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Abstract

Accurate camera pose estimation or global camera re-
localization is a core component in Structure-from-Motion
(SfM) and SLAM systems. Given pair-wise relative cam-
era poses, pose-graph optimization (PGO) involves solving
for an optimized set of globally-consistent absolute camera
poses. In this work, we propose a novel PGO scheme fu-
eled by graph neural networks (GNN), namely PoGO-Net,
to conduct the absolute camera pose regression leverag-
ing multiple rotation averaging (MRA). Specifically, PoGO-
Net takes a noisy view-graph as the input, where the nodes
and edges are designed to encode the geometric constraints
and local graph consistency. Besides, we address the out-
lier edge removal by exploiting an implicit edge-dropping
scheme where the noisy or corrupted edges are effectively
filtered out with parameterized networks. Furthermore, we
introduce a joint loss function embedding MRA formulation
such that the robust inference is capable of achieving real-
time performances even for large-scale scenes. Our pro-
posed network is trained end-to-end on public benchmarks,
outperforming state-of-the-art approaches in extensive ex-
periments that demonstrate the efficiency and robustness of
our proposed network.

1. Introduction

Visual localization or camera pose regression lies in the
heart of many computer vision and robotics tasks, with
applications including robot navigation, autonomous driv-
ing and augmented reality. Camera pose estimation is
the process of self-determining the orientation and posi-
tion with the aid of sequential information via image re-
trieval. As the key component in standard camera pose
estimation pipelines, pose-graph optimization (PGO) in-
volves iterative estimations of pair-wise camera relative
poses and the progressive optimization of the noisy global
view-graph. In most of the conventional Structure-from-
Motion (SfM) [65, 69] and SLAM [47] systems, PGO is
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conducted as numerically solving a high-dimensional non-
convex approximation problem by leveraging feature-frame
correspondences and often yields high computational costs.
Despite the proliferation of research addressing the back-
end optimization in SfM systems, many challenges remain
open. Firstly, canonical solvers carry a complexity of cu-
bic order with regards to the input size and gradually slows
down [67], forfeiting the real-time requirements. Secondly,
measurements of pair-wise relative camera poses are often
noisy, yielding corrupted and erroneous edges in the view-
graph and henceforth impairing the performances of both
conventional and learning-based methods [52]. Thirdly, di-
rect regressions of structures and motions with deep learn-
ing networks are prone to overfitting [55, 62], hindering the
robustness and generality in real-world applications.
Inspired by the recent successes of Graph Neural Net-
works (GNNs) [53], we herein propose a novel GNN-based
PGO scheme to address all the aforementioned issues with
a concrete network, namely, PoGO-Net. Specifically, we
encode the edge messages with pair-wise geometric con-
straints on the edges of the view-graph, aggregated with the
local consistency information. The absolute camera orien-
tations are encoded as node features, updated according to
its connected edges and neighboring nodes. As we consider
the input as a corrupted graph with erroneous and redun-
dant edges, we address the graph de-noising issue by ex-
ploiting topological parameterized network layers to con-
duct the ‘edge dropping’, i.e., the outlier edges are removed
according to the local graph consistency, resulting a sparser
yet preciser sub-graph of the input view-graph. We re-
define the message aggregation and design the loss func-
tion based on multiple rotation averaging (MRA) algorithm,
with the efficient message passing scheme our proposed net-
work is capable of processing in real-time speed even with
large-scale datasets. Moreover, our network bares an end-
to-end differentiable structure where the parameters of the
de-noising layers and the GNN layers are jointly optimized
during training.
Our contributions can be summarized as follows:
* We propose a novel PGO formulation fueled with a
GNN to conduct the absolute camera pose regression
by exploiting the MRA scheme.



* We design the de-noise layers to address the outlier
edge removal in PGO. Our proposed de-noise layers
are iteratively executed with the GNN layers, implic-
itly exploiting the ‘edge-dropping’ scheme.

* We train PoOGO-Net end-to-end and the network can be
easily integrated with both conventional and learning-
based SfM systems”. Extensive experiments on public
benchmarks demonstrates the accuracy, efficiency and
robustness of our proposed network.

2. Related Work

Conventional PGO approaches. Given a 3D scene,
pairwise relative camera poses are initially estimated by
applying robust methods [21, 50] to reject the matched
feature correspondence outliers and thus fits the essen-
tial/fundamental matrix [2], followed by the view-graph re-
finement, i.e., PGO iterations. In standard PGO pipelines
of conventional SfM approaches [19, 35, 47, 56], solv-
ing the high-dimensional non-convex optimization prob-
lem [27, 58] mostly involves adopting iterative non-linear
numerical solvers [!, 45, 48, 64] to minimize the repro-
jection errors with jointly optimizing the 3D scene points,
camera orientations and translations [42, 58, 68], namely,
bundle adjustment (BA).

As a sub-problem in BA, rotation averaging (RA) [26,

] devotes to solve for the camera orientations given a set
of noisy measurements of the relative camera rotations and
can be categorized into single rotation averaging [28, 38,

| and multiple rotation averaging (MRA) [4, 7, 20, 44].
The former delivers the optimal solution of one rotation
given several estimates whereas the latter can be consid-
ered as a synchronization problem with the goal to recover
unknown vertex labellings in the graph given noisy edge
labellings [3]. In recent years, we have witnessed a surge
of research interests on MRA [9-12, 46, 63, 66]. Though
MRA is still a computationally difficult problem to solve
due to its non-convexity of the rotation group space, it
shows the advantages by admitting a lower dimension and
complexity compared with conventional BA approaches
based on point-frame correspondences [11, 17, 66], en-
abling faster and lighter solvers. However, the predominant
challenge of MRA is associated with the outlier edges, i.e.,
the accuracy and robustness of MRA is tremendously im-
paired without the knowledge of the noise distribution over
the edges in the view-graph [4, 12, 44, 65]. There have
been plentiful recent lines of work toward robust and effi-
cient MRA approaches, which can be further categorized
into explicit outlier detection/removal schemes [12, 29, 49]
and implicit noise reduction schemes [4, 14, 63].

Learning-based SfM approaches. It was not until re-
cently that research interests focus on incorporating deep
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neural networks into SfM pipelines and camera pose re-
gression tasks [5, 18, 22, 33, 36, 57, 61, 71]. As one
of the earliest work adopting neural networks for camera
pose regression, the deep convolutional neural network pose
regressor proposed in [33] is trained according to a loss
function embedding the absolute camera pose prediction
error. While [33] pioneers in fusing the power of neu-
ral networks into pose regression frameworks, it does not
take the intra-frame constraints or connectivity of the view-
graph into optimization and thus barely over-performs con-
ventional counterparts on the accuracy, as improved later
in[13,52,72]. Other work exploits the algebraic or geomet-
ric relations among the given sequential images and train
the networks to predict to locate the images [8, 13, 59, 61],
among which [13] leverages temporal consistency of the
sequential images by equipping bi-directional LSTMs with
a CNN-RNN model such that temporal regularity can pro-
vide more pose information in the regression. The approach
in [8] trains DNNs model with the pair-wise geometric con-
straints between frames, by leveraging additional measure-
ments from IMU and GPS. Adoption of neural networks
also greatly benefits parallel line of studies including 3D
registration and point cloud alignment [6, 25].

Recent work [72] is the first study to leverage GNNs in a
full absolute camera pose regression framework, where the
authors model the view-graph with nodes fused with image
features extracted by CNNs. Another recent approach [49]
proposes a GNN-based network to address MRA, where
the network consists of two sub-networks addressing out-
lier removal and pose refinement respetively. Though these
two GNN-based approaches both achieve satisfactory per-
formance, limitations exist and improvements can be made.
For example, the correlation of node features and edge val-
ues are treated as purely binary in [72], discarding geomet-
ric constraints between frames. Also, the graph is initialized
to be fully connected, which might introduce large amounts
of redundant and erroneous edges.

In our work, we encode the edge messages with pair-
wise geometric constraints on the edges of the view-graph,
aggregated with the local consistency information. Though
inspired by NeuRoRA [49], the proposed network enables
the ‘edge dropping’ scheme by the explicit formulation of
the edge message, while the former conducts message ag-
gregation solely on nodes. Moreover, the graph information
is preserved more efficiently by allowing node-edge joint
message aggregation such that only one single loss is re-
quired, thus facilitating the end-to-end training, whereas the
additional viewgraph cleaning loss is involved in the net-
work design of NeuRoRA. Especially, we address the ro-
bustness of our proposed network by introducing de-noise
layers for the efficient outlier removal.

Graph Neural Networks. By virtue of its powerful yet
agile data representation, GNNs [34, 53, 60] have achieved
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exceptional performances on numerous computer vision
tasks. Despite their successes, straightforward adoptions
of GNNs in solving PGO is not applicable due to GNN’s

vulnerability against noisy graphs [24, 43, 51, 70, 73]. In
our work, we reduce the negative effects of outlier edges by
adopting parameterized de-noising layers [41, 43, 51].

3. Problem Statement
3.1. Preliminaries and Notations

Given a 3D scene with n image frames, consider there

exists a measurement R;; € SO(3) of relative rotation
between frame I; and I;. Assume that in the ideal sce-
nario where ﬁij is noise-free, then the absolute rotations
Ri,R; € SO(3) of I; and I; satisfies R;; = R;R; ..
However, in practice the relative measurements are often
noisy and contain outliers, the absolute camera orientation
estimation is thus to seek a set of camera orientations which
are globally consistent with the relative measurements, this
process is called multiple rotation averaging (MRA).

Formally, MRA [12] is a transformation synchronization
problem which involves minimizing a cost function that pe-
nalizes the discrepancy between the measurements of rela-
tive rotations R;; and R;R;” L That is, to solve the follow-
ing objective function

p(d(Ri;, RjR)), (1)
(4,3)

arg min
Ri,R;,1<i,j<n

where p(+) is a robust cost function and d(-, -) is the distance
metric. We adopt the quaternion parameterization and the
corresponding metric [29] throughout the paper.

3.2. Pose-Graph Optimization

With the MRA problem defined above, now we are ready
to formulate the PGO process. Let a graph G = (V,€)
denote the initial view-graph, where the vertex set V =
{v;|i < n} represents the set of the absolute camera orien-
tations to be estimated, and the edge set & = {(4, j)|v;, v; €
V} describes the availability of pair-wise measurements of
relative camera orientations between image frames. In prac-
tice, the view-graph is often noisy regarding edges, prevent-
ing us to conduct MRA directly on G. The reasons of £
being noisy are two-fold: 1) In light of the existence of irre-
ducible errors in the image retrieval (e.g. feature matching),
outlier pair-wise relative measurements are hard to elimi-
nate for both deep-learning based approaches [37, 49] and
traditional geometry-constrained approaches [10, 44, 63].
2) As multiple cameras can share similar views, the view-
graph tends to have redundant edges such that MRA defined
in Eq. 1 is often ‘over-constrained’ [12].

In our work, we handle the noise in the view-graph by
exploiting an ‘edge-dropping’ scheme fused by parameter-
ized de-noising layers, such that the noisy/redundant edges

are remedied and eradicated, MRA is then veritably oper-
ated on the proper sub-graph of G.

4. PoGO-Net Architecture

In this section, we detail the proposed PoGO-Net as
shown in Fig. 1. Specifically, we first give the network ar-
chitecture overview in §4.1, followed by the introduction of
our graph structure and feature embedding in §4.2. We then
illustrate the novel construction of our message aggregation
scheme in §4.3, where the node messages and edge mes-
sages are both effectively encoded to gather all the informa-
tion over the neighborhood of each node. §4.4 depicts the
de-noising layers in our proposed network, where the de-
noising layers are designed to be iteratively executed with
GNN layers such that the outlier edges can be efficiently re-
moved implicitly. In §4.5 and §4.6, we emphasize the graph
update rules and the proposed loss function.

4.1. Architecture Overview

As shown in Fig. 1, our PoGO-Net takes noisy view-
graphs as the input and output the optimized pose-graphs.
Since the absolute camera orientations are unknown in the
input, we initialize the node features by seeding a span-
ning tree at the node with the highest degree (i.e. connected
with most nodes) and the initialization is propagated over
the graph with the aid of our de-noise layers actively re-
moving the outlier edges. The network has a multi-layer
feed-forward architecture and consists of de-noise layers
and GNN layers. At each iteration, the de-noise layer con-
ducts the ‘edge-dropping’ scheme on the outlier edges be-
fore updating the aggregated messages through the GNN
layer. PoGO-Net is fully differentiable and trained end-to-
end to jointly optimize the de-noise layers and GNN layers.

4.2. Feature Embedding

For an input view-graph G = (V, £), the edge set £ rep-
resenting the set of relative orientations contains most of
the essential information required in the pose aggression.
Let 7;; € SO(3), (i,7) € & represent the feature vector of
the edge connecting v; and v;. Since the nodes represent
the absolute camera orientations which are unknown, let
¢i € SO(3),v; € V represent the node feature. {¢;|v; € V}
can be deemed as a set of feature placeholders and is in-
teractively initialized in a spanning-tree manner during the
training process, more details are given in §4.5.

In contrast with regular GNNs where the adjacency ma-
trix Ag derived from £ is a binary matrix indicating the
neighborhood of each node, the adjacency matrix in our
work is formed by parameterized variables. Specifically,
values of elements consisting .Ag illustrate whether the cor-
responding edge-denoted measurements are reliable, i.e.,
small values imply that the edges are prone to be noisy or
even outliers. Details of parameterization of Ag is in §4.4.
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Figure 1: Illustration of the PoGO-Net pipeline. Our proposed network takes a noisy view-graph as the input and the output
is the optimized pose-graph. The network adopts a multi-layer feed-forward architecture with the message passing scheme,
where the message is aggregated over the connected edges and neighboring nodes of each node. The de-noising layer is
designed to remove the outlier edges and is executed iteratively with GNN layers. Best viewed in color.

4.3. Message Aggregation

Our network adopts a multi-layer feed-forward architec-
ture implemented with the message-passing scheme [53],
i.e., the aggregated information is propagated over the
neighborhood of each node. Since the nodes and edges are
interactively updated through network layers, we design a
novel joint message aggregation scheme to effectively en-
code both the node messages and edge messages. In detail,
denote N} = {v;|(i, j) € E'} for the neighborhood of node

v; on the [ layer, the messages are generated as follows

mb, = p{7;|(i, 5) € €'} + dl, @)
me, = qi +H g+ T, 3)
mk, = mean{7;|(i, j) € '} + {aflv; eN{}, @

where # denotes the concatenation and 7; the state of node
v;. For PGO, gathering information from all the neighbor-
ing cameras sharing views with a given camera pose is es-
sential, hence we assemble the state feature of v; with all
the connected edge and node features in its neighborhood.

It is noteworthy that, as our proposed network is capable
of filtering out the outlier/redundant edges during the train-
ing, £ is evolving as sparser yet preciser through different
layers (details given in §4.4). The two components of node
state message correspond to the all the connected edges an
neighboring nodes.

4.4. Graph De-noising

As the input of PoGO-Net is often noisy with the pres-
ence of outlier/redundant edges, it is not practical to directly

apply GNNs to the PGO task as the message aggregation
along edges is likely to propagate and amplify the noise over
the whole graph. In our proposed network, we reduce the
noise by exploiting ‘edge-dropping’ de-noising layers along
with the GNN layers, such that the edges and nodes are in-
teractively updated according to the corresponding message
passing defined in §4.3.

In detail, consider the adjacency matrix Al at the
layer of the network, in our network the elements of Alg
represent the weights of the corresponding edge features
Fw in the regression. That is, Ag Ag © Z!, where
Z! denotes the binary coefficient matrix {z};} and © de-
notes the element-wise multiplication operation Follow-
ing [31, 43, 60], we relax the binary elements z . from be-
ing purely blnary to values of a deterministic functlon g of
the edge message mlﬂj as defined in Eq. 3, such that the
coefficients are continuous and non-binary. Specifically, let
¢! be a uniforrnly distributed random variable independent
with ml~ ,» then z is defined as

lth

25 = glw(mi,), €), o)

where w.i(-) is the MLP parameterized by 7. As we en-
courage the network to remove edges for the optimization,
we extend the open domain (0,1) of z - to include 0. De-

note u! ; ; as the random variable drawn from the binary con-
crete distribution parametrized by the edge message, i.e.
uéj =o((loge —log(1 —€) +w z(mm ))/7), ©6)

where 7 > 0 denotes the temperature parameter [31, 43]

and o(z) = == + — is the sigmoid function. Since we want
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Figure 2: Node initialization. Our de-noising layers are
capable of filtering out the outlier edges according to the
local consistency during the spanning-tree based initializa-
tion, preventing erroneous measurements to be broadcast.

l
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u;; € (a,b) with a < 0 and b > 0, we thus update uéj as

=(b— a)ulij + a. Now we are ready to finalize zfj as
zi; = min(1, max(t;, 0)), @

such that the zero-valued coefficients are enabled.

With the de-noising scheme described above, now the
noisy edges can be efficiently removed from the view-graph
without explicit outlier detection. In our proposed network,
the de-noising and message-passing are executed iteratively,
i.e., the input goes through the de-noise layer right before
going through GNN layer in each iteration.

4.5. Graph Initialization and Updating

Initialization. Recall that the graph inauguration is
equipped with the node set as the collection of node fea-
ture placeholders, as the absolute camera orientations are
unknown in the input view-graph at the time of the ini-
tialization (§4.2). In PoGO-Net, we initialize the nodes by
seeding a spanning tree in the view-graph [11, 28], i.e., an
initial value is given to the node with the highest degree,
followed by the iterations of orientation broadcasting over
its neighborhood in a breadth-first manner.

Despite that the initialization with spanning-tree rota-
tion distribution is generally not robust for conventional ap-
proaches, as the outlier measurements on the noisy edges
get propagated progressively [4, 12, 49], our proposed net-
work is capable of correcting the erroneous measurements
dynamically and thus restricting the outlier transmission, by
virtue of the utilization of our de-noise layers. Specifically,
the de-noise layers are parameterized with the edge mes-
sages, which assemble the information of the ‘local edge
consistency’, i.e., the outlier edges generate inconsistent
messages within their neighborhoods, thus prone to be re-
moved (§4.4). An illustration of our initialization process is
given in Fig. 3.

Graph Update. The view-graph is updated regarding
both edges and nodes through the network layers, while the
node features are directly updated with reference to the ag-
gregated node messages, the edge structure evolves implic-

—>—Feed-forward - - -+ GNN Back-prop

-----De-noise Back-prop

Figure 3: Illustration of back propagation scheme in our
network. The de-noise layers are updated based on the edge
loss while the GNN parameters are tuned by the total loss.

itly regarding the emerging adjacency matrix. In detail, the
edge features are aggregated in the edge messages along
with the inherent graph connectivity information. In each
iteration, outlier edges are dropped before the passing of
the edge message aggregated over the updated local region.
Formally, denote ¢(-), ¢(-) and p(-) as the differentiable
MLPs for the concatenation of the nodes, edges and states,
respectively, we update the graph according to the rules

"t = ¢i(p{Tis|(i, 5) € €'Y, qi, "), ®)

i T = pi(softmax{7; |6, §) € €'Y, {djlv; € N} ). (10)

4.6. Loss Function

Loss Function. Our loss function consists of two com-
ponents with one representing the edge loss and the other
one representing the node loss. Intuitively, the edge loss
measures the global consistency of the output pose-graph
and the node loss evaluates the prediction of the absolute
camera orientations. Respectively, denote L. the edge loss
and £, the node loss, let £, be the additional /; regular-
ization loss corresponding to the weighted sum of node
weights regarding the vertex degree along with the edge
weights regarding the adjacency coefficients z;;, then

L=0acLe+ arLly+ arLl,, (11

where ., a,,a, € (0,1) are the weight parameters. Pre-
cisely, denote the groundtruth absolute camera orientations
as {¢;}, then we have

Le=3 G neellds Pisdilla, (12)
Ly = Zzevnél - q;(”da (13)
where (A) denotes the output variable values, || - ||4 denotes

the norm corresponding to the /; quaternion metric d.

Our network is trained jointly end-to-end with de-noise
layers and GNN layers parameters optimized concurrently.
Particularly, while the GNN layers are tuned with regard to
the combined total loss, we enforce the de-noise layer train-
ing to be solely dependent on L. since the ‘edge-dropping’
scheme designed for de-noising is based on the edge con-
sistency of the local region.
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Table 1: Experiment results on the 7Scenes Dataset [

]. Results are cited directly, the best results are highlighted.

RelocNet LsG  MapNet MapNet+PGO PoseNetl5 PoseNetl7 PoseNet+LSTM CNN+GNN
Scene PoGO-Net
[5] [71] (81 [8] [33] [32] [62] [72]
Chess 3mx2mx Im 4.14° 3.28° 3.25° 3.24° 8.12° 4.48° 5.77° 2.82° 1.72°
Office 2.5mx2mx 1.5m 5.32° 5.45° 5.15° 5.42° 7.68° 5.55° 8.08° 5.08° 3.93°
Fire 25mx Imx Im 10.4° 10.92°  11.69° 9.29° 14.4° 11.30° 11.90° 8.94° 6.23°
Pumpkin 25mx2mx lm 4.17° 3.69° 4.02° 3.96° 8.42° 4.75° 7.00° 2.77°° 3.56°
Red Kitchen | 4m x 3m x 1.5m 5.08° 4.92° 4.93° 4.94° 8.64° 5.35° 8.83° 4.48° 3.85°
Stairs 2.5mx 2mx 1.5m 7.53° 11.3° 12.08° 10.62° 13.8° 12.40° 13.70° 8.78° 7.88°
Heads 2mx 0.5m x Im 10.5° 12.70°  13.25° 8.45° 12.0° 13.0° 13.7° 11.41° 7.34°
Average 6.73° 7.47° 7.66° 6.56° 10.4° 8.12° 9.85° 6.33° 4.93°

Training. For the training of PoGO-Net, we optimize
the network parameters with SGD, where the weight decay
is set to be le-4, and the learning rate is initialized as le-
3. We train the network with batch size of 64, maximum
epochs are set to be 300. In our experiments, we use param-
eters o, = 0.2, , = 0.7, . = 0.1 for the loss function.
More details of training are given in §5.1.

5. Experimental Results

Our network is trained end-to-end with SGD for all the
datasets. The networks are implemented in Pytorch on a
single Nvidia GeForce 1080 GPU with 8GB memory.

Datasets and Metrics. We conduct extensive exper-
iments on multiple benchmark against conventional and
learning-based state-of-the-art camera pose regression ap-
proaches. We report the median and mean angular er-
rors along with the runtime for the experiments. For the
datasets where the measurements of relative camera poses
are not available, the initial view-graph is given by manually
running the conventional state-of-the-art SfM system Visu-
alSfM [68, 69] with Gaussian noises (u = 20°, 0 = 5°)
added on the edges of the initialized view-graph.

ScanNet [15] is an RGB-D video dataset contain-
ing 2.5 million views in more than 1500 indoor scans,
the groundtruth includes the absolute camera orientations
(given by [16]), triangulated surfaces and semantic seg-
mentations. The Cambridge dataset [33] contains over
12000 images with groundtruth absolute camera orienta-
tions, taken in 6 outdoor scenes around Cambridge Univer-
sity. The dataset is challenging due to the presence of high
amounts of moving objects and changing lightning condi-
tions. 7 Scenes [55] consists of 7 relatively small indoor
scenes, tracked by a Kinect RGB-D camera. While the
dataset with less than 10K images is small in scale com-
pared with the other datasets, the view-graphs are highly
noisy with the presence of various texture-less objects in
scene, thus making it challenging. The Photo Tourism
datasets [65] are a large collection of 19 outdoor scenes
with more than 5k views and over 200K relative measure-
ments on several datasets.

Baselines. We compare performance of PoGO-Net
against both conventional and learning-based state-of-the-

art approaches to demonstrate the efficiency and robust-
ness of the proposed network. Among the methods,
IRLS [1 1], IRLS-Robust [12], Weiszfeld [28], Arrigoni [4],
DISCO [14], CEMP [39], MPLS [54] and Wang [63]
are conventional MRA-PGO methods. Learning-based ap-
proaches include RelocNet [5], LsG [71], MapNet [8],
PoseNetl5 [33], PoseNetl7 [32], PoseNet+LSTM [62],
CNN+GNN [72] and NeuRoRA [49].

5.1. Implementation Details

For the training of PoGO-Net, we adopt SGD optimizer
with no dropout. To prevent the ‘over-smoothing” of GNNSs,
we conduct random shuffling within the batch (size = 64)
with [; regularization. The backbone network adopts the
original GNNs [53]. We train PoGO-Net according to the
conventional split of the datasets, the learning rate is an-
nealed geometrically starting at le-3 and decreases to le-
5. The view-graph is initialized completely with the con-
ventional spanning tree method, prone to broadcasting er-
roneous edge measurements. We thus address the de-noise
layer parameter tuning by setting the weight of edge loss £,
(i.e. local edge consistency) slightly higher (o, = 0.35) on
first 10% of the training data. The loss component weight
parameters are set o, = 0.7, = 0.2, o, = 0.1 for the
training of all the datasets. Though we set the maximum
epochs to be 300, we have observed that the dropping of
validating errors and testing errors terminates around 150-
230 epochs in our experiments.

5.2. Performance Comparisons

7 Scenes. We first compare PoGO-Net with recent state-
of-the-art learning-based PGO methods on the 7 Scenes
dataset, the quantitative results are reported in Table.l.
It can be seen that PoGO-Net has achieved best results
on most of the scenes, among which on Fire and Heads
datasets PoGO-Net outperforms the other approaches by
large margins. On Pumpkin and Stairs dataset, PoGO-Net
slightly falls short to previous approaches. Considering
that both scenes hold high amounts of views with repetitive
patterns and textureless surfaces, the main factor of errors
roots from the exceedingly noisy image retrieval, i.e., the
erroneous feature extraction and matching causes the ini-
tial view-graph to be highly corrupted on most of the edges.

5900



Table 2: Experiment results on the Cambridge Dataset [

]. Results are cited directly, the best results are highlighted.

Scene MapNet PoseNetl5 PoseNetl7 PoseNet+LSTM CNN+GNN | PoGO-Net PoGO-Net PoGO-Net PoGO-Net
[8] [33] [32] [62] [72] Tourism 7Scenes ScanNet ~ Cambridge
T. G. Court 8.0x10% m? 3.76° - 3.27° 2.79° 3.23° 3.92° 3.66° 1.96°
Street 5.0x103 m? | 27.55° - 15.50° 22.44° 19.29° 28.33° 23.17° 11.76°
K. College 5.6x10% m? 1.89° 4.86° 1.04° 3.65° 0.65° 2.04° 3.89° 2.55° 0.94°
O. Hospital 2.0x10% m? 3.91° 4.90° 3.29° 4.29° 2.78° 3.14° 3.65° 2.97° 1.69°
S. Facade 8.8x10% m? 4.22° 7.18° 3.78° 7.44° 2.87° 3.93° 4.88° 4.06° 2.40°
St. M. Church | 4.8x10% m? 4.53° 7.96° 3.32° 6.68° 3.29° 3.66° 5.12° 3.49° 2.12°
Average 7.64° 6.23° 5.03° 5.52° 5.80° 5.04° 8.29° 6.65° 3.47°
Note that [5] and [72] both have utilized the ResNet [30] Noise - 10% Norce - 20%
feature extractor which is more robust compared with the S~ ey B
. . e 14 H—6—PoGO-Net30 16 PoGO-Not3
conventional approach VisualSfM we adopt for the initial o ||peonese | A7 7+%o§§,§ﬂ§3 B
view-graph generation during the image retrieval phase. Qo P ]
Cambridge. In the experiments on the Cambridge : T /,/ — —
dataset, we demonstrate the transferability of PoGO-Net i /M/*’*‘/‘ —
by training on distinct datasets. Results are given in Ta- =
ble 2. Specifically, we record the comparable testing results 2—+—“ﬁ T+t 1]

on the Cambridge dataset with PoGO-Net trained solely on
the 7Scenes [55], ScanNet [15] and the Photo Tourism [65]
datasets separately. We finally report the performance with
training and testing both on the Cambridge dataset and our
PoGO-Net presents significant outperformances on most
of the scenes, further proving the network robustness in
large-scale outdoor scenes. Note that data on Trinity Great
Court and Street are not provided for PoseNet15 [33] and
PoseNet+LSTM [62], the average errors for the two ap-
proaches are based on the results on the left four scenes.

Table 3: Experiment results on the ScanNet Dataset [15].
Results are based on 5 runs of conventional approaches.
The average runtime is evaluated on CPU.

mean angle err. median angle err. runtime
IRLS [11] 14.07° 10.65° 2.08s
Robust-IRLS [12] 13.23° 8.17° 2.33s
Weiszfeld [28] 19.74° 15.32° 85.21s
Arrigoni [4] 27.16° 20.43° 37.83s
Wang [63] 16.30° 10.04° 13.2s
NeuRoRA [49] 11.02° 6.92° 0.92s
PoGO-Net 8.22° 3.04° 0.37s
ScanNet. We then test the performance of PoGO-

Net against the conventional state-of-the-art approaches.
Specifically, we record the angular errors and the runtime
to demonstrate the accuracy and efficiency of PoGO-Net
compared with traditional MRA-PGO methods. We also
include the results reported by NeuRoRA [49], which is a
GNN-based MRA framework with two sub-networks. Note
that NeuRoRA is pre-trained with synthetic datasets which
are captured by the authors, and the CleanNet and Fine-
tuning network are trained separately while PoGO-Net is
trained end-to-end without pre-tuned parameters. We cite
the results reported in [49] for NeuRoRA and we execute
the conventional approaches and report the 5-run averages,
the results are given in Table 3. It can be seen that PoGO-

Noise in Degrees

(a) Noise = 10%

Noise in Degrees

(b) Noise = 20%

Figure 4: Study of different de-noise layers settings on the
noise distributed to a) 10% b) 20% of the view-graph edges.

Net outperforms the previous methods by a wide margin in
both accuracy and speed.

Tourism. Similar with the experiments on ScanNet, the
angular errors and runtime of experiments on the Photo
Tourism Dataset [65] are reported in Table 4. We cite the
results partly from [4, 12, 49]. It can be observed that
PoGO-Net has achieved the best results on most of the
scenes. On the datasets with large-scale view-graphs (e.g.
Piccadilly), PoGO-Net demonstrates its efficiency by out-
performing conventional approaches by up to 400x faster
and is almost 2x faster compared with learning-based Neu-
RoRA. Full result and more analysis of the experiments are
provided in the supplementary materials.

5.3. Ablation Study

To study the effects of the de-noise layers, we conduct
the ablation study on the 7Scenes dataset with several vari-
ations of PoGO-Net. In detail, we re-train the network with
0%, 30%, 50% amounts of the de-noise layers in the orig-
inal PoGO-Net and test them on the testing sets with ad-
ditional noise (from 1° to 10 °) on the randomly selected
edges in the viewgraph. The accuracy plots are given in
Fig. 4. With the setting of 0% of the de-noise layers, it is
very difficult to initialize the nodes in the view-graph with
the spanning tree scheme as the edge errors are severely
propagated over the graph. Therefore in the experiments
with the GNN-only variation, we first manually filter out
outlier edges in randomly selected cycles in the view-graph
by enforcing the cycle identity [49]. It can be seen that
though the network with fewer de-noise layers can work,
it yields a much lower accuracy compared with the original
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Table 4: Experiment results on the Tourism Dataset [

]. We report the angular errors (°) and runtime (s) on CPU. The best

results are highlighted. Full result is given in the supplementary materials.

Scene # IRLS Robust-IRLS Weiszfeld Arrigoni Wang DISCO CEMP MPLS | NeuRoRA PoGO-Net
Nodes Edges [11] [12] [28] [4] [63]  [14] [39] [54] [49]
g mean  3.64 3.67 4.9 6.2 5.3 - 4.05 3.44 4.9 2.96
= 627 97206 median 1.30 1.32 1.4 1.2 1.1 7.86 1.62 1.16 1.2 0.85
< runtime 14.2s 15.1s 84.0s 2.7s 20.6s  3917s 10.38s 20.6s 2.2s 1.74s
a mean  1.25 1.22 2.1 4.8 2.0 - 1.33 1.04 1.2 0.82
Z 474 52424  median 0.58 0.57 0.7 0.9 0.8 6.81 0.79 0.51 0.6 0.37
= runtime  8.5s 7.3s 41.5s 2.9s 10.1s  1608s  7.3s 9.3s 1.0s 0.53s
QE) mean  2.63 2.26 4.7 39 35 - 2.35 2.06 1.6 1.17
‘Q“ 715 64678 median 0.78 0.71 0.8 1.0 0.9 7.48 0.94 0.67 0.6 0.35
z runtime 17.2s 22.5s 80.8s 4.2s 19.5s 4070s 13.2s 31.5s 2.0s 1.24s
o mean  5.12 5.19 26.4 22.0 10.1 36.0 4.66 3.93 4.7 493
8 2508 319257 median 2.02 2.34 7.5 9.7 3.9 - 1.98 1.81 1.9 1.75
A~ runtime 353.5s 370.2s 1342.6s 437s 118.1s 15604s 45.8s 191.9s 5.9s 3.19s
g mean  2.66 2.69 4.8 13.2 4.6 - 2.80 2.62 2.30 1.55
I 1134 70187 median 1.58 1.57 1.8 8.2 35 3536 145 1.37 1.3 0.69
R runtime 18.6 21.4 115.0s 16.8s 19.6s 1559s  6.1s 8.8s 1.3s 1.26s
i mean  3.42 341 4.7 4.6 2.9 - 2.84 3.16 2.6 1.77
) 508 24863 median 2.52 2.50 2.9 1.8 1.5 10.38  1.57 2.20 1.4 0.43
B runtime  2.6s 2.4s 17.4s 3.9s 3.6s  479s 2.2s 2.7s 0.3s 0.38s
o mean  6.77 6.77 40.9 9.2 6.8 - 7.47 6.54 5.9 33
n 930 25561 median 3.66 3.85 10.3 4.4 32 2627 3.64 3.48 2.0 1.25
= runtime  9.0s 8.6s 42.8s 12.1s 4.1s  466s 2.5s 5.7s 0.6s 0.29s
= mean 2.6 2.45 5.7 4.5 35 - 2.49 2.47 2.5 2.03
‘g 458 27729 median 1.59 1.53 2.0 1.6 1.3 26.17 1.37 1.45 0.9 0.72
> runtime 3.4s 4.3s 32.0s 2.5s 4.9s 641s 2.8s 3.9s 0.4s 0.12s
o mean 4.3 3.6 18.8 66.8 89.2 - - - 17.6 6.82
g 7866 101512 median 3.9 34 16.4 439 75.5 54.38 - - 12.6 3.16
e runtime 18.9s 15.2s 1462.7s  354.7s 27.2s 1413s - - 2.6s 1.54s
&) mean 9.1 8.2 11.7 19.3 10.1 6.91 7.21 - 39 4.26
5 918 103550 median 3.9 1.2 1.9 2.39 1.8 2235 2.63 2.83 1.5 1.44
> runtime 56.9s 48.1s 158.3s 6.0s 25.7s 4085s 13.1s 42.6s 2.1s 1.53s

PoGO-Net. Moreover, it is noteworthy that the accuracy
of PoGO-Net holds stable in spite of the increasing noise
level, further demonstrating the robustness of the network.
The full study on the de-noise layer effects are provided in
the supplementary materials.

5.4. Discussions and Future Work

To further demonstrate the capability of generalization
of PoGO-Net, we test it on the KITTI Odometry [23] and
integrate it with the state-of-the-art SLAM pipeline ORB-
SLAM [47]. Evaluations and analysis are given in the sup-
plementary materials. Observing that PoGO-Net achieves
real-time performances with high accuracy further vali-
dates the potential of PoGO-Net as to be extended to a full
SfM/SLAM system. While accurate MRA, especially com-
bined with the graph-based formulation, is compact and
lightweight to address PGO efficiently, expanding PoGO-
Net for SE(3) regression is neither immediate nor trivial.
We nonetheless believe that the adoption of feature sub-
nets endows the full pose regression, such that rotations and

translations can be jointly optimized within the graph form.

6. Conclusion

In this work, we propose a novel PGO scheme fueled
by GNNs, namely PoGO-Net, to conduct the absolute cam-
era pose regression leveraging MRA. PoGO-Net takes noisy
view-graphs as inputs where the nodes and edges are de-
signed to encode the pair-wise geometric constraints and
aggregated with the local graph consistency. To address
the outlier edge removal toward a robust MRA-GNN ap-
proach, we design the de-noise layers by exploiting an edge-
dropping scheme on the noisy or corrupted edges, which are
effectively filtered out with parameterized networks. Our
joint loss function embeds MRA formulation, enabling end-
to-end training so that the parameters of the de-noise layers
and GNN layers optimized concurrently. Extensive exper-
iments on multiple benchmarks demonstrate the accuracy,
efficiency and robustness of PoGO-Net.
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