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We present arguments that show why it is difficult to see rich extra dimensions in the
universe. Conditions are found where significant size and variation of the extra dimen-
sions in a Kaluza—Klein compactification lead to a black hole in the lower-dimensional
theory. The idea is based on the hoop conjecture concerning black hole existence, as well
as on the observation that dimensional reduction on macroscopically large, twisted, or
highly dynamical extra dimensions contributes positively to the energy density in the
lower-dimensional theory and can induce gravitational collapse. A threshold for the size
is postulated on the order of 1071° m, whereby extra dimensions of length above this
level must lie inside black holes, thus cloaking them from the view of outside observers.
The threshold depends on the size of the universe, leading to speculation that in the
early stages of evolution truly macroscopic and large extra dimensions would have been
visible.
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According to our everyday experience, there are three spatial dimensions in addition
to a dimension which tracks the passage of time. Nonetheless, the idea that there are
additional spatial dimensions has persisted for a century. This is chiefly because the
richer geometry provides an elegant way to encode the various fundamental fields
we observe. For example, in the simplest such model, classical five-dimensional vac-
uum general relativity gives rise to Einstein-Maxwell theory in four dimensions
with an additional scalar field. Presently, extra dimensions play a key role in string
theory and the gauge theory-gravity correspondence. From a phenomenological per-
spective, extra “large” micron-sized dimensions have been suggested as an elegant
resolution to the hierarchy problem 2 an explanation for the origins of dark mat-
ter® and even as a mechanism supplying the small but nonzero mass of neutrinos®
Thus, it appears likely that the possibility of extra dimensions is more than a mere
mathematical abstraction.

Given their strong explanatory potential, an obvious question arises as to why
there has yet to be any experimental evidence for their existence. Put simply, why
do we not see these extra dimensions? A typical answer is that they are just too
small for the current generation of experiments. While placing bounds on their
size is highly model-dependent, the length scales probed by the LHC suggest that
the size of such extra dimensions can be no larger than 10718 m5 This begs a
further question: why are extra dimensions so small? In this essay, we put forward
potential answers to these questions. In a nutshell, if the extra dimensions were
too large and twisted, or changed rapidly over a given four-dimensional spacetime
region, then they must be hidden inside a four-dimensional black hole. Thus, the
cosmos cloaks rich extra dimensions. The underlying mechanism is that the size,
and the amount that extra dimensions warp and twist, produces an effective energy—
momentum density concentration in the four-dimensional spacetime that leads to
horizon formation. We also produce a rough estimate on the threshold geometry at
which collapse occurs.

According to the hoop conjecture® if enough matter is enclosed in a region
of fixed size, a self-gravitating system will collapse to form a black hole. A more
refined formulation is furnished by the trapped surface conjecture,m which asserts
that a trapped surface will form near a body U with mass m(U) and size R(U) (in
units of length) provided the following inequality holds:

R(U) £ Sem(U), )

where < indicates that there is a suppressed universal constant dependent on the
definitions of m(U) and R(U), and G and ¢ are Newton’s constant and the speed of
light, respectively. The trapped surface conjecture has been rigorously established
in spherical symmetry®? with R(U) given by the radius, and without symmetry
hypotheses 1 where R(U) is determined from the largest embedded torus within U.

An inequality of the form (II) is precisely stated™ in terms of the initial value
formulation of general relativity, which is the proper setting for studying dynamics.
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When () holds, it can be shown that an apparent horizon must be present within
the initial data. The existence of an apparent horizon signals that a black hole must
be contained in the spacetime. In fact, once a trapped surface or apparent horizon
is detected, the Hawking—Penrose singularity theorems together with weak cosmic
censorship™ imply that a horizon will form. The advantage of this approach is that
the formation of black holes can be detected without knowledge of the full evolution.

We will demonstrate our proposal in the setting of standard Kaluza—Klein the-
ory, in which there is a single extra spatial circle direction “twisted” over the usual
four-dimensional spacetime. The ambient five-dimensional spacetime is taken to
satisfy the vacuum Einstein equations. The length L of this circle, and the amount
that it twists over the four-dimensional spacetime, vary as one moves along this
base space. Roughly, when the length of the circle and the amount that it twists
is too large or changes in a sufficiently rapid fashion over a domain of fixed size,
a trapped region must form. We will present precise conditions on these geometric
quantities that produce apparent horizons, and argue that therefore such a rich
extra dimension would be inaccessible to experimental detection.

Consider the standard warped product with U(1) bundle fibration, in which the
vacuum five-dimensional spacetime metric g5 takes the form

g5 = e22?(dz + 2A)% + g, (2)

where g represents the four-dimensional spacetime metric. The z coordinate param-
eterizes the S' direction and is understood to be periodically identified, z ~ z+ 27/,
where £ is a canonical length scale which we may choose to be a meter. A is a 1-form
on spacetime which can be interpreted as measuring how the extra S' dimension is
twisted above the base spacetime, and geometrically determines the connection of
the U(1) bundle. The circumference of the S! direction is 27 L where L = e“%/. It
is well known that imposing the vacuum Einstein equations Ric(gs) = 0 and choos-
ing «, [ appropriately imply that the four-dimensional spacetime (N, g) together
with the 2-form field strength F' = dA, and dilaton ¢ satisfy the Einstein—-Maxwell
equations coupled to a charged scalar field.

Now, let M be a compact spacelike hypersurface in N with unit timelike normal
vector field n, an induced positive definite metric g and extrinsic curvature k, as
well as induced “electric” and “magnetic” spatial vector fields E = F(n,-) and
B = xF(n,-). An initial data set (M, g,k, E, B, ¢) for the Einstein—-Maxwell-scalar
field system must satisfy the constraint equations. These consist of relations between
k as well as the scalar curvature of g, and the energy and momentum densities p,
J of the slice, in addition to the analogues of Gauss’s law involving the Maxwell
and scalar fields. The energy and momentum densities may be obtained from the
effective four-dimensional stress-energy tensor and are given by

k= ¢ + Vo> + *¢(|E)? + |B|?), kJ =20V —2¢**FE x B, (3)

where the ¢ = n-d¢ and V¢ represent initial time and spatial derivatives evaluated
8

on M, and k = ZZG. Observe that the extra dimension contributes positive energy
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density from the four-dimensional perspective. We define the following character-
1stic constants

& = ][ L*3(|E|, — |B|,)%? dvol,,
M

(4)
& :7[ CB(|LLY| - |Viog L|)?/3 dvoly,
M

associated with the initial data, which are normalized to have dimensions of length.
The “slash” indicates that an average is taken over M.
If at least one of the two characteristic constants of an initial data set for the
Einstein-Maxwell-scalar field system satisfies the richness condition
Rad(M)

1/3
E 2 | 0P —2 / i=1or2 (5)
T~ VOI(M) ) )

then there exists an apparent horizon within M.

To see that this statement follows from the trapped surface conjecture, one may
argue by contradiction. According to Eq. () and using the following definition of
mass,

() = [ (=171, dvol,. (6)

we conclude that the contrapositive of the trapped surface conjecture can be
expressed as follows: if the initial data set is devoid of apparent horizons then

Rad(M) = H/M(u — |J|g) dvoly, (7)

where we have chosen the measure of size to be in terms of the radius (one-half the
furthest distance between two points). Observe that the Cauchy—Schwarz inequality
yields

k(= 1J1g) = (| Ely — |Blg)* + (1] — [Vely)*. (8)

Dividing () by the volume Vol(M), combining with (8), and applying Jensen’s
inequality then produce
Rad(M)

1/3
< < (g 7
87, =~ 51 + 52 ~ (‘g VOl(M) ) 9 (9)

for i = 1, 2. Therefore, the reverse of this inequality implies that there must exist
an apparent horizon within M.

Schoen and Yau have established a rigorous mathematical formulation and proof
of the result that sufficient concentration of matter leads to horizon formation™ a
result that naturally arose from their arguments establishing the positive mass the-
orem. Our choice of mass in (6] is motivated by their usage of the quantity u— |.J|,
which is related to the dominant energy condition. An analogous statement to that
above involving (&) may be proved, following the methods of Ref.[I0] with the main

difference that the characteristic constants &; are replaced with weighted integrals
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involving the principal eigenfunction of a certain differential operator on M. We
also point out that the definition of mass (B) and usage of the radius to measure
size have appeared in other formulations of the trapped surface conjecture, see, for
example, Refs. [8 and

Let us now examine some consequences of these conclusions. In particular, we
will consider the case in which the initial data set encompasses the entire uni-
verse. The radius of the observable universe has been observed to be approximately
102 m™2 According to the most recent analysis of the cosmic microwave back-
ground,'j:‘ZI the universe does not exhibit any known topological features, and thus
its time slices may be approximated by the simply connected constant curvature
model of a round 3-sphere (see also Ref. [I4)) or flat Euclidean 3-space in which case
M is taken to be a large ball. We are thus able to compute the ratio of radius to
volume appearing in the theorem, namely,

a 1/3
(65 %%) ~ 10" ¥m. (10)

It follows that if & > 10~ m for either i = 1 or 2, then a black hole must form due
to concentration of the geometry, or richness, of the extra dimension. Although our
result does not determine exactly where in M the apparent horizon is located, it
is reasonable to surmise that the regions where the concentration is highest should
be where the black holes form.

Next, we examine the individual cases in which each characteristic constant
satisfies the richness condition (@)). In particular, with regard to the first character-
istic constant, if the twisting of the extra dimension is generically on the order of
(|E|, —|Bly)?/® ~ 107P£=2/3 then the richness condition will be satisfied when, on
the scale of the universe, the average circumference of the extra dimension satisfies
avg(L) 2 107177 m. We then have the existence of black holes due to the excessive
average size of the extra dimension, and as argued the horizons should be located
in regions where this size is greatest. In this way, large extra dimensions are hidden
from the view of outside observers. On the other hand, if the size is generically
L ~ 1077 m, then the richness condition is satisfied when the average twisting sur-
passes the threshold 101977/~ in which case sufficiently twisted extra dimensions
are hidden behind horizons.

Consider now the second characteristic constant, which concerns a measurement
of rate of change in time and space of the size of the circle fibers. The richness
condition will be satisfied if on average, throughout a time slice of the universe,
the rate of change of the extra dimension’s size is greater than 107 m. Thus,
highly dynamical extra dimensions or those with extreme spatial size variations
are enclosed inside black holes. In a different direction, Penrose [15], Sec. 31.12] has
sketched an instability argument that suggests the emergence of singularities in
supersymmetric compactifications due to Planck-sized extra dimensions.

It should be pointed out that the threshold of 107! m is tied to the diameter
of the universe in the current epoch. Thus, we speculate that at earlier times,
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when the diameter was significantly smaller the threshold would be much larger.
In fact, in the early stages of the universe truly macroscopic and even large extra
dimensions would have been visible, and allowed to change rapidly without being
trapped behind horizons. Conversely, as the universe expands into the future, the
threshold will drop and eventually achieve a level on par with the Planck length,
making it virtually impossible to detect the extra dimensions.

The conclusions of this note suggest that there is a fundamental tension between
the “richness” — the twisting, warping and size — of extra dimensions and the
ability to explore these dimensions experimentally. We have restricted attention to
the simplest model of extra dimensions to emphasize key features of the arguments.
It should be the case, however, that additional (possibly curved) spatial dimensions
should produce further positive contributions to the energy density of the effective
theory, leading to similar effects. The same is also true if additional matter fields
are present and satisfy the dominant energy condition, or if there is a nonnegative
cosmological constant. Thus, we expect that the results demonstrated here can be
generalized to more complicated models in a robust manner.
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