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ABSTRACT: Studying heavy metal adsorption on soil is
important for understanding the fate of heavy metals and properly
assessing the related environmental risks. Existing experimental
methods and traditional models for quantifying adsorption,
however, are time-consuming and ineffective. In this study, we
developed machine learning models for the soil adsorption of six
heavy metals (Cd(II), Cr(VI), Cu(IL), Pb(II), Ni(Il), and Zn (1))
using 4420 data points (110S soils) extracted from 150 journal
articles. After a comprehensive comparison, our results showed
that the gradient boosting decision tree had the best performance
for a combined model based on all the data. The Shapley additive
explanation method was used to identify the feature importance and
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six independent models were developed for the six metals to achieve better model performance than the combined model. Using
these independent models, the global distribution of heavy metal adsorption capacities on soils was predicted with known soil
properties. Reversed models, including one combined model for all the six metals and six independent models, were also built using
the same data sets to predict the heavy metal concentration in water when the adsorbed amount is known for a soil/sediment.
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B INTRODUCTION

Heavy metals in soil pose potential risks to the environment
due to their inherent accumulative and non-degradable
properties. Soil can also substantially affect the transport of
heavy metals to water, animals, and plants' > by regulating
heavy metal mobility and availability, during which soil
adsorption is one of the main processes.””> As such, soil
adsorption can reduce their environmental risks.>® For
example, heavy metals in soil pose low environmental risks
in some regions even though the heavy metal contents exceed
the standard limits.” Therefore, estimating the adsorption
capacity of heavy metals on soil is important to assess their
environmental risks and develop appropriate soil remediation
strategies.” Moreover, the estimated adsorption capacities of
different soils can help formulate strategies to mitigate the
impact of heavy metals on the environment, for example, only
launching the industries with high potentials of heavy metal
pollution in places where the soils have high adsorption
capacities. Similarly, the risk of heavy metals on agriculture can
be minimized by knowing the adsorption capacities of the soil
and the tolerance of crops to the heavy metals.

Soils have different properties such as pH, cation-exchange
capacity (CEC), clay content, and organic carbon content
(OC).>*7'° This heterogeneity makes the adsorption of heavy
metals vary considerably.'"'” Batch experiments are traditional
ways to determine adsorption on soils, which are time-
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consuming and inefficient.”” An alternative approach is to

estimating the adsorption capacity using models.” Adsorption
isotherms, such as the Freundlich and Langmuir equations,14
are a traditional way to model adsorption equilibrium."> Many
studies have used these traditional models with different
combinations of independent variables (e.g., soil Gproperties) to
predict the adsorption of heavy metals on s0il.'*™'? However,
adsorption experiments are essential to obtain the adsorption
capacities prior to modeling, so the applicability domain of the
isotherms is rather narrow.'’ Additionally, a combination of
independent variables needs to be decided prior to developing
desirable models for specific types of soils because of soil
heterogeneity. This also makes it difficult to use these
traditional models to quantify the adsorption characteristics
of soils on a large scale. As a mechanistic model, surface
complexation models (SCMs) have been widely employed to
simulate the adsorption of different adsorbates onto different
adsorbents.””~** SCMs can provide information about surface
complexation reactions with a set of equilibrium constants
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insensitive to the change in solution conditions, which is
important for robust prediction.”””** Many studies have
successfully used SCMs to model the interactions of heavy
metals with soils or soil constituents.”> However, predictions
using SCMs are based on three assumptions—adsorption
occurs on the surfaces that have ligand functional groups;
adsorption reactions follow the law of mass conservation; and
surface coordination reaction determines the surface charge
distribution.”* These assumptions might lead to poor perform-
ance of SCMs in complex systems and thus limit the
applicability of SCMs. Indeed, studies on SCMs mainly focus
on materials with relatively well-defined surface groups.”*
Therefore, to better model the adsorption of different
adsorbates to complex adsorbents such as soil, new approaches
should be explored to overcome the above limitations.

As a powerful tool for uncovering hidden relationships,
machine learning approaches have been increasingly applied to
study environmental problems because of their low cost, high
prediction accuracy, and robustness.'¥**™*' Traditional
learning models, such as classification and regression trees
(CART), linear regression (LR), stochastic gradient descent
regressor (SGDRegressor), support vector regression (SVR),
ridge regression (Ridge), and K-nearest neighbors (KNN),
have been widely used in many fields.””"** These traditional
models are developed with single algorithms and have
relatively low prediction precision in some studies.”> Ensemble
models consisting of multiple learning algorithms—such as
regression tree-based ensemble learning models, including
extremely randomized trees (ET), random forest (RF),
gradient boosting decision tree (GBDT), and extreme gradient
boosting (XGBoost)—may be employed sometimes to
imprgzgg_aggcuracy and obtain better predictive perform-
ance.”””7™

Despite the extensive applications of machine learning in the
field of environmental research, very limited work has been
conducted on the adsorption of heavy metals on soil
Bazoobandi et al. adopted an artificial neural network
(ANN) to predict the contents of Cd and Pb in soil and
identified OC as the most significant predictor.”” Tan et al.
employed RF to develop a hyperspectral estimation model to
accurately predict the spatial distribution of Cr, Cu, and Pb in
agricultural soils.*” Jia et al. combined RF with the fuzzy k-
means method to predict the concentrations of Cr, Pb, Hg, and
As in soils and then partitioned the study area into four
subregions with different potential risk levels based on the
predicted heavy metal concentrations.*' For the prediction of
adsorption on soils, however, to the best of our knowledge,
only one study has reported such an effort using machine
learning, that is, a study by Anagu et al. using ANN to predict
the adsorption of nine heavy metals based on the data
collected from 133 agricultural sites in Germany.” However,
the used data volume (133 data points) is small; the soil
diversity (69 soil types) is not high; and the performance of the
obtained model is relatively poor for one of the metals (Cr: R
= 0.79), which limit the applicability of the model. To
overcome these limitations, a much larger amount of data
covering much more diverse types of soils should be collected
to make the models more robust and widely applicable.

The aims of this study are to: (i) build a comprehensive data
set for the adsorption of six heavy metals [ie, cadmium
(Cd(11)), chromium (Cr(VI)), copper (Cu(1l)), lead (Pb-
(I1)), nickel (Ni(II)), and zinc (Zn(II))] on different soils by
collecting a total of 4420 data points (1105 soil types) from

150 relevant references; (ii) based on the above data set,
investigate the performance of six traditional learning models
(ie, CART, LR, SGDRegressor, SVR, KNN, and Ridge) and
four ensemble models (i.e, ET, RF, GBDT, and XGBoost) in
the prediction of heavy metal adsorption on soils; (iii) using
the best performing models, identify the key factors from the
properties of soil, adsorption systems, and heavy metals that
are important for the adsorption; and (iv) predict the relative
adsorption capacities of the six heavy metals on a global scale
for the first time. These findings can help formulate strategies
for soil remediation, regional land-use planning, and risk
assessment. An online predictor with a graphical user interface
is available in the adsorption section of ChemAl at https://
www.chemai.aropha.com/.

B MATERIALS AND METHODS

Literature Search Protocol. A comprehensive literature
search was conducted using the Web of Science to obtain data
on the adsorption of heavy metals onto different types of soils,
using the following search terms, where “T'S” represents the
article theme:

TS = [(soil OR soils) AND (adsorption OR sorption) AND
(metal OR metals OR Cd OR Cr OR Cu OR Pb OR Ni OR
Zn OR cadmium OR chromium OR copper OR lead OR
nickel OR zinc)].

Study Selection. The searched relevant studies were
ranked by relevance and screened by examining the sections of
materials and methods and results and discussion to determine
the suitability of the obtained results. A total of 150 studies
(Table S1, Supporting Information) were selected based on
the following criteria: (1) soil properties including pH, CEC,
OC, and clay content were measured and reported; (2) an
electrolyte was used to maintain the ionic strength in the batch
sorption experiments, and the ionic strength of all other
substances accounted for less than 5% of the total ionic
strength; (3) adsorption system properties, including solution
pH, the equilibrium concentration of heavy metal(s), solution
temperature, and soil-to-solution ratio, were reported; and (4)
the adsorption data of heavy metals on soil were accessible
(e.g, in a table or figure with exact coordinates).

Data Extraction. The collected data included the study
metadata (year published, first author’s last name); soil
properties including soil pH, CEC, OC, and clay content;
adsorption system properties including solution pH, the
concentrations of background electrolytes, heavy metal
concentrations at equilibrium, solution temperature, and soil-
to-solution ratio; and the adsorption data of the heavy metals
on soil. Data in tables and texts were extracted by transcription,
while the data presented graphically were extracted manually
using PlotDigitizer (http://plotdigitizer.sourceforge.net/).
From the 150 studies, 4420 adsorption data points associated
with 1105 soil types and six heavy metals (i.e, Cd, Cr, Cu, Pb,
Ni, and Zn) were mined. There are 1092, 436, 764, 888, 512,
and 728 data points for Cd, Cr, Cu, Pb, Ni, and Zn,
respectively.

10 Machine Learning Models. To identify the best
model for the prediction of the adsorption of the six heavy
metals on soil, six traditional and four ensemble models were
selected and compared for the prediction performance. The
detailed information about these 10 machine learning models
can be found in Texts S1 and S2.

Model Development. The procedure of the model
development included: (1) unifying the units of each variable;
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Figure 1. Left: Data-splitting approach to minimizing data leakage and achieving good model performance. For each metal, each row represents
one group of data (i.e, one isotherm) containing several data points; these groups were split into a training data set (orange color) and a test data
set (gray color) in a ratio of 9:1. The training and test data sets for different metals (i.e.,, different geometrical shapes) were combined into the final
training and test data sets, respectively. Right: The 9-fold cross validation was conducted on the above training data set, during which the training
data set was further split into pre-training (blue color) and validation (green color) data sets in a ratio of 8:1.

(2) transforming the output adsorption data into the natural
logarithm form (Ln-adsorption); (3) splitting the data into
training and test sets in the ratio of 9:1; (4) tuning the
parameters of the 10 algorithms and finding the best
parameters for each; and (5) quantifying the model perform-
ance. To reduce the over-fitting risk,”> 9-fold cross validation
(details given in Text S3) was conducted on the training data
set, where the training set was further split into pre-training
and validation sets in the ratio of 8:1.* During the modeling,
the input data included (i) four descriptors for soil properties,
namely, pH of soil, CEC (cmol/kg), OC (%), and clay content
(%), which are commonly used soil properties in the selected
studies; (ii) three descriptors for the heavy metals, namely, the
first ionization energy (IE, kJ/mol), ionic radius (radius, A),
and hydrated ionic radius (hydra_radius, A),"’ which were
selected because they are among important properties of heavy
metals and did not correlate with each other (details given in
Text S4 and Table S2); and (iii) five descriptors for the
adsorption system, namely, the equilibrium concentration (C,,
mg/L), solution pH, ionic strength (I, mol/L), temperature
(T, °C), and soil-to-solution ratio (g/mL), which are key
factors in determining the adsorbed amounts of adsor-
bates.'>**™*® Note that the soil pH is the pH measured for
soils upon collection by mixing with water. The output was the
natural logarithm of the corresponding adsorbed heavy metal
amount on soil (Ln-mg/g).

When developing a machine learning model, data splitting is
a critical step; appropriate approaches are necessary to
minimize possible data leakage and achieve good model
performance. Data leakage is when information from outside
the training data set is used to train the model, which makes
the model learn irrelevant information and in turn invalidates
the prediction performance of the model.*” Some data points
in our study were extracted from the same adsorption
isotherms, which might lead to data leakage if these data
points are split into pre-training, validation, and test data
sets."” To minimize the potential data leakage, data points
from the same adsorption isotherm were integrated as one
group, and data splitting was conducted on these groups prior
to 9-fold cross validation (Figure 1). To achieve good model
performance, we then split the groups into pre-training,
validation, and test data sets (Figure 1).

The model parameters were tuned with 9-fold cross
validation, and the optimal configuration of the models was
determined using the grid search method (Text SS). The
performance of models with different configurations were
evaluated by comparing R* values and four regression loss
functions (details given in Text S6) on the validation data set,
and the optimal model configuration was the one with the
highest R* and the smallest loss function values on the
validation data set.

Model Selection. To measure the deviation of our model
prediction from the ground truth, we employed R* and four
regression loss functions to evaluate the performance of 10
models and selected the model with the highest R* and the
smallest loss function values as the final prediction model for
the entire data set—referred to as the combined model
hereafter. The loss functions used in our study included root-
mean-square error (rmse), mean absolute error (MAE), Huber
loss, and Log-cosh loss (details given in Text S6).

Identification of Key Parameters. To evaluate the
importance of different descriptors on the adsorption of
heavy metals on soils, the Shapley additive explanation
(SHAP) method (details given in Text S7) was employed to
calculate the Shapley values for each descriptor. The Shapley
value is a concept in the cooperative game theory, which fairly
assigns a unique distribution among the descriptors of a total
surplus (e.g, the predicted adsorption in this study) generated
by the coalition of all the descriptors.*® SHAP is an additive
feature attribution method based on the theoretically optimal
Shapley values to explain individual predictions.,49 where an
individual prediction refers to one data point (ie., the
adsorption of one heavy metal on one soil in a given solution
system). For each data point, each descriptor has one SHAP
value, which represents the effect of that descriptor on the
behavior of that data point. Then, all the SHAP values for each
descriptor are averaged as the mean absolute Shapley (MAS)
to quantify the overall impact of the descriptor; the larger the
MAS value, the more significant the descriptor is in influencing
the adsorption.

Independent Models for Each Metal. The final
combined model can be used to predict the soil adsorption
of the six heavy metals. However, the combined model might
not have good prediction performance for some metals.
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Figure 2. (a) Shapley additive explanations (SHAP) values for all the input descriptors with all the data points included, and (b) MAS values for all
the descriptors in the combined model. Ratio, IE, I, and T denote the soil-to-solution ratio, the first IE, ionic strength, and temperature,

respectively.

Considering significantly different adsorption mechanisms
among different heavy metals onto soils, independent models
for each metal were developed following the same approach.
During the independent model development, the three
descriptors for the heavy metals (ie, IE, radius, and
hydra_radius) and the soil/solution descriptors with less
influence on adsorption—based on the identified key
parameters for the combined model—were eliminated from
the model inputs. The model performance of independent
models and the combined model were compared to determine
the final prediction model for each heavy metal.

Note that we also developed 15 paired models by combining
two heavy metals into one model, that is, selecting two of the
six metals, which had 15 combinations. However, these paired
models had less satisfactory model performance than the six
metal-specific models so they are not further discussed.

Model Application—Global Spatial Distribution of
Soil Adsorption Capacities. The final prediction models for
each metal were used to predict the adsorption capacity of
heavy metals on soil on a global scale. The values of soil
properties (ie, pH, CEC, OC, and clay content) were
extracted from the Harmonized World Soil Database,*® a 30
arc-second raster database in the AcrGIS software with over
15,000 different soil mapping units that combine existing
regional and national updates of soil information worldwide.
The soil mapping units are grids that contain soil properties; a
total of over 15,000 grids are able to represent the soil
distribution around the world. To ensure that the predicted
adsorbed amounts can be compared for different soils, the
descriptors for the adsorption systems used in the final models
were set at the same values for all samples (details given in the
results and discussion section), and the solution pH was set at
the same value as the soil pH. In addition, as the predicted
adsorption capacity (mg/g) depends on the adsorption system,
the predicted values were rescaled to 0—1 (eq 1), representing
the relative adsorption capacities

Qi,output - Qmin
Q—ma_x - Q—min (1)

where Q; is the relative adsorption capacity of soil i; Q;outpuv
Qi and Qp (mg/g) are the predicted adsorption of soil i
and the minimum and the maximum values of all the
predictions, respectively. To evaluate the potential impact of
the selected descriptor values on the obtained Q; values, soil
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adsorption was predicted at several values for each descriptor
of the adsorption system (details given in the results and
discussion section). The Q, values at different descriptor values
were then compared using the cosine similarity metric to
evaluate their similarity (details given in Text S8). The higher
the similarity among the Q; values at different descriptor
values, the less of impact these descriptor values have. After
that, we obtained the global spatial distribution of the relative
adsorption capacities for the heavy metals.

To explore the overall adsorption capacities of heavy metals
in different countries, the mean relative adsorption capacity for
each heavy metal is defined using eq 2

Zinzl Q_i X Si
S @)

where Q.., is the mean relative adsorption capacity for a
country; Q; is the relative adsorption capacity of soil i in the
country; S; is the area of soil i; and S is the total area of the
country. With such mean values, comparative analysis was
conducted among countries to find those with the highest and
lowest adsorption capacities, respectively. This information is
significant to recognize the overall situation of countries on a
global scale. The current heavy metal pollution status of some
regions in Europe, Africa, and China was also analyzed and
compared with their corresponding modeled adsorption
capacities to evaluate the potential risks associated with these
heavy metals.

Q—mean =

Bl RESULTS AND DISCUSSION

Combined Model Development and Comparison.
After reviewing the 4420 data points extracted from 150
studies, we observed the ranges of pH (soil), CEC, OC, clay
content, C,, pH (solution), ionic strength, temperature (T),
soil-to-solution ratio, and adsorbed amount being 3.07—9.70,
0.100—117.0 cmol/kg, 0.0098—63.0%, 0.4—93.1%, 0.0002—
22979 mg/L, 2.0—-12.0, 0.001-0.50 mol/L, 15—-45 °C,
0.0002—-0.667 g/mL, and 0.001—-944.7 mg/g, respectively.

With the data-splitting approach mentioned above, the
model parameters were tuned to improve the model
performance and obtain the optimized models (Table S3).
According to the R? and four loss function values of the 10
models (Table S4), the optimized GBDT model achieved the
best performance and was thus selected for future discussion.
Comparison between the reported and predicted values
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indicated high reliability and robustness of the GBDT model,
with the R* of 0.780 and 0.778, rmse of 0.913 and 0.826, MAE
of 0.624 and 0.583, Huber loss of 0.0577 and 0.0536, and Log-
cosh loss of 0.2810 and 0.02471 for the validation and test data
sets, respectively. However, the GBDT model which was based
on the entire data set (referred to as the “combined” model
hereafter) had different prediction accuracy for different heavy
metals (Table SS), suggesting the necessity of developing
metal-specific prediction models for each metal (details given
in the independent models development section).

Influence of Input Parameters on the Adsorption. In
addition to improving the model performance, it is essential to
interpreting the feature importance to see whether it agrees
with the known mechanisms so that we can trust the model.
To achieve this, the SHAP method was used.

The SHAP values of the 12 input descriptors were obtained
for all the data points (Figure 2a). As shown, the horizontal
position of each point is based on its SHAP value, and the
color indicates the feature value of the descriptor—red and
blue represent large and small values of the descriptor,
respectively. For each descriptor, the SHAP values of all
samples varied within a certain range. Some samples with
similar feature values (i.e., similar colors) have different SHAP
values (i.e., different horizontal positions), demonstrating that
the contribution of a descriptor is not only determined by its
own feature value but also strongly influenced by other
descriptors. For CEC, C,, pH (soil), clay content, OC, radius,
pH (solution), and temperature, the points with low feature
values (in blue) are mainly on the left side, while the points
with high feature values (in red) are mainly on the right side,
suggesting positive correlations between these descriptors and
the predicted adsorption—higher feature values favor the
adsorption. On the contrary, the points with high values (in
red) for hydra radius, ratio, the first IE, or ionic strength
generally are distributed on the left side, showing their negative
correlations with the predicted adsorption. These results are
also consistent with the Pearson correlation coefficients
between each descriptor and the predicted adsorption (Table
S6).

The MAS value was then calculated for each input descriptor
based on all the data points to quantify the overall importance
of each descriptor, which was found to follow the order of
CEC > C, > pH (soil) > clay > OC > radius > hydra_radius >
ratio > pH (solution) > the first IE > ionic strength >
temperature (Figure 2b).

The above results showed that all the four soil properties—
CEC, pH, OC, and clay content—are among the most
important features in deciding the output (i.c., soil adsorption
of heavy metals). Soil CEC, a measure of the amount of total
exchangeable cations and the total negative surface charge of
soil,>" showed considerable influences on the predicted
adsorption according to the SHAP analysis (Figure 2). Indeed,
extensive studies have reported positive correlations between
CEC and the adsorption of heavy metals on soil.'”>' ™ Soil
pH is another important factor, in agreement with many
experimental studies.*>* At low pH, H' in soil can compete
strongly with metal ions for active adsorption sites leading to
attenuated adsorption.”>*® Soil pH also affects the charge
status of soil surfaces; higher soil pH usually leads to more
negatively charged sites and thus better adsorption. Clay
minerals tend to have small particle sizes with very high
specific surface areas and have the ability to sequester heavy
metals through complexation reactions and electrostatic

attraction.”” Soil OC offers functional groups to complex
with metal ions,® which can significantly enhance the
adsorption capacity. McBride et al. observed an increase in
the CEC and therefore the number of adsorption sites upon
the amendment of soils with OC.>” In addition, neutral metal
hydroxide species are more hydrophobic than charged metal
species and, hence, may prefer to be associated with
hydrophobic OC on soil surfaces.>”

For the effect of solution properties on adsorption, C, is the
most influential factor. The positive correlation between C,
and adsorption suggests that the adsorption of metals on soil
would increase with increasing C,.. This agrees with many
previous studies."*°>°" For example, after developing an ANN
model to predict the adsorption of metals onto soils and
conducting sensitivity analysis to recognize the relative
importance of each input descriptor, Anagu et al showed
that C, is the most important variable.”

The effect of solution pH on the adsorption of heavy metals
on soil surfaces can be understood in terms of two common
adsorption mechanisms:** specific inner-sphere complexation
between heavy metals and surface functional groups and non-
specific outer-sphere electrostatic interactions. Soil surfaces
usually contain multiple functional groups, with the most
common ones being silanol, carboxyl, carbonyl, phenolic, and
inorganic hydroxyl groups.”’ Some minerals (e.g, aluminosili-
cates) may also contain exchangeable ion-bearing sites in
addition to protons. These interactions are highly dependent
on the solution pH, as supported by the SHAP analysis results
which indicate that higher solution pH is beneficial for heavy
metal adsorption, in agreement with other experimental
studies.”® This is due to the fact that an increase in pH
generally increases the number of negatively charged surface
sites, which can facilitate the complexation and ion exchange
between the soil surface and heavy metals. Higher pH can also
lead to increased hydroxylation of the metal species, the
adsorption of which can effectively contribute to the overall
adsorption of some heavy metals, such as Pb and Cu.” In
addition, heavy metals tend to be in the form of free ions under
typical soil pH conditions (Figure S1), which substantially
inhibits their electrostatic interactions with positively charged
soil surfaces at lower pH. As different heavy metals have
different pK, values, their speciation changes respond differ-
ently to pH changes. For example, Cd*" and Cu®* dominate
the system when the pH is less than 10 and 6.7, respectively
(Figure S1). This may also change when other anions/ligands
(e.g, CI7) complex with them. Therefore, the effect of solution
pH on heavy metal adsorption on soil is largely dependent on
the types of soils, heavy metals, or co-existing anions.

Numerous studies have reported that the soil-to-solution
ratio can significantly influence soil adsorption of heavy metals,
with a higher soil-to-solution ratio leading to a decrease in the
adsorption, which is consistent with our SHAP analysis
result.*¥%>%* The higher the soil-to-solution ratio, the more
soil exists in the solution, resulting in less adsorption per unit
mass of soil (mg/g), despite the higher total adsorbed amount
(mg). However, this influence is subject to soil proper-
ties.””*>° Many studies demonstrated that the heavy metal
distribution coefficient (i.e., the ratio of metal adsorbed on soil
to that in solution at equilibrium) is less sensitive to the soil-to-
solution ratio at low soil pH, presumably because of the low
adsorption capacity at low pH.°* Besides, the soil-to-solution
ratio has an effect on the concentration of dissolved organic
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Figure 3. Performance of the (a) independent-Cd model; (b) independent-Cr model; (c) independent-Cu model; (d) independent-Pb model; (e)
independent-Ni model; and (f) independent-Zn model in predicting the soil adsorption of the respective metal (Ln-Predicted) for the
corresponding test data set (Ln-Real). For the model output, the soil adsorbed amount (mg/g) was transformed into natural logarithm (In-mg/g).

carbon, which may compete or complex with heavy metals to
influence the soil adsorption to heavy metals.>*

Solution ionic strength and solution temperature may not be
as important as C,, soil-to-solution ratio, or solution pH, but
they can also affect the adsorption. Studies have widely
reported that at certain pH, higher ionic strength is beneficial
for the adsorption, while at other pH conditions, this effect
may be reversed.”’~"® Such a pH may be near the pHzpc (pH
of zero point of charge) of the soil®” For example, at pH
greater than pHzpc, increasing ionic strength decreased Cd
adsorption regardless of the soil type because the cations
competed with Cd for the active adsorption sites.”' However,
at pH higher than a certain level, increasing ionic strength
increased the adsorption of As(V), and vice versa.”® This is
because the number of cations in the adsorption plane

14321

increases with increasing ionic strength, resulting in a less
negative potential at the adsorption plane and thus facilitating
the adsorption of As(V) by the soil.”® Therefore, the ionic
strength effect is largely dependent on the types of soils and
heavy metals. Solution temperature had a marginally positive
influence on soil adsorption according to our SHAP analysis.
Solution temperature influences soil porosity; increasing
temperature causes soil to swell, which results in the better
penetration of heavy metals into the pores.*> Moreover, soil
adsorption depends on the interactions between the heavy
metal and functional groups of organic matter in the soil. The
interactions tend to strength at higher solution temperature,
resulting in improved soil adsorption.*®

As for the heavy metal properties, a larger hydrated ionic
radius or radius of heavy metals is reported to decrease the

https://doi.org/10.1021/acs.est.1c02479
Environ. Sci. Technol. 2021, 55, 14316—14328


https://pubs.acs.org/doi/10.1021/acs.est.1c02479?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c02479?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c02479?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c02479?fig=fig3&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c02479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

Table 1. Descriptive Statistics of the Data Ranges of Four Soil Properties for the Six Model Data Sets and for Worldwide Soils

data range”

exceeding percentage ( %)

pH CEC oC clay content pH CEC oC clay content total®
Ccd 3.1-9.7 0.1-117.0 0.027—14.6 0.5-93.1 0.080 0.337 1.549 0.006 1.623
Cr 3.6—8.7 1.5-97.7 0.048—16.8 0.5—69.0 0.698 0.784 1.580 0.453 1.929
Cu 3.3-8.6 0.1-117.0 0.010—63.0 0.5-93.1 0.980 0.337 0.000 0.006 1.274
Pb 3.3-89 0.1-97.7 0.010—16.8 0.4—69.0 0.606 0.343 1.513 0.453 2.119
Ni 4.0-8.6 0.1-117.0 0.058—16.8 0.5—-82.0 1.298 0.337 1.598 0.037 2.860
Zn 3.3-8.7 0.1-117.0 0.034—16.8 0.5—70.0 0.606 0.337 1.528 0.416 2.548
World 3.0-10.6 1.0-134 0.01-47.2 1.0—-94.0

“The data ranges of the four soil properties in the collected data sets for the six heavy metals and for the soil samples in the Harmonized World Soil
Database (shown as “world”). “The data ranges of the four soil properties in the Harmonized World Soil Database (shown as “world”) were
compared with those of the individual collected data sets. Exceeding percentage (%) = X100%. “The percentage of soil mapping units whose values

for any of the soil properties exceed the data range of pH, CEC, OC, or clay content in the individual data sets.

adsorption capacity.””~”* This is because a large hydrated ionic
radius can reduce the binding strength of metal-OC or
metal—clay complexation, lower the charge density to reduce
the electrostatic interactions between the heavy metals and soil
surfaces, and/or limit the access of heavy metals to small pores.
A high first IE would reduce atom ionization, which is one of
the significant steps in adsorption through the formation of
metal—organic complexes.”® Therefore, a high first IE would
lead to low adsorption of heavy metals on soil. This is similar
to how pH affects the charges and speciation of heavy metals.”®

Independent Model Development. The combined
model for the six heavy metals had poor prediction accuracies
for some metals, especially for Cd and Cr (details given in the
combined model development and comparison section), so it
is necessary to develop independent models for each metal to
see whether better accuracy can be obtained. Based on the
feature importance of the 12 inputs on the soil adsorption from
the SHAP analysis (Figure 2), the two inputs with the least
importance (i.e., ionic strength and solution temperature) and
the three heavy metal properties (i.e., radius, hydra_radius, and
the first ionic IE) were eliminated; seven descriptors including
soil pH, CEC, OC, clay content, C,, solution pH, and soil-to-
solution ratio were employed as the final model inputs
(descriptive statistics given in Table S7). Considering the good
performance of ET, GBDT, RF, and XGBoost compared with
the other six learning methods (Table S4), these four
algorithms were used to develop independent models for
each metal, following the same procedure as in the combined
model development section. Based on the model performance
of the four models with ET, GBDT, RF, or XGBoost for each
metal (Table S8), the GBDT models had the best performance
and were thus selected as the final independent models for all
metals.

Compared with the combined model, the independent
models had better performance (Table S8 and Figure 3). This
is because the predictions of the combined model were a global
optimal solution rather than a local optimal solution, that is,
the combined model had an overall good prediction accuracy
but failed to obtain the most accurate predictions for some
metals. Besides, most global optimization methods cannot
guarantee a global minimum, especially in high-dimension
problems.”””® On the contrary, the six independent models
captured the relationship between several key features and the
soil adsorption for each metal, which could provide much more
confidence of learning for each metal.”” In addition, the
independent models had fewer model inputs because the
eliminated features were the least important, which was

beneficial for reducing the dimensionality and improving the
model performance.” It is also likely that the selected three
features for the heavy metals were not able to reflect their
different adsorption mechanisms, which is understandable
giving the complexity in their adsorption mechanisms.”>** As a
result, individual models for each metal achieved better
predictive performance. To validate these independent models,
the SHAP analysis was conducted, and the results agreed well
with the known mechanisms (details given in Text S9 and
Figure S2).

Global Spatial Distribution of Relative Adsorption
Capacities. Soils around the world are highly heterogeneous,
which can lead to substantial variations in heavy metal
adsorption.’ The adsorption capacity of heavy metals is a
significant factor in optimizing distribution of industries in
order to mitigate the impact of pollutants on the environ-
ment—for example, only discharging heavy metals into soils
with high adsorption capacities, or farming based on the
adsorption capacities of the soil and the tolerance of crops to
heavy metals. To evaluate the global spatial distribution of soil
adsorption capacities, the six independent models were used to
predict the soil adsorption capacities of the six metals. To
verify the applicability of the six models on the global scale,
comparative analysis was conducted to compare the data
ranges of the soil properties between the collected data sets
and worldwide soils. The results (Table 1) showed that the
worldwide soil properties had slightly wider data ranges than
those in the collected data sets. The distributions in the box
plots (Figure S3) indicated that the data ranges of the soil
properties used in the models fell within 5—95% of the data
ranges of the world soil properties. Moreover, in the
Harmonized World Soil Database®® (details given in the
model application—global spatial distribution of soil adsorp-
tion capacities section), only a small portion of the soil
mapping units had soil properties outside the data ranges of
the collected data sets (Table 1). The soil properties of 96.26%
of the mapping units were fully covered by the six collected
data sets. Besides, the sampling sites of the 150 cited studies
distributed all over the world, including more than 40
countries and six continents (except for Antarctica, details
given in Table S1), suggesting the global representativeness of
the data. Therefore, we believe that it is valid and reliable to
apply the six independent models to the prediction of the
global distributions of soil adsorption.

In the process of model applications, worldwide soil
properties were collected and then imported into the six
independent models for prediction. As mentioned in the model
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Figure 4. Global spatial distribution of the relative adsorption capacities of (a) Cd, (b) Cr, (c) Cu, (d) Pb, (e) Ni, and (f) Zn on worldwide soils.
Higher adsorption capacities generally mean safer environments, so we selected greener color for such soils. On the contrary, warmer color is used

for soils with lower adsorption capacities.

Table 2. Mean Values of pH, OC, CEC, and Clay Content for Soils with the Lowest or Highest Relative Adsorption

Capacities”
bottom 20% soil samples top 20% soil samples
metal pH (soil) OC (%) CEC (cmol/kg) clay (%) pH (soil) 0C (%) CEC (cmol/kg) clay (%)
Cd 5.97 1.19 9.64 11.41 6.92 2.84 25.93 35.56
Cr 5.57 0.87 16.06 2441 7.88 3.11 16.52 26.50
Cu 5.65 0.73 S5.74 10.45 7.85 1.04 17.95 27.62
Pb 6.45 0.68 9.54 15.79 7.18 3.72 27.28 34.69
Ni S5.77 0.66 5.36 15.89 7.06 2.39 22.54 32.90
Zn S.01 0.7 12.16 15.94 7.47 3.10 20.80 34.46

“The bottom 20% soil samples represent the soil samples with the lowest relative adsorption capacities, and the top 20% soil samples represent the

soil samples with the highest relative adsorption capacities.

application—global spatial distribution of soil adsorption
capacities section, the C, and soil-to-solution ratio were set
at the same values for all the input samples, and the solution
pH was set at the same value as the soil pH. When evaluating
the impact of the selected C, or soil-to-solution ratio values on
the model outputs, we observed high similarity among the
rescaled prediction values under different C, (including 0.1,
0.5, 1, 10, 20, SO, and 100 mg/L) or soil-to-solution ratio
values (including 0.01, 0.0S, 0.1, 0.2, 0.5, and 1 g/mL) (Tables
S9 and S10), suggesting that the selected C, or soil-to-solution
ratio levels had little effect on the model-predicted relative
adsorption capacities. We then fixed the C, (0.1 mg/L) and
soil-to-solution ratio (0.1 g/mL) and calculated the global
spatial distribution of the relative adsorption capacities of
worldwide soils from the six independent models.

As shown in Figure 4, the overall relative adsorption capacity
of Pb is slightly higher than that of Zn and much higher than
those of four other metals. Similarly, Elbana et al. quantified
the adsorption of five heavy metals (i.e, Cd, Cu, Ni, Pb, and
Zn) in 10 soils with batch adsorption experiments, and the

results indicated that Pb had the strongest adsorption in all the
soils.'® Indeed, Pb is often regarded as immobile for its high
sorption onto most soils.”’ In contrast, the overall relative
adsorption capacities of Cd, Cu, and Ni were lower than those
of the other metals, which agrees with Hou et al.’s report that
Cd had a comparatively low adsorption potential.** Moreover,
the soil relative adsorption capacity for Cr varied greatly on the
global scale compared with those of other heavy metals.
Overall, soils with low relative adsorption capacities are
primarily in the northern North America, the northern South
America and central Africa, while those in northern Africa and
southern Asia generally have much higher adsorption
capacities. To examine the differences between soils with low
and high relative adsorption capacities, all the soil samples
were sorted by their relative adsorption capacities. By
comparing the mean values of the four soil properties for the
bottom 20% soil samples (i.c., soils with the lowest relative
adsorption capacities) and for the top 20% soil samples (i.e.,
soils with the highest relative adsorption capacities), the results
showed that the soils with high adsorption capacities have
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higher pH, OC, CEC, and clay contents than the soils with low
adsorption capacities (Table 2), which is also consistent with
the SHAP analysis results above.

To further investigate the relative adsorption capacities of
soils in different countries, the mean relative adsorption
capacities of each metal were calculated for different countries
based on eq 2. As shown in Figure S4, the mean values
decreased in the order of Pb (0.673) > Zn (0.615) > Cr
(0.497) > Cu (0.467) > Cd (0.465) > Ni (0.448), which is
consistent with the trend in the worldwide soils without setting
country boundaries. The coefficient of variations—the ratio of
the standard deviation to the mean—decreased in the order of
Cr (0.340) > Ni (0.163) > Zn (0.153) > Cu (0.118) > Cd
(0.132) > Pb (0.122). These results showed that the mean
value of Pb maintained at the highest level but with the
smallest variation, demonstrating the highest relative adsorp-
tion capacity of Pb on the global scale with the smallest
variation from country to country. The coefficient of variation
of the soil relative adsorption capacity for Cr was substantially
higher than those of other metals. Overall, knowing the soil
relative adsorption capacities can help countries set their
national quality standards for heavy metals in soil (details given
in Text S10 and Figure SS).

Combined Look at Heavy Metal Pollution and Soil
Adsorption around the World. The environmental risks
associated with heavy metals are determined by both the heavy
metal contents and the adsorption capacities of the soil.”
Therefore, it is necessary to consider soil adsorption capacities
to quantify bioavailable heavy metals for accurate environ-
mental risk assessment.

About 50% of contaminated sites globally are contaminated
by heavy metals,”> and the majority of these sites are in
developed countries due to the extensive applications of heavy
metals in industrial processes.*”*> According to the European
Environmental Agency (EEA), there are about 250,000 heavy
metal-polluted sites in the EEA member countries, and
approximately 0.5 million sites in Europe are highly
contaminated.” However, the assessment was solely based
on the heavy metal levels in soil and ignored the soil
adsorption capacities, which may give inaccurate results. To
this end, both heavy metal contents and the adsorption
capacities of the soil should be considered. According to the
reported heavy metal contents in soils in Europe, the North-
eastern and Eastern-Central Europe suffer less contamination
from heavy metals, while most areas in Western-Europe and
the Mediterranean have concentrations exceeding the set
threshold for at least one heavy metal.*® Based on the spatial
distribution of the relative soil adsorption capacities in Europe
(Figure 4), soils in North-eastern and Eastern-Central Europe
have much higher adsorption capacities for all the heavy metals
than soils in Western-Europe. Therefore, the environmental
risks might be much lower in the former regions. As for the
Mediterranean, although this region has high concentrations of
soil heavy metals, the environmental risks might be lower than
expected due to the high adsorption capacities.

Cd, with much lower soil-relative adsorption capacities, is
undetectable in most soil samples in Europe,*® which indicates
that the overall environmental risks caused by Cd might be
low. However, located in Western-Europe, Ireland has the
highest mean Cd concentration.*® Considering the lower soil
adsorption than that in other regions in Europe, Cd may pose
higher environmental risks to this country. Lead, the metal
with the highest soil adsorption capacity, might pose low

environmental risks within a wide range of concentrations.
However, Toth et al. reported high percentages of soil samples
with relatively high concentrations of Pb in Central Italy,
France, Germany, and the UK, which could still of environ-
mental concern.”

Different from Europe, countries in Africa are generally less
developed and have less industrial processes involving heavy
metals.®® However, due to the lack of regulations as well as
inadequate industrial waste monitoring and management
capabilities, hazardous wastes are frequently released into the
environment without treatment, which may cause heavy metal
accumulation in soil and pose great environmental risks.*’
Yabe et al. reported that Cd and Pb are the most widespread
heavy metals in Africa overall.’’ Considering the estimated
relative soil adsorption capacities of the two metals in Africa
(Figure 4), Cd might cause higher environmental risks. In
northern Africa, the Egypt and Mediterranean coasts are
reportedly polluted by munici]gal and industrial wastes
associated with direct discharges.”’~* Considering the higher
soil adsorption capacities of the six metals than those in most
other regions in Africa, the environmental risks in northern
Africa might be lower than expected. Western Africa has heavy
metal pollution in soils mainly due to petroleum extraction.®’
The corrosion of pipelines and discharges from oil industries in
the Niger Delta region resulted in the pollution of crude oil, as
well as Pb, Cd, Cu, Zn, and Cr in soil.” According to our
prediction results, soils in western Africa have higher
adsorption capacities than that in other regions in Africa,
which indicated that the environmental risks may not be as
high as expected. Southern Africa, the largest producer of gold
in the world, has mining as the major source of heavy metal
pollution.®” Compared with other metals, Cu has an extremely
high level in soil due to the extensive Cu mining in Zambia.”’
Given the estimated low soil relative adsorption capacities of
Cu in this region, the corresponding environmental risks might
be at higher levels. Eastern Africa has many waste dump sites,
where a large amount of solid waste including industrial,
agricultural, domestic, and medical wastes, are indiscriminately
disposed.87 The contents of metals such as Pb, Cd, Cr, Cu, and
Zn in soil near the dump sites exceed the recommended limits,
which may pose high environmental risks even though the soil
adsorption capacities for these metals are high.

As the largest country in Asia, China has experienced rapid
social and economic development in recent years, which
inevitably results in heavy metal pollution at a large scale.”" It
is reported that more than 25% of total arable farmland in
China has been contaminated by heavy metals such as Cd, Cr,
Pb, and Zn.*® In addition, regional differences are significant
mainly due to variations in the industry and agriculture.”!
Overall, higher heavy metal concentrations are generally
distributed in the southeast hills, the Yunnan-Guizhou Plateau,
and the south part of the Yangtze River, where many mineral
resources are located generating large amounts of heavy metals
such as Cd, Cr, Pb, and Zn."' However, the environmental
risks in these regions may not be as high as expected due to the
high soil adsorption capacities (Figure 4). In contrast, the
concentrations of heavy metals in northern China are generally
low,”"”* while the environmental risk may be higher than
expected due to the low adsorption capacities of the soils.

Prediction for Equilibrium Concentrations of Heavy
Metals. Many studies have examined heavy metal pollution in
a single environmental medium (eg, soil, water, or air).’
However, these media are constantly interacting with each
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other; therefore, it is important to comprehensively evaluate
heavy metal pollution in integrated systems.”” For example,
Tian et al. evaluated the heavy metal pollution in sediments
and water in the coastal environments of both China and
South Korea and quantified the interactions of heavy metals in
the sediments and water.”” However, the study was performed
by collecting and analyzing both sediment and water samples,
which is time-consuming and labor-intensive. Using the
prediction models developed in this study, the heavy metal
concentrations in sediments (i.e., the adsorbed amounts) can
be predicted once the concentrations in the surrounding water
have been analyzed.

This process can also be reversed if a new model is
developed to predict the concentrations in water once the soil/
sediment samples have been analyzed. Toward this goal, using
the same 4420 data points but switching the adsorption
capacity and C, data as the model input and output,
respectively, we further developed 10 combined machine
learning models following the same procedure as before. The
R? and loss function values (Table S11) indicated that ET had
the best model performance among the 10 combined models,
with the R? of 0.735 and 0.780, rmse of 1.189 and 1.142, MAE
of 0.878 and 0.875, Huber loss of 0.0829 and 0.0826, and Log-
cosh loss of 0.4539 and 0.4417 for the validation data set and
test data set, respectively. In addition, six independent models
for the six heavy metals were developed with ET, which
achieved better predictive performance than the combined
model (Table S12). The good model performance suggested
high accuracy of the reversed ET models for predicting C,
based on adsorbed amounts.

Environmental Implications. This study developed 10
machine learning models to predict the heavy metal adsorption
on soils based on the properties of soils, solution systems, and
heavy metals using 4420 experimental data points collected
from 150 articles. After a comprehensive comparison based on
R? and four loss functions, GBDT was found to be the best
algorithm to produce accurate and chemically meaningful
predictions. Based on the interpretation of the SHAP and MAS
values, the importance of the involved features follows the
order of CEC > C, > pH (soil) > clay > OC > radius >
hydra_radius > ratio > pH (solution) > the first IE > ionic
strength > temperature. Six independent models with less
inputs for each metal were further developed with the GBDT
learning model and achieved better model performance than
the combined model. With the independent models, the global
distributions of soil relative adsorption capacities were
predicted for all the six heavy metals based on the reported
soil properties. The reversed models can also allow users to
predict heavy metal concentrations in water when the adsorbed
amount is known for a soil/sediment.

Compared with traditional risk assessment when only the
heavy metal content is considered, the introduction of
adsorption to heavy metal risk assessment is likely to provide
more accurate results. The global distribution of the relative
soil adsorption capacities obtained in this study is useful for
facility location planning. The identified key soil properties
influencing the adsorption capacities can help design soil
remediation approaches to minimize the risks associated with
heavy metals. The online predictor which is being developed in
the adsorption section of ChemAl at https://www.chemai.
aropha.com/ can make these models readily accessible for
users with little programing skills. The sample python code can
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provide a step-by-step guidance for those who want to run the
models with command-level control.

However, there are still some limitations in these models for
real-world applications. The output of the main models only
considers the adsorbed amounts based on the laboratory
experiments, while in reality, the heavy metal contents in soils
are likely influenced by other processes such as biological
uptake and redox transformation. Therefore, the levels of heavy
metals in soils/sediments may be underestimated using these
models. For the same reason, the reversed ET model may
overestimate the contents of heavy metals in water. To
overcome such drawbacks, future studies should focus on
collecting real-world data from water and soil/sediment
integrated systems such that the adsorption and many other
heavy metal transport/transformation processes are simulta-
neously considered.
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