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Abstract Carbon slurries as “flowable electrodes” have been used recently in a few electrochemical systems, e.g.,
electrochemical flow capacitors (EFCs) for energy storage and flow-electrode capacitive deionization (FCDI) for
water treatment. These slurries typically have three parts: activated carbon particles, a conductive additive such as
carbon black, and an aqueous electrolyte solution. Previously, a particle-based computational model that employs
Stokesian dynamics was developed to describe the particle motion and interaction, while simultaneously solving for
the charge transfer inside an electrical network of moving particles. In this work, we develop a unified expression
of the dynamically varying electrical network. Furthermore, we incorporate a group of smaller particles as the
conductive additive, whose effect on the charge transfer of the slurry is studied. The results suggest that at lower
concentrations, the small particles may enhance charge transfer by filling interstitial spaces and bridging contacts
of large particles; however, at higher concentrations, the benefits are not as clear since direct contacts of the large
particles play the dominant role in charge transfer.

Keywords Bimodal distribution - Charge model - Electrochemical flow capacitors - Energy storage - Flow-electrode
capacitive deionization - Flowable electrodes - Stokesian dynamics

1 Introduction

Activated carbon particles submerged in an aqueous electrolyte to form a slurry have shown to be useful as “flowable
electrodes” in a few emerging electrochemical systems, such as the electrochemical flow capacitor (EFC) [1-3]
and flow-electrode capacitive deionization (FCDI) [3-5]. These systems employ the supercapacitive properties of
activated carbon for high power density charging and discharging. Furthermore, the carbon slurry is flowable to
allow for continuous operation of the charging-discharging cycle. For example, during the charging cycle in an
EFC, the uncharged slurry is pumped through the EFC cell, which is a channel that has been divided in half by a
non-conducting permeable membrane separator that allows ionic exchange between the two chambers (see Fig. 1a).
The ions in the electrolyte are attracted to the vicinity of the available pores of the activated carbon particles to form
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Fig. 1 a A diagram showing the double channel through which the carbon-electrolyte slurry flows. b A computational model of the
carbon spheres coupling the hydrodynamic interactions and the charge transfer from the wall (stationary electrode) to the particles,
where color bar represents the charge level

electric double layers (EDL) within the pores. At the same time, electrons are passed from a stationary electrode
to the carbon particles via electrode—particle and particle—particle interactions. To discharge the device, the slurry
is pumped back through the device where the ions are released and electrons are supplied to a load in a reversed
path through the particle—particle and electrode—particle interactions. Therefore, these interactions are crucial to
the effectiveness of the EFC.

In the past, the slurry electrode has been modeled as a lumped-parameter resistor-capacitor (RC) circuit for the
charging cell [2] and also a single-phase, continuum-based material to describe advection-diffusion of the ions and
inhomogeneous distribution of the electrical charges stored in the slurry [6,7]. While these models provide helpful
insight at the system level, they do not provide information into how the particle interactions affect the charging
capabilities of the slurry. At the particle level, the dynamic behavior of the clusters essentially leads to a random and
topology-varying network for electronic percolation through the slurry. In a recent study by Karzar-Jeddi et al. [8],
a particle-based computational model was developed to address the coupling between the particle motion and the
charge transfer. Specifically, in this study, Stokesian dynamics (SD) was used to simulate the microhydrodynamics
of the particles’ clustering behavior, and a generalized electrical circuit at the particle level was developed to solve
the charge transfer among the particles. This generalized circuit model incorporates the effects of the dynamic
circuit configuration due to random motion of the particles with respect to one another, and it simulates charging
and discharging of individual particles during interaction. Although there has been significant modeling work in
the area of electrochemical batteries that has to do with particle-based porous materials, e.g., single-particle models
and many-particle models [9, 10], the computational model in Karzar-Jeddi et al. [8] (also considered in the present
study) is distinct from those respective electrode models in that the flowable electrode involves hydrodynamic
interactions and re-configuration of moving particles. For simplification, each particle in Karzar-Jeddi et al. [8] is
reduced to a simple resistor-capacitor circuit without considering the detailed diffusion process inside the particle.
That study also investigated the statistics of the micro-structures for a monodisperse slurry. Furthermore, the model
was validated against the macroscopic charging behavior of the moving slurry measured in the EFC experiment.

In this work, we will extend the particle-level circuit model in that study [8] and develop a unified expression
of its charging dynamics. Furthermore, we will use this model to study the effect of the conductive additive (here
carbon black is considered) by incorporating the additive as smaller particles than the charge-carrying activated
carbon. Their motion and interaction with the activated carbon particles will be solved simultaneously in a Stokesian
dynamics simulation. The formulation of the theoretical model, simulation setup, results and brief discussions are
described in the following sections.
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2 Theoretical formulations

In the slurry electrode, the channel sizes are typically small (only a few millimeters) [1,2], and the Reynolds number
is low. The flow can thus be treated as Stokes flow. We use Stokesian dynamics [11,12] to calculate the particle
mobility. In a recent work [13], the authors have derived the theoretical formulation for the mobility of polydisperse
spherical particles near a flat no-slip wall, and the formulation was implemented in a Stokesian dynamics code
that will be used here for the bimodal configuration. We consider a single slice of the slurry electrode under shear
condition as shown in Fig. 1b. The particles are assumed to be rigid and spherical. The larger particles represent
activated carbon beads in several previous studies of the EFC [1-3], and the smaller particles represent the carbon
black as the conductive additive, which does not have a porous structure and thus has little capacitance. We first
briefly summarize the Stokesian dynamics model and will then describe the charge transport model.

It is important to note that in this study, we only consider the hydrodynamic interactions of the particles. A
previous work from our group [8] discussed the scaling of other possible interactions such as gravity, Brownian
motion, van der Waals, and double layer forces. Most of those forces can be neglected for the particle size between
1 and 20 pm. For example, the gravitational force is less than 10% of the drag force in this size range. The Brownian
motion is two orders of magnitude lower than the flow velocity even for particles of 1 wm diameter moving at 0.1
mm/s. The Debye length is on order of nm and is even smaller than the particle surface roughness, and thus, the
double layer forces can be ignored as well. Depending on the separation gap, the scaling analysis suggests there
might be a van der Waals effect present. Future experimental study on direct observation of the particle interactions
will likely provide complementary information how significant the van der Waals force is in the flowable electrode.

2.1 Hydrodynamic interactions

For a specific configuration of N particles in the Stokes flow limit, its hydrodynamics is governed by a linear
equation system. That is, the translational velocity U, the rotational velocity €2, and the strain rate E, are linearly
proportional to the external force F, the external torque L, and the stresslet S on the particle through the grand
mobility matrix M. The equation reads [14,15]
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where superscripts « and 8 are particle labels, U, Q°°, and E*° are respectively the far-field velocity, vorticity,
and strain rate imposed at the center of the particle, and the matrix blocks such as Myr are the 3 x 3 mobility tensors.
Each mobility tensor expresses the relationship between one of U, 2, E, and one of F, L, S as indicated by the its
subscripts. The superscripts indicate either self mobility, e.g., o for the effect of particle o on itself, or mutual
mobility, e.g., «f, for the effect of particle 8 on particle «. For free space (i.e., unbounded) flow, the mobility tensors
in Eq. (1) can be found in many texts, e.g., Refs. [14,16]. In the presence of a no-slip wall, the mobility tensors
have been derived in a previous work [13] for particles of different sizes. For example, the mobility tensor M Zﬁp
which represents the effect on the velocity of particle « due to the force on particle S, is expressed by
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where G is Green’s function for Stokes flow [17], a, and ag are the particle radii. The radii were set to be uniform
in the previous Stokesian dynamics simulation of the flowable electrode [8]. In the present study, a, and ag could
be different depending on whether the pair in the bimodal distribution consists of large—large, large—small, or
small-small particles.

In the Stokesian dynamics, the hydrodynamic lubrication force between two particles in close proximity, or
between one particle and the no-slip wall, is included into the resistance matrix, R, which is the inverse of the
mobility matrix, M,

R = (M) 4 Rop + Ry — (R + R, 3)

where M is the far-field mobility matrix, R, and Rop are respectively the pairwise particle-wall and particle-
particle lubrication resistance tensors [18]. These resistance tensors have been derived previously [19-23], and R¢°
and R3p are respectively the pairwise far-field particle-wall and particle-particle resistance tensors that have been
subtracted in Eq. (3) to avoid double counting.

It has been shown previously that the lubrication film can break down so there could be solid—solid contact
interactions of both normal and tangential (frictional) forms [24,25]. However, due to a lack of experimental data
available for the rough surface of the present particles, we limit ourselves to the hydrodynamic lubrication and
define contact and the electrical resistance loosely based on the gap distance.

In the present study, we consider a simple shear flow with an average linear velocity profile of shear rate y.
The flow is assumed to be periodic in the streamwise (x) direction. Thus, two additional periodic boxes around the
simulation box with identical configuration of the particles are added on the left and right sides of the main box.
The main simulation box has a dimension of L and H in the x- and z-directions. The effect of the particles in the
periodic boxes has been included in the Stokesian dynamics formulation. To generate the flow, we place a row of
the particles at the top of the box, whose translational velocity is equal to y H and has zero rotational velocity.

2.2 A unified circuit model for particle charging

Consider a cluster of carbon particles in the slurry, some of which have pair contact with one another and some have
contact with the stationary electrode. The electrical network can be approximated by the generalized circuit model
shown in Fig. 2. In this circuit model, each carbon sphere is represented by a capacitor with capacitance C;. The
resistance due to ion diffusion into the pores is represented by a ground-connecting resistor R,;. Any pair of two
capacitors are connected by a resistor R;; that represents the contact resistance between the two carbon spheres.
When the two particles are separated, R;; becomes infinite, and when the two particles are deemed in contact, R;;
takes a finite value that will be set later. In a similar way, the particle-wall contact is modeled as a resistor, Ro;,
whose resistance becomes infinite when the two are separated.

To solve the generalized circuit in Fig. 2, we define the nodal potential before the capacitor, ¢;, and the potential
at the node between the capacitor C; and the ground-connecting resistor R.;, ¢.;. The potential of the stationary
electrode is ¢g. The electric current through the ith capacitor is /;. Then, the charging dynamics of the capacitor
can be written as

P e W
dt R,;

The current I; is also a combination of the current feeds from all other capacitors and from the wall-charging
potential, i.e.,

_ P _Po—bi b ¢
R.i Ro; Ry Ry;

I 5
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Fig. 2 a Schematic of carbon particles in contact with wall and with one another, and b generalized resistor-capacitor network model
used to analyze the charging and discharging of particles

In order to solve the entire circuit, we define the potential across the capacitor, q~5,-, so that

i = ¢i — Pei- (6)
Note that ¢; and ¢,; are not continuous in time and may experience jumps as the capacitor is disconnected or
reconnected with other capacitors. Defining differential potential ¢;, which is continuous in time, will thus facilitate
the solution process.

Substituting Egs. (6) into (5), we have

¢_ei.zz¢j_¢i+z¢ejR_“¢ei’ F=0,1,2, ..., j#i, %)
j 13

j ) J

where the charging potential ¢ has been included in the formulation by assuming that ¢ = 0 and thus ¢y = .
Rearranging the equation, we obtain the linear equation system for ¢,;,

1 1 Pej ¢j — i . .
— > |t L=, J=0,1,2,..., j #i. )
Rei  “~ Rij —~ Rij ~  Rij
J J J
Equation (4) is re-written as
d‘i’i Qei
ek 9
Lt R.i )
After replacing ¢.; and ¢.; in Egs. (7) using (9), we obtain the equation system for charging of the capacitors,
1 1 dgpi R,;C; dg; ¢; — i . .
—+) 5 |RiCi— =) ————=) ——F—, =0,1,2,..., : 10
Rei ; Rl] et dr Z Rl] dr Z le J J #l ( )

To include j = 0 in this index notation, we simply assume that Cp = 0. Note that we use the potential difference
<]3[, instead of ¢;, as the solution variable since the potential difference and the charge of each particle, Q; = C; qSi s
are continuous in time.

Equation (10) can be re-written in the matrix form as below

dé -

(R -B) ReC~> = B + dobo (11)
where
b= [0 R. — Re2 C— Cy
_|® | Rr= _
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In practice, the intermediate potential ¢, can be first solved from Eq. (8) at a given time step; then, the potential
difference ¢ can be advanced directly from Eq. (9).

When the slurry is flowing, the instantaneous configuration of the particle network evolves with time. Particle—
particle and particle—wall contacts may be broken when the contact pair are separated. However, the unified equation
system in Eq. (11) still holds, as one only needs to modify the instantaneous resistance of the resistors. In practice,
we set a nominal resistance value for zero gap distance and use a function to express its dependence on the gap
distance between the two particles as well as their radii. The resistance is set to infinity when the gap distance
reaches 10% of the particle radius for an equal-size pair as described in a previous study [8]. This threshold is based
on the assumption of the surface roughness, €, at 5% of the particle radius and a contact model that calculates a
radius of the contact area, r., and the contact resistance R;;. This resistance model is somewhat arbitrary as there
is no direct experimental data available. On the other hand, the effect of the gap threshold, and thus the contact
resistance, can be grouped along with the capacitance C; into the charging timescale, . = (R;; + R.;)C;, whose
significance has been discussed previously [8]. In this study, we will keep the charging time scale constant and will
focus on the effect of bimodal distribution.

Equations (8) and (9) can be solved iteratively for any given time step. The particles are initially uncharged
before entering the domain, i.e., Q; = ¢~i = 0. In the current study, we use the Crank—Nicholson implicit scheme
to discretize the time derivatives and employ the Gauss—Seidel method to iterate the system at a given time step
until convergence is reached with a maximum allowable error at 1076 of the constant wall potential ¢. Here a
Gauss—Siedel model was chosen for simplicity, as the solution converges fairly quickly. For reference, a typical
timestep takes less than 0.5 seconds for 50 particles (25 large and 25 small), and the charge model calculations take
only a small fraction of this time. For the bimodal distribution, the small particles are treated in the same way as the
large particles, except that their capacitance is very small and they get nearly instantly charged if they are in contact
with a charged surface of a large particle or the wall. Therefore, the primary function of the small particles in the
circuit is to provide additional connecting branches, which corresponds to the function of the conductive additive
in the actual slurry electrode.

The hydrodynamic simulation has been verified against previous Stokesian dynamics work and also against a
boundary-element method (BEM) [26], as explained in Karzar-Jeddi et al. [13]. For further verification, we have
performed more BEM simulations to test our code at the current particle size ratio (see Appendix A). The new
charging model is also verified using a Matlab® code for configurations of only a few particles.

3 Simulation setup

The simulation domain as shown in Fig. 3 represents a slice of the charging domain of an EFC. In this study, we use
N, = 25 uniform activated carbon particles for fast simulations, which are assumed to have the same capacitance
C, and ground resistance R,. N} is the number of carbon black particles to be varied in the study. The size of the
domain is adjusted according to the specified volume concentration of the particles, ¢. The flow is driven by the top
row particles shown in Fig. 3 whose translation is specified. The imposed shear rate, y, provides a time scale for the
hydrodynamics, which is defined as 7, = y~!. The time scale of particle charging is defined as 7, = (Rc + R.)C,
where R, is the contact resistance of two large particles when the gap is zero. In this problem, we set 75, /7, = 1 and
will focus on the effect of adding different numbers of carbon black particles at different volume concentrations.
The effect of the time-scale ratio, tj /7., was considered in the previous study [8].
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Fig.3 An example of the
initial positions of the
particles in the simulation.
Here the red spheres are the
N, = 25 activated carbon
particles, and the blue
spheres are the N = 50
carbon black particles.
(Color figure online)

The small particles are randomly added to the void space between the large particles. We set the radius of the
small particles to be 1/5th of the radius of the large particles using the structure size ranges established by the
International Carbon Black Association User Guide for carbon black aggregates. According to this reference, while
individual carbon black particles are between 10 and 300 nm, distinct carbon black particles do not typically exist
due to bonding between the particles to form aggregates. These aggregates can be sized between 85 and 500 nm.
Given that the activated carbon particles are on the order of 1 to 10 pm for flowable electrodes, the ratio of 1/5th
for the radii was deemed appropriate. We consider three volume concentrations that are defined using the volume
of the large particles, ¢ = 0.10, 0.15, and 0.20. For each volume concentration, three cases are simulated: no carbon
black (N = 0), Np = 25, and N, = 50.

To start off the simulation, the initial positions of the particles are determined by randomly placing them inside
of the simulation domain, while ensuring there is no overlap. An example is shown in Fig. 3 for ¢ = 0.15 with 25
large activated carbon particles and 50 carbon black particles. The new position of the particles are integrated using
a 4th-order Runge—Kutta scheme. At each integration step, the linear equation system of the Stokesian dynamics
is solved to obtain the velocity of the particles. The time step size is kept at At = 0.005y ! to avoid particle
overlapping during interaction. Each simulation is run for at least 20,000 steps. The first 2000 steps are not included
when calculating the average charge contours, so that the flow is able to fully develop from the initial condition.

Since the carbon black does not have a large interior porous surface like activated carbon, the capacitance of the
small particles is set to be much smaller as compared with the large particles. In addition, the nominal resistance
between a large particle and a small particle is 2.5 times of that between two large particles.

4 Results and discussions

For each volume concentration and particle composition, we run five simulations and average the electrical charge
contours in the domain. During each individual simulation, the particles at the top of the computational domain pass
through the domain over 100 times. This allows many particle interactions to happen and for the statistics to converge,
so the five simulations are averaged only to further smooth the results. More simulations do not significantly change
the results, as shown by a comparison in Appendix A. In order to compute the contours, the computational box is
divided into 15x7 smaller blocks centered at (x;, y;). The charge level of each block is computed by averaging the
charge carried by the particles located within the block:
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Fig.4 Time-averaged charge contour, {Q(x, y)), from simulations with a volume concentration of ¢ = 0.10 (a—c), ¢ = 0.15 (d-f), and
¢ =0.20 (g—i). From left to right, the number of carbon black particles is N, = 0, N, = 25, N, = 50
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where charge (Q(x;, y;)) is the time-averaged electrical charge at the block (x;, y;) and is normalized by the
average charge of the entire domain, 7 is the total computation time, n(¢) is number of large particles within the
block at time ¢, "¢y is the potential difference of particle & at time ¢, Cy is the particle’s capacitance, Ax; and Ay;
are the sizes of the block, n is the average number density of large particles in computational domain, and Cy is the
capacitance of the large particles. The small particles carry negligible amount of charge and thus are not included
in this calculation.

The results from the simulations are presented in Fig. 4, where the charge contour plots have been organized
from lowest to highest volume concentration from the top to the bottom. The left column, Fig. 4a, d, and g are
simulations that do not contain any carbon black particles (N, = 0), Fig. 4b, e, and h are simulations that contain
Njp = 25 carbon black particles, and Fig. 4c, f, and i are simulations that contain N, = 50 carbon black particles.
It should be noted that the results near the wall in the contours are difficult to converge, as the particles there are
slow moving while being fully charged. Therefore, the average charge in these areas may appear to be better with
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Fig. 5 a A snapshot of the particles from the simulation with ¢ = 0.10 and N, = 50. b, ¢ Two snapshots of the particles from the
simulation with ¢ = 0.20 and N}, = 50. The red lines trace a charging cluster, and the yellow circles surround the carbon black particles
that allow more activated carbon particles to join the cluster. (Color figure online)

fewer carbon black particles; however, the contours should be viewed as a whole in order to see how the carbon
black particles affect the charge of the entire simulation domain.

These plots display two trends that occur when the carbon black particles are included in the simulation domain.
Firstly, at the two low concentration levels, ¢ = 0.10 and 0.15, the charge from the stationary electrode at the
bottom is able to penetrate deeper into the bulk slurry as the number of the carbon black particles is increased from
zero to 25 and then to 50. This result suggests that the carbon black is playing a positive role in the charge transfer.
Secondly, at the higher volume concentration of ¢ = 0.20, the charge depth inside the bulk slurry is only slightly
improved with the increase of the carbon black. Therefore, the result suggests that the bonus effects of adding the
smaller particles are reduced at the higher concentration.

To further investigate the effect of the carbon black particles, we examined qualitatively the cluster behavior
within the moving slurry by inspecting the particle motion from the animations. As seen from a snapshot of the
particles in Fig. 5a, where the concentration is ¢ = 0.10, the small particles may get into the interstitial space
between the large particles, thus serving as conducting bridges and increasing the chances of charge transfer among
the large particles. Without the small particles, some of the particles in the cluster shown in the figure would not
otherwise receive the charge. Under this effect, higher numbers of carbon black particles intensify the charge transfer
among the large particles and create an overall better charging network. This result is consistent with the expectation
that the carbon black particles are meant to increase the number of particle interactions, while the activated carbon
particles play the dominant role in charge storage.

On the other hand, if the volume concentration is high, the carbon black particles can still serve as connecting
bridges as seen in Fig. 5b. However, more often they become located away from large particles, rather than being
trapped between them. This effect is shown in Fig. 5c. In this case, the carbon black particles cannot produce
helpful results to the charging network if there is limited interstitial space for the particles to enter. Instead, the
particle interactions are dominated by those among the large particles themselves, and adding small particles may
not necessarily lead to significant improvement.

Adding small particles to the slurry may affect the apparent viscosity of the slurry, an effect that is not discussed
in this work but has been studied in the context of rheology of colloids and suspensions [27-30]. In the light of
those studies, a further investigation for the slurry electrode could look into the effect of the carbon black on the
characteristics of the particle clusters, e.g., cluster size and pair distribution [16], or the optimal fraction of the
carbon black that may balance the charge transfer performance and the viscosity of the slurry. However, the current
work is meant to introduce the mathematical framework and to illustrate its use in an exploratory study. We defer
those topics to a future study.
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5 Conclusion and further remarks

We have developed a computational model that couples the particle hydrodynamics and the electrical charge transfer
inside a flowable slurry electrode. A unified expression for the topology-varying electrical network consisting of
the moving carbon particles has been created to address the charge transfer among the particles. Here we expand
upon previous work, where only the activated carbon particles were simulated [8], and incorporate the effect of
the conducting additive by modeling a bimodal distribution of particles. Thus, the current work provides a more
detailed picture into how the hydrodynamic interactions among the particles may effectively distribute the charge
from the stationary electrode. Our results suggest that at lower concentrations, the additive particles lead to significant
improvement on the charge transfer across the slurry flow; at higher concentrations, however, particle interactions
could be dominated by direct contact of the large particles, and thus, the small particles may have a limited effect
on the charge transfer.

The present simulations are meant to provide a small-window view into the fundamental mechanisms at work
inside the flowable electrodes. We envision that this type of model will be used in the future to study the coupling
between the hydrodynamics and charge transfer process in such electrodes. We are currently designing single-
particle experiments to study a small number of particles and directly observe their interactions. The present
computational model will provide a complementary tool for those experimental studies. Furthermore, we aim to
scale up the simulation by incorporating parallel computing and algorithm optimization to simulate many more
particles, possibly incorporating size distributions, so that the simulations will find more practical use in the design
of the EFC and similar systems.

Acknowledgements This work was supported by an NSF Grant (CBET-1921320). Prof. Kelsey B. Hatzell’s help in this work is
gratefully acknowledged.

Appendix A

In addition to the verification in Karzar-Jeddi et al. [13], we have done further tests of the SD code against the BEM
calculations using a code previously developed by Prof. Pozrikidis [26]. In this test, the particle ratio a;/a; =5 is
used to match the bimodal particle interactions in the present SD simulation. A total of 1294 triangular elements with
7 Gaussian integration points (6 integration points for singular elements) were used in the BEM for each particle.

(a) (b)
0.04 ¢ 1.6
BEM Particle 1 o BEM Particle 1
o BEM Particle 2 o o BEM Particle 2
0.02 | * SD Particle 1 14 o ° B * SD Particle 1
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3 s 8e =
L\LN - s 8 8 ° . L\Lx . . \
gc 0 [} e o gc 1.2+ .
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Fig. 6 Test of the present SD code against a BEM code [26]. Normalized wall-normal (a) and inline (b) particle velocities plotted
against the normalized gap distance. The size ratio for the particles is a2 /a; = 5, and the distance from the center of the particles to the
wall is h = 3ay
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¢ =0.10 (a—c), ¢ = 0.15 (d-f), and ¢ = 0.20 (g-i)

Figure 6a displays the normalized wall-normal particle velocity versus the normalized gap distance between the two
particles, while Fig. 6b displays the inline particle velocity. The calculations from the SD simulation we employ
agree well with the BEM method, especially at a gap distance greater than ay. At lower gaps, the inline velocity
shows more pronounced differences for the smaller particle, but the error is still within 15%. Similar to Karzar-
Jeddi et al. [13], further mesh refinement in the BEM shows that this discrepancy persists. Thus, the lubrication
approximation in the Stokesian dynamics likely has caused the error.

In order to verify the statistical results, a comparison of three, five, and eight simulations was performed on the
Np, =25 case for the three volume concentrations. This comparison, as seen in Fig. 7, shows that the charge contours
are consistent among these calculations and thus ensures that the number of simulations used to provide the data
for Fig. 4 is sufficient.
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