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Abstract: The almost splitting theorem of Cheeger-Colding is established in the set-
ting of almost nonnegative generalized m-Bakry–Émery Ricci curvature, in which m is
positive and the associated vector field is not necessarily required to be the gradient of a
function. In this context it is shown that with a diameter upper bound and volume lower
bound, aswell as control on theBakry–Émery vector field, the fundamental group of such
manifolds is almost abelian. Furthermore, extensions of well-known results concerning
Ricci curvature lower bounds are given for generalizedm-Bakry–ÉmeryRicci curvature.
These include: the first Betti number bound of Gromov andGallot, Anderson’s finiteness
of fundamental group isomorphism types, volume comparison, the Abresch–Gromoll
inequality, and a Cheng–Yau gradient estimate. Finally, this analysis is applied to sta-
tionary vacuum black holes in higher dimensions to find that low temperature horizons
must have limited topology, similar to the restrictions exhibited by (extreme) horizons
of zero temperature.

1. Introduction

What are the possible topologies of stationary black holes? As we will see, a new ap-
proach involves the study of generalizedm-Bakry–Émery Ricci curvature lower bounds.
Let us recall previous techniques and results. The topology of stationary black holes in
4-dimensional spacetime is tightly constrained by energy conditions. Hawking [23],
[24, Proposition 9.3.2] proved that if the dominant energy condition holds, then appar-
ent horizons of stationary black holes in 4-dimensional spacetimes must have spherical
topology; a borderline case that could have admitted toroidal topology was definitively
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eliminated more recently [18]. An independent theorem, based on the topological cen-
sorship theorem [16] and requiring instead the null energy condition but also implying
spherical horizon topology (in this case, for the event horizon itself) in 4-dimensional
stationary spacetimes, was first noticed in [12] and was generalized in [19].

In higher dimensions, the situation is quite different. Although topological censorship
applies in 5 and more dimensions, it places no significant restrictions on event horizon
topology. Hawking’s theorem can be generalized to higher dimensions [20], and implies
that the horizon must be of positive Yamabe type, but this is a relatively mild restriction
in higher dimensions. In 5 spacetime dimensions it permits orientable horizon cross-
sections to have the topology of spherical spaces, S1 × S2, or connected sums thereof.
There are nowmany known examples of higher-dimensional stationary black holes with
nontrivial topology, such as the 5-dimensional ring solutions of [14] and [36] which
have cross-sectional horizon topology S1 × S2. However, there are no known examples
in which the horizon is a (nontrivial) connected sum of these.

The near horizon geometry equations provide another approach to horizon topology
in higher dimensions. The idea is to consider, instead of a curvature bound, the precise
equations satisfied by the induced degeneratemetric onKilling horizons. This has proved
useful in the case of extreme (also called degenerate or zero temperature) Killing hori-
zons, see for example [30,31]. In [31] it is proved, among other things, that for stationary
vacuum extreme black holes in an (n+2)-dimensional spacetime, the fundamental group
of the horizon contains an abelian subgroup of finite index which is isomorphic to Z

k

with k ≤ n − 2. Since extreme horizons constitute a “set of measure zero”, an ob-
vious question is whether results obtained for zero-temperature black holes using the
near horizon geometry equations have some stability when the thermostat is turned up.
One purpose of this paper is to generalize the results of [31] to nonzero temperature
horizons. Note that each technique listed above deals with a logically different (and in
the presence of general time evolution, a physically different) entity: apparent horizons
for the technique pioneered by Hawking, event horizon cross-sections for topological
censorship, and Killing horizon cross-sections for the near horizon geometries.

Consider an (n + 2)-dimensional stationary black hole spacetime satisfying the vac-
uum Einstein equations

Rμν(g) = 2

n
�gμν. (1.1)

According to the rigidity theorem [25,27,33] stationarity generically yields, in addi-
tion to an asymptotically timelike Killing field, one or more extra rotational symmetries
which altogether produce a Killing field V that is normal to the event horizon. The event
horizon is then a Killing horizon, and there exists a surface gravity constant κ such that
on this surface

∇∇∇V V = κV, (1.2)

where ∇∇∇ is the Levi-Civita connection for g. In a neighborhood of each horizon com-
ponent, Gaussian null coordinates (u, v, xi ) can be introduced so that V = ∂v , u = 0
represents the horizon, xi are coordinates on the n-dimensional compact horizon cross-
section H, and U = ∂u is an outgoing null vector. In these coordinates the spacetime
metric then takes the form [26, Sect. 3.2]

g = 2dv
(
du − uF(u, x)dv − uhi (u, x)dxi

)
+ gi j (u, x)dxi dx j . (1.3)

Here g is the induced metric on the horizon cross-section and F(0, x) = κ . The
components of the Ricci tensor in the direction tangent to the cross-section are given in
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[26,27] by

Ri j (g) = Ri j (g) − 1

2
hi h j − ∇(i h j) − κLUgi j − LULV gi j + O(u), (1.4)

where L denotes Lie differentiation and ∇ is the Levi-Civita connection for g. Since V
is a Killing field the last term before O(u) vanishes. Thus, with the help of the Einstein
equations (1.1), taking the limit as u → 0 produces

Ri j (g) − ∇(i h j) − 1

2
hi h j = 2

n
�gi j + 2κχi j on H, (1.5)

where χi j = 〈∇∇∇∂i U, ∂ j 〉 is the null second fundamental form in the U direction.
Recall that the generalized m-Bakry–Émery Ricci tensor is given by

RicmX (g) = Ric(g) +
1

2
LX g − 1

m
X ⊗ X, (1.6)

in which X is a 1-form/vector. Thus, by settingm = 2 and X = −h equation (1.5) gives
a lower bound for the Bakry–Émery Ricci curvature of horizon cross-sections

Ric2−h(g) = 2

n
�g + 2κχ on H. (1.7)

This may then be combined with results concerning Bakry–Émery Ricci curvature
lower bounds to produce restrictions on horizon topology. In particular, it is typically the
case that κ is nonnegative as it represents the horizon temperature, so that if in addition
χ is positive semi-definite then the previous results for extreme black holes [31] imme-
diately carry over to this realm. However, such semi-definiteness is not a general feature
of black hole Killing horizons. For example, it has been shown by direct computation
[11] that χ for the Emparan-Reall black ring [14], has one negative eigenvalue; it can be
inferred from the m-Bakry–Émery splitting theorem obtained in [31], that at least some
eigenvalue has to be negative. With this in mind, let λ denote a lower or upper bound
(depending on the sign of κ) for the eigenvalues of χ , that is

κλ = infx∈H min
w∈TxH|w|=1

κχ(w,w). (1.8)

Furthermore let C, D, and V be constants such that

diam(H) ≤ D, Vol(H) ≥ V, supH (|X | + |∇divX |) ≤ C. (1.9)

Theorem 1.1. LetH be a single component compact horizon cross-section in a station-
ary vacuum spacetime satisfying (1.9).

(i) Assume that� ≥ 0. There exists κ0(n, λ, C,D,V) > 0, such that if |κ| ≤ κ0 thenH is
not a connected sum M#N, where M and N are compact manifolds having nontrivial
fundamental groups, except possibly in the case that π1(M) = π1(N ) = Z2.

(ii) Assume that� ≥ 0. There exists κ0(n, λ, C,D) > 0, such that if |κ| ≤ κ0 then the first
Betti number satisfies b1(H) ≤ n + 2. Moreover, if X = d f0 for some f0 ∈ C∞(H)

and the assumption supH (|X | + |∇divX |) ≤ C is replaced by supH | f0| ≤ C, then
b1(H) ≤ n.
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(iii) Assume that � > 0. There exists κ0(n, λ,�) > 0, such that if |κ| ≤ κ0 then π1(H)

is finite. In particular, de Sitter black rings having horizon cross-sectional topology
S1 × M where M is a compact manifold, do not exist with low temperature.

(iv) Let �0 ∈ R. There are only finitely many isomorphism types of π1(H), among
horizons satisfying (1.9) and 2

n� + κλ ≥ �0.

Remark 1.2. It should be noted that the surface gravity κ depends on scalings of the
Killing fieldV .While there is a canonical normalization in the asymptotically flat setting,
in general this is not the case. Thus, it may be desirable in certain situations to restate
Theorem1.1 in terms of the smallness of a quantity invariant under scalings of theKilling
field, namely κλ.

In the asymptotically flat or asymptotically Kaluza-Klein setting, if there is a U (1)
symmetry (this condition is generic [25,27,33]) then RP

3#RP3 may be removed from
the list of exceptional cases for Theorem 1.1 (i), see [31, Remark 8]. Since the horizon
cross-section must be of positive Yamabe type [18,20], it follows that low temperature
orientable horizons in spacetime dimension 5 can only have the topology of a spherical
space, or S1× S2. Furthermore, the blackfolds technique [4–6] has been used to infer the
existence of new horizons, including new black rings, in asymptotically anti-de Sitter
and asymptotically flat spacetimes. The approach also suggests black rings in de Sitter
spacetime, but not in the low temperature limit (for bounded horizon area). It would be
interesting to determine more precisely the domain of validity of that approach, and of
ours.

This theorem may be interpreted as a type of stability for topological restrictions
present in the structure of extreme black holes, or rather, low temperature horizons have
the same limited topology as zero temperature horizons. The strategy to achieve this
result will be to develop an almost splitting theorem in the generalized Bakry–Émery
setting, and then harness the topological conclusions that flow forth. The original almost
splitting theorem of Cheeger and Colding [8], asserts that if the Ricci curvature is almost
nonnegative and there is almost a line, then the manifold almost splits. Thus it is a quan-
titative form of the Cheeger-Gromoll [9] splitting theorem, in that it quantifies precisely
how far off the manifold is from an exact splitting. From such a quantitative result, topo-
logical consequences arise as corollaries, though the consequences are somewhat less
restrictive than those implied by an exact splitting. For example, with a diameter upper
bound and volume lower bound Yun [42], relying on work of Wei [40], showed that
the fundamental group of manifolds with almost nonnegative Ricci curvature is almost
abelian, that is, it contains an abelian subgroup of finite index. When the Ricci curvature
is nonnegative the splitting theorem leads to knowledge of the structure of this abelian
subgroup, namely it is a direct sum of infinite cyclic groups. An extension of the almost
splitting theorem to the Bakry–Émery setting has been established by Jaramillo [29] and
Wang and Zhu [38], in the case of a gradient field X = d f with m = ∞ and | f | ≤ c;
the result in [38] requires also a bound on the first derivatives |∇ f | ≤ c. Moreover,
extensions in this context of the results of Yun and Wei are also given in [29].

Our setting differs from that of [29,38] in two ways. First, we have a term with
negative coefficient −1/m in equation (1.6), which is not present in the previous works.
The sign of this term, however, is beneficial. What makes the current setting more
difficult is the second difference, which is that the 1-form X need not be exact. An
almost splitting result in this situation, with m = ∞, has been obtained by Zhang and
Zhu [43], inwhich X is required to be almost zero. For applications to horizons, however,
it is necessary to consider the general case where X is neither exact nor small. It turns
out that the advantageous −1/m coefficient is able to compensate for the difficulties
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arising from large non-gradient X , to allow for a version of the almost splitting theorem
in this situation. In what follows, the Riemannian and Gromov-Hausdorff distances will
be denoted by d and dGH , respectively.

Theorem 1.3. Let (M, g, X) be a complete Riemannian manifold of dimension n with
smooth 1-form X. Let m, r, ε, C > 0 and δ ≥ 0, and assume thatRicmX (g) ≥ −(n−1)δg
together with supM (|X | + |divX |) ≤ C. If L > 2r + 1, and there are points p, q± ∈ M
satisfying

d(q−, p) > L , d(q+, p) > L , d(q−, p) + d(q+, p) − d(q−, q+) < ε, (1.10)

then there exists a length space N and ametric ball Br/4(0, x) ⊂ R×N with the product
metric, such that

dGH
(
Br/4(p), Br/4(0, x)

) ≤ ϒ (1.11)

where ϒ > 0 may be made arbitrarily small by sending ε, δ, L−1 → 0.

In analogy with the splitting theorem for nonnegative generalized m-Bakry–Émery
Ricci curvature [31], the projection of X onto the R-factor and the Bakry–Émery Ricci
curvature in this direction almost vanish in a weak sense described in Theorem 6.2. In the
classical case these facts imply that nonnegative Bakry–Émery Ricci curvature descends
to N , and itwould be of interest to examine towhat extent this holds in the current context.
An immediate consequence of the almost splitting theorem asserts that the splitting
extends to limit metric spaces under Gromov-Hausdorff convergence, see Corollary 6.3.
Moreover as described above, the almost splitting theorem leads to consequences for
the fundamental group, in particular we obtain the following characterization.

Theorem 1.4. Consider a complete Riemannianmanifold (M, g, X) of dimension n with
smooth 1-form X. Let m > 0, δ ≥ 0, and assume that

RicmX (g) ≥ −(n − 1)δg, diam(M) ≤ D, Vol(M) ≥ V, supM (|X | + |∇divX |) ≤ C. (1.12)

There exists δ0 (n,m, C,D,V) > 0, such that if δ ≤ δ0 then π1(M) is almost abelian.
In particular, such M admit a finite cover whose fundamental group is abelian.

Note that the assumptions on X in this theorem and Theorem 1.1, are stronger than
those in Theorem 1.3. The proof relies heavily on a volume comparison result, Proposi-
tion 7.1 below, that plays a role similar to the Bishop-Gromov inequality. Typical volume
comparison theorems in the Bakry–Émery realm use a comparison constant curvature
space of higher dimension, which is not sufficient for our purposes since the limit of
geodesic ball volume ratios blows up when the dimensions do not coincide. A vol-
ume comparison with a model space of the same dimension was achieved by Jaramillo
[29] in the gradient Bakry–Émery setting. Surprisingly, establishing such a result in the
non-gradient Bakry–Émery case is quite delicate and requires a new set of ideas. In
particular, for topological applications, it is important that the exponential growth of the
volume ratio estimate be controlled by the curvature of the model space. Moreover, our
proof requires finite and positive m, and it is not clear whether such a result holds when
m = ∞. If control over the exponential growth of volume ratios is not required, then
in the m = ∞ case a version of the volume comparison result was given by Zhang and
Zhu [43].

From the volume comparison Proposition 7.1, many classical results for Ricci cur-
vature lower bounds may be extended. As examples of this we obtain generalizations of
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Anderson’s finiteness of fundamental group isomorphism types [2], and the first Betti
number bound of Gallot [17] and Gromov [22, Theorem 5.21].

Theorem 1.5. Consider a complete Riemannianmanifold (M, g, X) of dimension n with
smooth 1-form X. Let m > 0, δ ≥ 0, and assume that

RicmX (g) ≥ −(n − 1)δg, diam(M) ≤ D, supM |X | ≤ C. (1.13)

(i) Then there is a function B (δ, n,m, C,D) that yields a bound for the first Betti number
and satisfies

b1(M) ≤ B (δ, n,m, C,D) , lim
δ→0

B (δ, n,m, C,D) = n + m. (1.14)

More precisely, there is a δ0(n,m, C,D) > 0 such that if δ ≤ δ0 then b1(M) ≤ n+m.
Furthermore, if X = d f0 for some f0 ∈ C∞(M) and the assumption supM |X | ≤ C
is replaced by supM | f0| ≤ C, then the same conclusions hold with n + m replaced
by n.

(ii) Among the class of manifolds satisfying (1.13) together with Vol(M) ≥ V , there are
only finitely many isomorphism types of π1(M).

The paper is organized as follows. In Sect. 2 basic comparison geometry theorems
are extended to the current setting, and in Sect. 3 a preliminary quantitative splitting
result known as the Abresch-Gromoll excess estimate is established for generalized
Bakry–Émery Ricci curvature. Section 4 is dedicated to Hessian estimates for Buse-
mann function stand-ins known as X -harmonic replacement functions. With these es-
timates, together with a segment inequality proven in Sect. 5, a quantitative version of
the Pythagorean Theorem is given in Sect. 6 from which the desired almost splitting
theorem follows. Topological consequences of the almost splitting result are established
in Sect. 7, including the proofs of Theorems 1.1, 1.4, and 1.5. Lastly, in the appendix
we derive an extended version of the Cheng-Yau gradient estimate that is appropriate
for our purposes.

2. Comparison Geometry

2.1. Fundamental comparison theory results. For the Bakry–Émery theory with gradi-
ent vector field X = d f , results analogous to those we need are known, or at least are
known whenm = ∞. Typically, results that hold whenm = ∞ can be established more
easily, and with fewer assumptions, in the case of finite positivem. The challenge in this
paper is to deal with non-gradient vector fields. This is primarily an issue when comput-
ing volume integrals, although is not usually a difficulty for comparison estimates that
require only line integrals along geodesics.

Along a unit speed geodesic γ : [0, r ] → M , consider the function

fγ (r) :=
ˆ

γ

X · ds =
rˆ

0

〈X (γ (s)), γ ′(s)〉ds. (2.1)

By following the arguments in [41, Sect. 2], replacing the f of that work with fγ ,
and including the helpful term due to the finite m > 0, a mean curvature/Laplacian
comparison result is obtained under the assumption that fγ remains bounded. However,
we wish to apply these techniques in the setting of noncompact covering spaces, where
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fγ may become unbounded. Nevertheless we are able to overcome these difficulties
by exploiting the finite positive parameter m. This leaves open the interesting issue of
whether the Laplacian comparison theorem of [41] can be proved for X not gradient, or
equivalently Proposition 2.1 below can be proved whenm = ∞, assuming only a bound
on |X |. A related type of Laplacian comparison, with m = ∞, has been established in
[43, Proposition 2.1].

Fix p ∈ M and let ρ(x) = d(x, p) denote the distance function from p. Away from
the cut locus this function is smooth and satisfies |dρ| = 1 as well as ∇∇ρ∇ρ = 0. The
second fundamental form and mean curvature of geodesic spheres are given by

A = Hessρ, H = �ρ = trHessρ. (2.2)

Recall that this mean curvature satisfies the Riccati equation

H ′ = ∂ρH = −|A|2 − Ric(∇ρ,∇ρ) = −| Å|2 − 1

(n − 1)
H2 − Ric(∇ρ,∇ρ), (2.3)

where Å is the tracefree part of A. The Bakry–Émery modified version of the Laplacian,
or so called drift Laplacian, is �X = � − ∇X , and the corresponding modified mean
curvature takes the form

HX = �Xρ = H − ∇Xρ. (2.4)

This yields an augmentation of the Riccati equation

H ′
X = −| Å|2 − 1

(n − 1)
H2
X − RicmX (∇ρ, ∇ρ) − 2

(n − 1)
HX∇Xρ − (n + m − 1)

m(n − 1)
(∇Xρ)2

= −| Å|2 − 1

(n + m − 1)
H2
X − RicmX (∇ρ, ∇ρ)

− 1

(n − 1)

(√
m

n + m − 1
HX +

√
n + m − 1

m
∇Xρ

)2
. (2.5)

The comparison spaces will be taken to be the usual simply connected constant
curvature models, albeit with a different dimension d depending on the parameter m.
However, we will not necessarily choose a space of the same dimension. These metrics
may be written in geodesic polar coordinates by

ḡd,λ = dρ2 + �2λ(ρ)gSd−1 , �λ(ρ) =

⎧
⎪⎨
⎪⎩

1√
λ
sin

√
λρ λ > 0,

ρ λ = 0,
1√−λ

sinh
√−λρ λ < 0,

(2.6)

where gSd−1 is the standard round metric on the sphere Sd−1. Note that � is the solution
of the initial value problem

�′′(ρ) + λ�(ρ) = 0, �(0) = 0, �′(0) = 1, (2.7)

where for convenience we have dropped the subscript λ. A computation shows that the
mean curvature of geodesic spheres in the comparison space is then

H̄d(ρ) := (d − 1)
�′(ρ)

�(ρ)
= (d − 1)

⎧⎪⎨
⎪⎩

√
λ cot

√
λρ λ > 0,

1/ρ λ = 0,√−λ coth
√−λρ λ < 0.

(2.8)
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Proposition 2.1. (Mean Curvature Comparison) Let m > 0 and δ ≥ 0, and assume that
RicmX (g) ≥ −(n− 1)δg. Choose a comparison space (2.6) of dimension d = n +m with
λ = −δ. Then

HX (ρ) ≤ H̄n+m(ρ) (2.9)

for all ρ ≥ 0 such that HX (ρ) is defined. Furthermore, when viewed as an inequality for
the drift Laplacian, the corresponding statement holds at all points in the barrier sense.

Proof. Observe that (2.3) and the Bakry–Émery Ricci curvature lower bound yield

(
�2H
)′ = 2��′H + �2H ′

≤ 2��′H − 1

(n − 1)
�2H2 − �2Ric(∂ρ, ∂ρ)

≤ 2��′H − 1

(n − 1)
�2H2 +

1

2
�2£X g(∂ρ, ∂ρ) − 1

m
�2〈X, ∂ρ〉2 + (n − 1)�2δ

= −
(

�H√
n − 1

− √
n − 1�′

)2
+ (n − 1)�′2 + 1

2
�2£X g(∂ρ, ∂ρ)

− 1

m
�2〈X, ∂ρ〉2 + (n − 1)�2δ. (2.10)

On the other hand, (2.7) and (2.8) produce

(
�2 H̄d

)′ = (d − 1)�′2 + (d − 1)δ�2

= (d − n)�′2 + (n − 1)�′2 + (d − n)δ�2 + (n − 1)δ�2.
(2.11)

The two terms on the right-hand side of this equation having coefficient (n − 1),
appear also in (2.10). Thus, solving for them in (2.11) and inserting the expression into
(2.10) gives

(
�2H
)′ ≤
(
�2 H̄d

)′ − (d−n)�′2 +�2∇∂ρ 〈X, ∂ρ〉− (d−n)�2δ− 1

m
�2〈X, ∂ρ〉2 . (2.12)

Now integrate this along a radial geodesic γ : [0, r ] → M , and use �2H → 0 as
well as �2 H̄d → 0 when ρ → 0, to find

�2(r)H(r) ≤ �2(r)H̄d(r) + �2(r)〈X, ∂ρ〉(r) −
rˆ

0

2��′〈X, ∂ρ〉dρ

−
rˆ

0

[
(d − n)

(
�′2(ρ) + �2(ρ)δ

)
+

1

m
�2(ρ)〈X, ∂ρ〉2

]
dρ.

(2.13)
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Using (2.4), this may be rewritten as

�2(r)
(
HX (r) − H̄d(r)

) ≤ −
rˆ

0

[
(d − n)�′2 + 2��′〈X, ∂ρ〉 + �2

m
〈X, ∂ρ〉2

]
dρ

− (d − n)δ

rˆ

0

�2(ρ)dρ

= −
rˆ

0

(√
m�′ + �√

m
〈X, ∂ρ〉

)2
dρ

− (d − n − m)

rˆ

0

�′2dρ − (d − n)δ

rˆ

0

�2(ρ)dρ.

(2.14)

Then choosing d = n + m yields the desired result.
Lastly, in order to show that the inequality holds for Laplacians in the barrier sense,

one may follow the usual technique of constructing support functions by pushing out
slightly along minimizing geodesics. ��
Remark 2.2. An estimate for the difference of mean curvatures may be obtained for a
comparison space of dimension n. In particular, if |X | ≤ C then set d = n in the first
and second lines of (2.14), and use that ��′ ≥ 0 for λ = −δ ≤ 0 to find

HX (r) − H̄n(r) ≤ C
�2(r)

rˆ

0

2��′dρ = C. (2.15)

2.2. Derived comparison results. Here various consequences of the mean curvature
comparison result will be recorded. Consider a radial function Gr (ρ) which obeys the
relations

�̄dGr = 1, Gr > 0, G ′
r < 0 for 0 < ρ < r, Gr (r) = G ′

r (r) = 0, (2.16)

where �̄d denotes the Laplace-Beltrami operator for the constant curvature comparison
space of dimension d, with λ ≤ 0. Such a function may be easily obtained by integrating
the ODE

1 = �̄dGr = �1−d∂ρ

(
�d−1∂ρGr

)
. (2.17)

Observe that this function may also be defined on M using the distance function from
p. The relations (2.16) then imply the following estimate.

Corollary 2.3. Under the conditions of Proposition 2.1 with d = n + m, we have
�XGr ≥ 1.

Proof. Note that (2.9) shows �Xρ ≤ �̄n+mρ. Therefore, a computation combined with
(2.16) produces

�XGr = G ′
r (ρ)�Xρ + G ′′

r |dρ|2 ≥ G ′
r (ρ)�̄n+mρ + G ′′

r |dρ|2 = �̄n+mGr = 1. (2.18)

��
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Next, note that the volume forms of (M, g) and the comparison space may be ex-
pressed in geodesic polar coordinates by

dVg = Adρ ∧ dVSd−1 , dVḡd,λ
= Ādρ ∧ dVSd−1 , (2.19)

where dVSd is the volume form of the round d-sphere and Ā = �d−1. According to the
first variation of area formula

HdVg = £∂ρdVg = (∂ρ logA
)
dVg, (2.20)

so that inequality (2.9) can be rewritten as

∂ρ logA − ∇Xρ ≤ ∂ρ log Ā, (2.21)

after setting d = n + m. From this it follows that if |X | ≤ C then

∂ρ

(
e−CρA

Ā

)
≤ 0. (2.22)

This yields an area comparison result.

Corollary 2.4. Under the conditions of Proposition 2.1, if |X | ≤ C then e−CρĀ−1A is
non-increasing.

To finish this section, we derive the analogue of relative volume comparison. Let
Vol(Bρ) and Vold(Bρ) denote the volume of geodesic balls of radius ρ in (M, g) and
the comparison space of dimension d, respectively. Furthermore, the corresponding
volume computedwith respect to theweighted volumemeasure eCρdVḡd,λ

will be labeled

Vol
C
d (Bρ).

Corollary 2.5. Under the conditions of Proposition 2.1, if |X | ≤ C then for 0 < ρ ≤ r
we have

Vol(Bρ)

Vol
C
n+m(Bρ)

≥ Vol(Br )

Vol
C
n+m(Br )

. (2.23)

Proof. This follows from the standard argument, see for example [44, pp. 226–228].
The only required modifications are to replace Ā with eCρĀ and use Corollary 2.4. ��
Remark 2.6. Due to the exponential factor, weighted and unweighted volumes are equiv-
alent in that for arbitrarily small balls, they are arbitrarily close. Hence, noncollapsing
with respect to weighted volume implies noncollapsing in the sense of ordinary Rie-
mannian volume.

3. An Abresch–Gromoll Inequality

In the setting of the classical splitting theorem of Cheeger-Gromoll [9], a primary hy-
pothesis concerns the existence of a line. The analogous hypothesis within the context
of the almost spitting theorem, is the existence of three points which almost lie on a line,
or form a thin triangle. More precisely, let q± ∈ M be points of large distance from one
another, with p ∈ M approximately in the middle and satisfying L > 0 denotes the
separation parameter and ε > 0 is small then these points should satisfy

d(q−, p) > L , d(q+, p) > L , E(p) := d(q−, p) + d(q+, p) − d(q−, q+) < ε, (3.1)
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for a large separation parameter L > 0 and small parameter ε > 0. The quantity E is
called the excess function, and may be interpreted as the sum of finite scale Busemann
functions. More precisely, observe that the counterpart of Busemann functions in the
setting of the almost splitting theorem is given by b+(x) = d(x, q+) − d(q+, p) and
b−(x) = d(x, q−) − d(q−, p), with

b+(x) + b−(x) = E(x) − E(p). (3.2)

A main step in the Cheeger-Gromoll splitting result is to show that the sum of Buse-
mann functions vanishes. For the almost splitting theorem the corresponding step is to
show that the combination (3.2) is small, in fixed balls centered at p. Since E(p) is as-
sumed to be small by assumption, this entails proving that E(x) remains small in these
domains. This is the content of the Abresch-Gromoll excess estimate [1] (see also [7,
Theorem 9.1]). The proof relies heavily on Laplacian/mean curvature comparison, and
so uses in a strong way the Bakry–Émery-Ricci lower bound as well as the fact that δ is
small. The excess estimate is a tool to be used to obtain control on finite scale Busemann
functions or rather their harmonic replacements.

The purpose of this section is to establish an Abresch-Gromoll inequality for non-
gradient Bakry–Émery Ricci curvature, without a smallness condition on X (as is as-
sumed in [43, Theorem 5.3]). The gradient Bakry–Émery version has been proven in
[29, Theorem 2.5], and follows closely the original arguments [1,7]. The proof here
will proceed along similar lines, making note of appropriate changes required to ac-
commodate the non-gradient field X . Following other authors, we adopt the notation
�
(
ε1, . . . , εk

∣∣c1, . . . , cl
)
to denote a positive function whose limit vanishes when the

first k arguments are simultaneously taken to zero

lim
ε1,...,εk→0

�
(
ε1, . . . , εk

∣∣c1, . . . , cl
) = 0. (3.3)

Theorem 3.1. Let m, r > 0 and δ ≥ 0, and assume that RicmX (g) ≥ −(n − 1)δg. If
L > 2r + 1, and there are points p, q± ∈ M satisfying (3.1), then

E(x) ≤ �
(
ε, δ, L−1

∣∣n,m, r
)

(3.4)

for all x ∈ Br (p).

The proof depends on a result of Abresch and Gromoll [1] sometimes referred to
as a quantitative maximum principle. This yields an explicit upper bound in terms of
the function Gr of (2.16), for Lipschitz functions admitting a bound for their drift
Laplacian. The arguments of [7, Theorem 8.12] and [29, Proposition 2.4] can be adapted
straightforwardly. In particular, the proof of [29, Proposition 2.4] goes through, with
� f replaced by �X and �n+4k

H replaced by �̄, so the comparison space is (n + m)-
dimensional. The condition | f | ≤ k in that paper has no meaning in our context and can
be dropped and not replaced, since no condition of this nature is needed for Laplacian
comparison with finite positive m.

Lemma 3.2 (Quantitative Maximum Principle). Let the conditions of Proposition 2.1
hold, and assume that U : Br (x) → R is a Lipschitz function on a closed ball of radius
r > 0 about x with Lipshitz constant c, such that U (x0) ≤ 0 for some x0 ∈ Br (x) \ {x}
and U

∣∣
∂Br (x)

≥ 0. Furthermore, let b > 0 be such that �XU ≤ b in the barrier sense

on Br (x). Then U (x) ≤ bGr (r0) + cr0 for all r0 ∈ (0, d(x, x0)).
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Proof. Let y ∈ Br (x) and ρ(y) = d(y, x). Observe that the function V (y) = U (y) −
bGr (ρ(y)) satisfies

�XV ≤ 0 in Br (x) \ {x}, V ≥ 0 on ∂Br (x), V (x0) < 0. (3.5)

We claim that for each r0 ∈ (0, d(x, x0)) there exists a yr0 ∈ ∂Br0(x) with V (yr0) < 0.
If not, V ≥ 0 on ∂Br0(x), and the maximum principle then implies that V ≥ 0 on
Br (x)\Br0(x), contradicting V (x0) < 0.Using now this claim and theLipschitz constant
c, yields the desired conclusion

U (x) ≤ U (yr0) + cr0 < bGr (r0) + cr0. (3.6)

��
We can now prove Theorem 3.1. In [29] it is stated that, in the gradient Bakry–Émery

setting, this follows directly from the arguments of [7, Proposition 9.1] together with a
version of the quantitative maximum principle and Laplacian comparison. This is not
completely clear to us, and so we give the proof here in the general nongradient case.

Proof of Theorem 3.1. For y ∈ B2r+1(p) let ρ±(y) = d(y, q±) and apply Proposition
2.1 to find

�X E(y) = �Xρ−(y) + �Xρ+(y)

≤ H̄n+m(ρ−(y)) + H̄n+m(ρ+(y))

≤ �
(
δ, L−1

∣∣n,m, r
)

.

(3.7)

Let x ∈ Br (p), and choose a nonnegative function f ∈ C∞(Br+1(x)) which vanishes
near ∂Br+1(x) and is positive at p. Then the Lipschitz functionU (y) = E(y)−√

ε f (y)
satisfies

�XU ≤ �+a
√

ε on Br+1(x), U ≥ 0 on ∂Br+1(x), U (p) < ε−√
ε f (p) < 0, (3.8)

for some constant a > 0 and ε sufficiently small, and where (3.1) was used.
Let r0 ∈ (0, r). For d(x, p) > r0, the quantitativemaximumprinciplemay be applied

with x0 = p, b = � + a
√

ε, and c = 3, to find

E(x) ≤ √
ε f (x) +

(
� + a

√
ε
)
Gr+1(r0) + 3r0. (3.9)

On the other hand, for d(x, p) ≤ r0, the Lipschitz bound produces

E(x) ≤ E(p) + 3r0 < ε + 3r0. (3.10)

Although Gr+1(r0) → ∞ as r0 → 0, by choosing r0 small depending on ε and �, the
right-hand side of (3.9) and (3.10)may bemade arbitrarily small by sending ε, δ, L−1 →
0. ��

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Almost Splitting and the Topology of Black Holes 2079

4. Hessian Bounds for the X-Harmonic Replacement

In analogy with the classical Cheeger-Gromoll splitting theorem, one would like to
show that the finite distance Busemann functions b± have small Hessians, so that they
are ‘almost linear’. However lack of regularity poses a difficulty, and thus a smooth
replacement is used in the formof X -harmonic functions.Namely, define the X -harmonic
replacements by

�Xh± = 0 on Br (p), h± = b± on ∂Br (p). (4.1)

Note that ∂Br (p)maynot be smooth. In this case, in order tomaintain regularity of the
solution to the Dirichlet problem, we will approximate Br (p) by a domain with smooth
boundary. This may be achieved in various ways. For instance, since ∂Br (p) is compact
it may be covered by a finite number of smooth geodesic balls {Bj } of arbitrarily small
radius. Then Br (p) ∪ j B j approximates Br (p), and has a piecewise smooth boundary
that can easily be made C∞ by rounding off the creases. In light of this discussion, we
will proceed assuming that a domain with smooth boundary has been used in place of
Br (p) when necessary, although explicit mention of this will not be made below.

Theprimary estimates for the smooth replacement function are based on theLaplacian
comparison result Proposition 2.1 and the Abresch-Gromoll inequality Theorem 3.1. In
the following statement, integrals with a slash indicate the average value of the integrand
over the domain of integration. Hessian estimates were previously established in the case
of gradient X in [29,38], and for small X in [43].

Proposition 4.1 (Hessian Estimate). Assume that the hypotheses of Theorem 3.1 hold,
let |X | + |divX | ≤ C and Vol(Br (p)) ≥ v > 0, then

(i) |h±(x) − b±(x)| ≤ �
(
ε, δ, L−1

∣∣n,m, r
)

for x ∈ Br (p),
(ii)

ffl
Br (p)

|∇h± − ∇b±|2 dVg ≤ �
(
ε, δ, L−1

∣∣n,m, r, v, C
)
,

(iii)
ffl
Br (p)

|Hessh±|2 dVg ≤ �
(
ε, δ, L−1

∣∣n,m, r, v, C
)
.

Remark 4.2. The lower bound v is included on the right-hand side of the estimates (i i)
and (i i i), even though the volume of Br (p) is fixed by r for a given manifold M , in order
to indicate the dependence on quantities relevant to controlling sequences of manifolds.

Proof of (i). Observe that according to Proposition 2.1

�Xb± ≤ H̄n+m(ρ±) ≤ �
(
ε, δ, L−1

∣∣n,m, r
)

. (4.2)

Fix a point y ∈ ∂Br+1(p), let ρ(x) = d(x, y), and consider the function G2r+1(ρ(x))
constructed in (2.16). By Corollary 2.3 we have �XG2r+1 ≥ 1, so that

�X (b± − h± − �G2r+1) ≤ 0 on Br (p), (4.3)

with
b± − h± − �G2r+1 = −�G2r+1 ≥ −c1� on ∂Br (p), (4.4)

where c1 > 0 is a constant independent of ε, δ, and L−1. The maximum principle then
implies that

b± − h± ≥ �G2r+1 − c1� ≥ −c1� on Br (p). (4.5)
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Next, use the excess estimate Theorem 3.1 to find |b+ +b−| = |E − E(p)| ≤ c2�. Since
h++h− is X -harmonic and agreeswith b++b− on ∂Br (p), it follows that |h++h−| ≤ c3�
on Br (p). Finally, on the ball of radius r centered at p it holds that

b± − h± ≤ −b∓ − h± + c2� ≤ −(h∓ + h±) + (c1 + c2)� ≤ (c1 + c2 + c3)�. (4.6)

��
Proof of (ii). Observe that sinceb± areLipschitz functionswehave�b± ∈ H−1(Br (p)),
the dual of the Sobolev space H1(Br (p)). Therefore �b± may be paired with an
H1(Br (p)) function and integrated by parts. It then follows from (i) that

ˆ
Br (p)

|∇h± − ∇b±|2 dVg

= −
ˆ
Br (p)

(h± − b±) (�h± − �b±) dVg

= −
ˆ
Br (p)

(h± − b±)
[
�Xh± − �Xb± + ∇X (h± − b±)

]
dVg

≤ �
(
ε, δ, L−1∣∣n,m, r

) [ˆ
Br (p)

|�Xb±| dVg + C
ˆ
Br (p)

|∇h± − ∇b±| dVg
]

. (4.7)

Note that b± is smooth away from the cut locus of q±, which is a set of measure
zero, and therefore the absolute value |�Xb±| is well-defined in the context above. Next,
consider the elementary inequality a − b ≤ |a + b| + 2a for any numbers a and b. Using
this inequality with a and b representing the integral of the positive and negative parts1

of �Xb±, together with (4.2) and |∇b±| = 1, yields

ˆ
Br (p)

|�Xb±| dVg ≤
∣∣∣∣
ˆ
Br (p)

�Xb±dVg
∣∣∣∣ + 2
(
supBr (p) �Xb±

)
Vol (Br (p))

≤Vol (∂Br (p)) + CVol (Br (p)) + 2�Vol (Br (p)) .

(4.8)

Moreover by Young’s inequality

ˆ
Br (p)

|∇h± − ∇b±| dVg ≤ 1

2

ˆ
Br (p)

|∇h± − ∇b±|2 dVg + 1

2
Vol (Br (p)) . (4.9)

If � is sufficiently small while C is held fixed, we then have

 
Br (p)

|∇h± − ∇b±|2 dVg ≤ 2�
(
ε, δ, L−1∣∣n,m, r, C

)(Vol (∂Br (p))
Vol (Br (p))

+ 2C + 2

)
. (4.10)

Lastly, observe that Corollary 2.4 produces Vol(∂Br (p)) ≤ eCrVoln+m(∂Br ), and by
assumption Vol(Br (p)) ≥ v. ��

1 Here the convention for positive and negative parts of a function f is such that f = f+ + f− and
| f | = f+ − f−.
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Proof of (iii). From [31, Lemma 4] we have, for functions u ∈ C∞(M), the Bochner
formula

�X

(
|∇u|2
)

= 2 |Hessu|2 + 2∇∇u (�Xu) + 2RicmX (∇u,∇u) +
2

m
(X (u))2 . (4.11)

Setting u = h± and recalling that these functions are X -harmonic, as well as the fact
that RicmX ≥ −(n − 1)δg, gives rise to

|Hessh±|2 ≤1

2
�X

(
|∇h±|2

)
+ (n − 1)δ |∇h±|2 − 1

m
(∇Xh±)2

=1

2
�X

(
|∇h±|2 − 1

)
+ (n − 1)δ |∇h±|2 − 1

m
(∇Xh±)2 .

(4.12)

Now introduce a nonnegative cut-off function φ ∈ C∞
c (Br (p)) with φ ≡ 1 on Br/2(p),

and |�Xφ| + |∇φ| ≤ c(n,m, r, C). The construction of this cut-off function will be
addressed below. Then multiplying (4.12) by φ and integrating by parts yields

ˆ
Br/2(p)

|Hessh±|2 dVg ≤
ˆ
Br (p)

φ |Hessh±|2 dVg

≤ 1

2

ˆ
Br (p)

(�Xφ + 2∇Xφ + φdivX)
(
|∇h±|2 − |∇b±|2

)
dVg

+
ˆ
Br (p)

φ

[
(n − 1)δ |∇h±|2 − 1

m
(∇Xh±)2

]
dVg, (4.13)

where we have used that |∇b±|2 = 1 a.e. The last term on the right-hand side has
an advantageous sign, while the others may be estimated by part (i i). Together with the
volume comparison of Corollary 2.5, which implies that

Vol(Br (p))

Vol(Br/2(p))
≤ Vol

C
n+m(Br )

Vol
C
n+m(Br/2)

, (4.14)

the desired result is achieved.
Finally,we consider the existenceof a cut-off functionφwith the necessary properties.

This is shown in [8, Theorem 6.33] in the setting of Ricci lower bounds. That proof goes
through here,mutatis mutandis, modulo the use of the Cheng-Yau gradient estimate [10].
Specifically, the proof proceeds by constructing exact solutions of ordinary differential
equations on the comparison space of dimension n, which for our case becomes the
comparison space of dimension n + m. Laplacian comparison then yields differential
inequalities which, for us, hold for the drift Laplacian �X on an n-manifold, as in
Corollaries 2.3 and 2.4. One obtains en lieu of [8, Equation 6.59] the differential equation
�Xφ = ψ ′′|∇k|2 +ψ ′δ for φ, with k and ψ as defined in [8]. As per that reference, the
construction is then complete, and the desired properties then follow from theCheng-Yau
estimate. This gradient estimate, which is applied to �Xk = δ in our setting, requires
modification that is provided in the Appendix. ��

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



2082 G.J. Galloway, M.A. Khuri, E. Woolgar

5. The Segment Inequality

TheCheeger-Gromoll splitting theorem is establishedbyfirst findingpointwise estimates
for the Laplacian of Busemann functions and then for their Hessians. In the context of
the Cheeger-Colding almost splitting theorem, one is only able to find estimates for
volume integrals of these quantities over certain regions. These in turn may be brought
closer to the pointwise realm, by showing that they imply integral estimates for these
quantities along geodesics. The primary tool used to achieve this goal is the segment
inequality. Generalizations of the original inequality from [8] have been obtained in
the gradient Bakry–Émery setting in [29,38], and a version for the non-gradient case
appears in [43]. Here, the short proof is included for completeness in the general case
following the renditions of [17,37].

Lemma 5.1. Let m, r > 0 and δ ≥ 0, and assume that RicmX (g) ≥ −(n − 1)δg in
addition to |X | ≤ C. Let f : B2r (p) → R≥0, consider domains �1,�2 ⊂ Br (p) with
x1 ∈ �1 and x2 ∈ �2, and define

F f (x1, x2) = supγ

ˆ d(x1,x2)

0
f ◦ γ (s)ds, (5.1)

where the supremum is taken over minimizing unit speed geodesics γ joining x1 to x2.
Then there exists a constant c depending on n, m, r , δ, and C such thatˆ

�1×�2

F f dVg ∧ dVg ≤ c (Vol(�1) + Vol(�2))

ˆ
B2r (p)

f dVg. (5.2)

Proof. Up to a set of measure zero, each pair of points (x, y) ∈ �1 × �2 is joined by
a unique minimal geodesic γxy : [0, d(x, y)] → B2r (p). Thus, for the current purpose,
the integral of (5.1) may be evaluated along such geodesics. Now write

F+
f (x, y) =

ˆ d(x,y)

d(x,y)/2
f ◦ γxy(s)ds, F−

f (x, y) =
ˆ d(x,y)/2

0
f ◦ γxy(s)ds, (5.3)

so that
F f (x, y) = F+

f (x, y) + F−
f (x, y). (5.4)

Fix x ∈ �1 and study F+
f (x, ·) by writing its integrand using geodesic polar coordi-

nates about x . Since the cut-locus of x is a set of measure zero, we haveˆ
�2

F+
f (x, ·)e−CρdVg =

ˆ
Sn−1

ˆ
Iθ
F+

f (x, expx (ρθ))Axe
−CρdρdVSn−1 , (5.5)

where dVg = Axdρ∧dVSn−1 is the volume form expressed in polar coordinates centered
at x , and Iθ = {ρ∣∣ expx (ρθ) ∈ �2}. By the area comparison Corollary 2.4 we have

e−CtAx (t)

Ā(t)
≥ e−CρAx (ρ)

Ā(ρ)
for t ≤ ρ, (5.6)

and therefore

F+
f (x, expx (ρθ))Ax (ρ)e−Cρ =

(ˆ ρ

ρ/2
f (expx (tθ))dt

)
Ax (ρ)e−Cρ

≤ c1

ˆ ρ

ρ/2
f (expx (tθ))Ax (t)e

−Ct dt,
(5.7)
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where c1 depends on n, m, r , δ, and C. It follows that

e−2rC
ˆ

�2

F+
f (x, ·)dVg ≤

ˆ
�2

F+
f (x, ·)e−CρdVg

≤ c1

ˆ
Sn−1

ˆ
Iθ

ˆ ρ

ρ/2
f (expx (tθ))Ax (t)dtdρdVSn−1

≤ c1

ˆ 2r

0

(ˆ
Sn−1

ˆ r

0
f (expx (tθ))Ax (t)dtdVSn−1

)
dρ

≤ 2rc1

ˆ
B2r (p)

f dVg.

(5.8)

Integrate once more, over �1, to obtain the desired estimate for
´
�1×�2

F+
f dVg ∧ dVg .

Lastly, the F−
f contribution is dealt with by interchanging the roles of �1 and �2, and

repeating the argument above. ��
To see how this leads to ‘almost pointwise’ bounds, choose now �1 = Br (x1) ⊂

B2r (p) and �2 = Br (x2) ⊂ B2r (p). If F f were continuous, then the mean value
theorem for integrals implies that there are points x∗

1 ∈ Br (x1), x∗
2 ∈ Br (x2) such that

the left-hand side of (5.2) can be replaced by F f (x∗
1 , x

∗
2 )Vol(Br (x1))Vol(Br (x2)), and

so we obtain

F f (x
∗
1 , x

∗
2 ) ≤ c

(
1

Vol(Br (x1))
+

1

Vol(Br (x2))

)ˆ
B4r (p)

f dVg. (5.9)

In general F f may not be continuous, in which case the Markov inequality may be
employed in place of the mean value theorem in order to achieve the same estimate with
a different constant c. Recall that the Markov inequality states that for η > 0 and a
nonnegative measurable function u on a domain �, it holds that

1

η

ˆ
�

u ≥ |{x ∈ � | u(x) ≥ η}|. (5.10)

Note that the bound (5.9) becomes useless when taking Gromov-Hausdorff limits, if
the volume of the ball B2r (p) approaches zero, that is, if collapsing occurs. However,
with the volume comparison result Corollary 2.5, collapse of a ball of fixed radius can
be avoided with the assumption of a total volume lower bound Vol(M) ≥ V > 0 and
diameter upper bound diam(M) ≤ D, as in Theorem 1.4. The following estimates are
the main application of the segment inequality to be used in the almost splitting result.

Proposition 5.2. Assume that the hypotheses of Theorem 3.1 hold, together with |X | +
|divX | ≤ C and Vol(Br (p)) ≥ v > 0, and let � = �

(
ε, δ, L−1

∣∣n,m, r, v, C
)
be as

in Proposition 4.1. Let x, y, z ∈ Br/4(p) be such that x and y lie on a level set of h+,
and z lies on a minimizing geodesic connecting q+ to y. Then there exist x∗ ∈ B�(x),
y∗ ∈ B�(y), and z∗ ∈ B�(z) satisfying the following properties, where � = �3ς with
ς = 1

45(n+m)
. There is a minimal geodesic σ(s) from z∗ to y∗, such that for almost every

s ∈ [0, d(y∗, z∗)] a unique minimal geodesic τs connects x∗ to σ(s), and

(i)
´ d(y∗,z∗)
0

∣∣∇h+(σ (s)) − σ ′(s)
∣∣ ds ≤ �ς ,

(ii)
´ d(y∗,z∗)
0

´ d(x∗,σ (s))
0 |Hessh+(τs(t))| dtds ≤ �ς .
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A similar statement holds for h−.

Proof. We will use the following notation for volumes |�| = Vol(�). Let � be small
enough so that B�(x) ⊂ Br/2(p). Observe then that the segment inequality Lemma
5.1 with f = |Hessh+|, together with the Markov inequality, yields the existence of
x∗ ∈ B�(x) such that

|B�(x)|
ˆ
Br/2(p)

F|Hessh+|(x∗, ·)dVg ≤ c1

ˆ
B�(x)×Br/2(p)

F|Hessh+|dVg ∧ dVg

≤ c2
(|B�(x)| + |Br/2(p)|

)ˆ
Br (p)

|Hessh+|dVg. (5.11)

On the other hand, if B�(y), B�(z) ⊂ Br/4(p) then the segment inequality with
f = F|Hessh+|(x∗,·) and separately f = |∇h+ − ∇b+|, again combined with Markov’s
inequality, provides y∗ ∈ B�(y) and z∗ ∈ B�(z) so that

|B�(y)||B�(z)|
(
F|∇h+−∇b+|(y∗, z∗) +FF|Hessh+|(x∗,·)(y∗, z∗)

)

≤ c3

ˆ
B�(y)×B�(z)

(
F|∇h+−∇b+| +FF|Hessh+|(x∗,·)

)
dVg ∧ dVg

≤ c4
(|B�(y)| + |B�(z)|)

(ˆ
Br/2(p)

|∇h+ − ∇b+|dVg +
ˆ
Br/2(p)

F|Hessh+|(x∗,·)dVg
)

. (5.12)

Inequalities (5.11) and (5.12) then give

F|∇h+−∇b+|(y∗, z∗) + FF|Hessh+|(x∗,·)(y∗, z∗)

≤ c4

(
1

|B�(y)| +
1

|B�(z)|
) ˆ

Br (p)
|∇h+ − ∇b+|dVg

+
c2c4
(|B�(y)| + |B�(z)|)
|B�(y)||B�(z)|

(|B�(x)| + |Br/2(p)|
)

|B�(x)|
ˆ
Br (p)

|Hessh+|dVg

≤ c5|Br (p)|3
|B�(x)||B�(y)||B�(z)|�

1/2,

(5.13)

where in the last line Proposition 4.1 was used along with Hölder’s inequality. The
volume comparison result, Corollary 2.5, implies that

|B�(x)| ≥ Vol
C
n+m(B�)

Vol
C
n+m(B2r )

|B2r (x)| ≥ c6�
n+m |Br (p)|, (5.14)

for some constant c6 > 0 depending only on n, m, r , and C. The same estimate holds

for |B�(y)| and |B�(z)|. Using � = �
1

15(n+m) , it then follows that

F|∇h+−∇b+|(y∗, z∗) + FF|Hessh+|(x∗,·)(y∗, z∗) ≤ c7�
−3(n+m)�1/2 ≤ �1/4 (5.15)

for � sufficiently small. Note that this inequality for the second term on the left-hand
side, implies statement (i i).
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In order to obtain statement (i), observe that (5.15) yields

ˆ d(y∗,z∗)

0
|∇h+ − ∇b+|(σ (s))ds ≤ �1/4. (5.16)

Furthermore

|∇b+(σ (s)) − σ ′(s)|2 = 2 − 2〈σ ′(s),∇b+(σ (s))〉 = 2 (1 − ∂sb+(σ (s))) , (5.17)

so that

1

2

ˆ d(y∗,z∗)

0
|∇b+(σ (s)) − σ ′(s)|2ds = d(y∗, z∗) + b+(z∗) − b+(y∗)

≤ d(y, z) + d(z, q+) − d(y, q+) + c8�

= c8�
3ς

(5.18)

where in the last step, the hypothesis that z lies on a minimizing geodesic connecting q+
to y, was used. Applying Hölder’s inequality once more then produces

ˆ d(y∗,z∗)

0
|∇h+(σ (s)) − σ ′(s)|ds ≤

ˆ d(y∗,z∗)

0
|∇h+ − ∇b+|(σ (s))ds

+
ˆ d(y∗,z∗)

0
|∇b+(σ (s)) − σ ′(s)|ds

≤ c9�
3ς/2,

(5.19)

which yields the desired result for � sufficiently small. ��

6. The Almost Splitting of a Metric Ball

We have now collected all the estimates that enter into the proof of the quantitative
Pythagorean theorem. This result, Lemma 6.1 below, is the last step needed before
proceeding to the almost splitting theorem.Quasi-right geodesic triangles are constructed
based on level sets of h+, and are shown to almost satisfy the Pythagorean relation. The
statement provided here is slightly different than those of [29, Proposition 2.8] and [38,
Lemma 3.2], and for this reason we include the proof which follows along similar lines
to those of [7, Lemma 9.16].

Lemma 6.1. Assume that the hypotheses of Proposition 5.2 hold. Let x, y, z ∈ Br/4(p)
be such that x and y lie on a level set of h+, and z lies on aminimizing geodesic connecting
q+ to y, then for � sufficiently small

d(x, y)2 + d(y, z)2 − d(x, z)2 ≤ �ς/2. (6.1)

Proof. Let x∗ ∈ B�(x), y∗ ∈ B�(y), and z∗ ∈ B�(z) be as in Proposition 5.2, and letσ(s)
be a minimal geodesic from z∗ to y∗, such that for almost every s ∈ [0, T = d(y∗, z∗)] a
uniqueminimal geodesic τs connects x∗ toσ(s). Let l(s) denote the length of τs . Note that
l ′(s) exists for almost all s, and by the first variation of arclength l ′(s) = 〈σ ′(s), τ ′

s(l(s))
〉
.

We then find that
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1

2

(
d(x∗, y∗)2 − d(x∗, z∗)2

)
= 1

2

(
l(T )2 − l(0)2

)

=
ˆ T

0
l(s)l ′(s)ds

=
ˆ T

0
l(s)
〈
σ ′(s), τ ′

s(l(s))
〉
ds (6.2)

≤
ˆ T

0
l(s)
〈∇h+(σ (s)), τ ′

s(l(s))
〉
ds + r�ς

=
ˆ T

0

ˆ l(s)

0

〈∇h+(τs(l(s))), τ
′
s(l(s))

〉
dtds + r�ς,

where in the second to last line statement (i) of Proposition 5.2 was used. Next observe
that

〈∇h+(τs(l(s))), τ
′
s(l(s))

〉 = 〈∇h+(τs(t)), τ
′
s(t)
〉
+
ˆ l(s)

t
Hessh+(τ

′
s(t̄), τ

′
s(t̄))dt̄, (6.3)

and by Proposition 5.2 (i i)
ˆ T

0

ˆ l(s)

t

∣∣Hessh+(τ ′
s(t̄), τ

′
s(t̄))
∣∣ dt̄ds ≤ �ς. (6.4)

It follows that

1

2

(
d(x∗, y∗)2 − d(x∗, z∗)2

)
≤
ˆ T

0

ˆ l(s)

0

〈∇h+(τs(t)), τ
′
s(t)
〉
dtds + 2r�ς

=
ˆ T

0
(h+(σ (s)) − h+(x∗)) ds + 2r�ς.

(6.5)

According to Proposition 4.1 (i)

|h+(x∗) − h+(x)| ≤ |h+(x∗) − b+(x∗)| + |b+(x∗) − b+(x)| + |b+(x) − h+(x)| ≤ 2� + � ≤ 4�3ς , (6.6)

and a similar estimate holds for |h+(y∗) − h+(y)|. Therefore since x and y lie on the
same level set of h+, we find that

h+(σ (s)) − h+(x∗) = h+(σ (s)) − h+(y∗) + h+(y∗) − h+(x∗)
≤ h+(σ (s)) − h+(σ (T )) + h+(y) − h+(x) + 6�3ς

= −
ˆ T

s
∂s̄ h+(σ (s̄))ds̄ + 6�3ς

=
ˆ T

s

[〈σ ′(s̄), σ ′(s̄) − ∇h+(σ (s̄))〉 − 1
]
ds̄ + 6�3ς

≤ s − T + r�ς + 6�3ς ,

(6.7)

where in the last line Proposition 5.2 (i) was used. Combining this with (6.5) produces

1

2

(
d(x∗, y∗)2 − d(x∗, z∗)2

)
≤ −1

2
T 2 + 4r�ς + 6�3ς = −1

2
d(y∗, z∗)2 + (4r + 1)�ς , (6.8)

from which the desired result is obtained. ��
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We are now in a position to establish the nongradient Bakry–Émery almost splitting
theorem. In the classical setting of nonnegative Bakry–Émery Ricci curvature [31], in
addition to the metric splitting M = R× N , the projection of X onto the linearR-factor
aswell as theBakry–ÉmeryRicci curvature in this direction, both vanish.Aweak version
of this conclusion holds in the setting of almost rigidity, in the form of (6.11) below.
In the classical case these facts imply that nonnegative Bakry–Émery Ricci curvature
descends to N , and it would be of interest to examine the extent to which this holds in
the current context.

Theorem 6.2. Let (M, g, X) be a complete Riemannian manifold of dimension n with
smooth vector field X. Let m, r, ε, C > 0 and δ ≥ 0, and assume that RicmX (g) ≥
−(n − 1)δg together with supM (|X | + |divX |) ≤ C. If L > 2r + 1, and there are points
p, q± ∈ M satisfying

dist(q−, p) > L , dist(q+, p) > L , dist(q−, p) + dist(q+, p) − dist(q−, q+) < ε, (6.9)

then there exists a length space N and ametric ball Br/4(0, x) ⊂ R×N with the product
metric, such that

dGH
(
Br/4(p), Br/4(0, n)

) ≤ �ς/5. (6.10)

Here N is the level set h−1
+ (0) endowed with the subspace metric arising from M.

Moreover, the projection of X onto the R-factor and the Bakry–Émery Ricci curvature
in this direction almost vanish in the following senseˆ

Br (p)

[
〈∇h+, X〉2 + (RicmX (g) + (n − 1)δg

)
(∇h+,∇h+)

]
dVg ≤ �. (6.11)

Proof. AGromov-Hausdorff approximationor�ς/4-isometry� : Br/4(p) → Br/4(0, n)
may be constructed by �(x) = (h+(x), x̂), where x̂ minimizes the distance to x among
points of N . In particular, with the help of Lemma 6.1 it can be shown [38, Proposition
3.6] that for x, y ∈ Br/4(p) we have

|d(x, y) − dR×N (�(x),�(y))| ≤ �ς/4. (6.12)

The almost splitting (6.10) then follows from the fact that for a rough isometry, the
Gromov-Hausdorff distance is bounded above by a multiple of the distortion parameter,
namely 3

2�
ς/4.

It remains to establish (6.11). Observe that the quantities in question arise in the proof
of the Hessian bound, Proposition 4.1 (i i i). More precisely, they arose from the Bochner
identity (4.11) and subsequent integration by parts (4.13), both with advantageous signs.
By keeping these terms in all subsequent estimates instead of discarding them, the desired
result follows. ��

An immediate consequence of the almost splitting theorem asserts that the splitting
extends to limit metric spaces under Gromov-Hausdorff convergence. The proof requires
no further modifications in the current setting and may be found in [38, page 23].

Corollary 6.3. Let (Mi , gi , Xi ) be a sequence of complete Riemannian manifolds of
dimension n with smooth vector fields Xi . Assume that RicmXi

(gi ) ≥ −(n − 1)δi gi
with δi → 0, supMi

(|Xi | + |divXi |) ≤ C, and (Mi , pi ) → (M∞, p∞) in the pointed
Gromov-Hausdorff sense. If M∞ contains a line passing through p∞, then M∞ = R×N
for some length space N.
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7. Topological Consequences of Almost Splitting

The goal of this section is to establish the almost abelian characterization of fundamen-
tal groups arising from manifolds admitting almost nonnegative Bakry-Émery Ricci
curvature, that is Theorem 1.4. Such a result was established by Yun [42] for almost
nonnegative Ricci curvature, building on work of Wei [40] which showed that the as-
sociated fundamental groups were of polynomial growth. These conclusions were later
extended to the gradient Bakry-Émery setting by Jaramillo [29, Theorem 1.3].

7.1. A volume estimate. A key ingredient in the proof of the almost abelian charac-
terization of fundamental groups under Ricci curvature bounds is the Bishop-Gromov
inequality, in particular when the smaller radius tends to zero. Although analogues of the
Bishop-Gromov inequality continue to hold in the Bakry-Émery case, such as Corollary
2.5, the disparity of dimension exhibited by the model comparison space renders this
inequality useless when sending the smaller radius to zero. To overcome this problem,
an alternative volume estimate must be established. In the gradient case [29, Proposition
3.2] this follows from relatively straightforward manipulations of the mean curvature
comparison proof. Surprisingly, the non-gradient setting is somewhat more difficult to
deal with, and requires a finely tuned choice of stand-in for the potential function, f .
Furthermore, the estimate obtained below differs significantly from that of [29] by an
extra factor of polynomial growth determined by the synthetic dimension m + n. In what
follows, the weighted f -volume will be denoted by Vol f (Br ) = ´

Br
e− f dVg .

Proposition 7.1. Consider a compact Riemannian manifold (M, g, X) of dimension n
with smooth 1-form X, with Riemannian cover (M̃, g̃, X̃). Let m > 0, δ ≥ 0, and assume
that RicmX (g) ≥ −(n − 1)δg as well as supM |X | ≤ C. Then there exists an analytic
function h on R+ depending only on m and C which is nondecreasing with h(0) = 0,
and a smooth potential function f on M with pullback f̃ on M̃, such that

Vol f̃ (B̃r ) ≤ (r + 1)me

[√
δ(r2+r3)h(

√
δr)+C

]
Voln(Br ) (7.1)

for all r ≥ 0, where B̃r ⊂ M̃ is a geodesic ball, andVoln(Br ) is the volume of a geodesic
ball in a comparison space of dimension n with curvature −δ.

Proof. From (2.13) with d = n we have

∂ρ

(
log Ã
)

≤ ∂ρ

(
log Ā) + 〈X̃ , ∂ρ〉 − �−2(r)

ˆ r

0

[(
�2
)′ 〈X̃ , ∂ρ〉 + 1

m
�2〈X̃ , ∂ρ〉2

]
dρ, (7.2)

where Ã and Ā define volume forms for geodesic spheres in M̃ and the model space
as in (2.19). Recall that Ã is defined on the star-shaped segment domain (interior)
seg0(p) ⊂ Tp M̃ where expp is injective [34]. In order to extend this to the whole

tangent space, let ϕε ∈ C∞(Tp M̃) be a nonnegative cut-off function such that in polar
coordinates

ϕε(ρ, θ) =
{
1 0 ≤ ρ < ρ(θ) − ε

0 ρ ≥ ρ(θ)
, (7.3)
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where (ρ(θ), θ) ∈ ∂seg(p) or ρ(θ) = ∞ (if there is no cut point along this direction),
and with the property that ∂ρϕε ≤ 0 as well as 0 ≤ ϕε ≤ 1. Note that the distance to
the cut locus along radial lines, ρ : Sn−1 → R ∪ {∞}, is a continuous function [13,
Proposition 13.2.9]. Let f be a smooth function on M to be chosen later, with pullback
f̃ . Observe that

∂ρ(ϕεe
− f̃ Ã) = e− f̃ Ã∂ρϕε + ϕε∂ρ(e− f̃ Ã) ≤ ϕε∂ρ(e− f̃ Ã). (7.4)

Therefore multiplying (7.2) through by ϕεe− f̃ Ã, using (7.4), and integrating over the
sphere produces

ˆ
Sn−1

∂ρ

(
ϕεe

− f̃ Ã
)

≤ ∂ρ

(
log Ā
)ˆ

Sn−1
ϕεe

− f̃ Ã +
ˆ
Sn−1

(
〈X̃ , ∂ρ〉 − ∂ρ f̃

)
ϕεe

− f̃ Ã

−
ˆ
Sn−1

ϕεe
− f̃ Ã�−2(r)

ˆ r

0

[(
�2
)′ 〈X̃ , ∂ρ〉 + 1

m
�2〈X̃ , ∂ρ〉2

]
dρ. (7.5)

Next, divide by
´
Sn−1 ϕεe− f̃ Ã and integrate from r1 > 0 to r2, staying within the

range where this integral is nonzero, to obtain

ˆ
Sn−1

ϕεe
− f̃ Ã(r2)

≤
(ˆ

Sn−1
Ā(r2)

)(´
Sn−1 ϕεe− f̃ Ã(r1)´

Sn−1 Ā(r1)

)
exp

{ˆ r2

r1

( 
Sn−1

(
〈X̃ , ∂ρ〉 − ∂ρ f̃

)
ϕεe

− f̃ Ã
)
dr

}

· exp
{
−
ˆ r2

r1

( 
Sn−1

ϕεe
− f̃ Ã�−2(r)

ˆ r

0

[(
�2
)′ 〈X̃ , ∂ρ〉 + 1

m
�2〈X̃ , ∂ρ〉2

]
dρ

)
dr

}
, (7.6)

where
ffl
Sn−1 indicates the average value with respect to the measure defined by ϕεe− f̃ Ã.

Then sending ε, r1 → 0 produces

ˆ
Sn−1

e− f̃ Ã0(r2)

≤ e− f̃ (0)
(ˆ

Sn−1
Ā(r2)

)
exp

{ˆ r2

0

( 
Sn−1

(
〈X̃ , ∂ρ〉 − ∂ρ f̃

)
e− f̃ Ã0

)
dr

}

· exp
{
−
ˆ r2

0

( 
Sn−1

e− f̃ Ã0�
−2(r)

ˆ r

0

[(
�2
)′ 〈X̃ , ∂ρ〉 + 1

m
�2〈X̃ , ∂ρ〉2

]
dρ

)
dr

}
,(7.7)

where Ã0 agrees with Ã on the segment domain interior and it vanishes on the
complement Tp M̃ \ seg0(p).

Let us now estimate the last term on the right-hand side of (7.7). First observe that

�2 = δ−1 sinh2(
√

δr) = r2 + O(δr4), (�2)′ = δ−1/2 sinh(2
√

δr) = 2r + O(δr3). (7.8)

We then have
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−
 
Sn−1

e− f̃ Ã0�
−2(r)

ˆ r

0

[(
�2
)′ 〈X̃ , ∂ρ 〉 + 1

m
�2〈X̃ , ∂ρ 〉2

]
dρ

≤
 
Sn−1

e− f̃ Ã0

sinh2(
√

δr)

ˆ r

0

[
2δρ|〈X̃ , ∂ρ 〉| − δρ2

m
〈X̃ , ∂ρ 〉2

]
dρ

+

√
δC

sinh2(
√

δr)

ˆ r

0

(
sinh(2

√
δρ) − 2

√
δρ
)
dρ

≤
 
Sn−1

e− f̃ Ã0r
−2

ˆ r

0

[
2ρ|〈X̃ , ∂ρ 〉| − ρ2

m
〈X̃ , ∂ρ 〉2

]
dρ

+
C
(
cosh(2

√
δr) − 1 − 2δr2

)

2 sinh2(
√

δr)
+
C2r3
3m

(
1

r2
− δ

sinh2(
√

δr)

)

=
 
Sn−1

e− f̃ Ã0r
−2

ˆ r

0

[
2ρ|〈X̃ , ∂ρ 〉| − ρ2

m
〈X̃ , ∂ρ 〉2

]
dρ +

(
C +

C2r
3m

)(
1 − δr2

sinh2(
√

δr)

)
, (7.9)

and it follows that

−
ˆ r2

0

( 
Sn−1

e− f̃ Ã0�
−2(r)

ˆ r

0

[(
�2
)′ 〈X̃ , ∂ρ 〉 + 1

m
�2〈X̃ , ∂ρ 〉2

]
dρ

)
dr

≤
ˆ r2

0

( 
Sn−1

e− f̃ Ã0r
−2

ˆ r

0

[
2ρ|〈X̃ , ∂ρ 〉| − ρ2

m
〈X̃ , ∂ρ 〉2

]
dρ

)
dr +

√
δ(r22 + r32 )h(

√
δr2) (7.10)

where h is an analytic function satisfying the desired properties. To see this last part,
note that

1

r2
− δ

sinh2(
√

δr)
= sinh2(

√
δr) − δr2

r2 sinh2(
√

δr)

=
[√

δr + 1
3! (

√
δr)3 + O(

√
δr)5
]2 − δr2

r2
[√

δr + 1
3! (

√
δr)3 + O(

√
δr)5
]2

= δ

3

[
1 + O(

√
δr)2

1 + O(
√

δr)2

]

=: δ

3
h̄(

√
δr),

(7.11)

where h̄ is a positive analytic function with h̄(0) = 1. Therefore
ˆ r2

0

(
C +

C2r
3m

)(
1 − δr2

sinh2(
√

δr)

)
dr ≤

(
Cr22 +

C2r32
3m

)ˆ r2

0

(
1

r2
− δ

sinh2(
√

δr)

)
dr

=
(
Cr22 +

C2r32
3m

)ˆ r2

0

δ

3
h̄(

√
δr)dr

=
√

δ

3

(
Cr22 +

C2r32
3m

) ˆ √
δr2

0
h̄(r̄)dr̄
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≤ √
δ(r22 + r32 )h(

√
δr2), (7.12)

where

h(r) := max

{C
3
,
C2
9m

}ˆ r

0
h̄(r̄)dr̄ . (7.13)

Next apply Jensen’s inequality to obtain

 
Sn−1

e− f̃ Ã0r
−2

ˆ r

0

[
2ρ|〈X̃ , ∂ρ 〉| − ρ2

m
〈X̃ , ∂ρ 〉2

]
dρ

≤ 1

r2

ˆ r

0

[
2

( 
Sn−1

ρe− f̃ Ã0(r)|〈X̃ , ∂ρ 〉|(ρ)

)
− 1

m

( 
Sn−1

ρe− f̃ Ã0(r)|〈X̃ , ∂ρ 〉|(ρ)

)2]
dρ

≤ 1

r

[
2

( r

0

 
Sn−1

ρe− f̃ Ã0(r)|〈X̃ , ∂ρ 〉|(ρ)dρ

)
− 1

m

( r

0

 
Sn−1

ρe− f̃ Ã0(r)|〈X̃ , ∂ρ 〉|(ρ)dρ

)2]

= r−1
[
2a(r) − m−1a(r)2

]
, (7.14)

where

a(r) =
 r

0

 
Sn−1

ρe− f̃ Ã0(r)|〈X̃ , ∂ρ〉|(ρ)dρ. (7.15)

Since 2a(r) − m−1a(r)2 ≤ m for r ≥ 0 and 2a(r) − m−1a(r)2 ≤ Cr for 0 ≤ r ≤ 1,
we find that

−
ˆ r2

0

( 
Sn−1

e− f̃ Ã0�
−2(r)

ˆ r

0

[(
�2
)′ 〈X̃ , ∂ρ〉 + 1

m
�2〈X̃ , ∂ρ〉2

]
dρ

)
dr

≤ m log(r2 + 1) + C +
√

δ(r22 + r32 )h(
√

δr2).

(7.16)

Consider now the second term on the right-hand side of (7.7). According to theHodge
decomposition [39], on M there exists a harmonic 1-form ω, a function α, and 2-form
β such that

e− f (X − d f ) = ω + dα + d∗β, (7.17)

where d∗ denotes the L2 adjoint of the exterior derivative d. In particular ω + d∗β is
divergence free so that

d∗(ω + d∗β) = 0, −�α = d∗ [e− f (X − d f )
]
. (7.18)

For u ∈ C∞(M) set Lu = �u + div(uX) and note that

Le− f = −d∗ [e− f (X − d f )
]
. (7.19)

We claim that there exists a positive function u0 on M satisfying Lu0 = 0. To see
this observe that the adjoint L∗ = �− X ·∇ admits a maximum principle, and therefore
KerL∗ = {const.}. It follows from the Fredholm alternative [15] that dimKerL = 1,
and so there is 0 �= u0 ∈ KerL . It remains to show that u0 does not change sign. In
fact, the existence of u0, as well as its positivity follows from Lemma 4.1 of [3]. Indeed,
according to part (i) of this result there exists a real principal eigenvalue λ of L with
corresponding eigenfunction u0 > 0, so that Lu0 = λu0. Then integrating this equation
over M shows that λ = 0.
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Let us now choose f = − log u0, and scale u0 appropriately to achieve f̃ (0) = 0.
With this selection�α = 0 so thatα = const.This shows that e− f (X − d f ) = ω+d∗β
is divergence free, and hence by the divergence theoremˆ

Sn−1

(
〈X̃ , ∂ρ〉 − ∂ρ f̃

)
e− f̃ Ã0(r) =

ˆ
∂ B̃r

(ω̃ + d∗β̃)(∂ρ) = 0 (7.20)

for almost every r , where ω̃ and β̃ are the pullback forms on M̃ . We remark that B̃r
may not have smooth boundary due to the cut locus, which has measure zero [28].
However, since it is defined via the level set of a (positive) Lipschitz function, it is a set
of locally finite perimeter for almost every r [32, Example 13.3], [35, Proposition 5.7.5].
Moreover, the divergence theorem holds for regular forms (or vector fields) on such sets
[35, Theorem 6.5.4]. It should be pointed out that the boundary term in the divergence
theorem should be computed with respect to the (n−1)-dimensional Hausdorff measure
Hn−1 of the reduced boundary, however a consequence of the coarea formula and De
Giorgi’s structure theorem shows theHn−1-equivalence of the topological and reduced
boundaries of a.e. level set of a Lipschitz function [32, Remark 18.2]. Combining (7.7),
(7.16), (7.20), and taking an exponential producesˆ

Sn−1
e− f̃ Ã0(r2) ≤ (r2 + 1)me

[√
δ(r22 +r

3
2 )h(

√
δr2)+C

] ˆ
Sn−1

Ā(r2). (7.21)

Finally, integrating r2 over the interval [0, r ] yields the desired conclusion. ��
Remark 7.2. Let r1 < r2 be as in the above proof. If r1 is not sent to zero after (7.6), then
with suitable modifications of the arguments we obtain a variant of the Bishop-Gromov
inequality

Vol f̃ (B̃r2)

Vol f̃ (B̃r1)
≤

´ r2
0 (ρ + 1)me

[√
δ(ρ2+ρ3)h(

√
δρ)+C0

]
�n−1dρ

´ r1
0 (ρ + 1)me

[√
δ(ρ2+ρ3)h(

√
δρ)
]
�n−1dρ

, (7.22)

where C0 is a constant depending on m and C.

7.2. Applications of the volume estimate. The volume estimate of the previous section
may be used to generalize results of Anderson [2] concerning the structure of funda-
mental groups under Ricci curvature lower bounds, as well as a polynomial growth
characterization of Wei [40], all of which are used in the desired almost abelian result.
Generalizations to the gradient Bakry-Émery settingwere given by Jaramillo in [29]. The
proofs follow in the nongradient setting in a similar way. However, due to the difference
in growth in the volume estimate between the gradient and nongradient cases, we retain
an outline of the arguments where appropriate to indicate the required modifications.

Lemma 7.3. Consider a complete Riemannian manifold (M, g, X) of dimension n with
smooth 1-form X. Let m > 0, δ ≥ 0, and assume that

RicmX (g) ≥ −(n − 1)δg, diam(M) ≤ D, Vol f (M) ≥ V, supM |X | ≤ C. (7.23)

If � ≤ π1(M) is a subgroup generated by loops γi , i = 1, . . . , k with k ≥ N, then the
maximum generator length satisfies maxi l(γi ) ≥ D/N where

N = V−1(2D + 1)me

[√
δ((2D)2+(2D)3)h(

√
δ2D)+C

]
Voln(B2D), (7.24)
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and f and h are given in Proposition 7.1. Furthermore, among the class of manifolds
satisfying (7.23) there are only finitely many isomorphism types of π1(M).

Remark 7.4. Analogous statements hold if the hypothesis Vol f (M) ≥ V is replaced by
Vol(M) ≥ V , in light of the proof of Theorem 7.6 below.

Proof. Following [2, Theorem 2.1, Remark 2.2(2)] define

U (J ) =
{
g ∈ � | g = [γ1] j1 · · · [γa0 ] ja0 ,

∑
| ja | ≤ J

}
, (7.25)

and choose the smallest J0 such that #U (J0) > N . If F ⊂ M̃ is a fundamental
domain of the universal cover, which contains x̃0 lying in the preimage of x0, and
r0 = N maxi l(γi ) +D then

⋃
g∈U (J0)

g
(
B̃D(x̃0) ∩ F

)
⊂ B̃r0(x̃0). (7.26)

It follows that the volume estimate of Proposition 7.1 implies

NV ≤ NVol f (M) ≤Vol f̃

(
B̃r0(x̃0)

)

≤(r0 + 1)me

[√
δ(r20 +r

3
0 )h(

√
δr0)+C

]
Voln(Br0).

(7.27)

If it were the case that maxi l(γi ) < D/N then (7.27) yields

N < V−1(2D + 1)me

[√
δ((2D)2+(2D)3)h(

√
δ2D)+C

]
Voln(B2D), (7.28)

a contradiction. Therefore maxi l(γi ) ≥ D/N . Moreover, as in [2, Theorem 2.3], the
finite number of isomorphism types of π1(M) follows from the above loop inequality
and Proposition 7.1, as well as a result of Gromov [22, Proposition 5.28] concerning
generators of the fundamental group. ��

We are now able to establish a polynomial growth result for the fundamental group,
generalizing [29, Theorem 3.5] and [40, Theorem 1].

Lemma 7.5. Consider a complete Riemannian manifold (M, g, X) of dimension n with
smooth 1-form X. Let m > 0, δ ≥ 0, and assume that

RicmX (g) ≥ −(n − 1)δg, diam(M) ≤ D, Vol f (M) ≥ V, supM |X | ≤ C, (7.29)

where f is given in Proposition 7.1. There exists δ0 (n,m, C,D,V) > 0, such that if
δ ≤ δ0 then π1(M) is of polynomial growth of degree ≤ n + m.

Proof. Assume that the conclusion is false. Then there exists a sequence of manifolds
(Mi , gi , Xi ), and constants δi → 0, satisfying (7.29) such that π1(Mi ) is not of poly-
nomial growth of degree ≤ n + m. Therefore, if �i (s) denotes the set of distinct words
in π1(Mi ) of length ≤ s, then for any set of generators of π1(Mi ) we can find si → ∞
such that

#�i (si ) > isn+mi ,
√

δi s
3
i → 0. (7.30)

This is achieved using the freedom to choose si along with the following observation.
Lemma 7.3 states that when (7.29) is satisfied there are finitely many isomorphism types
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of π1(M), and according to [22, Proposition 5.28] for each isomorphism type there
are generating loops γ j , j = 1, . . . , J with the property that max j l(γ j ) ≤ 3D and
all relations in these generators are of the form [γ j ][γk] = [γl ]. Note that the control
on generator length Lemma 7.3, together with the proof of [2, Theorem 2.3] in which
Proposition 7.1 is used in place of Bishop-Gromov volume comparison, shows that the
number of generators J is bounded above in terms of n, m, C, D, and V . In particular,
the number of generators used to describe (7.30) may be taken independent of i .

Let x̃ i0 ∈ M̃i be in the preimage (within the universal cover) of a chosen base point
xi0 ∈ Mi for the fundamental group, and choose a fundamental domain Fi for π1(Mi )

containing x̃ i0. If ri = (3si + 1)D then
⋃

g∈�i (si )

g (Fi ) ⊂ B̃ri (x̃
i
0). (7.31)

We then have, by Proposition 7.1, that for sufficiently large i ,

#�i (si )V ≤ #�i (si )Vol fi (Mi )

≤Vol f̃i

(
B̃ri (x̃

i
0)
)

≤ (ri + 1)me
[√

δi (r2i +r
3
i )h(

√
δi ri )+C

]
Voln(Bri )

≤ ((3si + 1)D + 1)m eC+1|Sn−1|
ˆ (3si+1)D

0

(
sinh(

√
δiρ)√

δi

)n−1

dρ

≤ (4D)n+meC+1|Sn−1|
n

sn+mi .

(7.32)

This, however, contradicts (7.30). ��
From the polynomial growth property, Yun [42, Theorem 2] was able to establish

the almost abelian characterization of the fundamental group for manifolds with almost
nonnegative Ricci curvature, and this was extended to the gradient Bakry–Émery setting
by Jaramillo [29, Theorem 1.3]. Here we generalize these results to the nongradient
Bakry–Émery case. The proof relies on the almost splitting result Theorem 6.2, the
generator length and isomorphism type bounds Lemma 7.3, and the polynomial growth
characterization Lemma 7.5.With these ingredients, the arguments of [42] applywithout
change to yield desired almost abelian theorem.

Theorem 7.6. Consider a complete Riemannianmanifold (M, g, X) of dimension n with
smooth 1-form X. Let m > 0, δ ≥ 0, and assume that

RicmX (g) ≥ −(n − 1)δg, diam(M) ≤ D, Vol(M) ≥ V, supM (|X | + |∇divX |) ≤ C. (7.33)

There exists δ0 (n,m, C,D,V) > 0, such that if δ ≤ δ0 then π1(M) is almost abelian.

Proof. As described above, this follows from the arguments of [42] and the previous
results of this section. It remains to show that Vol f (M) ≥ V ′ so that these results may
be applied, where f is given in Proposition 7.1 and V ′ depends on n, m, C, D, and V .
To obtain the desired conclusion we will establish a lower bound for u = e− f . Recall
from (7.19) that

�−Xu = − (divX) u. (7.34)
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A version of the Cheng-Yau gradient estimate presented in Lemma A.1 yields

supM |∇ log u| ≤ C1(n,m, δ, C), (7.35)

where the bound on |∇divX | is used. Note that an upper bound on the range of δ allows
for a choice ofC1 independent of δ. Furthermore, by construction there is a point x0 ∈ M
such that u(x0) = 1. Thus, if γ (r) is a unit speed minimizing geodesic connecting x to
x0 then

| log u(x)| =
∣∣∣∣∣
ˆ d(x,x0)

0
∂r log u(γ (r))dr

∣∣∣∣∣ ≤
ˆ d(x,x0)

0
|∇ log u(γ (r))|dr ≤ C1D. (7.36)

It follows that
e−C1D ≤ u(x) ≤ eC1D, (7.37)

and therefore

Vol f (M) =
ˆ
M
e− f dVg ≥ (infM u)Vol(M) ≥ e−C1DV =: V ′. (7.38)

��

7.3. A Betti number bound. The volume estimate of Sect. 7.1 may be used to obtain
a first Betti number bound, generalizing the result of Gallot [17] and Gromov [22,
Theorem 5.21] in the setting of Ricci curvature lower bounds (see also [34, Theorem
63]). Interestingly the bound we obtain in the Bakry–Émery setting depends on the
synthetic dimension for general X , and agrees with the classical result when X is a
gradient.

Theorem 7.7. Consider a complete Riemannianmanifold (M, g, X) of dimension n with
smooth 1-form X. Let m > 0, δ ≥ 0, and assume that

RicmX (g) ≥ −(n − 1)δg, diam(M) ≤ D, supM |X | ≤ C. (7.39)

Then there is a function B (δ, n,m, C,D) that yields a bound for the first Betti number
and satisfies

b1(M) ≤ B (δ, n,m, C,D) , lim
δ→0

B (δ, n,m, C,D) = n + m. (7.40)

More precisely, there is a δ0(n,m, C,D) > 0 such that if δ ≤ δ0 then b1(M) ≤ n + m.
Furthermore, if X = d f0 for some f0 ∈ C∞(M) and the assumption supM |X | ≤ C is
replaced by supM | f0| ≤ C, then the same conclusions hold with n + m replaced by n.

Proof. Recall that b1(M) = dimH1(M,R), and the first homology group is isomorphic
to the abelianized fundamental group H1(M,Z) = π1(M)/[π1(M), π1(M)]. This is a
finitely generated abelian group, and its torsion subgroup T is normal. Let M̃ denote
the universal cover. Then we may construct a cover

M̂ =
(
M̃/[π1(M), π1(M)]

)
/T , (7.41)

on which the torsion-free group G = H1(M,Z)/T acts by deck transformations, and
with rank(G) = b1(M). Note that any finite index subgroup of G also has rank b1(M).
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According to [22, Lemma 5.19], for fixed x̂ ∈ M̂ , there is a finite index subgroup � ≤ G
generated by loops γ1, · · · , γb1 ⊂ M such that

d(x̂, [γi ](x̂)) ≤ 2diam(M), d(x̂, g(x̂)) > diam(M), g ∈ � \ {1}. (7.42)

Consider the set

U (r) = {g ∈ � | g = [γ1] j1 · · · [γb1] jb1 ,
∑

| ja | ≤ r}. (7.43)

Observe that for each g ∈ � \ {1} the balls B̂r1(g(x̂)) are disjoint where r1 = diam(M)
2 ,

and
B̂ diam(M)

2
(g(x̂)) ⊂ B̂r2(x̂), g ∈ U (r) (7.44)

where r2 = 2rdiam(M) + diam(M)
2 . Let f̂ denote the pullback to M̂ of the function

f ∈ C∞(M) given by Proposition 7.1. Since the elements of � act by isometries, the
f̂ -volumes in (7.44) have the same value. From Remark 7.2 it follows that

#U (r) ≤
Vol f̂

(
B̂r2(x̂)

)

Vol f̂

(
B̂r1(x̂)

)

≤
´ r2
0 (ρ + 1)me

[√
δ(ρ2+ρ3)h(

√
δρ)+C0

]
�n−1dρ

´ r1
0 (ρ + 1)me

[√
δ(ρ2+ρ3)h(

√
δρ)
]
�n−1dρ

≤
´ 2rD+D

2
0 (ρ + 1)me

[√
δ(ρ2+ρ3)h(

√
δρ)+C0

]
sinhn−1(

√
δρ)dρ

´ D
2

0 (ρ + 1)me

[√
δ(ρ2+ρ3)h(

√
δρ)
]
sinhn−1(

√
δρ)dρ

≤ 5n+meC0+1rm+n

(7.45)

for large r and sufficiently small δ, with the latter comparatively small relative to the
former. On the other hand, by construction, if r is an integer then #U (r) = (2r + 1)b1 .
Thus, if b1 > n + m then there is a large integer r0 = r0(n,m, C) satisfying

(2r0 + 1)b1 > 5n+meC0+1rm+n
0 . (7.46)

We may now choose δ0 = δ0(r0, n,m, C,D) such that (7.45) holds for δ ≤ δ0 with
r = r0. The contradiction between (7.45) and (7.46) yields the desired result.

Lastly, if X = d f0 for some f0 ∈ C∞(M) and the assumption supM |X | ≤ C
is replaced by supM | f0| ≤ C, then the same arguments above may be applied with
Proposition 7.1 replaced by Proposition 3.2 of [29]. The factor (ρ + 1)m will not be
present in (7.45), leading to the same conclusions with n + m replaced by n. ��

7.4. Applications to the topology of horizons. Consider the setting of Theorem 1.1.
Recall that the following equation for the m-Bakry–Émery Ricci tensor is induced upon
a horizon cross-section H, namely

RicmX (g) = 2

n
�g + 2κχ, (7.47)
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where � is the cosmological constant, κ is surface gravity, χi j = 〈∇∇∇∂i U, ∂ j 〉 is the
null second fundamental form in the U direction (transverse to the horizon), and X is
a renormalized piece of the Killing vector V . By combining this with results of the
previous sections we obtain restrictions on horizon topology. Define λ to be a lower or
upper bound (depending on the sign of κ) for the eigenvalues of χ , that is

κλ = infx∈H min
w∈TxH|w|=1

κχ(w,w). (7.48)

As before let C, D, and V be constants such that

diam(H) ≤ D, Vol(H) ≥ V, supH (|X | + |∇divX |) ≤ C. (7.49)

The next result then follows directly from Theorems 7.6 and 7.7, and the discussion
above.

Theorem 7.8. LetH be a single component compact horizon cross-section in a station-
ary vacuum spacetime satisfying � + nκλ ≥ −δ and (7.49).

(i) There exists δ0(n, C,D,V) > 0, such that if δ ≤ δ0 then the fundamental group
π1(H) contains an abelian subgroup of finite index.

(ii) There exists δ0(n, C,D) > 0, such that if δ ≤ δ0 then the first Betti number satisfies
b1(H) ≤ n + 2. Moreover, if X = d f0 for some f0 ∈ C∞(H) and the assumption
supH (|X | + |∇divX |) ≤ C is replaced by supH | f0| ≤ C, then b1(H) ≤ n.

We may now establish Theorem 1.1. Indeed, compact manifolds have finitely gen-
erated fundamental groups, and as shown by Gromov [21] finitely generated almost
abelian groups cannot be of exponential growth. Thus, horizons which fit within the
context of Theorem 7.8 (i) cannot have fundamental groups of exponential growth. In
particular, such horizons cannot arise as a nontrivial connected sum except for a few spe-
cial cases, see the discussion in Sect. 3 of [31]. This yields part (i) of Theorem 1.1. Part
(ii) of Theorem 1.1 follows directly from Theorem 7.8 (ii). Next, observe that if � > 0
and the surface gravity is sufficiently small then the horizon cross-section is of positive
Bakry–Émery Ricci curvature, and this implies via a generalization of Myers Theorem
that the fundamental group of the horizon must be finite [30]. This gives Theorem 1.1
(iii). Lastly, Lemma 7.3 implies Theorem 1.1 (iv) and completes the proof.
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of this paper.
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Appendix A. A Cheng–Yau Gradient Estimate

Lemma A.1. Let (M, g, X) be a complete Riemannian manifold of dimension n with
smooth vector field X . Let m, C > 0, δ ≥ 0, and 0 < r1 < r2, and assume that
RicmX (g) ≥ −(n−1)δg together with |X | ≤ C on Br2(p). Suppose that u ∈ C∞(Br2(p))
is positive and satisfies

�Xu = aF(u), (A.1)
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for some functions a ∈ C∞(Br2(p)) and F ∈ C∞(R+). Then there exists a constant
C0 ≥ 1 depending on n,m, δ, r1, r2, C such that

supBr1 (p) |∇ log u|2≤C0 + supBr2 (p)

⎧
⎨
⎩8n
[
(|a| + |∇a|) |F(u)|

u
+|aF ′(u)|

]
+4

(
C+
√ |F(u)|

u

)2⎫⎬
⎭ . (A.2)

Proof. The proof involves a detailed but straightforward calculation that appears in [7,
Chapter 7], which we modify to accommodate the vector field X . Using equation (A.1)
a direct computation shows that for v := log u we obtain

�Xv = − |∇v|2 + ae−vF(ev) =: − |∇v|2 + aG(v). (A.3)

Next, define Q := φ|∇v|2 where the nonnegative cut-off function φ : Br2(p) → [0, 1]
is chosen such that φ = 1 on Br1(p), φ = 0 in a neighborhood of ∂Br2(p), and φ ≤ 1
on Br2(p). In what follows, calculations will be evaluated at a point q ∈ Br2(p) where
Q takes its maximum, so terms involving ∇Q will be dropped or rather the identity
0 = |∇v|2∇φ + φ∇ (|∇v|2) will be implemented.

First observe that

�X Q = Q

φ
�Xφ − 2Q

φ2 |∇φ|2 + φ�X

(
|∇v|2
)

. (A.4)

The last term in this formula may be replaced with help from the Bochner formula [31,
Lemma 4]

�X

(
|∇v|2
)

= 2|Hessv|2 + 2RicmX (∇v,∇v) + 2∇∇v�Xv +
2

m
(X (v))2

≥ 2

n
(�v)2 − 2(n − 1)δ

φ
Q + 2∇∇v�Xv +

2

m
(X (v))2 ,

(A.5)

where the Bakry–Émery Ricci curvature lower bound and the Cauchy–Schwarz inequal-
ity were used. Furthermore by (A.3)

2

n
φ (�v)2 = 2

n
φ−1 (φ�Xv + φX (v))2

= 2

n
(φG(v) + φX (v) − Q)2 ,

(A.6)

and

2φ∇∇v�Xv = 2φ∇∇v

(
aG(v) − |∇v|2

)
(A.7)

= 2φ(∇v · ∇a)G(v) + 2aG ′(v)Q − 2φ∇v · ∇
(
|∇v|2
)

= 2φ(∇v · ∇a)G(v) + 2aG ′(v)Q + 2|∇v|2∇v · ∇φ

= 2φ(∇v · ∇a)G(v) + 2aG ′(v)Q +
2

φ
Q∇v · ∇φ

≥ −2|∇a||G(v)|φ1/2Q1/2 + 2aG ′(v)Q − 4n
|∇φ|2

φ2 Q − 1

4nφ
Q2.
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Gathering the above expressions produces

φ�X Q ≥ Q�Xφ − (2 + 4n)
|∇φ|2

φ
Q − 2|∇a||G(v)|φ3/2Q1/2 + 2aφG ′(v)Q − 1

4n
Q2

−2(n − 1)δφQ +
2

m
φ (X (v))2 +

2

n
(φX (v) + φG(v) − Q)2 (A.8)

at q, where Q takes its maximum.
Now suppose that Q(q) ≤ 2φ (G(v) + X (v)) (q), then the definitions of v, G, and

Q yield

|∇ log u|2 ≤ 2u−1 (F(u) + X (u)) ≤ 2u−1|F(u)| + 2C|∇ log u| at q. (A.9)

It follows that

supBr2 (p) Q ≤ 4
(
C + supBr2 (p)

√
u−1|F(u)|

)2
. (A.10)

If on the other hand Q(q) ≥ 2φ (G(v) + X (v)) (q), then this may be manipulated into
the form

2

n
(φX (v) + φG(v) − Q)2 − 1

4n
Q2 ≥ 1

4n
Q2. (A.11)

Inserting this into (A.8) and using that �X Q ≤ 0 at the maximum point q, gives rise to

1

4n
Q ≤ −�Xφ + (2+ 4n)

|∇φ|2
φ

+2|∇a||G(v)|φ3/2Q−1/2 − 2aφG′(v)+2(n− 1)δφ. (A.12)

We may assume that Q(q) > 1, otherwise (A.2) is automatically valid since C0 ≥ 1. It
follows that

supBr2 (p) Q ≤ C0 + supBr2 (p) 8n
[
(|a| + |∇a|)u−1|F(u)| + |aF ′(u)|

]
. (A.13)

In order to show that the constantC0 depends only on the quantities stated in the lemma,
we choose the cut-off functionφ to be a non-increasing function of the distance ρ from p,
so that as in Corollary 2.3 we have �Xφ ≥ �̄n+mφ. Note that a modification employing
a barrier function produces the same result when q is a cut point (see [7, page 41]).

Finally observe that the sequence of elementary inequalities

supBr1 (p) |∇ log u|2 = supBr1 (p) Q ≤ supBr2 (p) Q, (A.14)

together with (A.10) and (A.13) gives the desired result. ��
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