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ABSTRACT: Environmental chemical reactions have been
frequently investigated for various purposes; however, it remains
challenging to accurately model either the reaction kinetics or
reaction pathways. Existing studies mostly model reaction kinetics
with traditional quantitative structure—activity relationships
(QSARs) or reaction pathways with reaction template methods;
however, these approaches generally require extensive feature
engineering or manual extraction of reaction templates. Recently,
machine learning (ML) has become a promising tool for modeling
chemical reactions as ML models can perform well and are
powerful in using diverse chemical representations. This Review
starts with a concise comparison of traditional and ML modeling
approaches for chemical reactions, followed by a brief discussion of
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the status of and future needs in modeling environmental organic reactions. Data collection and data cleaning techniques for reaction
kinetics and pathways are then discussed. We then summarize the advantages and limitations of commonly used chemical
representations and feature selection techniques. Next, we critically review general ML model evaluation and interpretation processes
and propose a three-step evaluation process, that is, comparisons with general metrics, baseline models, and existing models. Lastly,
we explore ML modeling approaches for small data sets, including transfer learning and active learning, which have been successfully
employed in many other fields, for future modeling of environmental chemical reactions.

1. INTRODUCTION

Chemical reactions of orgamc contaminants, such as advanced
oxidation processes (AOPS), redox reactlons, photolysis,”
photocatalytic reactions,” hydrolysis,” and biodegradation,’
have been widely observed in environmental transformation
and water treatment processes. '° To understand these
environmentally relevant chemical reactions, we need to
consider two important aspects: the reaction kinetics (rates
or rate constants) and the reaction products or pathways. The
reaction kinetics are commonly obtained by measuring changes
in the contaminant concentration over time; the reaction
pathways are often understood after identifying the major
reaction products and intermediates as well as establishing
linkages among different species on the basis of known
reaction rules. To examine either aspect, we have to rely on
many experiments or computational calculations.

Due to a large number of emerging organic pollutants,
various studies have attempted to build models to predict their
reaction rate constants or products. Traditional modeling
approaches mostly rely on quantitative structure—activity
relationships (QSARs) or known reaction rules to predict
rate constants or products for structurally similar compounds
under similar conditions."' For example, the group contribu-
tion method'*~"* or the molecular descriptor has been widely
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used to build predictive models for the rate constants of
hydroxyl radicals with organic contaminants;' *'® reaction rules
or templates extracted from the literature®'’ have been
employed to predict reaction pathways/products. However,
kinetic modeling is often limited to linear correlations and
requires extensive feature engineering—selecting the most
relevant variables (features) as the model input.'’ Template-
based product predictions heavily rely on handcrafted reaction
rules, which are often of questionable quality and can be hard
to scale up to handle new reactions and compounds.'® In
addition, these approaches cannot well consider the effects of
reaction conditions like temperature and pH,">~'°
known to strongly affect the kinetics and sometimes reaction
products,"” ™! so the corresponding models would inevitably
fail to perform well when extended to different reaction
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Table 1. Summary of ML Models on Environmentally Relevant Chemical Reactions

modeling type

learning task

reaction rates defluorination of per- and

polyfluoroalkyl substances

defluorination energy of per- and
polyfluoroalkyl compounds

input/algorithm
molecule descriptors (MDs)/gradient
boosting regression (GBR)

chemical bond descriptors/RF, LASSO, and R* = 0.934; RMSE = 1.22 37
neural network (NN)

performance ref.

R* = 0.944; RMSE = 0.114 27

organic pollutants with HCIO, O, ClO,, molecular fingerprints (MFs) and MD/NN RMSE = 2.04 (HCIO); 1.94 (05); 1.49 21

and SO, (ClO,); 0.7 (SO,-)
organic pollutants with -OH and SO,  MF/RF and NN R*=0.931/0.916 (-OH/SO,); RMSE = 28

0.639—0.823/0.767—0.824
organic pollutants with an Fe(II) MEF/RF RMSE = 0.43 34
complex
organic pollutants with -OH images/convolutional neural network RMSE = 0.123—0.151/0.284—0.339 (train/ 26
(CNN) test)

organic pollutants with Oy MD/support vector machine (SVM) R? = 0.862/0.782 (train/test) 38
organic pollutants with -OH MF/NN R* = 0.972/0.789 (train/test) 31

RMSE = 0.135/0.329
organic pollutants with -OH MD and quantum descriptors/NN R? = 0.848/0.879 (train/test) 39

RMSE = 0.254/0.356
reaction organic chemical reaction products graph/graphic neural network (GNN) accuracy = 85.6% 32
pat}cllwazs/ reaction product prediction SMILES/ Transformer accuracy = 90% 18

roducts

P organic reaction classification MF/NN accuracy = 86%/ 85.7% (train/test) 40

conditions. Also, the traditional QSAR approach mainly relies
on manual feature selection and likely requires feature
selection to be repeated whenever new data records are
added. Such a recursive process makes it hard for later studies
to conveniently build consistent models because different input
features may be selected each time. In addition to QSARs,
quantum chemical calculations have also been used to perform
kinetic modeling;”> however, these calculations generally
require the enumeration of all possible reaction pathways
and, hence, are challenging for complex environmentally
relevant reactions.”

Recently, chemical reaction modeling using machine
learning (ML) has gained much attention. Armed with more
data and advanced algorithms, ML models have significantly
outperformed traditional models and greatly simplified the
modeling process.y'_28 One important requirement for
building successful chemical models is to use proper
representations of different compounds, where ML is
particularly attractive as it can directly utilize a diverse range
of chemical representations, such as molecular descriptors,”
molecular ﬁngerp1‘ints,3’0’31 images,26 strings,18 and graphs,3’2
which considerably reduces the requirements for feature
engineering.”> For example, recent studies have successfully
predicted the reaction rate constants of hundreds of organic
compounds toward either common oxidants, including
hydroxyl radicals, sulfate radicals, HCIO, ClO,, and ozone,
or Fe(Il)-based reductants using molecular fingerprints and
different ML algorithms***"** or using chemical ima§es of
molecules and a convolutional neural network (CNN).*® For
reaction pathway modeling, ML has also helped address long-
lasting challenges such as exhaustive characterization of the
state information in the reactive molecular collision and
simulation of the complex reaction networks in combustion
processes.”” Also, ML can allow new modeling strategies such
as building unified models or multitask models, which may
achieve better prediction performance by building one “big”
model covering several reaction systems rather than one model
per system.”">* ML can also build and improve models in a
more sustainable way. For example, when building models
using chemical images or graphs,”® later studies can upgrade
existing models with new data by simply adding new chemical

images or graphs into the training data set and retraining the
models using the same training strategies and algorithms.

Despite these merits, existing models based on ML
algorithms have some limitations compared with traditional
ones, such as being more difficult to interpret and having
overfitting risks on small data sets. For example, neural
network models for rate constant predictions generally have
multiple layers with many neurons in each layer.”>” As
multiple matrix operations are performed on the input in each
layer, it is challenging to directly analyze the trained models. In
comparison, traditional models often use much simpler
algorithms such as multiple linear regression (MLR) and can
be conveniently interpreted. Besides, most existing studies on
environmentally related reaction modeling focus on reaction
kinetics, but only several studies have tried to model reaction
pathways (Table 1). For a given environmental chemical
transformation, the kinetics are certainly one of the most
important considerations, especially for pollutant elimination
purposes; however, the intermediates and final products would
be another priority because the transformation of certain
pollutants may produce more harmful products.*®

In comparison, promising results have been reported for
reaction modeling in organic chemistry, especially in modeling
reaction pathways in organic synthesis and retrosynthesis. For
example, studies have predicted reaction products using
forward neural networks (FNNs) together with reaction
templates,”’ graph neural networks with molecular graphs,*
or the “Transformer” model.'® Note that a Transformer treats
reaction prediction as a translation process from reactants to
products.”’ All these results have shown the promising
potential of applying ML to model reaction products. Also,
ML modeling in organic chemistry and environmental reaction
studies faces similar issues. For example, the Transformer had a
large number of parameters (tens of millions) and required a
massive amount of data to ensure valid model training and
validation,'® while many reaction databases have very limited
data records,*” often less than the most studied -OH-involved
reactions (<2000 records).”""*® To address data scarcity, ML
studies on organic reactions have developed sophisticated
strategies, such as transfer learning based on large general
reaction databases, selectively enlarging databases through
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Scheme 1. Flowchart of Building ML Models for Chemical Reactions”
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?(A) Selecting chemical representations from (1) group counting, (2) PaDEL descriptors, (3) SMILES, (4) molecular fingerprints, (5) molecular
graphs, and (6) molecular images for two example compounds: Bisphenol A (Ch1) and PCB-47 (Ch2). (B) The two most common ML modeling
tasks for chemical reactions: reaction kinetics (top) and reaction pathways (bottom). (C) Top: commonly used algorithms, ranging from simple
linear regressions (MLR, LASSO, Ridge, and ElasticNet) to advanced decision tree/support vector machines (Tree and SVM) and to more
sophisticated neural network algorithms (FNN, CNN, RNN, GNN, and Transformer). Bottom: the proposed three-step model evaluation in which
the performance of an ML model is compared to a general metric such as R% then baseline models, and lastly reported models (Note that it is
always helpful to conduct new experiments or calculations to further evaluate the model). The obtained ML model may need to be revised when it
underperforms on the basis of any of the three comparisons. (D) Two additional important tasks after model development: defining the

applicability domain (AD; top) and interpreting the model (bottom).

active learning, and taking advantage of unlabeled reactions.*”
Most of these techniques have yet to be employed in
environmental reaction modeling. Given the similar challenges
faced by both environmental reactions and organic reactions, it
is very likely that environmental reaction modeling would
greatly benefit from these techniques. Nevertheless, we have
noticed that environmental reactions are often much more
complex and may include multiple elementary reactions, with
byproducts in each step. These complex reactions may be
much harder to collect and build ML models for than some
single-step organic synthesis reactions.

As there are recent reviews about ML alzgorithms43 and
general practices for building ML models,” this Review
focuses on chemical reaction modeling. Specifically, we discuss
the related challenges and future needs and provide possible
solutions to these challenges/needs. In addition to model
development itself, adequate data collection to build large,
representative data sets is an important part of building robust,
widely applicable predictive models. To this end, a few new
studies and practices that are helpful for collecting reaction-
related data are also discussed in this Review. Overall, the
topics covered in this Review include data collection and data
cleaning (Section 2); chemical representations, feature
selection, and learning tasks (Section 3); model development,
evaluation, and model interpretation (Section 4); and
techniques for modeling small data sets (Section 5).

2. DATA COLLECTION AND DATA CLEANING

Literature data for reaction kinetics can either be directly
collected by selecting reported rate constant values or be
derived after fitting reaction kinetic curves from the literature,
during which proper quality control is needed to ensure the
data quality by, for example, setting well-defined criteria such
as high R? values of the kinetic data, having reasonable control
experiments, etc.’’ However, reaction pathways are much
harder to collect because they are commonly reported in the
form of images or complex chemical image networks, which

include images of reactants, images of products, condition
parameters, and arrows showing the directions of the reactions.
Currently, most reaction pathway data sets in the environ-
mental field rely on manual curation, which requires
researchers to have expert knowledge about various reactions,
is labor intensive, and is prone to mistakes. Researchers have to
take a snapshot of each chemical in a reaction, draw their
chemical structures, convert the structures to the SMILES, and
assign these chemicals as reactants, products, or solvents
according to the reaction network. This complex data
collection process makes it hard to scale up to a large number
of reactions. The rapid development of ML in computer vision
has provided some very useful tools. For example, one study
built a convolutional neural network model to automatically
convert chemical images to SMILES, so one can conveniently
obtain the SMILES of all involved chemicals by uploading a
snapshot of the desired reaction.** With more such tools being
developed, reaction data collection can be greatly facilitated. In
addition, crowdsourcing, which has been widely used for data
labeling or collection in computer vision and natural language
processing, can be another way to collect reaction data. Future
studies may take advantage of such an interesting tool;
however, existing crowdsourcing platforms mostly focus on
simple labeling tasks and may lead to significantly higher costs
if one aims to label and collect complex chemical reactions.
Another important process during data preparation is
cleaning of the raw data. The major reason for data cleaning
and preprocessing is that most raw data sets include some
redundant or even erroneous information, such as multiple
records representing the same reaction or wrong SMILES for
reactants or products in the collected raw data, so these
records cannot contribute to the final model or even pose
negative impacts on the model performance. A manual
inspection of the data records is generally acceptable when
the data set is not too large but is inefficient or even impossible
when the sample size is large. For redundant information, it is
preferable to canonicalize the SMILES (converting different
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SMILES of one molecule from various sources into one single
unique SMILES) of both reactants and products or use some
unique identifier (e.g, CID from PubChem) for the involved
chemicals because existing reactions may be misclassified as
new ones if different SMILES from different sources are used
for the same chemicals. To address these challenges, studies
have proposed ML models to detect wrong information for
organic reactions. For example, one recent study has built a
Transformer model to clean the chemical reaction database
and achieved well-improved results after removing incorrect
reaction records.”” Besides, commonly used chemical packages
like Rdkit have built-in reaction-related modules (e.g., https://
www.rdkit.org/docs/source/rdkit. Chem.rdChemReactions.
html).>* One can use such a module to validate the SMILES of
the reactants and products within one reaction as a
prescreening measure.

3. CHEMICAL REPRESENTATIONS, FEATURE
SELECTION, AND LEARNING TASKS

Commonly used molecular descriptors (Scheme 1A) are
calculated by packages like Dragon,*®*’ PaDEL,*”**
RDKit,””** and semiquantum MOPAC*”*° and have been
widely used in both traditional and ML modeling as the
chemical representation. However, ML algorithms have greatly
expanded the ogptions of chemical representations to molecular
ﬁngerprints,‘w"1 molecular graphs,32 strings,18 and even
images.33 Among these new chemical representations,
molecular fingerprints contain 1s and Os to indicate the
presence or absence of certain functional groups or structures;
molecular graphs use edges and nodes to represent atoms and
bonds in molecules, while images use pixels to represent
molecules (e.g., short lines to represent bonds and characters/
colored balls to represent atoms).”® Such versatile chemical
representations have greatly reduced the requirement for input
feature engineering, as one does not need to provide explicit
reasoning for which features to select. This strengthens the
ability of ML to model the underlying relationships beyond
simple linear relationships. Besides, ML provides new
opportunities to further improve the model performance,
such as data augmentation. For example, molecular images
used in CNN can be augmented by flipping or rotating images;
the SMILES for “Transformer” can be augmented by
randomization (using different SMILESs to represent one
compound). Both methods have made ML models more
robust for the test compounds.””>"

Despite these advantages, each chemical representation has
its limitations. The molecular fingerprint is straightforward in
showing specific structures but may lack 2D and 3D chemical
information. Molecular descriptors include some 2D/3D
features but may not always be available due to copyrights
or missing values for certain compounds. Also, some packages
are not open-sourced, so how certain descriptors are calculated
is unknown. A molecular graph can easily describe atoms or
bonds in a molecule but cannot effectively indicate the bond
length or some 3D structural features of the compound, which
would inevitably lead to the loss of chemical information.
Similarly, 2D images could not deliver 3D chemical
information, and models based on images can be much harder
to interpret than those using numbers or molecular graphs.>
In addition to the specific limitations of each representation, all
the above chemical representations suffer a similar problem;
that is, they do not directly provide learning task-specific
chemical information, such as the reaction mechanisms.

Moreover, the more abstract the chemical representation,
such as chemical images, the more complex is the algorithm to
successfully train ML models, and more data will be required
accordingly. Overall, there is no best chemical representation
for all modeling tasks, and it would be better to evaluate the
performance of different chemical representations on the same
training/validation data set before the optimal one is
selected.”* In addition to difficulties in choosing representa-
tions for major chemicals in reactions, another challenge is to
find suitable representations for substances that are involved in
the reaction but cannot be easily quantified or described, such
as radicals in advanced oxidation processes. One way to solve
this is to use a categorical feature to represent different
radicals.”!

After the chemical representation has been selected, it may
be helpful to reduce the number of input features, especially
when a large number of molecular descriptors are used.
Although ML algorithms are good at extracting useful
information from high-dimensional inputs, a simpler input is
still attractive because it can not only increase the efliciency of
model training but also simplify the interpretation and
application of the models. Commonly used feature selection
approaches include using domain knowledge, using correlation
coeflicients either between input features and outputs or
among input features,” conducting principal component
analysis (PCA),"*” etc. The autoencoder,”® which includes
one encoder and one decoder with the output of the decoder
being the same as the input of the encoder, can also help
reduce the number of input features but still keep the most
essential chemical information. For example, one research
study used an autoencoder with the “SMILES” as the input to
model chemical properties for the ZINC and PM9 data sets
and achieved satisfactory results.>

Currently, chemical reaction modeling focuses on two major
learning tasks, reaction kinetics and reaction pathways
(Scheme 1B). A recent trend in modeling reaction kinetics is
that more and more reactants are modeled. For example, early
ML modeling may only focus on one reactive species like OH-
or ozone,”””” while recent studies expand the modeling work
to additional reactive species such as HCIO, ClO,, and
SO,-.>"** Meanwhile, earlier studies paid little attention to
reaction conditions such as temperature and pH and treating
compounds as the only variables; however, recent studies have
tried to include these conditional parameters into the
models.”’ As for the reaction pathway modeling, existing
modeling work most often used the template-based method,”
while no studies have ever tried ML for environmental
reactions. However, ML modeling has achieved very promising
results in modeling organic chemical reactions (Table 1). For
example, NN models have been used to classify reaction types;
Transformer and GNN models have been used to predict
reaction products and retrosynthesis design.'***** Although
environmental reactions and organic chemical reactions belong
to two different disciplines, there are more similarities than
differences from shared reaction mechanisms to commonly
encountered small data set issues. The results achieved in
organic reaction modeling can provide valuable insights for
future environmental reaction modeling, especially regarding
reaction pathways/products.
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4. ML MODEL DEVELOPMENT, EVALUATION, AND
INTERPRETATION

The rapid development in ML has provided diverse algorithms
from basic linear correlations to more complex decision tree-
based algorithms/support vector machines and to more
sophisticated neural network algorithms. No single algorithm
can work well for all learning tasks. Before a certain algorithm
is selected, a systematic comparison among different
algorithms is necessary. Readers are referred to recent
comprehensive reviews for comparisons among different
algorithms.*>** After an ML algorithm is selected and models
are trained, several aspects deserve attention during the model
evaluation. The first is whether the model performance is
acceptable or not. For example, when using R* or Q* as the
evaluation metrics for regression models, R* > 0.6 and Q* > 0.5
may be deemed acceptable.”’ The range/unit of the output
may affect the interpretation of the obtained root-mean-square
errors (RMSEs) when using RMSEs as the evaluation metric.
For example, an RMSE of 0.28 log unit would be quite
satisfactory when the adsorption coefficient (log Kj) on
granular activated carbons ranged from —0.7 to 5> but would
be less satisfactory if the output values ranged from 0 to 1. A
general measure is to use multiple metrics to evaluate trained
models.

The second aspect is how a new model’s performance
compares with that of baseline models.”® Although chemical
reaction models often achieve promising performance, they are
not necessarily better than the corresponding baseline
models.”> With the prediction for the optimal reaction
conditions taken as an example, one study found that the
best ML model was not significantly better than naive
selections that are only based on the frequency of conditions
employed in the literature (e.g, selecting the most often used
experimental conditions as the model prediction).” Also,
complex models are less favorable when they only marginally
outperform the corresponding simpler baseline models. As for
baseline models, simple algorithms such as the K-nearest
neighbor (KNN) would be a viable choice.””*> KNN models
only use the average of K nearest neighbors in the training data
set as the prediction for a test sample, so they generally do not
involve complex computations and are highly efficient and easy
to interpret. After the comparison with baseline models, the
ML models should be further compared with traditional
models or existing ML models, if available. During the
comparison, it may not always be appropriate to directly
compare the R*/Q* or RSME values because different models
are generally built on different data sets, which could
considerably affect the model performance. With different
data sets, other types of comparison between the new and
existing models would be more appropriate, such as evaluating
the model performance on external data sets that are not
covered by either model®” or evaluating the performance of the
new model on the data sets used by the existing models or vice
versa. Besides, it is preferable to perform new experiments or
calculations to validate the newly built models. Those new
results can also be added to the existing data set to further
improve the model performance (details will be discussed in
Section 5).66

In addition, it is important to point out that existing
chemical reaction data sets (<2000 compounds) are generally
small and biased compared to environmental chemical data
sets, such as EU’s Registration, Evaluation, Authorization, and

Restriction of Compounds (REACH; >22 000 compounds)®’
and EPA’s Distributed Structure-Searchable Toxicity
(DSSTox; ~850 000, version 2, 2019).68 Only a small portion
of the concerned compounds have been investigated due to
either experimental/computational limitations or biased
selections of compounds in the literature, for example, only
studying the most frequently investigated or “popular”
compounds.”” These small chemical data sets may not be
able to fully represent all compounds of concern; thus, the
model evaluation results that rely solely on the existing data
sets may not be applicable to compounds beyond the training
data sets.”” For example, a data set for modeling atmospheric
reaction rate constants with -OH mostly covers small volatile
compounds.”’ The corresponding ML model or applicability
domain (AD) will be inevitably limited when applied to
compounds from much larger data sets such as REACH or
DSSTox. Additional experiments and simulations could help
address the above limitations by adding more diverse test
samples.

Even when an ML model performs well on the overall test
data set, the prediction may not always be satisfactory for
individual test compounds, so it becomes very important to
evaluate whether an ML model is applicable for certain new
test compounds. In traditional QSAR modeling, the applic-
ability domain (AD) is generally used to define the application
scope of QSAR models. Commonly used AD methods include
leverage, convex hull, distance-based metrics, etc.”’ However,
these methods are not always suitable for ML models, for
example, when the data sets have non-normal distribution”” or
the models use non-numeric representations (e.g., images or
graphs) as the input. Another common approach in ML is to
use chemical similarity to define the AD.’"”> However, the
obtained AD may lack model specificity; ML models for
different learning tasks may have the same AD because the
same chemical representation is used. Yet, different modeling
tasks often rely on different types of chemical similarities. For
example, the octanol—water partition coefficient (logP) is
closely related to the overall chemical similarity because every
part of a molecule would affect its logP, whereas the hydrogen-
bonding ability depends on the similarity of certain functional
groups, such as N/O-containing groups. The application of the
same AD to these two different learning tasks means that the
AD is not accurate/specific enough. A few studies have tried to
build a separate ML model to predict the AD of another
model;”* however, the AD of the newly obtained model
remains unknown. In addition, our recent study has
successfully used the estimated values of widely available
properties, such as logP, to conveniently calibrate estimates for
properties that are less available but related, such as solute
descriptors.®®

Model interpretation is another important aspect of ML
modeling. It can help understand how a prediction is obtained
and whether the models follow the ground truth. Generally,
there are two different approaches for model interpretation.
The first is to analyze the input features (“feature-wise”, right
panel in Scheme 1), for example, the feature importance
derived directly from algorithms like the random forest or
indirectly by an external method like SHAP.”>”* This approach
can provide information about the overall importance of each
input feature or the contribution of each feature toward
predictions. For example, the interpretation of the model for
reaction rate constants with HO- successfully identified the
reactive sites and correctly classified functional groups that
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positively or negatively contribute to the reactivity.” The
second approach focuses on exploring the contribution of each
training sample to certain predictions (“case-wise”) using the
influence function method.”® Using this approach, our recent
study developed ML models for predicting solute descriptors
and found that around five functionally similar training
compounds were critical to obtain good predictions for a
test compound.®®
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RMSE = 2.04 (HCIO); 1.94

5. ML MODELING OF SMALL DATA SETS: TRANSFER
LEARNING AND ACTIVE LEARNING

ML modeling has only achieved limited success in modeling
environmental reaction pathways/products, possibly due to the
relatively small data sets and complex reaction pathways. A
small data set will make it difficult to train complex ML models
and could easily lead to overfitting. Also, a small data set may
lack chemical diversity and thus restrict the applicability of the
built models. One way to address this is to limit the complexity
of ML models, for example, reducing the depth and width of
FNN models. In addition, ML studies in other fields especially
in organic reactions could provide attractive solutions, such as
using transfer learning (Table 2) or active learning approaches
(Table 3), as detailed below.

Transfer learning is generally achieved by first training a
complex ML model on a large data set and then fine-tuning it
on the desired small data set.”””® There are two ways to
employ transfer learning. First, we can use the entire or some
components of an ML model from another learning task. For
example, using chemical images as the input, we can employ
image classification models such as ResNet”” (Scheme 2),
which is trained on natural object images,*’ to build models for
reaction rate constants.”® Second, we can add information
from other models into the input of the desired model, for
example, usin§ the predictions by other models as an input for
a new model.”" The first approach has been widely adopted in
various disciplines, while the second one is emerging and often
requires the target task to be similar to the model to be
transferred.

Despite the reported successes, we should be careful in
choosing models to be transferred when applying transfer
learning. For example, ResNet is trained on images of natural
objects (Scheme 2A); however, chemical images usually
contain short “lines” and characters to represent chemical
structures. Differences between these two types of images
would inevitably affect the generalization ability of the
corresponding models for different learning tasks. One solution
is to utilize models from closely related learning tasks, for
instance, using the recent ChemNet (Scheme 2A,B)** rather
than ResNet, because ChemNet employs chemical images or
“SMILES” as the inputs and easily calculated chemical
descriptors as the outputs. In a chemical transfer learning
scenario, one can replace the last layer of the ChemNet with a
new output layer and fine-tune new model parameters based
on the target data sets. Alternatively, a recent reaction
modeling study proposed another transfer learning approach
to transfer more reaction-related knowledge using the entire
reaction as the input. In this approach,”” a graph neural
network autoencoder (GNNAE) was first trained on a large,
unlabeled reaction database. On the basis of the encoder part
of the autoencoder, new models were then fine-tuned on the
desired small database that contained labeled reactions. The
final model considerably outperformed models that were based
only on the small data set itself using traditional template-
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Table 2. Summary of Recent ML Modeling Using Transfer Learning
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Table 3. ML Modeling Using Active Learning

learning task algorithm results ref
virtual screening of ligands RF + NN accuracy of 89.3—94.8% for the top-50 000 ligands in a 100 M member library after 83
testing only 2.4% of the candidate ligands
optimization of chemical reaction conditions RF used 0.03—0.04% of search space to finish searching; results competitive with those of 84
human experts
optimization of redox potential and solubility in RF + DFT  500-fold acceleration over a random search 85
candidate redox couples
prediction of chemical/material properties NN 10% of the data can outperform traditional models that are based on all the data 86

Scheme 2. Workflow of Transfer Learning Based on “ResNet” or “ChemNet” Using Images as the Input”

/B Restet ) /B Resnet
| 1 1  emememememem—m——————
iﬂ 0 ﬂ E - Image
:
' | i i L2
: . | | Train models | %
:
' jj “.a | on large | o \
i ' datasets ! .
' .
‘ E e
! ! o
| H '@
1 \ P20
i i B
i ' 2
: : 2 |
1 19
| 1 | !
: | \‘ '\
\_  ChemNet J S

ChemNet \\\

,'/ Descriptors \‘.
| Classification = from RDKit |
1 1
i i
1 1

on small

H

1

1

1

1

1

1

1

:

1

i | Fine-tune
1

|

i | datasets
1
1
1
1
1
1
1
1

“(A) Example input images of the ResNet (top) and ChemNet (bottom). (B) Model architecture for ResNet and ChemNet. The only difference
between these two is the output layers: image classification for ResNet (top left) and prediction of RDKit calculated descriptors for ChemNet (top
right). (C) Transfer learning: the output layer of ResNet or ChemNet is replaced with a new learning task; the CNN layers first remain unchanged
and then are fine-tuned (retraining parameters of the new model on the target data set) on the input images.

based models.*” The GNNAE approach may be favorable for
environmental reaction modeling because GNNAE models can
be conveniently trained using only unlabeled data (there are
many more unlabeled reactions than labeled ones), which
means that many more reaction data sets can be used for
transfer learning. Also, as the inputs for GNNAE are the entire
reactions rather than individual chemicals in the reactions, as
used by other transfer learning models, more reaction
information can be transferred for later modeling. As a result,
major improvements might be achieved after transfer learning
following the GNNAE approach.

Another useful approach is called active or adaptive learning,
which essentially builds an iteration loop between ML
modeling and the experiments.*”***" Briefly, a base model is
first developed on a small data set and then employed to make
predictions for a subset of compounds from the target chemical
space. Experiments are then performed to validate these
predictions and to increase the training sample size to upgrade
the model. Such a modeling—prediction—validation loop is
often repeated several times. By such looping, active learning
can quickly explore a large chemical space using a small
amount of experimental data plus additional carefully designed
experiments. For example, active learning has enabled
researchers to identify optimal conditions for certain reactions
more efficiently than human experts,”* to achieve a 500-fold
acceleration over a random search for optimal redox couples
for redox flow batteries,®* and to use a tiny amount of data but
still outperform traditional methods for chemical/material
property predictions (Table 3).°° A recent study also reported
a new extension of the active learning method, where rather
than retraining the entire model in each iteration round, a new
submodel was trained on a small number of new experimental
data and then was added to the revised active learning model.

When this is repeated multiple times, the final model can
better utilize the small number of new data to significantly
improve the model performance (e.g, about 50% more
reactions were identified).*

The key question in active learning is how to effectively
select new targets for further experiments. One study selected
new targets from the chemical space where the ML models
tend to make poor predictions (when compared to those of an
ensemble of ML models).*® Another study partitioned the
chemical space into several subspaces and selected exper-
imental targets from each subspace.”® Chemical similarity can
also be utilized as the criterion for the selection of experimental
targets, such as always selecting compounds that are the least
similar to the training data in each iteration cycle, because ML
models often rely on similar training compounds to make
predictions so the least similar compounds tend to have the
largest prediction errors.”> Compounds that are the least
similar to the training compounds are typically located outside
or on the fringe of the model’s AD. Improved predictions for
these compounds also suggest well-improved predictions for
compounds within but near the boundary of the chemical
space. When algorithms that can provide uncertainty measure-
ments, such as the Gaussian Process and Bayesian neural
networks, are used for modeling, the uncertainty associated
with new predictions can also be used as a metric to select new
experimental targets; that is, the predictions with higher
uncertainty values will be the priority when performing the
next experiments. For example, one recent study has used a
Gaussian process to significantly enlarge the ADs of the models
for three different chemical modeling tasks.”’ When com-
pounds that are susceptible to poor predictions are the focus,
the AD of ML models can be quickly expanded through active
learning.
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6. SUMMARY AND OUTLOOK

The application of ML has shed new light on chemical reaction
modeling by achieving satisfactory modeling performance and
expanding the input chemical representations from numerical
values to strings, graphs, images, etc. However, the perform-
ance of new ML models needs to be carefully evaluated using
diverse evaluation metrics and by comparing them with
existing and baseline models. In addition, there are still many
unresolved problems in modeling environmentally related
reactions, such as reaction product modeling and data scarcity
issues. Existing ML modeling for organic reactions may
provide helpful insights for the first issue, and techniques
such as transfer learning that have been extensively used in
other fields may help address the second one. Meanwhile, it is
always desirable to conduct carefully selected experiments/
computations to enlarge the training data sets so that robust
ML models can be built. As active learning and the robotic
experiment platform technique”" have shown promising results
in effectively expanding experimental data sets in many other
fields, environmental reaction modeling might greatly benefit
from either or a combination of these two techniques in
enlarging small data sets. It should be noted that the modeling
process goes beyond the model development stage. Additional
efforts should be made to check the validity of model
predictions, including interpreting the model, which can help
examine whether the built model violates the ground truth
such as the related reaction mechanisms, obtaining the
applicability domain, and using alternative measures such as
the surrogate metric, which uses the accuracy in estimating
widely available properties, like the octanol—water partition
coeficient, to calibrate estimates for less available but related
properties like Abraham descriptors.”” If possible, the selection
of a few new predictions to perform experiments would be an
ideal measure to further evaluate the model.

It is also worth noting that ML and traditional models are
not mutually exclusive. In fact, reaction modeling can benefit
from a careful combination of both approaches. For example,
one study incorporated a tree-based algorithm into the
reaction profile modeling and achieved much faster modeling
without sacrificing too much modeling accuracy.”” A coupled
model was successfully developed by combining FNN with the
traditional adsorbed solution theory to satisfactorily predict
bisolute adsorption on polymeric resins using only single-
solute data.” Neural network models can also be used to
generate the potential energy surface for molecular dynamics
simulations, which can greatly facilitate the simulation without
sacrificing much accuracy.”* Such a coupling strategy could
help achieve a balance between model accuracy/efficiency and
interpretability.

The foundation of successful ML models is high-quality
data. The current reaction databases only cover a small portion
of the reported studies, so mining more reaction records from
the literature should be a focus before building better models
in future studies. Given more and more data being reported, it
becomes critical to develop tools to facilitate or automate the
data collection process. Meanwhile, many models have been
developed/reported for different types of reactions. Although
researchers have tried to share the built models in various
ways, including source code sharing in GitHub, deployment as
online prediction tools, or compilation as a standalone tool, it
remains challenging for others to repeat or apply these models.
Meanwhile, many studies do not share their data sets, trained

models, or source codes, making it hard for others to follow
these studies. A few publicly available data sets such as a recent
PFAS function screen database’ and the OQMD data set
(containing quantum calculation results for over one million
materials)” provide good examples of how to share and
maintain databases. Specifically, the former database built one
easily accessible framework for sharing and exploring the
database of PFAS (perfluoroalkyl or polyfluoroalkyl sub-
stances), while the latter uses the widely used SQL (structural
query language) database to store and manage data records.
These tools are particularly helpful for handling large and ever-
increasing sample sizes. Future studies may adopt these
approaches or continue to develop new measures for reaction
database sharing and managing, and a well-accepted protocol/
method for data set/model sharing will greatly facilitate future
modeling efforts.
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B GLOSSARY

Applicability Domain: The possible applicable scope of a
model.

Chemical Representation: Chemical formula, structures,
symbols, images, or graphs used to represent chemicals.
Data Augmentation: Increasing the amount of data by
adding slightly modified copies of existing data or newly
synthesized data on the basis of existing data.

Dimension Reduction: Transforming data from a high-
dimensional space to a low-dimensional space so that the
data can be easily visualized or used for model training,
Autoencoder: A type of model that can learn essential
information from unlabeled data.
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Feature: An individual property to represent part of the
input.

Feature Engineering: Selecting and transforming the most
relevant variables, features, from raw data when conducting
modeling on the basis of domain knowledge.

Influence Function: A method to identify the contribution
of a training sample to a model prediction.

Overfitting: Models follow errors, or noise, in the training
data set too closely and may, therefore, fail to perform well
on the test data set.

SHAP: SHapley Additive exPlanations, a method to
quantify the importance of input features in individual
predictions on the basis of the Shapley values.

SMILES: Simplified molecular-input line-entry system.
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