APOLLO: An Automated Power Modeling Framework
for Runtime Power Introspection in High-Volume
Commercial Microprocessors

Zhiyao Xie Xiaoqing Xu
Duke University Arm Ltd.
zhiyao.xie@duke.edu xiaogingxu.pku@gmail.com
Joshua Knebel Kumaraguru Palaniswamy
Arm Ltd. Arm Ltd.

joshua.knebel@arm.com

KumaraGuru.Palaniswamy@arm.com

Jiang Hu Huanrui Yang
Texas A&M University Duke University
jlanghu@tamu.edu huanrui.yang@duke.edu
Shidhartha Das
Arm Ltd.
Shidhartha.Das@arm.com

Matt Walker
Arm Ltd.
Matt.Walker@arm.com

Nicolas Hebert
Arm Ltd.
nicolas.hebert@arm.com

Yiran Chen
Duke University
yiran.chen@duke.edu

ABSTRACT

Accurate power modeling is crucial for energy-efficient CPU design
and runtime management. An ideal power modeling framework
needs to be accurate yet fast, achieve high temporal resolution (ide-
ally cycle-accurate) yet with low runtime computational overheads,
and easily extensible to diverse designs through automation. Simul-
taneously satisfying such conflicting objectives is challenging and
largely unattained despite significant prior research.

In this paper, we propose APOLLO, an automated per-cycle
power modeling framework that serves as the basis for both a
design-time power estimator and a low-overhead runtime on-chip
power meter (OPM). APOLLO uses the minimax concave penalty
(MCP)-based feature selection algorithm to automatically select
less than 0.05% of RTL signals as power proxies. The power esti-
mation achieves R? > 0.95 on Arm Neoverse N1 [3] and R? > 0.94
on Arm Cortex-A77 [2] microprocessors, respectively. When inte-
grated with an emulator-assisted flow, APOLLO finishes per-cycle
power estimation on millions-of-cycles benchmark in minutes for
million-gate industrial CPU designs. Furthermore, the power model
is synthesized and integrated into the microprocessor implementa-
tion as a runtime OPM. APOLLO’s accuracy further improves when
coarse-grained temporal resolution is preferred. To our best knowl-
edge, this is the first runtime OPM that simultaneously achieves per-
cycle temporal resolution and < 1% area/power overhead without

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480064

compromising accuracy, which is validated on high-performance,
out-of-order industrial CPU designs.

CCS CONCEPTS

- Hardware — Power estimation and optimization; On-chip
resource management.

KEYWORDS

Power modeling and estimation, on-chip power meter, machine
learning, voltage droop, commercial microprocessors

ACM Reference Format:

Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, Kumaraguru Palaniswamy,
Nicolas Hebert, Jiang Hu, Huanrui Yang, Yiran Chen, and Shidhartha Das.
2021. APOLLO: An Automated Power Modeling Framework for Runtime
Power Introspection in High-Volume Commercial Microprocessors. In MI-
CRO’21: 54th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO °21), October 18-22, 2021, Virtual Event, Greece. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3466752.3480064

1 INTRODUCTION

Stringent energy-efficiency demands drive design decisions across
the entire compute-spectrum, ranging from embedded applications,
mobile computing to data-centers. As such, accurate power estima-
tion is crucial for making prudent engineering trade-offs not only
during CPU microarchitecture design [29, 35, 40, 79] but also for
runtime power management. The requirements on power estima-
tion differ according to the target application. For instance, dynamic
voltage and frequency scaling (DVFS) [33, 81] is orchestrated by the
system firmware and/or the operating system (OS), and hence re-
quires coarse-grained temporal resolution in power-tracing, where
each sample represents power for epochs that can be microseconds
in duration.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

In contrast, recent techniques for fast power management [25,
39] and voltage boosting [32] require fine-grained temporal resolu-
tion - for instance, a complete voltage boosting operation in [32]
occurs in tens of nanoseconds. Similarly, voltage-noise effects such
as Ldi/dt noise develops in <10 cycles in modern high-performance
CPUs. Therefore, quantifying the impact of fast voltage-noise and
the efficacy of mitigation features such as adaptive-clocking! re-
quire fine-grained temporal resolution in power-tracing [27, 59, 69],
where a sample exists for every CPU cycle (per-cycle temporal
resolution).

Design-Time Power-Modeling: For fine-grained power-tracing,
CPU design teams typically rely on industry-standard power anal-
ysis tools such as [8] to replay simulation vectors at the RTL or
gate-level with back-annotated parasitics. Power is computed from
the switching statistics of individual signal nets and the capacitive
load that they drive. This approach is very accurate and serves
as the signoff standard, but it comes with a very high computa-
tional cost. For instance, generating a power trace of 20 cycles for a
power-virus benchmark on the Arm® Neoverse™ N1 microproces-
sor [21, 57] requires approximately an hour on a high-performance
computing cluster machine. Clearly, such an approach does not
scale for analysis on long-running workloads and/or simulating the
simultaneous execution of multiple CPU cores.

An alternative approach relies upon FPGA-based netlist emula-
tion [7] to address the speed impact of power estimation. In this
approach, a simulation trace is generated from FPGA, then the
extracted switching statistics are processed using power analysis
EDA software [8] to obtain power traces. However, per-cycle power
tracing is still onerous using this approach due to the significant
storage constraints on modern computer servers. Our own bench-
marking studies demonstrate storage requirements in excess of
200GB for a 17-million cycle simulation, leading to infeasible ex-
ecution time using power analysis tools. Thus, this approach is
typically restricted to coarse-grained temporal resolution where
power tracing is averaged over millions of CPU cycles.

Runtime Power Estimation: Previous works have demon-
strated runtime regression models using hardware performance
monitoring event-counters to guide OS-orchestrated DVFS [16, 36,
68]. These models average counter-values that accumulate specific
micro-architectural events, such as L2 cache misses and the num-
ber of retired instructions, across thousands or millions of CPU
cycles. However, these events typically exhibit poor correlations to
per-cycle micro-architectural activity. Furthermore, the process of
averaging over long CPU cycles renders these approaches signifi-
cantly inaccurate when fine-grained power tracing is required.

Recently, RTL-based runtime power monitoring with on-chip
power meter (OPM) [23, 51, 53, 80, 81] has been proposed to im-
prove temporal resolution at the expense of dedicated hardware
circuit. However, existing techniques struggle to simultaneously
achieve high resolution and low hardware area overhead. For exam-
ple, the work in [51] restricts area overhead to 1.5-4%, but its highest
temporal resolution is 2500 clock cycles. A recent work [80] im-
proves resolution to 100 cycles, but with significant area overhead

! Adaptive-clocking [18, 49] and issue throttling are typically deployed to address tim-
ing emergencies due to Ldi/dt transients [69]. Voltage droop due to these transients
develop in < 10 cycles in CPU designs. Hence, assessing the performance impact of
these micro-architectural features requires fine-grained tracing capabilities.

Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, et al.

B == _}(,)

LI | ¥
i B
B e [|
o T | Design-time Runtime
...... power power

- - - simulator monitoring
Simulation traces of RTL signals

Selected CPU power proxies

Figure 1: APOLLO provides a design-time power simulator
and a runtime on-chip power meter (OPM) based on a con-
sistent model, as an example, for Neoverse™ N1.

(4-10%). Thus, there are undesirable trade-offs between accuracy,
speed, temporal-resolution, and on-chip hardware overhead that
render the prior-art unsuitable for fine-grained power estimation.

We propose APOLLO, a unified RTL-level power modeling frame-
work addressing both the design-time and runtime challenges
within a consistent model structure, as shown in Figure 1. The
centerpiece of APOLLO is a new power proxy selection technique
based on minimax concave penalty (MCP) regression. It enables
per-cycle power tracing for benchmarks executing over millions
of CPU cycles. For runtime monitoring, it provides per-cycle ac-
curate power estimation with 0.2% area overhead. To the best of
our knowledge, APOLLO is the first power monitoring technique
with cycle-accuracy and sub-1% area overhead. Moreover, the proxy
selection process in APOLLO is fully automated and thereby exten-
sible to new designs. Compared to PRIMAL [79], a recent machine
learning approach, APOLLO reaches similar accuracy but is orders
of magnitude faster. APOLLO also significantly outperforms Sim-
mani [40], another state-of-the-art work, on both accuracy and
computation speed. Moreover, APOLLO achieves both fine-grained
temporal resolution and lower hardware overhead than [53], a
recent OPM technique.

Our main contributions in APOLLO are as follows:

e Fine-grained temporal resolution with low-overhead
OPM: APOLLO provides the first runtime OPM that simul-
taneously achieves per-cycle resolution and <1% area/power
overhead without compromising accuracy.

e Automation: The overall framework automatically gener-
ates training data, develops the model, and constructs the
OPM for an arbitrary novel CPU core with minimum de-
signer interference. This reduces the engineering cost and
design time on power estimation.

e Validation on industrial designs: APOLLO is verified on
industry-standard CPU cores with millions of gates, namely,
Arm® Neoverse™ N1 [1, 4, 57] microprocessor and Cortex®-
A77 [2] microprocessor. APOLLO achieves an R? > 0.94
by only monitoring < 0.05% of the RTL signals on both
microprocessors.

e Design-time model with low computational overhead:
The linear APOLLO model finishes per-cycle power estima-
tion on millions of benchmark cycles within minutes when
integrated in emulator-assisted power analysis. It enables
architects to examine the whole real-world workloads with
extremely low cost.

The key novelty of APOLLO over prior-art is the ability to ac-
curately estimate CPU current-demand at a per-cycle temporal

APOLLO MICRO 21, October 18-22, 2021, Virtual Event, Greece
. Demonstrated . A
Methods (Hardware Overhead in Area %) . Model Type | Temporal Resolution | PC / Proxy Selection | Cost or Overhead
Application
[20, 35, 43, 48, 61] Analytical >1K cycles N/A Low
78 Design-time High
78] & >1K cycles . lg
[17, 64] software model . Automatic Medium
Proxies i
[79] or no selection High
Per-cycle :
[19, 42, 44, 72, 76] Medium
[22] (300% overhead) High
. . Per-cycle .
[75] (16% overhead) Design-time Proxi Automatic
roxies
[40] FPGA emulation ~100s cycles Medium
[66] Per-cycle Hybrid manual/auto
[10, 11, 16, 24, 26, 33, 34, 36, 52, 58, 62, 63, 65, 68] >1K cycles
Event Counters Manual Low
[38] . . ~100s cycles
[23] (2-20%), [51] (1.5-4%), [53] (7%) Runtime monitor 1K cycles
-20%), .5-4%), % . > e . .
Proxies Y Automatic Medium
[80] (4-10%), [81] (7%) ~100s cycles
Design-ti del
APOLLO (0.2% overhead) e31gr'1 tme mf) ¢ Proxies Per-cycle Automatic Low
Runtime monitor

Table 1: Comparison among various power modeling approaches. The percentage numbers are area overheads.

granularity with <1% power/area overhead, proven in industrial
CPU designs. The framework is systematic and automated (includ-
ing training data generation) in a manner that is micro-architecture
agnostic, applicable to a wide spectrum of compute-units and not
just CPUs. To the best of our knowledge, APOLLO is the only uni-
fied framework for power-modeling achieving combined objectives
of low-overhead, high temporal resolution, and accuracy. As we de-
scribe in Section 8, these unique features open up new applications
in design and runtime power-management beyond the capability
of the prior art.

2 RELATED WORK

Table 1 summarizes representative power estimation approaches,
which are categorized into design-time power models and runtime
on-chip power meters.

2.1 Design-Time Power Models

Many design-time approaches [20, 35, 43, 48, 61] construct analyti-
cal models for micro-architectural power estimation by collecting
statistics from performance simulators [14, 15]. Wattch [20] is an
architectural dynamic power simulation tool using a linear model,
and McPAT [48] integrates power, area, and timing in a modeling
framework. Each functional unit is characterized and attributed a
power value when activated. Multiple active units are then added
together to compute the overall power [27]. However, this approach
cannot handle internal variations in power consumption due to
data- and control-dependent variations in workload. Therefore,
these models are preferably used as an average over thousands or
millions of CPU clock cycles. Additionally, inaccuracies have been
observed [45, 61, 73] for McPAT on new designs.

Design-time models on selected RTL power-proxies are em-
ployed to perform power simulations. Early works [17, 72, 76]
construct macro-models to abstract power estimations for small
circuit modules with thousands of gates. In recent years, machine
learning (ML) techniques are exploited. Lee, et al. [44] adopt gra-
dient boosting and Kumar, et al. [42] apply a decision tree model

to every component of a simple microprocessor. PRIMAL [79] pre-
dicts per-cycle power by processing transitions of all registers with
the convolutional neural network (CNN). GRANNITE [78] makes
use of graph neural network [41] to estimate the average power
of each workload. Although the ML approach achieves significant
speedup compared with accurate commercial tools [8], it can be
prohibitively expensive (computationally) for per-cycle simulation
on industry-standard CPU designs. Evidently, these techniques are
intended for simulation-level power-tracing and are too expensive
for runtime on-chip monitoring.

FPGA emulation [22, 40, 66, 75] is a popular approach to ac-
celerating power simulations for large designs. We use the term
“emulation” in a broad sense to include techniques that use of FPGA
at design-time. In reality, there are various ways to do so, which may
be named differently in other literature. Perhaps the first power em-
ulation work is [22], which has 300% hardware overhead. Another
work [75] employs singular value decomposition (SVD), which can
be computationally expensive. Both [22] and [75] are demonstrated
only at block-level designs. A microprocessor-level application of
FPGA emulation is Simmani [40], whose temporal resolution is 128
clock cycles. PrEsto [66] achieves cycle-accuracy, but its hardware
cost is quite significant, e.g., it consumes more than 50% of LUTs on
Xilinx Virtex-5 LX330 to simulate ARM Cortex-A8 processor design.
Moreover, its proxy selection process is not completely automated.

2.2 Runtime On-Chip Power Meters (OPMs)

Analog power sensors [12, 13] can provide accurate power esti-
mation at runtime. However, they require ADCs that consume a
large area overhead. A popular runtime approach is to estimate
power dissipation according to performance counters [10, 11, 16,
24, 26, 33, 34, 36, 58, 62, 63, 65, 68]. Since these counters already ex-
ist in industrial-grade microprocessor designs, they can be treated
as free and the associated area overhead is minimum. However,
counter-based methods typically rely on architects’ knowledge of
a specific design to define representative hardware events. This
limits existing methods to well-studied microprocessors and hin-
ders automatic migration to new designs. For example, [10, 16, 34]

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Symbol ‘ Description of the symbol ‘

N; M Number of cycles; Number of RTL signals in design
Q Number of selected power proxies, Q < M

Sm: So | AIRTL signals [Sy;| = M; Power proxies [Sp| = Q
x[i] Toggling of proxies at each cycle i, x[i] € {0,1}<

x[i] Toggling of RTL signals at each cycle i, x[i] € {0, 1}M
yli] Label at each cycle i, y[i] € R

plil Predicted power at each cycle i, p[i] € R

w Weights of the per-cycle APOLLO power model

1) Weights of the multi-cycle APOLLO” power model

L P Prediction error in loss function; Penalty term

Ay Penalty strength; A hyperparameter in MCP

B Number of bits in quantized weights in APOLLO-OPM
T Number of cycles in the measurement window, T > 1
T Selected fixed interval size for multi-cycle APOLLO”
x" (k) Toggling of proxies at each interval k, x7 (k) € RQ

y? (k) Power label at each interval k with 7 cycles, y” (k) € R

Table 2: Description of frequently used symbols.

exclusively targets Intel Pentium® processors, [38] is exclusively
aimed at the Qualcomm Hexagon 680 DSP, and both works of [58]
and [68] target ARM Cortex-A7 and Cortex-A15 processors. More-
over, counter-based power monitors monitor micro-architectural
events that manifest several cycles after the causal trigger event.
Therefore, they are poorly correlated with recent pipeline activity
and are therefore restricted to coarse-grained temporal resolutions.

Compared to counter-based techniques, proxy-based power mon-
itors are much more friendly to automation and applicable to mul-
tiple designs [23, 51, 53, 80, 81]. Existing proxy-based techniques
suffer from the conflict between low silicon-area overhead and
fine-grained temporal resolution. Some of them [23, 51, 53] are
coarse-grained with the temporal resolution of thousands of cycles.
Their area overhead ranges from 1.5% to 20% over the baseline.

Recent methods [80, 81] improve temporal resolution to 100
cycles. To limit extra overhead from improved resolution, they
restrict proxies mostly to primary I/O signals of design modules
at selected hierarchy level, significantly reducing the freedom of
proxy selection and the underlying power model. Even with this
restriction, their area overhead is still > 4% [80, 81]. In [37], a
manually-designed digital power meter technique is introduced
to address voltage-droop in DSP engines. This technique takes
advantage of predictable dataflow patterns that are not available for
general-purpose CPUs. In [69], the authors describe a voltage-noise
mitigation strategy that combines power proxies with critical path
monitors. The work does not formally describe the creation or the
accuracy of power proxies in detail. Further, it is unclear whether
the methodology is easily portable across designs.

2.3 Position of APOLLO

Although proxy-based techniques have been intensively studied,
APOLLO distinguishes itself from previous methods by a new proxy
selection technique based on the MCP algorithm. Different from
other fully-automatic signal selection methods [23, 40, 44, 51, 53, 72,
80, 81], the selection technique in APOLLO allows flexible selection
from any combination of signals (unlike [23, 44, 80, 81]), performs

Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, et al.

Initial F‘ Auto Data
bench/ Generation
L Automatic
Training Runtime
Testbench OPM

Runtime OPM
on CPU Core

Automatic APOLLO
Model Construction

Integrate with
RTL of CPU

Generation
RTL of Arbitrary RTL High Level
Novel CPU Core Simulation Synthesis
1] L] t
Back-End Power Traces of C++ Template Configure OPM
Annotation) |Simulation, All Signals of OPM Generate C++
] i 1]
Power Select Q Construct Final APOLLO Verify OPM
Labels Proxies APOLLO Model Model Correctness
f late Workload Long Traces APOLLO
i) |__on Design RTL of Q Proxies Inference
Design-Time
Inference on Large-Scale Design-Time
Large Workload Workload Estimation

Figure 2: The automated APOLLO framework.

supervised selection (unlike [40]), reduces correlations between
proxies (unlike [53]), and proves to be scalable to a large number of
candidate signals (unlike [51, 72]). In contrast to [69], the APOLLO
framework is a fully automated framework that simultaneously
achieves accurate power estimation with per-cycle temporal reso-
lution and generates low-cost silicon implementation with < 1%
power/area overhead. This is not obviously achievable by published
previous works. Furthermore, APOLLO is proven on commercial
million-gate CPUs (Neoverse N1 and Cortex-A77), thus indicating
scalability to real-world applications.

3 OVERVIEW OF APOLLO

APOLLO targets the high model accuracy with low computation and
implementation cost by automatically identifying representative
RTL proxies from a large number of highly-correlated RTL signals
and building a lightweight power model. Given a design with M RTL
signals Sy, APOLLO selects a subset So C Sy with Q = [Sg| < M,
as power proxies, and Q is the number of proxies. Then it builds a
linear power estimator based on Sg. For per-cycle power tracing,

Q
plil = Z wj - x;j[i] for the ith clock cycle, (1)
j=1
where x1[i], x2[i], ..., xg[i] € {0,1} are input features indicating
the togglings or transitions of Q proxies in the i’ h clock cycle,
W1, W2, ..., WQ € R* are trainable weights, and p[i] is the predicted
power of the same cycle.

Selecting power proxies S from Sy with Q < M can greatly
accelerate power simulation, reduce data volume for emulation-
assisted power analysis, and lower hardware cost for runtime OPM.
The choice of Q controls the trade-off between accuracy and effi-
ciency. Although linear power models have been widely used in the
past, our proxy selection technique distinguishes APOLLO from
previous methods.

Given N cycles of simulation traces, the N ground-truth labels
y[1],y[2], ..., y[N] € R* are per-cycle power values generated from
a commercial RTL power analysis flow [8], where back-end para-
sitics are annotated to the RTL design but netlist-level details are
abstracted out for flow acceleration in our experiment. It shall be
noted that APOLLO applies to an arbitrary method of ground-truth
power data collection.

APOLLO

Figure 2 shows the overall APOLLO framework, which can be
used as an automated tool with the RTL of an arbitrary CPU design
as the input. There are three major components. It firstly constructs
the APOLLO model based on automatically generated training data
and corresponding power simulation results. Then for design-time
estimations, with the assistance of emulation platforms [7], the
trained model performs per-cycle inference on large-scale bench-
marks. For runtime power monitoring, generic high-level synthesis
(HLS) templates are developed in C++ for automatic OPM imple-
mentation. The OPM is easily configured based on the model and
synthesized together with the microprocessor by EDA tools.

4 APOLLO METHODOLOGY

The total power consumption in a CMOS circuit is contributed
by switching and leakage components. Leakage power is deter-
mined by the junction temperature and the threshold voltage of
transistors. Since it is relatively invariant to code-execution, leak-
age power measurement is generally not relevant to runtime power
management. Similarly, leakage power can be easily estimated us-
ing EDA tools [8] at design-time. Therefore, in APOLLO, we focus
on modeling the switching component of the total power.

The switching component can be further broken down into
dynamic power due to code-dependent charging/discharging of
gate/wire-capacitance, short-circuit power during slow signal slews,
and glitch power. In practice, power due to glitches and the short-
circuit power is much smaller than dynamic power [40], and all
three components correlate with signal transitions. The dynamic
power at each cycle i can be measured by the summation of power
consumed at the capacitance of all toggling gates and wires as

Power gynli] = %Vz Cy (2)
g € {toggling gates}

Equation (2) does not include the “frequency” component since
it is expressed in per-cycle terms. While this approach has signoff-
level accuracy, it is computationally intensive and does not scale to
workload-execution timescales on large designs with fully anno-
tated parasitics. Since toggling activities of gates are highly corre-
lated with each other, Equation (2) can be reasonably approximated
by a simpler linear model based on Q selected proxies as

Power gynli] = %Vz Z wj”"“aled (3)
Jj € {Q power proxies}

Note that the equation in (3) is a measure of the power-demanded
by the CPU from the power-delivery network (PDN) before it is
modulated by the PDN response. Hence, the voltage can be viewed
as a constant, and by scaling the weights, we reach the simpler final
model as Equation (1). In equivalent terms, equation (3) can also be
viewed as a measure of the CPU current demand.

4.1 Automatic Training Data Generation

The APOLLO framework starts with automatic training data gen-
eration for the target design as shown in Figure 3(a). Generated
micro-benchmarks are then replayed with EDA tools to generate
power labels.

Previous automatic proxy selection methods [40, 53, 75, 78, 79]
mainly adopt three categories of training data: 1) random stimuli, 2)
realistic workloads, 3) handcrafted ISA tests or micro-benchmarks.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Generate initial
population

Measure population for
power consumption

Select parents w/ high
power consumption

Create and mutate
children

Population
size reached?

0 20 40 60 80
Generation

@) (b)

Figure 3: Training data generation. (a) GA-based generation
flow. (b) A diverse set of training micro-benchmarks with a
wide range of measured power.

However, for 1), previous studies lack details on how to automat-
ically generate a large number of random stimuli with sufficient
diversity for an arbitrary design. For 2), realistic workloads typically
include redundant patterns and cannot efficiently cover the full
range of power consumption, especially high power consumption
scenarios. For 3), it is particularly challenging to generate a diverse
training set using manually-developed power benchmarks, even
with expert micro-architectural knowledge.

We circumvent these practical engineering challenges by auto-
generating the training set of micro-benchmarks using a genetic
algorithm (GA)-based framework [28] that is micro-architecture
agnostic. Our benchmark-generation flow starts with an initial
population of randomly generated micro-benchmarks (referred
to as “individual”) created with a constrained set of instructions.
The average power of each micro-benchmark is then measured
using the EDA tool [8]. The ones with highest power are selected
as so-called “parents” that are then paired together (crossover)
and mutated to create “child” instruction sequences for the next
generation and so on. The power measurements of all generated
micro-benchmarks are shown in Figure 3(b) across multiple gen-
erations. The GA-based optimization loop is primed to generate
the worst-case power-consuming benchmark, or a power-virus, as
indicated by the envelope of the scatter plot.

As the optimization converges to the worst-case power virus,
successive generations favor higher power-consuming benchmarks.
However, early generations naturally favor those lower power-
consuming benchmarks as the algorithm is yet to identify higher
power-consuming instruction sequences. A combination of low and
high power-consuming benchmarks across generations naturally
creates a rich diversity of benchmarks spanning a large range (>5x
ratio between the maximum and minimum individuals) of power
consumption.

4.2 Features and Labels Collection

Figure 4 shows the procedure to construct features from the RTL-
simulation traces and labels from power simulation results. As
Equation (2) shows, per-cycle toggling activities reflect the net
transitions and directly correlate with power consumption. At each
cycle, for each RTL signal, either a rising or falling edge in the
simulation trace is set to 1 as features, while no toggling is set to 0.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Per-cycle Power: yO yl y2 ABCD

cycleo [1]oJoo] - & vo
cyer [o[1]1]o] - B v1
cycle2 nnn ‘ y2

A design in RTL level. \\

cycled cyclel cycle2
Waveform from sim. trace

Feature vectors Label

(a) Design RTL and simulation trace (b) Feature and label

Figure 4: Feature and label collection based on M RTL signals
and N cycles of simulation traces.

As such, each RTL signal contributes to one element in the feature
vector.

For M RTL signals and N cycles of simulation traces, the raw
input feature vectors are x € {0, l}N XM and the input vectors
with only Q selected proxies are denoted as x € {0, 1}N*9. The
corresponding label is N per-cycle power consumptions y € RN
simulated with the EDA tool [8].

4.3 ML-Based Power Proxy Selection

Once raw features and labels are collected, we go through the steps
in Figure 5(a) to construct the APOLLO model. The key step is
to select Q representative power proxies. It starts with building a
temporary linear power model p’ = Zin 1 wj’. -x; with all M RTL sig-
nals in raw input features. This linear model is not trained only to
minimize the prediction error in the training dataset. Instead, when
minimizing the prediction error during training, the model simul-
taneously shrinks all weights w, wJ, ..., w}, so that the majority
of weights eventually become zero, i.e., the model becomes sparse.
Then only those RTL signals associated with non-zero weight terms
are selected as power proxies. This procedure is also referred to as
pruning. Such sparsity-inducing training is realized by applying a
penalty term % in the loss function to penalize weights. Equation (4)
shows the loss function, which consists of both the ordinary pre-
diction error (£) measured in mean squared error and the penalty

term (P).

N
Loss=L+P = %;(y[l] - Z enalty(w 4

The sparse linear model is constructed by adopting sparsity-
inducing penalty terms. The most widely adopted penalty term for
sparsity is Lasso [67], defined as

PLasso(Wj/') = MW]"l (5)

This Lasso penalty shrinks all weights at the same rate decided
by the hyper-parameter A, which is the penalty strength. However,
to ensure Q < M, we need to set a very large penalty strength 4
such that the majorities of weights shrink to zero. As a result, when
most small weights shrink to zero and their associated terms are
pruned out, the weights of remaining terms are penalized too much
to provide accurate power predictions. Based on such an inaccurate
model, the selected power proxies are not representative enough.

To overcome the aforementioned limitation, APOLLO adopts the
MCP [77] as the penalty term, which is defined by

Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, et al.

Linear model
with M signals .
Pruning:

l —SSQ MCP with

selected @ strong penalty
power proxies Relaxation:
Ridge
l regression with

APOLLO model | Weak penalty
with Q inputs

Penalty P(w)
N w B

-

o

-4 -2 0 2
Weight Value (w)

IN

(@) (b)

Figure 5: APOLLO model construction. (a) Model construc-
tion process. (b) Penalty terms of MCP and Lasso.

’2

’ _W_j : N <
/1|wj| 2y 1f|wj|_y/1

1,92 : ’ (6)
arA if fwi| > yA

Pycp(wiy > 1) =

The hyper-parameter y in MCP sets a threshold (y1) between
large and small weights. Figure 5(b) visualizes both P55, and
Pycp with A = 1 and y = 3. The absolute derivative of a penalty
term indicates the weight shrinking rate during training [54]. Since
|6PLaSSD/6wj'.| = A, all weights shrink at the same rate A in Lasso.

In comparison, the absolute derivative of MCP penalty is given by

dPycp(why > 1) - l‘%' if W] < yA @)
ow; 0 if [w]] > yA

Compared with the uniform shrinking rate for P 455, large weights
with values > yA in MCP do not shrink at all, since derivatives of
their penalty terms are zero. For weights with values < yA, smaller
weights shrink faster. As such, MCP leaves large weights unpenal-
ized and thereby benefits the prediction accuracy of the generated
power model. In our experiment, this MCP-based model is effi-
ciently optimized by adopting the coordinate descent method [71]
and the proximity operator of MCP [70]. The penalty strength A
can be adjusted to control the number of selected proxies Q.

4.4 Final Model Construction

After power proxy selection by pruning with MCP, we have trained
a temporary model p” = Z]A/il wj’. -x; with Q selected proxies Sg and
corresponding non-zero weight terms w]’.. This temporary model
can already provide rather accurate predictions. However, although
MCP protects larger weights, many remaining weights are still
penalized by the large penalty strength A to a certain extent. To
further boost the model accuracy, we train a new linear model
p= Z]Q:l wj - xj from scratch with only selected power proxies
SQ. In this new linear model, the ordinary L2 penalty, i.e., ridge
penalty [31], is applied, with a much weaker penalty strength com-
pared with the A used in the previous proxy selection step. This
weak ridge penalty is applied to reduce overfitting.

As shown in Figure 5(a), this step is named relaxation and gen-
erates the final APOLLO power model. During the previous proxy
selection step, to shrink most weights to zero, the penalty term #
dominates the loss, and the prediction error £ is less optimized.
This relaxation can be viewed as a fine-tuning stage to better opti-
mize L. Since L2 is not sparsity-inducing, the number of proxies Q
remains unchanged.

APOLLO

N: Total number of cycles

S N e N N RS s Y P
I-— yT: Average Power over T cycles ——l
f— v) —f— @ —| e f— v —]

Figure 6: Multi-cycle APOLLO model — Power label is y7,
with a measurement window size of T cycles. Label at each
interval is y”, with selected interval of 7 cycles.

4.5 Multi-Cycle Power Modeling

In previous subsections, we construct the APOLLO model for per-
cycle power tracing. As we show in Section 8, fine-grained tempo-
ral resolution enables applications like voltage droop mitigation.
In this sub-section, we generalize the APOLLO model to larger
time-window sizes. Like Figure 6 shows, this multi-cycle model
estimates the average power over a time window with T cycles,
which is chosen to be a power of two for ease of efficient hardware
implementation.

A straightforward multi-cycle solution is to directly use the aver-
age of T per-cycle power predictions p! over the T-cycle window?,
It uses the same per-cycle model for any T. Such an approach cap-
tures details of individual clock cycles but neglects correlations
among different clock cycles. Alternatively, one can average the
transitions over T cycles and generate a T-cycle power estimation
based on the average toggling rate. However, this approach loses
useful information such as cycle-details that can be particularly
helpful when T becomes large. In addition, the model developed
by this approach is dependent on the varying T. In Section 7.3,
we show that both the average-prediction and the average-input
approaches fail to provide an accurate and robust solution.

We introduce a multi-cycle estimation technique that overcomes
the weakness of the aforementioned approaches. A time window
of T is divided into multiple intervals of 7 cycles. The values of T
and 7 are selected such that T is integer multiples of 7. An example
is shown in Figure 6. During the model construction and training,
for each 7-cycle interval k, we measure both the average toggling
activities x{ (k), ...,x},(k) € R and the average power y*(k) €
R over the 7 cycles®. Based on these raw inputs and labels, we
execute the same training procedure as the per-cycle model to
select Q power proxies Sg with features x7, ..., xé. The result is a
r-cycle model denoted as APOLLO”, whose weights are denoted
as @1, ..., wQ. It is to be noted that the construction of APOLLO? is
independent of T, and its performance is controlled by selecting an
appropriate 7 value as a hyper-parameter before training.

At the inference stage, there are %
Figure 6 shows, the final prediction p” € R at each T-cycle window
is the average over these % predictions from the APOLLO” model:

intervals in a time window. As

T/t Q
r'= TL/T pr(k) , where p” (k) = Z wj-xi (k) (8)
k=1 j=1

2We use the superscript on a variable to denote the average of the variable over a
timing window with multiple cycles.
3We use parentheses and brackets to differentiate the indices of intervals and cycles.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

C++/RTL C++/RTL Simpoint GCC-Compile
Testbench Testbench Binar Workload

. . Design [. . ' Design/ Emulate Workload Design
RTL [

[RTL SlmulatlonH RTL / Simul atlon RTL on Platform RTL
Simulation Traces for
~100s Selected Signals
APOLLO Model
(>1M cycles / sec)
Power
Estimation

()

Simulation Traces Simulation Traces for
for All Signals ~100s Selected Signals
i

Power Calculation APOLLO Model
(20 cycles / hour) (>1M cycles / sec)

Estimation
(@) (b)

Figure 7: Design-time per-cycle power analysis flows. (a)
Commercial power analysis. (b) APOLLO-based power anal-
ysis. (c) APOLLO integrated with emulator-assisted power
analysis for large-scale benchmarks.

Here, the input ij (k) € R for each interval is a real number in-
stead of a binary. If directly implemented on hardware, this requires
Q counters and multipliers like previous OPMs [23, 51, 80, 81]. In
contrast, the toggling in each cycle is a binary number and thus
the per-cycle model can be implemented by AND gates instead of
multipliers. To avoid multipliers for on-chip implementation of the
multi-cycle model, we rearrange the inference process in Equation
(8) as below:

Take the first interval p* (1) when k = 1 as example:

Q Q 1 & 1 & Q
P =Y o xf ()= Y e~) xlil= -3 3wy xli]
j=1 j=1 i=1

i=1 j=1

1 4 1

Thus, p' = T/ D pTk) = T
k=1 ‘

1

Dol ©)

T
=1 j=1

In Equation (9), the weights are multiplied with binary numbers
instead of real numbers. This new inference process can be regarded
as predicting T-cycle average power according to per-cycle toggles.
As such, it takes per-cycle details, considers correlations among
multiple cycles, and hence overcomes the drawbacks of aforemen-
tioned approaches. Interestingly, 7 is no longer needed in inference.
By setting T to be power of 2, the division in Equation (9) can be
realized by directly discarding the log,(T) lowest bits. Therefore,
the on-chip implementation of this multi-cycle model can reach
low hardware overhead like the per-cycle model.

5 DESIGN-TIME POWER ANALYSIS

A typical conventional design-time power analysis flow is shown
in Figure 7(a). It generates simulation traces for all signals in VCD
or FSDB file format through RTL simulation, then performs power
calculation with simulation tools using these traces. Such a flow
is very time-consuming. One major bottleneck is the last step of
power calculation, which is extremely slow for large designs.

To accelerate this process, we incorporate the APOLLO model
into the flow as shown in Figure 7(b), where the number of signals
to be traced is greatly reduced and the last step of power calculation
is replaced by APOLLO. APOLLO can infer power for millions of
cycles within seconds. This APOLLO-assisted power simulation
flow works well for cases where RTL simulation time is reasonable.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, et al.

23,51 APOLLO
Methods | [75] | [40] (23.51] [53] -
[80, 81] Per-cycle | Multi-cycle
#Counter 0 Q Q Q 1 1
#Multiplier | o« M | o« Q2 0 1 0 0

! _ w1[0:B] 13

! S1 - i‘ p[0:B+[logQ]+[logT]]
sg [0:1]

|82 [0 |&. o
i @ i

L s2[l] § !

i en g iw;; [0:B] | T-cycle counter
[oe} |8 H: R 33

| w4 [0:B] i out= p[[logT]:
-S4 o ! | B+ [logQ] + [logT]]
| L] L z4] i

i interface i power computation “ T-cycle average

1-bit toggle detector Integrated clock gate

Flip-flop

Figure 8: OPM integration with the CPU design.

For long-running benchmarks, the RTL simulation step in Fig-
ure 7(b) becomes an execution bottleneck. We propose to overcome
this using an emulator-assisted power analysis flow as shown in
Figure 7(c). In this flow, millions of benchmark cycles are emu-
lated on a commercial platform [7] with dedicated hardware to
generate million-cycle simulation traces in minutes. In the absence
of APOLLO, the power-simulation flow requires switching details
of all nets to be dumped. For a large industrial-scale design, this
can easily exceed hundreds of GB leading to storage and memory
capacity issues during power analysis. Traditionally, this problem
is circumvented by estimating power at a coarse-grained tempo-
ral resolution, e.g., thousands of clock cycles. With APOLLO, the
data is reduced by several orders of magnitude by only collecting
the toggling activities of Q power proxies, and a cycle-accurate
estimation for the emulator-assisted flow is enabled.

6 RUNTIME ON-CHIP POWER METER

APOLLO provides an accurate and fine-resolution runtime OPM
with low hardware cost. The OPM implements a linear model with
Q power proxies as the input, which is a binary vector at each cycle,
e.g., x[i] € {0,1}9. All weights are quantized into B-bit fixed-point
values, which can be configured to accommodate potential model
re-training using sign-off or hardware measurement power values.

The APOLLO-OPM is fully integrated with the microproces-
sor. Figure 8 shows the OPM consists of three components, i.e.,
“interface", “power computation" and “T-cycle average". The “in-
terface" latches the input signals using the register interface and
then extracts per-cycle toggling activities as single-bit values for
each power proxy. The register interface minimizes the data path
timing impact from OPM on the original design. The “interface”
takes power proxies, i.e., s, s2[0 : 1], s3 and s4 as inputs, which are
further categorized into three cases: (1) 1-bit signal (s; and s4). A
1-bit toggle detector “XOR”s the monitored signal with its regis-
tered version to determine whether a toggle occurred. (2) Bus signal
(s2[0 : 1]). We set up 1-bit signal interface for each bit of the bus.
An extra OR gate determines whether the entire bus signal toggles.
(3) Gated clock signal (s3). A gated clock signal (s3) toggles twice
during one clock cycle. Instead of using a 1-bit toggle detector, we
automatically trace the clock enable signal (en), which is directly
latched using a flip-flop to determine whether gated clock signal
toggles at the same cycle as other power proxies.

Table 3: Hardware implementations of runtime monitors or
design-time emulators with Q selected proxies.

The “power computation” component calculates the intermediate
values from the quantized weights, i.e., w;[0 : B], and per-cycle
toggling values, i.e., x[j]. The bit width of these power values is
extended to B + [logQ] to ensure the full precision addition. After
intermediate values are computed on a cycle-by-cycle basis, a “T-
cycle average" component computes the average power over T
cycles using flip-flops and adders. The flip-flop reset is controlled by
a T-cycle counter, which resets the value of output, i.e., out, every T
cycles. Similarly, the bit width of intermediate values is extended to
B+ [logQT+ [logT] to guarantee full precision addition. The output
power value needs to be divided by T according to Equation (9).
This is realized by dropping the lowest log[T] bits as T is set to be
the power of 2.

The OPM structure in Figure 8 is applicable to both per-cycle
and multi-cycle power model, due to the linear model structure
discussed in Equation(9). The OPM is implemented with generic
templates (configurable in B, Q and T) in C++ using the Catapult
HLS tool [5] and synthesized into gate-level netlist using Design
Compiler [6]. Section 7.5 further explores the trade-off between the
OPM'’s accuracy and gate area by varying Q and the bitwidth B.

The key to the low-cost implementation is two-fold. First, the
APOLLO only selects < 0.05% RTL signals as power proxies. Sec-
ondly, calculation of the per-cycle power only requires a conditional
accumulation of the proxy weights depending upon whether they
toggled or not. As such, only a set of AND gates and adders, instead
of multipliers, are needed for the computation. Table 3 shows a
comparison between APOLLO-OPM and those in previous studies.
The hardware implementation cost of the APOLLO model is much
lower than previous approaches, such as Simmani [40]. Most previ-
ous OPMs require a counter and multiplier for each proxy, which
incurs a much larger area cost. Furthermore, although APOLLO-
OPM may include different sets of trained weights from per-cycle
and multi-cycle power model, they share the same hardware struc-
ture, which allows greater flexibility and configurability compared
to previous studies.

7 EXPERIMENTAL RESULTS

7.1 Data Generation and Experiment Setup

In our experiments, micro-benchmarks used in model training and
testing are kept strictly different and separate. Through the auto-
matic training data generation, > 1,000 random micro-benchmarks
are obtained in 4 days to cover a wide range of average power
consumption, among which around 300 micro-benchmarks are
selected to form the training set with a uniform power distribu-
tion. 20% of the training data are selected to form a validation set
for parameter tuning. Unlike the training data, which are auto-
matically generated, the testing data are from 12 representative
micro-benchmarks handcrafted by CPU designers corresponding
to various use cases, as shown in Table 4. They cover both low- and

APOLLO

Name || dhrystone | maxpwr_cpu | dcache_miss | saxpy_simd

Cycles 1222 600 654 1986
Name | maxpwr_l2 | icache_miss | cache_miss daxpy
Cycles 1568 800 600 1600

Name | memcpy_l2 | throttling_1
Cycles 3000 1100

throttling_2 | throttling_3
1100 1100

Table 4: Designer-handcrafted testing benchmarks.

high-power consumption regions. The three micro-benchmarks
named ‘throttling’ reflect applying different throttling schemes [3]
to the microprocessor. The simulation trace lengths N for training
and testing are approximately 30,000 and 15,000 cycles on Neoverse
N1, respectively.

All experiments are firstly performed on the Neoverse N1 [21, 57],
a microprocessor for a wide range of cloud-native server workloads
executing at world-class performance and efficiency. To verify the
robustness of APOLLO on different designs, we further test on
Cortex-A77 [2], a high-performance energy-efficient microproces-
sor targeting mobile and laptop devices. 5,000 cycles of training
data and 2,000 cycles of testing data are generated for Cortex-A77.
The numbers of RTL signals M are > 5 x 10° and > 1 x 10° for
Neoverse N1 and Cortex-A77, respectively.

The RTL simulation is performed using VCS® [9] and the ground-
truth power is simulated by PowerPro® [8] based on a commercial
7nm technology setup. All ML models are implemented with Python
v3.7. For baseline methods, CNN-based models are based on Pytorch
v1.5 [55], and other models are implemented with scikit-learn v0.22
[56]. For APOLLO, we implement the MCP algorithm and the co-
ordinate descent algorithm with NumPy [30]. During training, the
MCP regressor converges within 200 iterations, with the threshold
of unpenalized weights set to y = 10. The overall proxy selection
and model training time of APOLLO and all baseline methods are
within three hours, which is affordable.

All accuracies are measured on the testing data. Metrics include
the coefficient of determination (R%) [50], the normalized root mean
squared error (NRMSE), and the normalized mean absolute error
(NMAE), defined as follows. The g is the average over all N labels

ylil-
N (yli] - p[i])? Nyl — nls
NRMSE = L4/ 2im @l =PlD" e w
N Zi:] yli]

7.2 Baseline Methods

In experimental comparisons, it is difficult to exhaust the signif-
icant body of previous researches for various target designs and
application scenarios. Our solution is to compare the accuracy of
APOLLO with representative approaches that target the highest
accuracy with a high level of acceptable computation complexity.
These complex non-linear methods [40, 79] prove to outperform
simple linear models adopted in most runtime approaches. We also
compare with a recent runtime technique [53] which uses a sparsity-
induced algorithm. Table 5 shows comparisons with Simmani [40],
PRIMAL [79], and Pagliari et al. [53]. For Simmani, signals are clus-
tered with K-means algorithm and power proxies are selected from

<

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Simmani | PRIMAL | PCA | Lasso
Works APOLLO
[40] [79] [79] [53]
Proxies Selection | K-means X X Lasso MCP
Pre-Processing | Polynomial X PCA X X
ML Model Elastic Net CNN | Linear | Linear | Ridge

Table 5: Comparisons with baseline methods.

different clusters. After that, toggling activities of both the Q power
proxies and the Q? 2™ order polynomial terms are adopted as po-
tential model features. The adopted elastic net model is a linear
model with a combination of both Lasso and Ridge penalties, where
the power measurement window size T is a hyperparameter tuned
to improve model accuracy.

PRIMAL [79] targets accurate design-time simulation on soft-
ware with several methods, among which the CNN produces best
results and is adopted for comparison. It uses all flip-flop signals
as input proxies without any selection. As the number of flip-flops
is at least one order of magnitude greater than typical values of
Q, the simulation/emulation cost of PRIMAL is much higher than
APOLLO. Moreover, the use of CNN makes it impractical for run-
time OPM. Another method proposed by PRIMAL [79] is principal
components analysis (PCA). It shall be noted that dimension re-
duction techniques like PCA still require the toggling activities
of all candidate signals as the initial input during inference. This
is computationally expensive and fundamentally different from
proxy selections. Pagliari et al. [53] adopt Lasso regression, the
most widely-used sparsity-inducing method, for proxy selection
and model construction. For previous methods considering only
flip-flop signals as input features, to avoid underestimation of their
accuracy, we implement them with all RTL signals as input features
for a fair comparison. This is expected to generate better accuracy
than limiting proxies only to flip-flop signals.

7.3 Accuracy of APOLLO

For per-cycle power estimation, APOLLO is compared with other
methods in Figure 10, which measures the trade-off between Q and
corresponding prediction accuracy on Neoverse N1. The previous
Lasso-based method [53] and Simmani [40] are also applied to the
per-cycle estimation for a fair comparison. Both CNN in PRIMAL
and the PCA model are represented by horizontal lines since their
Q = M in this comparison. APOLLO achieves NRMSE < 10% and
R? > 0.95with Q = 150, which is less than 0.03% of total RTL signals
in Neoverse N1. It shows similar NRMSE when comparing PRIMAL
with APOLLO at Q = 500. In contrast, the NRMSE of Simmani and
Lasso is higher than 12% even with Q = 500. This explains why the
previous Lasso-based method [53] and Simmani [40] restrict their
applications to coarse-grained temporal resolution.

We provide a detailed evaluation of the APOLLO model with
Q = 159, which obtains NRMSE = 9.4% and R? = 0.95. Fig-
ure 9(a) illustrates prediction p and label y as power traces on
the 15, 000-cycle testing dataset, covering all 12 handcrafted micro-
benchmarks. APOLLO’s prediction overlaps well with the ground
truth for distinctive patterns from different benchmarks. Figure 9(b)
measures the accuracy in NRMSE and NMAE for each individual
micro-benchmark. The NMAE is less than 10% for all benchmarks.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Prediction from the APOLLO Model with Q=159

Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, et al.

Power (scaled)

Label —— APOLLO's Prediction 15 === NRMSE == NMAE
W o . . A 1 >
o o [R g . .
50(\2 < < C“e’«\ 3 /s\“\ Q‘“‘/ \\2/«\\@ ~ o «\c@" S i 06\“\%/ 0'6\“\%/ -
w0 ¥ (@ g a® AT « S 210
1 C
1 1 1 | g
1 1 1 1 w
30 | | 1 1 5
| | |
20 1
i 0
10 5 ® @ @ (P (O RO
WV el 8 QS e e PN
ol & “\'A*Q 6@“ 5’3"& «@ \d‘(' o @
0 2000 4000 6000 8000 10000 12000 14000 .
Timing window index (unit: 1 clock cycle) Per-Cycle Accuracy on Each Testing Benchmark
(@) (b)
Figure 9: Evaluation of an APOLLO model with Q = 159 (Neoverse N1).
—#- Lasso - Simmani PCA —#- Lasso - Simmani PCA ©-@- APOLLO —%¢—APOLLO™(T=T) ©+@- APOLLO —#¢—APOLLO™(T=T)
PRIMAL -e- APOLLO PRIMAL -e- APOLLO —— Simmani - -3¢+ APOLLO™(T=8) —— Simmani - -3¢+ APOLLO™(T=8)
1.00
S16 '\/ o
It §0.95
-
23
=z 0.90
10
8 0.85

100 200 500 1K 100 200 500 1K
The Number of Power Proxies (Q) The Number of Power Proxies (Q)

Figure 10: Per-cycle power accuracy vs. number of proxies
for per-cycle power prediction (Neoverse N1).

The APOLLO method can enable relative power comparisons
across microarchitecture configurations, since it leads to generally
unbiased power predictions that neither consistently over-estimate
nor under-estimate a microarchitecture. Such unbiased predictions
originate from the rich diversity in our automatically generated
training data, covering both low- and high-power benchmarks of
each design. As Figure 9(a) shows, averaged predicted and ground-
truth power are close for all testbenches on Neoverse N1. The
averaged ground truth is 16.9 and the prediction is 16.8, showing
merely 0.6% difference (similar for Cortex-A77). Thus, microarchi-
tectural comparisons can be made easily if the relative difference
in the power consumption exceeds this small error bar.

Figure 11 estimates power over measurement windows with T
cycles. Previous multi-cycle model Simmani [40] is trained and
validated for different T values {4, 8, 16,32, 64}. APOLLO in Fig-
ure 11 stands for the simple average over T per-cycle predictions.
The green dotted line means predictions of various T values are
all averaged from the same per-cycle APOLLO model. In com-
parison, several multi-cycle APOLLO? models with interval sizes
7 =T = {4,8,16,32, 64} are trained. Results show that r = 8 pro-
vides the best accuracy. We thus choose 7 = 8 for multi-cycle model
and the dotted line is from APOLLO? (r = 8) for all T values. Notice
that Q = 200 for Simmani, while all APOLLO-based models keep
Q = 70. In Figure 11, the simple average of per-cycle APOLLO is
already more accurate than Simmani for all T values using around
one-third of proxies. The multi-cycle APOLLO” with 7 = 8 further
improves NRMSE by 5%. This supports our claim in Section 4.5,
indicating that both simple average of per-cycle model (r = 1) and
directly averaging inputs for any T (r = T) fails to provide the most
accurate and robust solution.

1 8 16 32 64 1 8 16 32 64

Size of Measurement Window (T) Size of Measurement Window (T)

Figure 11: T-cycle accuracy vs. window size (T) for multi-
cycle prediction (Neoverse N1). — Q = 200 for Simmani,
Q =70 for APOLLO methods.

To verify that APOLLO generalizes well on different designs,
we measure the per-cycle accuracy on Cortex-A77. The compar-
isons are shown in Figure 12. Similar to the trend in Figure 10,
APOLLO achieves NRMSE = 8% when Q ~ 300, which is less than
0.03% of total RTL signals in Cortex-A77, while Simmani and Lasso
show NRMSE > 10% with Q = 500. In addition, APOLLO obtains
comparable NRMSE with the CNN in PRIMAL when Q = 500.

7.4 Model Discussion

We provide insights into APOLLO’s high-quality predictions from
two additional perspectives. First, with the same Q, the MCP adopted
by APOLLO allows large weights compared with the Lasso. This
is verified in Figure 13, which reports the summation of all Q ab-
solute weights in each model. Second, the correlation among the
selected power proxies can jeopardize the generalization of models.
Figure 14 shows the average variance inflation factor (VIF) [74],
which quantifies the correlation among proxies for each method.

—~#- Lasso —@ Simmani PCA —#- Lasso —# Simmani PCA
PRIMAL -e- APOLLO PRIMAL -e-APOLLO
1.00
g 14 0 0.95
w o
12 3
2 ':n 0.90 //.—-—-"‘_*
4
< 4

10 \‘\‘\._. 0.85

8 0.80
6 100 200 500 1K 100 200 500 1K
The Number of Power Proxies (Q) The Number of Power Proxies (Q)

Figure 12: Per-cycle power accuracy vs number of proxies
for per-cycle power prediction (Cortex-A77).

APOLLO
38 —&— Lasso —e— APOLLO N —4— Simmani —#— Lasso
) 2 —e— APOLLO
T 3
= <20
o6 5. Fr—————r——*
[} =
E Y
2 £
34 g
s S 2
E &
32 >
1
100 200 100 200

50 50
The Number of Power Proxies (Q) The Number of Power Proxies (Q)

Figure 13: Sum of all abso-
lute weights.

Figure 14: Variance infla-
tion factors (VIF).

APOLLO shows a much lower VIF than Lasso regression. By shrink-
ing weights with different rates, the MCP tends to treat correlated
RTL signals differently so that correlated ones are not selected
simultaneously as proxies. Another observation is that Simmani
also achieves low VIF by selecting power proxies from different
clusters. However, since the clustering-based selection is unsuper-
vised, the correlation between power proxies and the label is not as
directly optimized as APOLLO. Simmani is not covered in Figure 13
as it is not a linear model and its weights are not comparable with
APOLLO/Lasso.

We further categorize the Q APOLLO-extracted proxies based
on the RTL signal properties: 1) determine whether a proxy is a
gate clock signal; 2) for a non-clock RTL signal, determine which
functional unit it belongs to. Figure 15(a) shows the distributions
of the 159 power proxies for Neoverse N1 CPU based on the afore-
mentioned RTL signal properties. 39 power proxies are gated clock
signals, which means APOLLO captures the major contributor, i.e.,
clock network, of the dynamic power consumption. Furthermore,
with the APOLLO model, the weights of the gated clock signals pro-
vide useful insights into the power-hungry clock gating structure,
which sets guidelines for designers to further optimize clock power.
APOLLO model also captures significant power contributors, such
as “Vector Execution" (19 out of 159), “Issue" (36 out of 159), and
“Load Store" (28 out 159). These power proxies are critical indicators
to enhance the throttling schemes and mitigate CPU maximum
power consumption [3].

7.5 Hardware Prototype of APOLLO-OPM

We synthesize the APOLLO model as an OPM under the same target
frequency and 7nm technology as Neoverse N1 CPU. The model
accuracy is measured in NRMSE and the cost is quantified by area
overhead. The trade-off between accuracy and area normalized by
the total gate area of Neoverse N1 is shown in Figure 15(b). By
varying the number of selected proxies Q and the number of bits B
used for weight quantization, such trade-off curve is explored to
help determine appropriate values for Q and B. Although we are
exploring the area and accuracy trade-off using a per-cycle power
model, our automated OPM generation accommodates the average
power computation over T cycles and the only extra hardware cost
is one B + [logQ] + [logT]-bit flip flop and adder. To evaluate the
accuracy of this implementation, we simulate our hardware solution
with the 15,000-cycle testing data of Neoverse N1. According to
Figure 15(b), both Q and B have a considerable impact on accuracy
and area. For all Q values, the accuracy loss is high for B < 9 and
becomes negligible when B > 10. Thus, our strategy is to keep

11

MICRO 21, October 18-22, 2021, Virtual Event, Greece

5
3
Cnmmlt Rename Integer . .4 25%
Fetch 4 Executlon Clock - oz_
Si nals E] 03%
2 g 15 5
m
10 o
6
37 =
Load ;00 200 S 9@\@ 0.1%
{7 & "
Vector Exe:utlon Store M of py, 0350 13 <& Normalized Area
) N Overhead of OPM

() (b)
Figure 15: (a) Distribution of extracted power proxies from
Neoverse N1 microprocessor. (b) Trade-off between the area
overhead and accuracy (NRMSE) of the OPM.

B =~ 10 and vary Q to generate different solutions. Specifically, with
10-bit weights, the quantization leads to < 0.1% NRMSE increase
compared with the APOLLO model on software at design-time. For
an OPM with B = 10 and Q = 159, its total gate area is only 0.2% of
the gate area of Neoverse N1. It has a latency of 2 cycles.

OPM overheads are analyzed using physical implementation esti-
mations with the overall Neoverse N1 CPU, for the OPM placement
region at a central location within the CPU floorplan, bounded
as illustrated in Figure 1. Individual proxies routed from different
blocks to the centralized OPM require buffering that incurs area
and power overheads. On the Neoverse N1 CPU, we budget a single
clock cycle to account for the latency of routing multiple proxies
to the OPM by registering all inputs at the OPM interface (Figure
8), at the expense of an extra cycle latency.

Driving the proxies to the centralized OPM requires high-strength
buffers that contribute an additional 0.4% power overhead. The OPM
circuitry itself consumes 0.5% power overhead, leading to an overall
power overhead of 0.9% compared to the baseline CPU power at
3GHz in a commercial 7nm technology. In comparison, the reported
power overheads of all previous proxy-based runtime monitors are
1.9 — 14% [23], 2.7 — 4% [51], 5.7% [53], 10% [80], and 4.7% [81]. The
total area overhead remains negligible (< 0.5%).

8 APPLICATION SCENARIOS

The accuracy of APOLLO model in estimating the power leads
to new applications for power management in high-performance
CPUs, during both design-time and runtime.

8.1 Design-Time Power Introspection

We described in Section 5 how the APOLLO model can be integrated
into an emulator-assisted workload simulation framework. By only
recording the toggle trace of Q = 150 power proxies, the size of
a simulation trace with N = 17 million cycles on Neoverse N1 is
reduced to only 1.1 GB. The entire trace is generated on Palladium®
Z1 emulation platform [7] within 3 minutes. This capability enables
accurate generation of power trace spanning >10M processor cy-
cles within minutes, enabling unprecedented design-time power
introspection. Figure 16 illustrates this in the power trace generated
for the “hmmer” benchmark from the SPEC2006 on the Neoverse
N1. We show only a portion (40,000 cycles) of the whole trace to
illustrate distinct transitions in the CPU power and current demand.

Achieving this using EDA tools is computationally infeasible
for industry-scale CPU designs. We estimate the inference time
on one billion cycles, covering 1/3 of a second in chip runtime for

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Prediction from the APOLLO Model with Q=150
30 APOLLO's Prediction —— 50-Cycle Averaged APOLLO's Prediction

il

gl |

(el
i

| Ty
I

Power (Scaled)
N
S

2770K 2780K 2
Timing window index (unit: 1 clock cycle)

Figure 16: A portion (40,000 over 17 million cycles) of power
estimation from the APOLLO-integrated emulator-assisted
power analysis (Neoverse N1).

the 3GHz Neoverse N1. With a linear model, APOLLO inference
only takes one minute with Q < 500. In comparison, the CNN
model in PRIMAL takes months and the PCA takes around one
week, since both algorithms do not perform proxies selection. As
for Simmani, since it takes approximately Q? polynomial terms as
input, its inference time can increase quadratically with Q. It may
take Simmani days for inference of a billion cycles when Q = 1000.

8.2 Runtime Proactive Ldi/dt Mitigation

Using the APOLLO-OPM’s per-cycle estimation capability, it is pos-
sible to predict Ldi/dt voltage-droop events ahead of time before
their actual occurrence at a low cost?. We intend to develop this
further in our future work, but here we provide a brief concep-
tual description of how this can be realized using the OPM. The
differentiation (di/dt) operator in continuous time is equivalent
to the differencing (AI) in discrete time. We plot both the OPM
readings on Neoverse N1 and the ground truth AI samples (scaled
to arbitrary units) from PowerPro [8] in a scatter plot in Figure 17.
The plot is in log scale to cover a wide data range with visibility
to details. The Pearson’s correlation [46] between OPM and the
ground truth reaches 0.946, indicating a high correlation.

The points in the bottom-right and the top-left quadrants indi-
cate samples where OPM estimations depart significantly from the
ground truth. The signal magnitudes recorded in these quadrants
are near the origin (indicating small-magnitude delta current) as a
consequence of the OPM accuracy. Points in the top-right quadrant
indicate cycles where there is an increased current demand relative
to the previous cycle. Such cycles are typically precursors to voltage-
droop events. The bottom-left quadrant indicates a drastic reduction
in current demand leading to potential voltage-overshoots. For the
samples in deep droop and overshoot regions, APOLLO OPM cor-
relates well with the ground truth. This indicates that the OPM can
accurately estimate CPU current transients, and thus enable circuit-
level mitigation schemes such as adaptive-clocking to engage prior
to the development of voltage-droop.

Proactive droop mitigation using proxies has been proposed
in prior art [37, 69]. In [69], authors describe a combination of
pipeline event indicators and digital power-proxies for droop-event
indication. However, the technique for creating this proxy is not
formally described. The work of [37] describes proactive mitigation

4In [59], authors describe an online training approach where a voltage-emergency
signature is dynamically learned to predict future noise events. This approach requires
a checkpoint and recovery mechanism for initial failures when no signature has been
learned. This approach is onerous to implement in industrial CPU designs. Correctness
in presence of corner cases is difficult to guarantee.

12

Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, et al.

=
o
o

Ideal Agreement

+ Pearson'sr: 0.946

=
o
4

-
o
E

—100

OPM Per-Cycle AI Reading (Log Scale)
o

-10! Yy
High overshoot
-102y event
-10? -10t -10° 0 10° 10t 102

PowerPro Ground-Truth Per-Cycle Al Reading (Log Scale)

Figure 17: Voltage droop analysis based on per-cycle power
on Neoverse N1, showing OPM prediction versus ground-
truth (scaled to arbitrary units). Note that axes are in log-
scale to visually magnify the uncorrelated samples that are
actually very small in magnitude. The Pearson coefficient is
0.946, indicating a high correlation between estimations and
ground-truth.

on the Hexagon DSP engine. DSP engines are data-plane domi-
nated, in contrast with CPUs that are control-plane dominated. As
such, manual design for CPU power-proxies is significantly harder,
particularly when fine-grained temporal resolution is necessary.

9 CONCLUSION AND FUTURE WORK

Power introspection is increasingly important in modern high-
performance CPU designs, for both design-time optimization and
runtime management. This has particular significance in many-
core infrastructure SoCs in ultra-scaled technology nodes. Within a
unified framework, APOLLO bridges an important technology gap
by providing both cycle-accurate design-time power simulation
and low-overhead on-chip power metering. We demonstrate that
by monitoring < 0.05% RTL signals, the OPM achieves R? > 0.95
with <1% area/power overhead when integrated with Neoverse N1.

Our future research is focused on two directions. Firstly, we
will further develop and quantify margin reduction using proactive
Ldi/dt mitigation with OPM. Secondly, we will focus on translating
the APOLLO design-time model into higher abstraction models
(C/C++instead of RTL), thereby integrating performance simulation
with power-tracing. Ultimately, the APOLLO capability can enable
the development of new mechanisms for smarter power and thermal
management in future SoCs. The framework is extensible to diverse
compute engines and is therefore a compelling addition to the
microarchitects’ toolbox.

ACKNOWLEDGMENTS

This work was conducted under the aegis of high-performance A-
Class CPU research program at Arm Research. The authors thank
Matt Elwood (power architect for multiple generations of Arm
CPUs) for his excellent critique and feedback, without which this
work would not have been possible. This work is partially supported
by NSF-2106828, NSF-2112562 (NSF Al Institute - Athena), and
Semiconductor Research Corporation (SRC) Tasks 2810.021 and
2810.022 through UT Dallas’ Texas Analog Center of Excellence
(TXACE).

APOLLO

REFERENCES

[12]

(13

[14]

[15]

[16

[17]

[18

[20]

[21]

[22]

[23]

[24

[25]

[26

[27]

[28]

[29]

2021. Ampere Altra SoC. https://amperecomputing.com/altra/.

2021. Arm Cortex-A77 Core Technical Reference Manual. https://developer.arm.
com/documentation/101111/latest/preface.

2021. Arm Neoverse N1 Core Technical Reference Manual. https://developer.
arm.com/documentation/100616/0301.

2021. AWS Graviton Processor. https://aws.amazon.com/ec2/graviton/.

2021. Catapult® High-Level Synthesis. https://www.mentor.com/hls-Ip/catapult-
high-level-synthesis/.

2021. Design Compiler® RTL Synthesis. https://www.synopsys.com/
implementation-and- signoff/rtl-synthesis- test/design- compiler-nxt.html.

2021. Palladium® Z1 Enterprise Emulation Platform. https://www.cadence.
com/en_US/home/tools/system-design-and-verification/acceleration-and-
emulation/palladium-z1.html.

2021. PowerPro® RTL Low-Power. https://www.mentor.com/hls-lp/powerpro-
rtl-low-power/.

2021. VCS® functional verification solution.
verification/simulation/ves.html.

Frank Bellosa. 2000. The benefits of event: driven energy accounting in power-
sensitive systems. In ACM SIGOPS European Workshop (EW).

Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard
Ayguade. 2010. Decomposable and responsive power models for multicore
processors using performance counters. In ACM ICS.

Srikar Bhagavatula and Byunghoo Jung. 2012. A low power real-time on-chip
power sensor in 45-nm SOL IEEE Transactions on Circuits and Systems I: Regular
Papers (TCAS-I) (2012).

Srikar Bhagavatula and Byunghoo Jung. 2013. A power sensor with 80ns response
time for power management in microprocessors. In CICC.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news (2011).

Nathan L Binkert, Ronald G Dreslinski, Lisa R Hsu, Kevin T Lim, Ali G Saidi, and
Steven K Reinhardt. 2006. The M5 simulator: Modeling networked systems. IEEE
Micro (2006).

W Lloyd Bircher and Lizy K John. 2007. Complete system power estimation: A
trickle-down approach based on performance events. In IEEE ISPASS.
Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli. 2000. Regression-
based RTL power modeling. ACM TODAES (2000).

Keith A Bowman, Sarthak Raina, J Todd Bridges, Daniel J Yingling, Hoan H
Nguyen, Brad R Appel, Yesh N Kolla, Jihoon Jeong, Francois I Atallah, and
David W Hansquine. 2016. A 16 nm All-Digital Auto-Calibrating Adaptive Clock
Distribution for Supply Voltage Droop Tolerance Across a Wide Operating Range.
IEEE 3SSC (2016).

David Brooks, Pradip Bose, Viji Srinivasan, Michael K Gschwind, Philip G
Emma, and Michael G Rosenfield. 2003. New methodology for early-stage,
microarchitecture-level power-performance analysis of microprocessors. IBM
Journal of Research and Development (2003).

David Brooks, Vivek Tiwari, and Margaret Martonosi. 2000. Wattch: A frame-
work for architectural-level power analysis and optimizations. ACM SIGARCH
Computer Architecture News (2000).

Robert Christy, Stuart Riches, Sujil Kottekkat, Prasanth Gopinath, Ketan Sawant,
Anitha Kona, and Rob Harrison. 2020. A 3GHz ARM Neoverse N1 CPU in 7nm
FinFET for Infrastructure Applications. In ISSCC.

Joel Coburn, Srivaths Ravi, and Anand Raghunathan. 2005. Power emulation: a
new paradigm for power estimation. In DAC.

Luca Cremona, William Fornaciari, and Davide Zoni. 2020. Automatic identi-
fication and hardware implementation of a resource-constrained power model
for embedded systems. Elsevier Sustainable Computing: Informatics and Systems
(2020).

C Gilberto and M Margaret. 2005. Power prediction for intel xscale processors
using performance monitoring unit events. In ISLPED.

Waclaw Godycki, Christopher Torng, Ivan Bukreyev, Alyssa Apsel, and Christo-
pher Batten. 2014. Enabling realistic fine-grain voltage scaling with reconfigurable
power distribution networks. In MICRO.

Bhavishya Goel, Sally A McKee, Roberto Gioiosa, Karan Singh, Major Bhadauria,
and Marco Cesati. 2010. Portable, scalable, per-core power estimation for intel-
ligent resource management. In International Conference on Green Computing
(IGCC),

Ed Grochowski, David Ayers, and Vivek Tiwari. 2002. Microarchitectural simula-
tion and control of di/dt-induced power supply voltage variation. In HPCA.
Zacharias Hadjilambrou, Shidhartha Das, Paul N Whatmough, David Bull, and
Yiannakis Sazeides. 2019. GeST: An automatic framework for generating CPU
stress-tests. In ISPASS.

Jawad Haj-Yihia, Ahmad Yasin, Yosi Ben Asher, and Avi Mendelson. 2016. Fine-
grain power breakdown of modern out-of-order cores and its implications on
skylake-based systems. TACO (2016).

https://www.synopsys.com/

13

[30

[31

(32

[33

&
=)

[35

[36

[37

(38]

@
20,

[40

[41]

[42

[43

[44

S
&

[46

[47

[48

[49]

[50

[51

[52

(53

[54

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, et al. 2020. Array programming with NumPy.
Nature (2020).

Arthur E Hoerl and Robert W Kennard. 1970. Ridge regression: applications to
nonorthogonal problems. Technometrics (1970).

Chang-Hong Hsu, Yunqi Zhang, Michael A Laurenzano, David Meisner, Thomas
Wenisch, Jason Mars, Lingjia Tang, and Ronald G Dreslinski. 2015. Adrenaline:
Pinpointing and reining in tail queries with quick voltage boosting. In HPCA.
Wei Huang, Charles Lefurgy, William Kuk, Alper Buyuktosunoglu, Michael Floyd,
Karthick Rajamani, Malcolm Allen-Ware, and Bishop Brock. 2012. Accurate fine-
grained processor power proxies. In MICRO.

Canturk Isci and Margaret Martonosi. 2003. Runtime power monitoring in
high-end processors: Methodology and empirical data. In MICRO.

Hans Jacobson, Alper Buyuktosunoglu, Pradip Bose, Emrah Acar, and Richard
Eickemeyer. 2011. Abstraction and microarchitecture scaling in early-stage power
modeling. In HPCA.

R. Joseph and M. Martonosi. 2001. Run-time power estimation in high perfor-
mance microprocessors. In ISLPED.

Vijay Kiran Kalyanam, Eric Mahurin, Keith Bowman, and Jacob Abraham. 2020.
A Proactive Voltage-Droop-Mitigation System in a 7nm Hexagon™ Processor. In
VLSIL

Vijay Kiran Kalyanam, Peter G Sassone, and Jacob A Abraham. 2017. Power
prediction of embedded scalar and vector processor: Challenges and solutions.
In ISQED.

Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and Daniel Sanchez.
2015. Rubik: Fast analytical power management for latency-critical systems. In
MICRO.

Donggyu Kim, Jerry Zhao, Jonathan Bachrach, and Krste Asanovi¢. 2019. Sim-
mani: Runtime Power Modeling for Arbitrary RTL with Automatic Signal Selec-
tion. In MICRO.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Ajay Krishna Ananda Kumar and Andreas Gerstlauer. 2019. Learning-Based CPU
Power Modeling. In MLCAD.

Benjamin C Lee and David M Brooks. 2006. Accurate and efficient regression
modeling for microarchitectural performance and power prediction. ACM SIGOPS
operating systems review (2006).

Dongwook Lee, Lizy K John, and Andreas Gerstlauer. 2015. Dynamic power
and performance back-annotation for fast and accurate functional hardware
simulation. In DATE.

Wooseok Lee, Youngchun Kim, Jee Ho Ryoo, Dam Sunwoo, Andreas Gerstlauer,
and Lizy K John. 2015. PowerTrain: A learning-based calibration of McPAT power
models. In ISLPED.

Joseph Lee Rodgers and W Alan Nicewander. 1988. Thirteen ways to look at the
correlation coefficient. The American Statistician (1988).

Charles R Lefurgy, Alan] Drake, Michael S Floyd, Malcolm S Allen-Ware, Bishop
Brock, Jose A Tierno, and John B Carter. 2011. Active management of timing
guardband to save energy in POWER?7. In MICRO.

Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO.

Hugh Mair, Ericbill Wang, Alice Wang, Ping Kao, Yuwen Tsai, Sumanth Gu-
rurajarao, Rolf Lagerquist, Jin Son, Gordon Gammie, Gordon Lin, et al. 2017.
3.4 A 10nm FinFET 2.8GHz tri-gear deca-core CPU complex with optimized
power-delivery network for mobile SoC performance. In ISSCC.

Nico JD Nagelkerke et al. 1991. A note on a general definition of the coefficient
of determination. Biometrika (1991).

Mohamad Najem, Pascal Benoit, Mohamad El Ahmad, Gilles Sassatelli, and Lionel
Torres. 2017. A design-time method for building cost-effective run-time power
monitoring. IEEE TCAD (2017).

Fabian Oboril, Jos Ewert, and Mehdi B Tahoori. 2015. High-resolution online
power monitoring for modern microprocessors. In DATE.

Daniele Jahier Pagliari, Valentino Peluso, Yukai Chen, Andrea Calimera, Enrico
Macii, and Massimo Poncino. 2018. All-digital embedded meters for on-line
power estimation. In DATE.

Neal Parikh and Stephen Boyd. 2014. Proximal algorithms. Foundations and
Trends in optimization (2014).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. NeurIPs
(2019).

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine Learning in Python. JMLR
(2011).

Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph Pusdesris,
Abhishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar Ringe, Ashok Tum-
mala, et al. 2020. The Arm Neoverse N1 Platform: Building Blocks for the

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

[58

[59

[60

[61

[62

[63

(64

[65

[66
[67

(68

[69

]

]

]

]

]

Next-Gen Cloud-to-Edge Infrastructure SoC. IEEE Micro (2020).

Mihai Pricopi, Thannirmalai Somu Muthukaruppan, Vanchinathan Venkatara-
mani, Tulika Mitra, and Sanjay Vishin. 2013. Power-performance modeling on
asymmetric multi-cores. In CASES.

Vijay Janapa Reddi, Meeta S Gupta, Glenn Holloway, Gu-Yeon Wei, Michael D
Smith, and David Brooks. 2009. Voltage emergency prediction: Using signatures
to reduce operating margins. In HPCA.

Vijay Janapa Reddi, Svilen Kanev, Wonyoung Kim, Simone Campanoni, Michael D
Smith, Gu-Yeon Wei, and David Brooks. 2010. Voltage noise in production
processors. IEEE micro (2010).

Santhosh Kumar Rethinagiri, Oscar Palomar, Rabie Ben Atitallah, Smail Niar,
Osman Unsal, and Adrian Cristal Kestelman. 2014. System-level power estimation
tool for embedded processor based platforms. In RAPIDO.

Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and Sandip Kundu. 2013.
A study on the use of performance counters to estimate power in microprocessors.
IEEE Transactions on Circuits and Systems II: Express Briefs (TCAS-II) (2013).
Mark Sagi, Nguyen Anh Vu Doan, Martin Rapp, Thomas Wild, Jérg Henkel, and
Andreas Herkersdorf. 2020. A Lightweight Nonlinear Methodology to Accurately
Model Multicore Processor Power. IEEE TCAD (2020).

Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling large
design space exploration of customized architectures. In ISCA.

Karan Singh, Major Bhadauria, and Sally A McKee. 2009. Real time power
estimation and thread scheduling via performance counters. ACM SIGARCH
Computer Architecture News (2009).

Dam Sunwoo, Gene Y Wu, Nikhil A Patil, and Derek Chiou. 2010. PrEsto: An
FPGA-accelerated power estimation methodology for complex systems. In FPL.
Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) (1996).

Matthew] Walker, Stephan Diestelhorst, Andreas Hansson, Anup K Das, Sheng
Yang, Bashir M Al-Hashimi, and Geoff V Merrett. 2016. Accurate and Stable
Run-Time Power Modeling for Mobile and Embedded CPUs. IEEE TCAD (2016).
T Webel, PM Lobo, T Strach, PB Parashurama, S Purushotham, R Bertran, and A
Buyuktosunoglu. 2020. Proactive power management in IBM z15. IBM Journal of
Research and Development (2020).

14

3
=

=
&

)
=

"o
S

Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, et al.

Fei Wen, Lei Chu, Peilin Liu, and Robert C Qiu. 2018. A survey on nonconvex
regularization-based sparse and low-rank recovery in signal processing, statistics,
and machine learning. IEEE Access (2018).

Stephen J Wright. 2015. Coordinate descent algorithms. Mathematical Program-
ming (2015).

Qing Wu, Qinru Qiu, Massoud Pedram, and Chih-Shun Ding. 1998. Cycle-accurate
macro-models for RT-level power analysis. VLSI (1998).

Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-Yeon Wei, and David Brooks. 2015.
Quantifying sources of error in McPAT and potential impacts on architectural
studies. In HPCA.

Zhang Xuegong. 2000. Introduction to statistical learning theory and support
vector machines. Acta Automatica Sinica (2000).

Jianlei Yang, Liwei Ma, Kang Zhao, Yici Cai, and Tin-Fook Ngai. 2015. Early stage
real-time SoC power estimation using RTL instrumentation. In ASPDAC.

Wau Ye, Narayanan Vijaykrishnan, Mahmut Kandemir, and Mary Jane Irwin. 2000.
The design and use of SimplePower: A cycle-accurate energy estimation tool. In
DAC.

Cun-Hui Zhang. 2010. Nearly unbiased variable selection under minimax concave
penalty. The Annals of statistics (2010).

Yanqing Zhang, Haoxing Ren, and Brucek Khailany. 2020. GRANNITE: Graph
Neural Network Inference for Transferable Power Estimation. In DAC.

Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany, and Zhiru
Zhang. 2019. PRIMAL: Power Inference using Machine Learning. In DAC.
Davide Zoni, Luca Cremona, Alessandro Cilardo, Mirko Gagliardi, and William
Fornaciari. 2018. PowerTap: All-digital power meter modeling for run-time power
monitoring. Elsevier Microprocessors and Microsystems (MICPRO) (2018).

Davide Zoni, Luca Cremona, and William Fornaciari. 2018. Powerprobe: Run-time
power modeling through automatic RTL instrumentation. In DATE.

Yazhou Zu, Charles R Lefurgy, Jingwen Leng, Matthew Halpern, Michael S Floyd,
and Vijay Janapa Reddi. 2015. Adaptive guardband scheduling to improve system-
level efficiency of the POWER7+. In MICRO.

Yazhou Zu, Daniel Richins, Charles Lefurgy, and Vijay Reddi. 2019. Fine-tuning
the active timing margin (ATM) control loop for maximizing multi-core efficiency
on an IBM POWER server. In HPCA.

