the website. With the model files, users
can follow our Jupyter Notebooks step by step to perform
predictions using Python.

■ ENVIRONMENTAL IMPLICATIONS
This study developed regression and classification models
using ML for the prediction of aerobic biodegradability of
organic chemicals in water. A total of 12,750 data points were
collected for the regression model, which is substantially larger
than others reported in the literature (always less than 3200).
This significantly improved the model AD. Different from most
other studies where only classification models were evaluated,
the developed regression models considerably improved the
prediction accuracy by changing the output from 0 (NRB) and
1 (RB) to continuous biodegradation percentages (0−100%).
This also helped cover more structure−biodegradability
relationships. The inclusion of guidelines, principles, end-
points, and time as additional inputs for the first time
significantly improved the model applicability by providing
practical options for users to, for example, compare the
prediction results under different guidelines or principles or
obtain the full biodegradation kinetics from days 0 to 28 (or up
to 73 d). Also, for the first time, the prediction of inherent
biodegradability is available by including more than 1270
inherent data points in the model. This is especially helpful for
chemicals that are known/predicted to be NRB as they can
now be predicted under inherent biodegradation conditions
without having to be tested experimentally.

Figure 5. Model performance with or without pKa and/or α notations of the chemicals for the (A) regression model (built on all the 12,750 data
points) and (B) classification model (built on the dataset ClassDataset_all). Detailed values for (B) can be found in Table S14.

Table 1. AD of the Regression Model and the Model
Applicability Toward DSSTox

Similarity

Expected prediction Chemical percentages in DSSTox

RMSE R2
Each level

(%)
Accumulative

(%)

0.9−1.0 0.14 0.79 7.1 7.1
0.8−0.9 0.21 0.66 15.4 22.5
0.7−0.8 0.23 0.59 31.5 54.0
0.6−0.7 0.26 0.44 34.1 88.1
0.5−0.6 0.26 0.49 10.4 98.5
0.4−0.5 Out of AD Out of AD 1.0 99.5
<0.4 Out of AD Out of AD 0.5 100.0
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The classification model developed based on more than
6000 chemicals showed high robustness and higher prediction
accuracies than most of the reported models. Both the
regression and classification models have the largest ADs
ever reported, large enough to cover more than 98% of the
850,000 environmentally relevant chemicals in the database
DSSTox. The two freely available online predictors made these
models readily useable even for users who have little ML
knowledge. With the significantly increased prediction
accuracies and enlarged ADs compared to others, these
models can also help provide more accurate risk assessment
of the existing and new chemicals. We believe that the model
predicted biodegradability for the chemicals in the DSSTox
database and the free online predictors can effectively help the
research community, chemical industries, and regulators more
easily achieve their research, production, and regulatory goals.
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