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Bench-MR: A Motion Planning Benchmark

for Wheeled Mobile Robots
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Abstract—Planning smooth and energy-efficient paths for
wheeled mobile robots is a central task for applications ranging
from autonomous driving to service and intralogistic robotics.
Over the past decades, several sampling-based motion-planning
algorithms, extend functions and post-smoothing algorithms have
been introduced for such motion-planning systems. Choosing the
best combination of components for an application is a tedious
exercise, even for expert users. We therefore present Bench-MR,
the first open-source motion-planning benchmarking framework
designed for sampling-based motion planning for nonholonomic,
wheeled mobile robots. Unlike related software suites, Bench-MR
is an easy-to-use and comprehensive benchmarking framework
that provides a large variety of sampling-based motion-planning
algorithms, extend functions, collision checkers, post-smoothing
algorithms and optimization criteria. It aids practitioners and
researchers in designing, testing, and evaluating motion-planning
systems, and comparing them against the state of the art on com-
plex navigation scenarios through many performance metrics.
Through several experiments, we demonstrate how Bench-MR
can be used to gain extensive insights from the benchmarking
results it generates.

Index Terms—Nonholonomic Motion Planning; Wheeled
Robots; Software Tools for Benchmarking and Reproducibility.

I. INTRODUCTION

MOTION PLANNING is a central component for au-

tonomous navigation in various real-world domains,

such as autonomous driving, warehouse logistics and service

robotics [1]. Over the years, many different sampling-based

motion-planning algorithms and related components, such as

extend functions and post-smoothing algorithms, have been

introduced for such motion-planning systems. Choosing from

this plethora of components to create a motion-planning sys-

tem or to design a novel component for one is a complex

task that requires significant effort in testing. To reduce this

effort, we have created Bench-MR, the first open-source

benchmarking framework designed for sampling-based motion

planning for nonholonomic, wheeled mobile robots in complex

navigation scenarios resembling real-world applications.
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Fig. 1. Selection of environments provided by Bench-MR: City grid from the
Moving AI path-finding benchmark [2] (top left), polygon-based warehouse
environment (top right), and thresholded occupancy grid from the Freiburg
SLAM dataset [3] (bottom).

Bench-MR is based on two main pillars, namely the motion-

planning components (consisting of the sampling-based mo-

tion planning algorithms, extend functions, collision checkers,

post-smoothing algorithms and optimization criteria) and the

evaluation components (consisting of the navigation scenarios

and performance metrics), see Fig. 2. We chose all these

components carefully to match the application constraints.

For example, we focus on polygon-based collision checking

since it presents a challenge for motion-planning algorithms

which make inefficient use of collision checking. Furthermore,

we support the evaluation of motion-planning systems for

particular settings of navigation scenarios, such as varying

obstacle density. Overall, Bench-MR is a highly configurable

and expandable software suite with representative state-of-the-

art motion-planning and evaluation components. It helps one

to gain novel insights, such as i) how some combinations

of motion-planning and post-smoothing algorithms achieve

better performance than asymptotically (near) optimal motion-

planning algorithms or ii) how changes of the obstacle density

in navigation scenarios can affect the planning efficiency and

the resulting path quality.

Much of Bench-MR builds on the Open Motion Planning

Library (OMPL) [4], but we also provide interfaces to im-

plementations of motion-planning algorithms (such as SBPL
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(as suggested by prior work, such as [19], [20], [21]): feasible

planners, asymptotically (near) optimal planners and lattice-

based planners.1 For feasible and asymptotically (near) opti-

mal planners, Bench-MR provides the option to use random

sampling with a uniform distribution and goal biasing or

deterministic Halton sampling [21], [19], [22]. We choose the

most prominent open-source implementation for each class.

1) Feasible Planners: Feasible planners eventually find a

path with probability one but not necessarily an optimal path.

Bench-MR currently provides feasible planners from OMPL

(such as RRT [23], PRM [24], SPARS [25], RRT [23], [26]

using random forward propagation, EST [27], SBL [28] and

STRIDE [29]).

2) Asymptotically (Near) Optimal Planners: Asymptot-

ically (near) optimal planners eventually find an optimal

path with probability one. Bench-MR currently provides

optimization-based planners from OMPL (such as RRT∗ and

PRM∗ [30], BFMT [31], RRT# [32]), informed search-based

planners (such as Informed RRT∗ [33], SORRT∗ [34] and

BIT∗ [35]), CForest [36] and near-optimal planners (such as

SST [37], an asymptotically near-optimal incremental version

of RRT, SPARS [25] and SPARS2 [38]).

3) Lattice-Based Planners: Lattice-based planners use state

lattices with predefined motion primitives that encode differ-

ential constraints [39]. Bench-MR currently provides lattice-

based planners from SBPL (such as ARA∗ [5], AD∗ [18],

MHA∗ [40] and ANA∗ [41]).

B. Extend Functions

Depending on the class of a sampling-based motion-

planning algorithm, Bench-MR provides two classes of extend

functions, namely those that use random forward propagation

for a given robot dynamical model and those that solve a two-

point boundary value problem [42] to connect two given robot

configurations exactly for a given steer function. We refer the

reader to [26] for an analysis of the properties of both classes.

We also include the predefined motion primitives for lattice-

based planners here since they can be understood as a discrete

set of predefined controls.

1) Robot Dynamics Models: Bench-MR provides two robot

dynamics models, namely a kinematic car (ẋ = vcosθ , ẏ =
vsinθ , θ̇ = v/L · tanδ ) and a kinematic single-track model (ẋ =
vcosθ , ẏ = vsinθ , θ̇ = v/L · tanδ , δ̇ = vδ ), where x and y are

the Cartesian coordinates according to a fixed world frame, L

is the length of the car, v is the tangential velocity, θ is the

heading, δ is the steering angle and δ̇ is its rate [1].

2) Steer Functions: Bench-MR provides common steer

functions, namely Dubins [43], Reeds-Shepp [44], Continuous

Curvature [45], [7] and POSQ [6], [46].

3) Motion Primitives: Bench-MR provides motion primi-

tives from SBPL but also supports changing them by means

of the primitive file interface of SBPL.

1For the sake of brevity, we do not list all included planners with detailed
explanations and instead direct the reader to the corresponding references.

C. Collision Checkers

Bench-MR provides a two-dimensional grid-based approach

to collision checking, which checks whether the robot (mod-

eled as a polygon or single point) collides with blocked cells.

It also includes a two-dimensional polygon-based approach

to collision checking, which uses the separating axis theo-

rem [47] to check whether the robot (modeled as a convex

polygon) intersects with obstacles (also modeled as convex

polygons). Finally, Bench-MR provides the distance field,

represented as a grid whose cells are annotated with the

distance to the closest obstacle, for all environment classes.

D. Post-Smoothing Algorithms

Bench-MR includes several post-smoothing algorithms from

OMPL, such as B-Spline, Shortcut and SimplifyMax [4].

It also includes the recently introduced GRradient-Informed

Post Smoothing (GRIPS) algorithm [48], a hybrid approach

that combines short-cutting with locally optimized waypoint

placement based on the distance field of the environment.

E. Optimization Criteria

Bench-MR provides optimization criteria by allowing user-

defined cost functions for several motion-planning algorithms.

V. BENCH-MR EVALUATION COMPONENTS

In this section, we explain the Bench-MR evaluation com-

ponents.

A. Navigation Scenarios

A navigation scenario consists of a specification of the

shapes of obstacles in an environment, the shape of a robot,

and its start and goal poses. Bench-MR provides the two com-

mon environment classes used by motion-planning systems,

namely grid-based and (convex) polygon-based environments.

It provides both predefined and procedurally-generated envi-

ronments for both classes.

1) Predefined Grid-Based Environments: Bench-MR pro-

vides two classes of predefined grid-based environments. It

includes a selection of city grids from the Moving AI path-

finding benchmark [2], consisting of city layouts of sizes

ranging from 256 × 256 to 1024 × 1024 cells. An example

is the Berlin_0_256 grid in Fig. 1 (top left). It also

provides image-based grids that can be created via an interface

from grey-scale images by thresholding with a user-defined

threshold (a common representation for maps generated by

SLAM algorithms [3]). Examples are shown in Fig. 1 (bottom)

and Fig. 3.

2) Procedurally-Generated Grid-Based Environments:

Bench-MR provides two classes of procedurally-generated

grid-based environments to allow the user to vary environment

characteristics (such as the environment complexity) in small

steps. It provides random outdoor-like environments (with

occasional small obstacles, such as trees) with a desired

percentage of blocked cells γ . These environments are gen-

erated by starting with only unblocked cells and repeatedly

sampling a cell with a uniform distribution and making it
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Fig. 3. Predefined grid-based environment obtained from a gray-scale image
of an Intel office building [3].

blocked. Examples are shown in Fig. 4 (top). It also provides

random indoor-like environments (with complex networks of

rectangular spaces, such as rooms and corridors) with a desired

minimum corridor width r. They are generated by starting

with only blocked cells and, for a predefined number of steps,

repeatedly sampling a cell with a uniform distribution and

applying a modified RRT exploration algorithm to connect

it to the nearest tree node with either horizontal or vertical

unblocked corridors of the desired minimum corridor width.

Examples are shown in Fig. 4 (bottom).

Fig. 4. Procedurally-generated grid-based environments, namely random
outdoor-like environments with different percentages of blocked cells (top),
and random indoor-like environments with different minimum corridor widths
(bottom).

3) Predefined Polygon-Based Environments: Bench-MR

provides five classes of predefined polygon-based environ-

ments, as shown in the left-most five subfigures of Fig. 5. It

provides three parking scenarios in street environments where

a car-like vehicle has to park between other cars, namely

by i) pulling forward into a parking space, iii) backing into

a parking space, and ii) parallel parking. Bench-MR also

provides two navigation scenarios in warehouse environments

where a square-shaped robot has to navigate among shelves

of various sizes and irregular orientations. Additional polygon-

based environments can be loaded from SVG files.

4) Procedurally-Generated Polygon-Based Environments:

Bench-MR allows the user to generate their own polygon-

based environments procedurally by placing (convex) polygo-

nal obstacles into the environment. An example resembling an

asteroid field is shown in the right-most subfigure of Fig. 5.

B. Performance Metrics

Bench-MR provides commonly used performance metrics

for evaluating motion-planning systems with respect to their

planning efficiency and resulting path quality.

1) The success statistics measure the percentage of found,

collision-free and exact paths. Whether a path is

collision-free is checked with a given collision checker.

The ratio of exact paths is included since some motion-

planning systems report approximate paths.

2) The path length measures the length in meters (m) of a

path in the workspace.

3) The maximum curvature (κmax), normalized curva-

ture (κnorm) and angle-over-length (AOL) measure the

smoothness of a path. Smoother paths result in less con-

trol effort and energy to steer a robot and more comfort

for the passengers. Since the maximum curvature is not

well-defined in the presence of cusps, we also use the

normalized curvature (which is the path-length-weighted

curvature along the path segments between the cusps),

defined as

κnorm = ∑
i

∫
σi

κ(σ̇i(t))|| ṗσi
(t)||2 dt, (1)

where σi are the path segments of path σ between the

cusps, κ(σ̇(t)) is the curvature at point σ(t) of the path

and pσ are the x and y components of σ . Since the nor-

malized curvature ignores cusps, we also use the angle-

over-length (AOL) as a combined metric that divides the

total heading change by the path length. The total head-

ing change is computed numerically by summing the

absolute angular difference between neighboring tangent

vectors along the path. Following this convention, the

heading change for each cusp is approximately π .

4) The computation times measure the time in seconds (s)

required for collision checking, for extend function eval-

uation (namely forward integration when using forward

propagation or solving the two-point boundary value

problems when using steer functions), and for finding

an initial path.

5) The mean clearing distance measures how close a path

is to obstacles (reported in meters, m).

6) The number of cusps [45] measures how often a robot

has to stop on a path and turns its wheels to abruptly

change its heading.

VI. EXPERIMENTS WITH BENCH-MR

The large variety of tools provided by Bench-MR allows the

user to compare various motion-planning systems on complex

navigation scenarios with many performance metrics and per-

form ablation studies, which is a key contribution of Bench-

MR that was often missing in prior work. We describe several

experiments performed with Bench-MR and their results to

provide examples of its use. These experiments are available as

Jupyter notebooks to help the user with developing their own

experiments. Our experiments with different post-smoothing

algorithms and different optimization criteria resulted in novel

scientific insights into the performance of sampling-based

motion-planning systems.
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Fig. 5. Paths for polygon-based environments computed by the Bidirectional Asymptotically Optimal Fast Marching Tree (BFMT) motion-planning algorithm
using the Reeds-Shepp steer function. The first five environments are predefined, and the right-most environment is procedurally generated.

Fig. 6. Path length, normalized curvature and number of cusps of differ-
ent combinations of sampling-based motion-planning algorithms and extend
functions, namely RRT and SST using random forward propagation for the
kinematic car model (left and center) and RRT using the Reeds-Shepp steer
function (right). All performance metrics are reported with a computation time
limit of 30 seconds each in 50 random indoor-like grid-based environments
with a desired minimum corridor width of 5 cells.

A. Different Extend Functions

Bench-MR allows us to compare different combinations of

sampling-based motion-planning algorithms and extend func-

tions, which is important since it is often overlooked that the

performance of sampling-based motion-planning algorithms

depends on their extend functions [26], [6]. As an example,

we compare RRT using random forward propagation for the

kinematic car model, SST using random forward propagation

for the kinematic car model and RRT using the Reeds-

Shepp steer function. Fig. 6 shows that RRT with the Reeds-

Shepp steer function achieves smaller path length, normalized

curvature and number of cusps.

B. Different Post-Smoothing Algorithms

Bench-MR allows us to compare different combinations of

feasible motion-planning algorithms (that find initial paths

quickly) and post-smoothing algorithms (that improve the

quality of the initial paths), which is important since such

combinations have rarely been thoroughly evaluated [35], [37].

As an example, we compare the feasible motion-planning

algorithms RRT, EST, SBL and STRIDE using the post-

smoothing algorithms GRIPS, B-Spline, Shortcut and Sim-

plifyMax against the asymptotically (near) optimal motion-

planning algorithms RRT∗, Informed RRT∗, SORRT∗, PRM∗,

CForest, BIT∗ and SPARS. The comparison is performed

adopting the Reeds-Shepp extend function. Fig. 7 shows

that feasible motion-planning with post-smoothing can indeed

outperform asymptotically (near) optimal motion-planning al-

gorithms in both planning efficiency and the resulting path

quality. For example, RRT using the post-smoothing algorithm

SimplifyMax achieves a smaller path length and about the

same normalized curvature after less than one second than

Informed RRT∗ after 60 seconds. Fig. 8 shows that the post-

smoothing algorithms GRIPS and SimplifyMax often signifi-

cantly decrease the path length and maximum curvature, with

SimplifyMax typically running faster. The post-smoothing

algorithm B-spline does not always improve the path quality,

which might be due to the issue that B-splines do not translate

well to paths that can be followed by the Reeds-Shepp and

other steer functions, resulting in slight turns that increase the

curvature.

C. Different Sampling Strategies

Bench-MR allows us to compare different sampling strate-

gies, for example using random sampling and de-randomized

approaches, such as using deterministic sampling or state

lattices. As an example, we compare PRM∗ using random

uniform sampling against PRM∗ using deterministic Halton

sampling (both using the Reeds-Shepp extend function) and

the lattice-based motion-planning algorithm ARA∗. Fig. 9

shows that PRM∗ using deterministic Halton sampling slightly

outperforms PRM∗ using random uniform sampling with re-

spect to both the path length and curvature, while the lattice-

based motion-planning algorithm ARA∗ outperforms both of

them significantly.

D. Different Optimization Criteria

Bench-MR allows us to compare different optimization

criteria. As an example, we compare PRM∗ with different

cost functions, namely path length, minimum clearing distance

and normalized curvature (also for this example we use the

Reeds-Shepp extend function). Fig. 10 shows that maximizing

the minimum clearing distance indeed increases the clearance

compared to minimizing the path length or normalized cur-

vature but also increases the number of cusps substantially.

Minimizing the normalized curvature indeed decreases the

curvature slightly compared to minimizing the path length.

However, we found it difficult to minimize the normalized

curvature in OMPL since its cost interface does not allow one

to take the cusps into account that are created when connecting

two edges. The right-most subfigure in Fig. 10 (top) shows that

this limitation can create unexpected cusps.

E. Different Environment Complexities

Bench-MR allows us to compare motion-planning systems

in procedurally-generated environments of different complexi-

ties. As an example, we show how the number of cusps of the
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Fig. 7. Initial path of the the feasible motion-planning algorithm RRT using the Reeds-Shepp steer function after 0.45 seconds (left), its improvement using
the post-smoothing algorithm SimplifyMax after less than 1 millisecond (center) and the path of the asymptotically (near) optimal motion-planning algorithm
Informed RRT∗ using the Reeds-Sheep steer function after 60 seconds (right).

Fig. 8. Path length and normalized curvature of different combinations of the feasible motion-planning algorithms RRT, EST, SBL and STRIDE and post-
smoothing algorithms compared against the asymptotically (near) optimal motion-planning algorithms RRT∗, Informed RRT∗, SORRT∗, PRM∗, CForest, BIT∗

and SPARS. Both performance metrics are reported with computation time limits of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 7.5 and 10.0 seconds each in random indoor-like
grid-based environments of size 150×150 cells and a desired minimum corridor width of 5 cells. The initial paths of the feasible motion-planning algorithms
are marked with H, and the paths of the post-smoothing algorithms are marked with l for GRIPS, 6 for B-Spline, : for Shortcut and t for SimplifyMax.
The paths of the asymptotically (near) optimal motion-planning algorithms are solid lines marked with ·.

Fig. 9. Path length, computation time and AOL for different sampling
strategies, namely PRM∗ using deterministic Halton sampling (left), PRM∗

using random uniform sampling (center) and the lattice-based motion-planning
algorithm ARA∗ (right). All performance metrics are reported with a com-
putation time limit of 0.3 seconds each (to be fair to the fast ARA∗) in 100
random indoor-like grid-based environments with a desired minimum corridor
width of 3 cells.

paths of different motion-planning algorithms using the Reeds-

Shepp steer function varies with the desired minimum corridor

width for random indoor-like grid-based environments and the

desired percentage of blocked cells for random outdoor-like

grid-based environments. Fig. 11 shows that the number of

cusps significantly decreases for almost all motion-planning al-

gorithms as the desired minimum corridor width increases. The

number of cusps significantly increases for almost all motion-

planning algorithms as the desired percentage of blocked cells

increases.

F. Different Components of the Computation Time

Bench-MR allows us to determine different components

of the computation time. As an example, we determine the

computation time needed for collision checking, Reeds-Shepp

extend function evaluation and the remaining phases of motion

planning. Fig. 12 shows the results for CForest, Informed

RRT∗, RRT and MHA∗.

VII. CONCLUSIONS

Following the need for more reproducible evaluations of

commonly used AI algorithms, and with the goal of comparing

a large set of state-of-the-art motion planning techniques, we

presented Bench-MR, the first open-source motion-planning

benchmarking framework designed for sampling-based motion

planning for nonholonomic, wheeled mobile robots. Unlike

related software suites, Bench-MR is an easy-to-use and com-

prehensive benchmarking framework that aids practitioners

and researchers in designing, testing and evaluating motion-

planning systems and comparing them against the state of the

art on complex navigation scenarios with many performance

metrics. We presented several experiments that showed how

Bench-MR can be used to understand the behavior of different

motion-planning systems. The large variation in experimental

results demonstrated that the performance of motion-planning

systems depends on their components and that benchmarking
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(a) Paths.

(b) Path length, normalized curvature, mean clearing distance and number of cusps.

Fig. 10. Results for different optimization criteria, namely PRM∗ with minimizing path length (left), maximizing minimum clearing distance (center) and
minimizing normalized curvature (right). The colors of the paths (top) correspond to the colors of the optimization criteria (bottom). All metrics have been
computed with a time limit of 2 seconds each in 100 random indoor-like grid-based environments with a desired minimum corridor width of 5 cells.

Fig. 11. Number of cusps for BFMT, BIT∗, CForest, Informated RTT∗,
PRM, PRM∗, RRT#, RRT∗, MHA∗ and SPARS2 using the Reeds-Shepp steer
function with a computation time limit of 15 seconds each in 5 random indoor-
like grid-based environments of size 100× 100 cells and desired minimum
corridor widths ranging from 3 to 8 cells in increments of 1 cell (left) and
5 random outdoor-like grid-based environments of size 100 cells and desired
percentages of blocked cells ranging from 1.0 to 3.0 percent in increments of
0.5 percent (right).

Fig. 12. Total computation time and its components for collision checking
and extend function evaluation (that is, steering) for CForest, Informed RRT∗,
RRT and MHA∗.

frameworks like Bench-MR are therefore vital for designing

them for given applications and for guiding further research on

motion planning. In future work, we plan to extend Bench-MR

to dynamic environments.
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