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Abstract
An explicit lower bound for the mass of an asymptotically flat Riemannian 3-manifold
is given in terms of linear growth harmonic functions and scalar curvature. As a
consequence, a new proof of the positive mass theorem is achieved in dimension three.
The proof has parallels with both the Schoen–Yau minimal hypersurface technique
and Witten’s spinorial approach. In particular, the role of harmonic spinors and the
Lichnerowicz formula in Witten’s argument is replaced by that of harmonic functions
and a formula introduced by the fourth named author in recent work, while the level
sets of harmonic functions take on a role similar to that of the Schoen–Yau minimal
hypersurfaces.
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1 Introduction

Let (M, g) be a smooth connected 3-dimensional asymptotically flat Riemannian
manifold with nonnegative scalar curvature Rg ≥ 0. The notion of asymptotic flatness

means that there is a compact setK ⊂ M such thatM \K = ∪k0
k=1M

k
end where the ends

Mk
end are pairwise disjoint and diffeomorphic to the complement of a ball R

3 \ B1,
and there exists in each end a coordinate system satisfying

|∂ l(gi j − δi j )(x)| = O(|x |−q−l), (1.1)

for some q > 1
2 and with l = 0, 1, 2. The scalar curvature is assumed to be integrable

Rg ∈ L1(M) so that the ADM mass of each end is well-defined [1] and given by

m = lim
r→∞

1

16π

∫
Sr

∑
i

(gi j,i − gii, j )υ
jdA, (1.2)

where υ is the unit outer normal to the coordinate sphere Sr of radius r = |x | and d A
denotes its area element. The positive mass theorem asserts that this parameter has a
sign, and it characterizes Euclidean space as the unique manifold in this class with
vanishing mass.

Theorem 1.1 If (M, g) is complete and asymptotically flat with nonnegative scalar
curvature then m ≥ 0, and m = 0 if and only if (M, g) ∼= (R3, δ).

This theoremwas first established in the late 1970’s bySchoen andYau [16, 17] via a
contradiction argument, and is based on the existence of stable minimal hypersurfaces
along with manipulations of the stability inequality. Shortly after this Witten [15, 21]
found an alternate proof in which the mass is expressed as a sum of squares. This
proof relies on the existence of harmonic spinors and the Lichnerowicz formula. More
recently two other proofs have been given in the general case. One by Huisken and
Ilmanen [7], which arose out of their study of the Penrose inequality, follows from
the existence of a weak version of inverse mean curvature flow and monotonicity of
Hawking mass. The other is a Ricci flow proof and is due to Li [9]. Further proofs
have been given in special cases, such as that of Brill [4] in the axisymmetric setting.
It should also be noted that Lohkamp [10] showed how the positive mass theorem can
be reduced to the nonexistence of positive scalar curvature metrics on the connected
sum N#T of a compact manifold N with a torus T . See [8] for a survey of these
topics. Furthermore, we point out the articles of Schoen and Yau [18] and Lohkamp
[11] which address the higher dimensional case.

The purpose of the current article is to give an explicit lower bound for the mass in
terms of linear growth harmonic functions and scalar curvature. This approach is based
on an integral inequality due toStern [19], and leads to a newand relatively simple proof
of Theorem 1.1. Associated with each asymptotic end Mend there is a corresponding
exterior region Mext ⊃ Mend, which is diffeomorphic to the complement of a finite
number of balls (with disjoint closure) in R

3 and has minimal boundary [7, Lemma
4.1].
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Theorem 1.2 Let (Mext, g) be an exterior region of a complete asymptotically flat
Riemannian 3-manifold (M, g)withmassm. Let u be a harmonic function on (Mext, g)
satisfying Neumann boundary conditions at ∂Mext, and which is asymptotic to one of
the asymptotically flat coordinate functions of the associated end. Then

m ≥ 1

16π

∫
Mext

( |∇2u|2
|∇u| + Rg|∇u|

)
dV . (1.3)

In particular, if the scalar curvature is nonnegative thenm ≥ 0. Furthermore, if m = 0
then (M, g) ∼= (R3, δ).

Remark 1.3 Consider the case when (M, g) is a manifold with trapped surface bound-
ary ∂M . That is, the mean curvature of ∂M computed with respect to the normal
pointing towards the relevant asymptotic end is nonpositive; such surfaces are associ-
ated with black hole formation [20]. In this situation the proof of Theorem 1.2 yields
the same lower bound (1.3), and when the scalar curvature is nonnegative it shows
that the mass is strictly positive m > 0 due to a contribution from the horizon.

Two approaches to the positive mass theorem will be presented within the context
of the harmonic level set technique. They differ in their handling of the exterior region
boundary, and in their use of the asymptotically flat geometry. In the first method
Neumann boundary conditions are imposed on ∂Mext in order to deal with boundary
terms appearing in Stern’s integration formula [19], while in the second method the
Mantoulidis–Schoen neck construction [12, 13] is used to cap-off the boundary spheres
so that the resulting manifold is diffeomorphic to R

3 and still possesses nonnegative
scalar curvature. Within the asymptotic end harmonic coordinates are employed along
with cylindrical domains in the first approach to extract the mass and compute total
geodesic curvatures. On the other hand, the second approach utilizes a density theorem
to reduce the asymptotic geometry to that of Schwarzschild where the analysis is then
performed on coordinate spheres. An extension of these ideas to the spacetime version
of the positive mass theorem appears in [6].

2 Preparing the Data

Within the context of the 3-dimensional positive mass theorem, simplifications of the
asymptotics and topology may be assumed without loss of generality. More precisely
Schoen and Yau [17] showed that metrics with harmonic asymptotics are dense in
the relevant class of metrics, and Bray [2] (see also [5, Proposition 3.3]) extended
this to show that in fact harmonic asymptotics may be replaced with Schwarzschild
asymptotics. As for the topology of M , one may consider the portion of M outside
the outermost minimal surface, and fill in the resulting spherical holes using work of
Mantoulidis and Schoen [12, 13] and the Miao smoothing [14]. This procedure allows
one to reduce the topology of M toR

3. It should be noted that this reduction is specific
to dimension 3.
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Proposition 2.1 Let (M, g) be a smooth 3-dimensional complete asymptotically flat
Riemannian manifold having nonnegative scalar curvature Rg ≥ 0, and with mass m
of a designated end M+

end. Given ε > 0, there exists a smooth 3-dimensional complete
asymptotically flat Riemannian manifold (M, g) with nonnegative scalar curvature
Rg ≥ 0 and satisfying the following properties.

(1) The underlying manifold M is diffeomorphic to R
3.

(2) The mass m of the single end Mend satisfies |m − m| < ε.

(3) In the asymptotic coordinates of Mend, g =
(
1 + m

2r

)4
δ.

Proof By passing to the orientable double cover if necessary wemay assume that M is
orientable. Moreover by applying an appropriate conformal deformation with confor-
mal factor approximating 1, such that the deformed mass differs from the original by
an arbitrarily small amount, we may assume that (M, g) has positive scalar curvature
Rg > 0 everywhere. Let S ⊂ M denote the trapped region in the sense of [7]. If
S = ∅ then M is diffeomorphic to R

3 [7, Lemma 4.1], and we set M = M . The
desired metric g then arises from Bray’s density result [5, Proposition 3.3]. If S �= ∅,
then consider M

+
, the metric closure of the component of M \ S containing M+

end.
According to [7, Lemma 4.1] this exterior region is diffeomorphic to the complement
of a finite union of balls, so that

M
+ = R

3 \ ∪k
i=1Bi , (2.1)

where the spheres ∪i S2i = ∪i∂Bi are homologically area outer-minimizing. Since
each submanifold (S2i , γi = g|S2i ) is a 2-sided stable minimal surface in an ambient
space of positive scalar curvature, the principal eigenvalue of −�γi + Kγi is positive,
where Kγi denotes Gaussian curvature. The hypotheses of [12, Corollary 2.2.13] are
then satisfied, so that for each i = 1, . . . , k there is a Riemannian 3-ball (Di , gi ) with
positive scalar curvature, minimal boundary, and satisfying ∂(Di , gi ) ∼= (S2i , γi ). Glue
in these 3-balls to form

M = M
+ ⋃

S

(
∪k
i=1Di

)
, (2.2)

and equip M with a C0,1-Riemannian metric that agrees with g on M
+
and gi on each

Di , see Fig. 1. Next, smooth a tubular neighborhood of S followed by a conformal
deformation as in [14, Sections 3 & 4], to obtain an asymptotically flat metric g̃ on
M with nonnegative scalar curvature and mass satisfying |m − m̃| < ε/2. Now apply
Bray’s density result [5, Proposition 3.3] to g̃ to produce the desired metric g with
mass m satisfying |m̃ − m| < ε/2. �
Remark 2.2 In Proposition 2.1, the conclusion that M is diffeomorphic to R

3 relies
on deep results outlined in [7]. In light of this, it is worth pointing out that ulti-
mately we do not require the full strength of this topological simplification. Indeed,
the only time this portion of Proposition 2.1 is utilized, is in the proof of Lemma
3.1 where only the triviality of H2(M; Z) is needed. This weaker simplification may

123



Harmonic Functions and the ADM Mass Page 5 of 29   184 

Fig. 1 A schematic description of the construction in Proposition 2.1

be achieved via more elementary means. By following the arguments of [8, p. 140],
there exists M̃+ containing M+

end whose boundary consists of minimal spheres and
satisfies H2(M̃+, ∂ M̃+; Z) = 0. Then filling in with discs as above yields the desired
conclusion.

A 3-dimensional Riemannian manifold satisfying points (1) and (3) of Proposition
2.1 will be referred to as Schwarzschildian. This proposition allows the proof of
Theorem 1.1 to be reduced to the following Schwarzschildian case, which will be
established in Sect. 5.

Theorem 2.3 If (M, g) is complete and Schwarzschildian with nonnegative scalar
curvature then m ≥ 0, and m = 0 if and only if (M, g) ∼= (R3, δ).

3 Linear Growth Harmonic Functions

3.1 Harmonic Functions on Schwarzschildian Ends

Suppose that (M, g) is Schwarzschildian, and in Mend write g = w4δ where w =
1 + m

2r . Let

Lg = �g − 1

8
Rg (3.1)

be the conformal Laplacian. According to the conformal invariance of this operator,

Lgv = w−5Lδ(wv) (3.2)
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for any function v. Let 	(x) = ai xi be a linear function in the asymptotically flat
coordinates {xi }3i=1 on Mend. Since Rg ≡ 0 in Mend it follows that

�g(	w
−1) = Lg(	w

−1) = w−5Lδ	 = w−5�δ	 = 0. (3.3)

We can nowfind harmonic functions onM with the following prescribed linear asymp-
totics. Given ai there exists a constant a such that

⎧⎨
⎩

�gu = 0 on M,

u(x) = ai xi

1+ m
2r

+ a
r + O2(r−2) in Mend,

(3.4)

where the notation v = Ol(r−k) asserts that |∂ jv| ≤ Cr−k− j for j ≤ l. To see this,
let u0 ∈ C∞(M) be any smooth function satisfying u0 ≡ 	w−1 in Mend, and set
f = −�gu0. Notice that (3.3) implies f ≡ 0 in Mend. By a standard argument [16,
Lemma 3.2], there exists a function u1 ∈ C∞(M) solving

{
�gu1 = f on M,

u1(x) = a
r + O2(r−2) in Mend,

(3.5)

for some constant a. The desired unique solution of (3.4) is u = u0 + u1.

Lemma 3.1 Let (M, g) be complete and Schwarzschildian. For any linear function 	

in the coordinates of Mend, there exists a unique solution u	 of (3.4). Moreover, all
regular level sets of u	 are connected and noncompact with a single end modeled on
R
2 \ B1.

Proof The discussion preceding the lemma establishes the existence of the solutions
u	, and uniqueness follows from the maximum principle. For such an asymptotically
linear harmonic function u	, let t be a regular value of u	 and consider the level
set 
t = u−1(t). Suppose that there is a compact connected component 
′

t ⊂ 
t .
Notice that 
′

t is a properly embedded submanifold and is 2-sided (has trivial normal
bundle). Since M = R

3 has trivial homology, 
′
t must bound a compact region of M .

By uniqueness of solutions to the Dirichlet problem for harmonic functions, u	 ≡ t
on this region. However this contradicts the assumption that t is a regular value. It
follows that all components of 
t are noncompact. Furthermore, since it is properly
embedded 
t is a closed subset of M . Thus if any component of 
t stays within Mr ,
the compact region bounded by the coordinate sphere Sr ⊂ Mend, it must be compact
which is a contradiction. We conclude that each component must extend outside Sr
for all r .

The asymptotics of u	 imply that there exists a constant C , such that for all suffi-
ciently large r the level set
t lieswithin the slab {x ∈ M\Mr | t−C < 	(x) < t+C}.
More precisely, the implicit function theorem shows that 
t is represented uniquely
in this region as a graph over the plane t = 	(x). It follows that 
t is connected and
has a single end modeled on R

2 \ B1. �
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Fig. 2 Possible level sets of a
harmonic function from Lemma
3.1

3.2 Harmonic Coordinates

In the general case of an asymptotically flat 3-manifold (M, g), not necessarily
Schwarzschildian, consider the exterior region Mext associated with a given end Mend.
Let yi , i = 1, 2, 3 denote the given asymptotically flat coordinate system in Mend.
The analysis of [1, Theorem 3.1] may be appropriately modified in order to produce
harmonic coordinates satisfying Neumann boundary conditions. That is, there exist
functions xi ∈ C∞(Mext) satisfying

�gx
i = 0 on Mext, ∂υ x

i = 0 on ∂Mext, |xi − yi | = o(|y|1−q ) as |y| → ∞, (3.6)

where q is the order of asymptotically flat decay in (1.1). This decay is still valid for
the harmonic coordinates, that is

|∂ l(gi j − δi j )(x)| = O(|x |−q−l), l = 0, 1, 2. (3.7)

Harmonic coordinates are particularly well suited for studying the mass [1], and will
play an important role in the computation of asymptotic boundary terms appearing in
the integral inequalities of Sect. 4 below.

4 Relating Scalar Curvature to Level Set Geometry

The purpose of this section is to obtain integral inequalities for the scalar curvature
of a compact Riemannian manifold equipped with a harmonic function, building on
the techniques introduced by the fourth named author in [19]. Note that our setting is
slightly different from that of [19], which studies closed 3-manifolds with harmonic
maps to S1, while we work with harmonic functions on compact manifolds with
boundary where additional boundary conditions are needed. As in [19], the first step
in obtaining the relevant identities is to apply the Gauss equations to extract scalar
curvature on a regular level set of a harmonic function. Note that in the next result,
the dimension is not restricted to three.

Lemma 4.1 Suppose that (M, g) is a Riemannian manifold and u : M → R is
harmonic with regular level set 
. Then, on 
, the following identity holds

Ric(∇u,∇u) = 1

2
|∇u|2 (

Rg − R


) + |∇|∇u||2 − 1

2
|∇2u|2, (4.1)
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where Rg and R
 denote the respective scalar curvatures.

Proof Since 
 is a regular level set, its unit normal is given by ν = ∇u
|∇u| . Taking two

traces of the Gauss equations then yields

Rg − 2Ric

( ∇u

|∇u| ,
∇u

|∇u|
)

= R
 + |I I |2 − H2, (4.2)

where H and I I are the mean curvature and second fundamental form of 
. The
second fundamental form is given by I I = ∇2


u
|∇u| , where ∇2


u denotes the Hessian of
u restricted to T
 ⊗ T
. It follows that

|I I |2 = |∇u|−2
(
|∇2u|2 − 2|∇|∇u||2 + [∇2u(ν, ν)]2

)
, (4.3)

and because u is harmonic

H = Tr
 I I = |∇u|−1
(
Trg∇2u − ∇2u(ν, ν)

)
= −|∇u|−1∇2u(ν, ν). (4.4)

Combining equations (4.3) and (4.4) produces

|I I |2 − H2 = |∇u|−2
(
|∇2u|2 − 2|∇|∇u||2

)
. (4.5)

Inserting this into (4.2) gives the desired result. �
The formula of Lemma 4.1 will be combinedwith Bochner’s identity and integrated

by parts over a compact manifold with boundary, while applying the coarea formula
with harmonic level sets. For a function u : � → R on a compact manifold �,
let u and u be the maximum and minimum values of u, respectively. The following
computation plays a key role in both of our approaches for obtaining lower bounds on
the ADM mass. We remark that related computations for S1-valued harmonic maps
with homogeneous Neumann condition can be found in the paper [3], where several
applications to the geometry of compact 3-manifolds are obtained.

Proposition 4.2 Let (�3, g) be an 3-dimensional oriented compact Riemannian man-
ifold with boundary decomposed into ∂� = P1 � P2. Let u : � → R be a harmonic
function satisfying the Neumann condition ∂υu ≡ 0 on P1 and the nondegeneracy
condition |∇u|P2 | > 0 on P2. Then

∫ u

u

(∫

t

1

2

( |∇2u|2
|∇u|2 + Rg

)
dA +

∫
∂
t∩P1

HP1

)
dt

≤
∫ u

u

(
2πχ(
t ) −

∫
∂
t∩P2

κ∂
t

)
dt +

∫
P2

∂υ |∇u| dA, (4.6)

where κ∂
t denotes the geodesic curvature of ∂
t ⊂ 
t , HP1 denotes the mean
curvature of P1, and υ is the unit outer normal to ∂�. In the case P1 = ∅, we record
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also the equivalent formulation

∫ u

u

∫

t

1

2

( |∇2u|2
|∇u|2 + Rg − R
t

)
dA dt ≤

∫
∂�

∂υ |∇u|. (4.7)

Proof Let ε > 0 and consider φ = √|∇u|2 + ε. By Bochner’s identity

�gφ = �g|∇u|2
2φ

− |∇|∇u|2|2
4φ3

= φ−1
(
|∇2u|2 + Ric(∇u,∇u) − φ−2|∇u|2|∇|∇u||2

)
.

(4.8)

It follows that on a regular level set 
, Lemma 4.1 may be applied to find

�gφ ≥ 1

2
φ−1

(
|∇2u|2 + |∇u|2(Rg − R
)

)
. (4.9)

Let A ⊂ [u, u] be an open set containing the critical values of u, and denote
the complementary closed set by B ⊂ [u, u]. Note that, by virtue of the boundary
conditions for u, A also contains all critical values for the restriction u|∂� of u to the
boundary.

Now, integration by parts yields

∫
∂�

∂υφ dA =
∫

�

�gφdV =
∫
u−1(A)

�gφdV +
∫
u−1(B)

�gφdV . (4.10)

In order to control the integral over u−1(A), observe that (4.8) and Cauchy-Schwarz
give the estimate

�gφ ≥ φ−1Ric(∇u,∇u) ≥ − ‖ Ric ‖ |∇u|. (4.11)

Applying the coarea formula to u : u−1(A) → A then produces

−
∫
u−1(A)

�gφdV ≤
∫
u−1(A)

‖ Ric ‖ |∇u|dV ≤ C
∫
t∈A

H2(
t ) dt, (4.12)

for some constant C independent of ε and the choice of A. In addition, applying the
coarea formula to u : u−1(B) → B in conjunction with (4.9) gives

∫
u−1(B)

�gφdV ≥ 1

2

∫
t∈B

∫

t

φ−1|∇u|
[ |∇2u|2

|∇u|2 + (Rg − R
t )

]
dA dt . (4.13)

Putting this all together yields

1

2

∫
t∈B

∫

t

φ−1|∇u|
[

|∇2u|2
|∇u|2 + (Rg − R
t )

]
dA dt ≤

∫
∂�

∂υφ dA + C
∫
t∈A

H2(
t ) dt . (4.14)
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Next, we employ the homogeneous Neumann condition ∂υu ≡ 0 to rewrite the
boundary integral

∫
P1

∂υφ. Indeed, note that, away from critical points of u along P1,
we have

∂υφ = φ−1〈∇∇u∇u, υ〉 = −φ−1〈∇u,∇∇uυ〉, (4.15)

where in the last line the Neumann condition was used. Writing ν = ∇u
|∇u| and contin-

uing to use the homogeneous Neumann condition, a brief calculation shows that

〈ν,∇νυ〉 = I I∂�(ν, ν) = HP1 − κ∂
t , (4.16)

so we can rewrite (4.15) as

∂υφ = −φ−1|∇u|2(HP1 − κ∂
t ). (4.17)

In particular, applying the coarea formula for the restriction u|P1–and using the homo-
geneous Neumann condition to see that |∇u|P1 | = |∇u| along P1–we find that

∫
P1

∂υφ dA = −
∫
t∈B

∫
∂
t∩P1

φ−1|∇u|(HP1 − κ∂
t )

+
∫
t∈A

∫
∂
t∩P1

|∇u|−1φ−1〈∇∇u∇u, υ〉. (4.18)

Since

|∇u|−1φ−1|〈∇∇u∇u, υ〉| ≤ |I IP1 | ≤ C, (4.19)

it follows that
∫
P1

∂υφ dA ≤ −
∫
t∈B

∫
∂
t∩P1

φ−1|∇u|(HP1 − κ∂
t )

+C
∫
t∈A

H1(∂
t ∩ P1). (4.20)

Apply (4.20) in (4.14) to obtain

1

2

∫
t∈B

∫

t

|∇u|
φ

( |∇2u|2
|∇u|2 + Rg

)
dA dt

≤
∫
t∈B

(
1

2

∫

t

|∇u|
φ

R
t dA +
∫

∂
t∩P1

|∇u|
φ

(κ∂
t − HP1)

)
dt

+
∫
P2

∂υφ dA + C
∫
t∈A

(
H2(
t ) + H1(∂
t ∩ P1)

)
. (4.21)
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Observe that |∇u| is uniformly bounded from below on u−1(B), since B is a closed
subset of the regular values of u. Recalling that φ = (|∇u|2 + ε)1/2, we may take
ε → 0 in the preceding inequality to conclude that

1

2

∫
t∈B

∫

t

( |∇2u|2
|∇u|2 + Rg

)
dA dt

≤
∫
t∈B

(
1

2

∫

t

R
t dA +
∫

∂
t∩P1
(κ∂
t − HP1)

)
dt

+
∫
P2

∂υ |∇u| dA + C
∫
t∈A

(
H2(
t ) + H1(∂
t ∩ P1)

)

=
∫
t∈B

(
2πχ(
t ) −

∫
∂
t∩P2

κ∂
t −
∫

∂
t∩P1
HP1

)
dt

+
∫
P2

∂υ |∇u| dA + C
∫
t∈A

(
H2(
t ) + H1(∂
t ∩ P1)

)
,

(4.22)

where in the second step we have applied the Gauss-Bonnet theorem to 
t .
Finally, by Sard’s theorem, we may take the measure |A| of A to be arbitrarily

small. Since

t �→ H2(
t ) + H1(
t ∩ P1) (4.23)

is integrable over [u, u] by the coarea formula, taking |A| → 0 in the preceding
inequality yields the desired conclusion. �
Remark 4.3 Note that for our applications in Sect. 6, the boundary component P2 in
Proposition 4.2 will be a piecewise smooth surface, diffeomorphic to the boundary
∂(D2 × [0, 1]) of the solid cylinder D2 × [0, 1]. However, our harmonic function u
in this case will be constant on the disks D2 × {0} and D2 × {1}, with nonvanishing
gradient along the cylindrical portion S1 × [0, 1], and it is easy to check that the
preceding argument carries over to this case without difficulty.

5 The Schwarzschildian Approach

In this section we prove Theorem 1.1 by establishing Theorem 2.3 and applying the
Schwarzschildian reduction of Proposition 2.1. Unless stated otherwise, in this section
(M, g) will denote a 3-dimensional Schwarzschildian manifold.

5.1 Connectivity of Level Sets

Consider a coordinate sphere Sr ⊂ Mend and let Mr be the compact component of
M \ Sr . In order to apply the identity (4.7) to � = Mr , a computation of the Gauss
curvature piece is required, which is given in Proposition 5.2 below. Before proceeding
to this calculation, properties concerning the topology of regular level sets in Mr will
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be recorded. Let u be an asymptotically linear harmonic function as in Lemma 3.1,
and for t ∈ R, r > 0 set 
r

t = 
t ∩ Mr .

Lemma 5.1 Let (M, g) and u be as above. There are constants r0 > 0 and c0 > 0 such
that for all r ≥ r0 and t ∈ [−r + c0, r − c0] with t a regular value, 
r

t is connected
with boundary ∂
r

t = S1.

Proof Let 	 = ai xi be the nontrivial linear function on Mend to which u converges. By
performing an orthogonal transformation if necessary, noting that this does not disturb
the Schwarzschild asymptotics of g, it may be assumed that 	 = a1x1 for some a1 �= 0.
Since a−1

1 u is harmonic and has the same level sets as u, we may assume without loss
of generality that 	 = x1. In what follows x1 will be denoted by x for convenience.

The first step is to show that 
t transversely intersects Sr ⊂ Mend, away from the
north and south pole on the x-axis. More precisely, we claim that there exist r0 > 0
and c0 > 0 such that for r ≥ r0 and |t | ≤ r − c0, 
t transversely intersects Sr . To see
this observe that using (5.25), (5.26), and (5.27) yields

δ(∇u, ∂r ) = x

r

(
1 + m

2r

)−1 + mx

2r2

(
1 + m

2r

)−2 + O(r−2) = x

r
+ O(r−2), (5.1)

and

|∇u|δ = 1 − m

2r
+ mx2

2r3
+ O(r−2), |∂r |δ = 1. (5.2)

Therefore

δ(∇u, ∂r )

|∇u|δ|∂r |δ = x

r

(
1 + m

2r
− mx2

2r3

)
+ O(r−2), (5.3)

so that for |x | ≤ r − c∗ with appropriately chosen c∗ > 0 we have

| cos θ | = |δ(∇u, ∂r )|
|∇u|δ|∂r |δ ≤ 1 − 1

r
+ O(r−2). (5.4)

Here θ represents the angle between ∇u and ∂r , which stays away from zero for large
r . The desired claim now follows since t = x + O(1) on 
t ∩ Mend.

Now let r ≥ r0 and |t | ≤ r − c0 so that 
t intersects Sr transversely. Additionally,
suppose that t is a regular value of u. Since 
t ∩ Sr is transverse and nonempty, it
consists of a finite number of disjoint embedded circles γ1, . . . , γp. Since, by Lemma
3.1, 
t is connected and noncompact with only one end, removing the circles yields
the decomposition


t \ ∪p
i=1γi = U � C, (5.5)

where U is unbounded and connected, and C is bounded and compact. Evidently

r

t ⊂ C. If C �= 
r
t , then there is a path component C′ ⊂ C which lies outside of
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Fig. 3 The case where C �= 
r
t in the proof of Lemma 5.1

Fig. 4 The argument showing ∂
r
t is connected in Lemma 5.1

Mr . Since C′ is compact, there is a largest r ′ > r so that Sr ′ ∩ C′ �= ∅, see Fig. 3. In
this intersection, Sr ′ is tangential to 
t . This, however, contradicts the transversality
established above. We conclude that 
r

t = C.
Now assume that ∂
r

t is disconnected, so that there are at least two distinct circles
γ1 and γ2. Since U is connected, there is a path in U from γ1 to γ2. Let r ′ > r be
the smallest radius so that there is such a path σ from γ1 to γ2 which lies entirely
within 
r ′

t , see Fig. 4. Since r ′ is the smallest such radius, σ must intersect Sr ′ . At
the intersection 
t will be tangential to Sr ′ since all perturbations of σ , within 
t

and supported on this intersection, either push σ outside of 
r ′
t or possess a point of

tangency. This again contradicts transversality andwe conclude that ∂
r
t is connected.

Since 
r
t has no closed components, all points in
r

t can be connected to its boundary
and we conclude that 
r

t itself is connected. �

5.2 The Gaussian Curvature

The Gaussian curvature integral appearing in formula (4.7) in Proposition 4.2 will
now be computed.

123



  184 Page 14 of 29 H.L. Bray et al.

Proposition 5.2 Suppose that (M, g) is complete and Schwarzschildian. Let u be a
harmonic function of Lemma 3.1 which is asymptotic to a linear function 	, and let u
and u denote the maximum and minimum values of u within Mr , respectively. Then

∫ u

u

∫

r
t

K dA dt ≤ 8π

3
m + O(r−1), (5.6)

where K is the Gaussian curvature of 
r
t .

Proof As in the proof of Lemma 5.1 we may assume without loss of generality that
	 = x , where the asymptotic coordinates onMend will be denoted by (x, y, z). Observe
that on a t-level set

t = u = x

1 + m
2r

+ a

r
+ O2(r

−2), (5.7)

which implies that

x = t + c(t)

r
+ O2(r

−2), c(t) = tm

2
− a. (5.8)

In the expressions to follow, the subindex l of Ol will be ignored for convenience. By
the implicit function theorem we may solve for x = x(y, z) when r is large. Let

r2 = x2 + y2 + z2 = x2 + ρ2, r̃2 = t2 + ρ2, (5.9)

then a calculation shows that

x(y, z) = t + c(t)

r̃
+ O(r̃−1). (5.10)

Furthermore, in the asymptotic end

g =
(
1 + m

2r

)4 (
dx2 + dy2 + dz2

)
, (5.11)

so that the induced metric on 
r
t ∩ Mend is given by

γ =
(
1 + m

2r

)4 (
(1 + x2y)dy

2 + 2xyxzdydz + (1 + x2z )dz
2
)

. (5.12)

From (5.8) the partial derivatives may be computed

xy = − c

r3
(xxy + y) + O

( |xxy | + |y|
r4

+ 1

r3

)
⇒ xy = − c(t)y

r3
+ O(r−2), (5.13)

and similarly

xz = −c(t)z

r3
+ O(r−2). (5.14)
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Hence

γ =
(
1 + m

2r

)4 [(
1 + c2y2

r6

)
dy2 + 2c2yz

r6
dy dz +

(
1 + c2z2

r6

)
dz2

+ O(r−3)dxidx j
]
. (5.15)

Since theGauss curvature consists of second derivatives and quadratic first derivatives,
it follows that

K = O(r−3). (5.16)

Let r0 > 0 and c0 > 0 be the constants given by Lemma 5.1. From now on, we
will only consider r ≥ r0. Let u and u be the max and min levels for u within Mr .
Then u = r − m

2 + O(r−1) and u = −r − m
2 + O(r−1). At this point, we will break

the interval [u, u] into three pieces: [u,−r + c0], [−r + c0, r − c0], and [r − c0, u],
see Fig. 5. Consider t ∈ [r − c0, u], then 0 ≤ ρ ≤ c1

√
r for some constant c1. On this

region all t-levels are regular and

∫

r
t

KdA = O

(
ρ2

r3

)
= O(r−2), (5.17)

so that

∫ u

r−c0

(∫

r
t

Kd A

)
dt = O(r−1), (5.18)

and similarly

∫ −r+c0

u

(∫

r
t

KdA

)
dt = O(r−1). (5.19)

Now let us restrict attention to the range |t | ≤ r − c0, so that c2
√
r ≤ ρ ≤ r

for some constant c2 > 0. According to Lemma 5.1, for regular values t in this
range, 
r

t is a connected smooth submanifold with boundary ∂
r
t = S1 ⊂ Sr . Let

α : [0, θ0] → ∂
r
t be a parameterization and let ν̃ be an inward pointing normal

vector to ∂
r
t tangent to 
r

t , both to be chosen later. The geodesic curvature of the
circle ∂
r

t is given by

κ =
〈
ν,∇ α′

|α′|

α′

|α′|
〉

= 〈ν̃,∇α′α′〉
|ν̃||α′|2 , (5.20)

where ∇ is the Levi–Civita connection for g = 〈·, ·〉, ν = ν̃
|ν̃| is the unit normal of

∂
r
t tangent to 
r

t , and α′ = ∂θα is the velocity vector associated with α. Write this

123



  184 Page 16 of 29 H.L. Bray et al.

Fig. 5 The decomposition of Mr used to estimate the integral in Proposition 5.2

curve as

α(θ) = (x(θ), y(θ), z(θ)) (5.21)

where these functions are defined by the equations

x(θ)2 + y(θ)2 + z(θ)2 = r2, u(α(θ)) = t . (5.22)

In order to compute α′, observe that the equations defining α′ (up to scaling) are

α · α′ = 0, ∇u · α′ = 0, (5.23)

where · represents the Euclidean inner product. It follows that α and θ0 can be chosen
so that

α′ = (zuy − yuz)∂x + (xuz − zux )∂y + (yux − xuy)∂z . (5.24)

The partial derivatives have the expansions

ux =
(
1 + m

2r

)−1 − x
(
1 + m

2r

)−2
(−mx

2r3

)
− ax

r3
+ O(r−2)

= 1 − m

2r
+ mx2

2r3
+ O(r−2), (5.25)

uy = −x
(
1 + m

2r

)−2
(−my

2r3

)
− ay

r3
+ O(r−2) = mxy

2r3
+ O

(
ρ

r3
+ 1

r2

)
, (5.26)
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uz = −x
(
1 + m

2r

)−2
(−mz

2r3

)
− az

r3
+ O(r−2) = mxz

2r3
+ O

(
ρ

r3
+ 1

r2

)
. (5.27)

Therefore

α′ = α′
x∂x + α′

y∂y + α′
z∂z = O

( ρ

r2

)
∂x +

(
−z + mz

2r
+ O

( ρ

r2

))
∂y

+
(
y − my

2r
+ O

( ρ

r2

))
∂z, (5.28)

and

|α′|2 =
(
1 + m

2r

)4 [
O

(
ρ2

r2

)
+ ρ2

(
1 − m

r
+ m2

4r2

)]
= ρ2

(
1 + m

r
+ O(r−2)

)
. (5.29)

At this point, it is convenient to estimate the value θ0 of the parameterizing interval.
On one hand, the length of ∂
r

t may be computed from (5.29),

Length(∂
r
t ) =

∫ θ0

0
|α′|dθ =

∫ θ0

0
ρ

(
1 + m

2r
+ O(r−2)

)
dθ. (5.30)

On the other hand, we can parameterize the yz-projection of ∂
r
t by ϑ �→

(ρ(ϑ) cosϑ, ρ(ϑ) sin ϑ) for ϑ ∈ [0, 2π ], and use (5.15) to find

Length(∂
r
t ) =

∫ 2π

0

√
det γ |∂
r

t
dϑ =

∫ 2π

0
ρ

(
1 + m

r
+ O(r−2)

)
dϑ. (5.31)

Using (5.8), it follows that ρ = √
r2 − x2 is a constant (depending on r and t) along

∂
r
t up to O(r−2). Thus we may subtract (5.30) and (5.31) to obtain

θ0 = 2π
(
1 + m

2r
+ O(r−2)

)
. (5.32)

Let us return to our calculation of (5.20). The normal vector ν̃ must satisfy

α′ · ν̃ = 0, ∇u · ν̃ = 0, (5.33)

and so we may choose

ν̃ = (α′
zuy − α′

yuz)∂x + (α′
xuz − α′

zux )∂y + (α′
yux − α′

xuy)∂z . (5.34)

It follows that the components have the expansions

ν̃x = α′
zuy − α′

yuz = mxρ2

2r3
+ O

( ρ

r2

)
, (5.35)

ν̃y = α′
xuz − α′

zux = −y + my

r
− mx2y

2r3
+ O

( ρ

r2

)
, (5.36)
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ν̃z = α′
yux − α′

xuy = −z + mz

r
− mx2z

2r3
+ O

( ρ

r2

)
, (5.37)

and

|ν̃|2 = ρ2
(
1 + m

2r

)4 (
1 − 2m

r
+ mx2

r3
+ O(r−2)

)
= ρ2

(
1 + mx2

r3
+ O(r−2)

)
. (5.38)

We now compute the covariant derivative portion of (5.20). Observe that

∇α′α′ = α′i∇i

(
α′ j∂ j

)
=

(
α′i∂iα′ j) ∂ j + α′iα′ j�l

i j∂l , (5.39)

where �l
i j are Christoffel symbols. Furthermore

α′i∂iα′
x = O

( ρ

r2

)
, (5.40)

α′i∂iα′
y = O

( ρ

r2

)
O

( ρ

r2

)
+

(
−z + mz

2r
+ O

( ρ

r2

)) (
−myz

2r3
+ O

(
1

r2
+ ρ2

r4

))

+
(
y − my

2r
+ O

( ρ

r2

)) (
−1 + m

2r
− mz2

2r3
+ O

(
1

r2
+ ρ2

r4

))

= −y + my

r
+ O

(
ρ

r2
+ ρ3

r4

)
, (5.41)

α′i∂iα′
z = O

( ρ

r2

)
O

( ρ

r2

)
+

(
−z + mz

2r
+ O

( ρ

r2

))(
1 − m

2r
+ my2

2r3

+O

(
1

r2
+ ρ2

r4

))
+

(
y − my

2r
+ O

( ρ

r2

)) (
myz

2r3
+ O

(
1

r2
+ ρ2

r4

))

= −z + mz

r
+ O

(
ρ

r2
+ ρ3

r4

)
. (5.42)

Hence

∇α′α′ =
(
−y + my

r

)
∂y +

(
−z + mz

r

)
∂z + O

( ρ

r2

)
∂l + α′iα′ j�l

i j∂l . (5.43)
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To compute the Christoffel symbols write let w = 1 + m
2r and use (5.11) to find

�l
i j =1

2
glk

(
∂i gk j + ∂ j gki − ∂kgi j

)

=1

2
w−4δlk

(
δk j∂iw

4 + δki∂ jw
4 − δi j∂kw

4
)

=2
(
δlj∂i logw + δli∂ j logw − δi j∂

l logw
)

.

(5.44)

Therefore using the orthogonality of ν̃ and α′ yields

〈ν̃, α′iα′ j�l
i j∂l〉 = w4δkl ν̃

kα′iα′ j�l
i j = −2|α′|2ν̃l∂l logw. (5.45)

Since

ν̃l∂l logw = ν̃l
(
1 + m

2r

)−1
(

−mxl

2r3

)
= mρ2

2r3
+ O(r−2), (5.46)

we then have

〈ν̃, α′iα′ j�l
i j∂l〉 = −mρ4

r3
+ O

(
ρ2

r2

)
. (5.47)

Putting this altogether produces

〈ν̃,∇α′α′〉 =
(
1 + m

2r

)4 [
O

( ρ

r2

)
O

( |x |ρ
r2

+ ρ

r2

)
− mρ4

r3
+ O

(
ρ2

r2

)

+
(

−y + my

r
− mx2y

2r3
+ O

( ρ

r2

)) (
−y + my

r
+ O

( ρ

r2

))

+
(

−z + mz

r
− mx2z

2r3
+ O

( ρ

r2

)) (
−z + mz

r
+ O

( ρ

r2

))]

=ρ2
(
1 + mx2

2r3
− mρ2

r3
+ O(r−2)

)
.

(5.48)

We also have

|ν̃||α′| = ρ2
(
1 + m

2r
+ mx2

2r3
+ O(r−2)

)
, (5.49)

and therefore

〈ν̃,∇α′α′〉
|ν̃||α′| = 1 − m

2r
− mρ2

r3
+ O(r−2). (5.50)

123



  184 Page 20 of 29 H.L. Bray et al.

Combining this with (5.32) we find that

∫
∂
r

t

κds =
∫ θ0

0

〈ν̃,∇α′α′〉
|ν̃||α′| dθ = 2π

(
1 − m

r
+ mt2

r3

)
+ O(r−2). (5.51)

By Sard’s theorem we may restrict attention to regular level sets when computing
(5.6). Moreover since for regular levels in the range |t | ≤ r − c0 with r ≥ r0, the
compact surface 
r

t is connected with nonempty boundary (Lemma 5.1), its Euler
characteristic satisfies χ(
r

t ) ≤ 1. Thus using (5.18), (5.19), and the Gauss-Bonnet
theorem we find that

∫ u

u

∫

r
t

Kd A dt =
∫ r−c0

−r+c0

(
2πχ(
r

t ) −
∫


r
t

κds

)
dt

+
∫ −r+c0

u

(∫

r
t

KdA

)
dt +

∫ u

r−c0

(∫

r
t

KdA

)
dt

≤8π

3
m + O(r−1).

(5.52)

�

5.3 Proof of the Positive Mass Theorem

Proof of Theorem 2.3 Let (M, g) be complete with nonnegative scalar curvature and
Schwarzschildian. Consider the harmonic function u of Lemma 3.1 asymptotic to the
linear function 	(x, y, z) = x . Apply identity (4.7) of Proposition 4.2 to � = Mr to
obtain

∫
Sr

∂υ |∇u|dA ≥ 1

2

∫ u

u

∫

r
t

( |∇2u|2
|∇u|2 + Rg − 2K

)
dA dt, (5.53)

where u and u denote the maximum and minimum values of u on Mr , and K is the
Gaussian curvature of 
r

t .
In order to compute the boundary integral in (5.53), use (5.25), (5.26), and (5.27)

to find

|∇u| =
(
1 + m

2r

)−2 (
u2x + u2y + u2z

) 1
2 = 1 − 3m

2r
+ mx2

2r3
+ O1(r

−2). (5.54)

It follows that

∂υ |∇u| =
(
1 + m

2r

)−2
∂r |∇u| = 3m

2r2
− mx2

2r4
+ O(r−3), (5.55)
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and therefore

∫
Sr

∂υ |∇u|dA = 4π

(
3m

2
− m

6

)
+ O(r−1) = 16π

3
m + O(r−1), (5.56)

where we have used

∫
Sr
x2dAδ = 1

3

∫
Sr

(x2 + y2 + z2)dAδ = 1

3

∫
Sr
r2dAδ = 4π

3
r4. (5.57)

This combined with Proposition 5.2 and letting r → ∞ yields

16πm ≥
∫ ∞

−∞

∫

t

( |∇2u|2
|∇u|2 + Rg

)
dA dt, (5.58)

from which we find that m ≥ 0.
Consider now the case of equalitym = 0. Inequality (5.58) implies that Rg ≡ 0 and

|∇2u| ≡ 0. In particular, ∇u is a parallel vector field. The same procedure above may
be applied to second and third harmonic functions v and w of Lemma 3.1 asymptotic
to the linear functions 	 = y and 	 = z, respectively, so that ∇v and ∇w are also
parallel. Since these three vector fields are linearly independent, (M, g) is flat. Since
(M, g) is also complete it must be isometric to Euclidean 3-space. �

Proof of Theorem 1.1 Let (M, g) be complete of nonnegative scalar curvature, and
asymptotically flat with m the mass of a designated end M+

end. Let (M, g) be the
Schwarzschildian manifold of Proposition 2.1 with mass m satisfying |m − m| < ε.
According to Theorem 2.3, m ≥ 0. Since ε > 0 is arbitrarily small, we conclude that
m ≥ 0.

The conclusion in the case of equality, m = 0, follows from the positive mass
inequality as in [16]. Namely, one shows through conformal deformation that (M, g)
is scalar flat, and then that it is Ricci flat via an infinitesimal Ricci flow. �

6 The Harmonic Coordinate Method

In this section, we give another way to derive the total mass of an asymptotically flat
manifold. Instead of using the trick of approximating by Schwarzschild metrics as in
the previous section, we show how themass term falls out naturally from our boundary
term at infinity. Let (M, g) be a complete asymptotically flat Riemannian 3-manifold,
and let Mext be the exterior region associated with a specified end Mend. According
to [7, Lemma 4.1] the exterior region is diffeomorphic to R

3 minus a finite number
of disjoint balls, and has minimal boundary. Let {x1, x2, x3} be harmonic coordinates
on Mext as in Sect. 3.2, with homogeneous Neumann condition on ∂Mext, and let
x = (x1, x2, x3). For a unit vector a ∈ S2 ⊂ R

3, it obviously follows that u = x · a
is harmonic on Mext with homogeneous Neumann condition. For L > 0 sufficiently
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large, consider the coordinate cylinders CL := D±
L ∪ TL where

D±
L := {x | x · a = ±L, |x|2 − (x · a)2 ≤ L2},

TL := {x | |x · a| ≤ L, |x|2 − (x · a)2 = L2}. (6.1)

Set �L ⊂ Mext to be the closure of the bounded component of Mext \ CL . Following
the arguments of [1, Section 4], if the scalar curvature Rg is integrable then the mass
of Mext is given by

m = lim
L→∞

1

16π

∫
CL

∑
i

(gi j,i − gii, j )υ
j d A. (6.2)

where υ is the outward unit normal to CL .

6.1 Computation of theMass

To prove inequality (1.3), begin by applying Proposition 4.2 to u on the cylindrical
domains �L (so that P2 = CL and P1 = ∂Mext) to find that

1

2

∫
�L

( |∇2u|2
|∇u| + Rg|∇u|

)
dV ≤

∫ L

−L

(
2πχ(
L

t ) −
∫


L
t ∩TL

κt,L

)
dt

+
∫
CL

∂υ |∇u|dA, (6.3)

where 
L
t := {u = t} ∩ �L , and κt,L is the geodesic curvature of the curve 
L

t ∩
TL viewed as the boundary of 
t . Note that the asymptotics guarantee that, for L
sufficiently large, the level sets 
L

t indeed meet TL transversely. We claim next that
for every regular value t ∈ (−L, L), 
L

t consists of a single connected component,
intersecting TL along the circle 
L

t ∩ TL . Indeed, if this is not the case, then there is
a regular value t ∈ (−L, L) and a component 
′ ⊂ 
L

t disjoint from TL . Since Mext
is diffeomorphic to the compliment of finitely many balls in R

3, there is a domain
E ⊂ �L such that ∂E \ ∂Mext = 
′ and E ∩ TL = ∅. But since u is harmonic
with Neumann boundary conditions on ∂Mext and identically t on 
′, the maximum
principle would then imply that u ≡ t in E , contradicting the fact that t is a regular
value. Thus, 
L

t has only one component, with boundary given by 
L
t ∩ TL , and as

a consequence χ(
L
t ) ≤ 1. In particular, applying this in the preceding computation

gives

1

2

∫
�L

( |∇2u|2
|∇u| + Rg|∇u|

)
dV ≤ 4πL −

∫ L

−L

(∫

L
t ∩TL

κt,L

)
dt +

∫
CL

∂υ |∇u|dA.

(6.4)

The remainder of the proof of Theorem 1.2 rests on a computation of the boundary
terms in inequality (6.4). To carry out these computations, it will be useful to take
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a = ∂x1 , so that u = x1 is the distinguished coordinate. In what follows the notation∫
D±
L

± f represents
∫
D+
L
f − ∫

D−
L
f .

Lemma 6.1 In the notation fixed above, we have

∫
CL

∂υ |∇u|dA =1

2

∫
D±
L

±
∑
j

(g1 j, j − g j j,1)dA

+ 1

2L

∫
TL

[
x2(g21,1 − g11,2) + x3(g31,1 − g11,3)

]
dA

+ O(L1−2q).

(6.5)

Proof To begin, note that

∇u = g1l∂l , ∇|∇u| = ∇(g11)1/2 = −1

2
∇g11 + O(|x |−1−2q), (6.6)

where in the second equation we have used the decay rates (3.7). Next since the outer
normal υ to CL is given by

υ = ±∂1 + O(|x |−q ) on D±
L , and υ = x2∂2 + x3∂3

L
+ O(|x |−q ) on TL , (6.7)

it follows that

∫
CL

∂υ |∇u|dA = −1

2

∫
D±
L

±g11,1dA − 1

2L

∫
TL

(x2g11,2 + x3g11,3)dA + O(L1−2q ). (6.8)

Now, because u = x1 is harmonic we see that

0 =gi j g
(∇i∇u, ∂ j

)
=gi j g1l g

(∇i∂l , ∂ j
) + gi j gl j∂i g

1l

=�
j
j1 + ∂l g

1l + O(|x |−1−2q)

=1

2

(
g11,1 + g22,1 + g33,1

) − g11,1 − g12,2 − g13,3 + O(|x |−1−2q),

(6.9)

and hence

g11,1 = −2g12,2 − 2g13,3 + g22,1 + g33,1 + O(|x |−1−2q). (6.10)
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It follows that
∫
CL

∂υ |∇u|dA =
∫
D±
L

±(g12,2 + g13,3 − 1

2
g22,1 − 1

2
g33,1)dA

− 1

2L

∫
TL

(x2g11,2 + x3g11,3)dA + O(L1−2q)

=1

2

∫
D±
L

±(g12,2 − g22,1 + g13,3 − g33,1)dA

+
∫
D+
L

1

2
(g12,2 + g13,3)dA −

∫
D−
L

1

2
(g12,2 + g13,3)dA

− 1

2L

∫
TL

(x2g11,2 + x3g11,3)dA + O(L1−2q).

(6.11)

Applying the divergence theorem to the penultimate line above, and subsequently
employing the fundamental theorem of calculus on TL yields

∫
CL

∂υ |∇u|dA = 1

2

∫
D±
L

±(g12,2 − g22,1 + g13,3 − g33,1)dA

+
∫

∂D+
L

1

2L
(x2g12 + x3g13)d A −

∫
∂D−

L

1

2L
(x2g12 + x3g13)dA

− 1

2L

∫
TL

(x2g11,2 + x3g11,3)dA + O(L1−2q)

= 1

2

∫
D±
L

±(g12,2 − g22,1 + g13,3 − g33,1)dA

+
∫
TL

∂1

(
x2

2L
g12 + x3

2L
g13

)
dA

− 1

2L

∫
TL

(x2g11,2 + x3g11,3)d A + O(L1−2q)

= 1

2

∫
D±
L

±(g12,2 − g22,1 + g13,3 − g33,1)dA

+ 1

2L

∫
TL

[x2(g21,1 − g11,2) + x3(g31,1 − g11,3)]d A + O(L1−2q).

(6.12)

�
Lemma 6.2 In the notation established above, we have

∫ L

−L

(∫

L
t ∩TL

κt,L

)
dt =4πL + 1

2L

∫
TL

[
x2(g33,2 − g23,3) + x3(g22,3 − g32,2)

]
dA

+ O(L1−2q + L−q).

(6.13)
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Proof To begin, recall that the geodesic curvature κt,L is given by

κt,L = 〈∇τ β, τ 〉 = −〈β,∇τ τ 〉, (6.14)

where τ is a unit tangent vector to 
L
t ∩ TL and β is the outward pointing unit normal

to 
L
t ∩ TL along 
L

t . Let

X := x2∂2 + x3∂3 and Y := x3∂2 − x2∂3. (6.15)

Then by setting X̃ := X − 〈X , τ 〉τ we may take

τ = Y

|Y | and β = X̃

|X̃ | . (6.16)

Consequently

κt,L = −
〈

X̃

|X̃ | ,∇τ τ

〉
= −1

|X̃ ||Y |3 (|Y |〈X ,∇Y Y 〉 − 〈X ,Y 〉〈∇|Y |,Y 〉) . (6.17)

The decay conditions (3.7) imply that

|∇|Y || = O(|x |−q) and 〈X ,Y 〉 = O(|x |2−q). (6.18)

It follows that

〈X ,Y 〉〈∇|Y |,Y 〉
|X̃ ||Y |3 = O

( |x |2−q |x |−q |x |
|x |4

)
= O(|x |−1−2q), (6.19)

and hence

κt,L = −〈X ,∇Y Y 〉
|X̃ ||Y |2 + O(|x |−1−2q). (6.20)

A direct computation gives

∇Y Y = −X + (x3)2∇∂2∂2 + (x2)2∇∂3∂3 − 2x2x3∇∂2∂3. (6.21)
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Upon expanding 〈X ,∇Y Y 〉 = 〈x2∂2 + x3∂3,∇Y Y 〉 in terms of the metric derivatives,
we see that (6.17) becomes

κt,L = |X |2
|X̃ ||Y |2 + O(L−1−2q) − 〈X , (x3)2∇∂2∂2 + (x2)2∇∂3∂3 − 2x2x3∇∂2∂3〉

L3

= |X |
|Y |2 + O(L−2−q + L−1−2q) − 1

2L3 (x2(x3)2g22,2 + (x2)2x3g33,3)

+ [(x2)2x3 + 1

2
(x3)3]g22,3

L3 + [(x3)2x2 + 1

2
(x2)3]g33,2

L3 − (x2)3
g23,3
L3

− (x3)3
g32,2
L3 ,

(6.22)

where the decay properties (3.7) have been used repeatedly. At this point it will be
useful to parameterize 
L

t ∩ TL by

[0, 2π ] � s �→ γ (s) := (t, L cos(s), L sin(s)).

Notice that γ ′(s) = −Y . We then have

∫

L
t ∩TL

|X |
|Y |2 =

∫ 2π

0

(
|Y | |X |

|Y |2
)

(γ (s))ds

=
∫ 2π

0

(
1 + |X | − |Y |

|Y |
)

(γ (s))ds

= 2π +
∫ 2π

0

( |X |2 − |Y |2
|Y |(|X | + |Y |)

)
(γ (s))ds

= 2π + 1

2L2

∫ 2π

0
(|X |2 − |Y |2)(γ (s))ds + O(L−2q).

(6.23)

Next compute

1

L2

∫ 2π

0
(|X |2 − |Y |2)(γ (s))ds

=
∫ 2π

0
(cos2(s) − sin2(s))g22(γ (s))ds +

∫ 2π

0
(sin2(s) − cos2(s))g33(γ (s))ds

+
∫ 2π

0
4 sin(s) cos(s)g23(γ (s))ds

=
∫ 2π

0

1

2

d

ds
[sin(2s)]g22(γ (s))ds −

∫ 2π

0

1

2

d

ds
[sin(2s)]g33(γ (s))ds

−
∫ 2π

0

d

ds
[cos(2s)]g23(γ (s))ds

= 1

L2

∫ 2π

0
[x2x3(x3g22,2 − x2g22,3)] ◦ γ ds
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+ 1

L2

∫ 2π

0
[x2x3(x2g33,3 − x3g33,2)] ◦ γ ds

+ 1

L2

∫ 2π

0
[((x2)2 − (x3)2)(x2g23,3 − x3g23,2)] ◦ γ ds, (6.24)

where in the final line we have integrated by parts and used the double angle formulas
towrite sin(2s) and cos(2s) in terms of x2 and x3. Combining thiswith (6.23) produces

∫

L
t ∩TL

|X |
|Y |2 =2π + 1

2L3

∫

L
t ∩TL

x2x3[x3g22,2 + x2g33,3] + O(L−2q)

− 1

2L3

∫

L
t ∩TL

x2x3[x2g22,3 + x3g33,2]

+ 1

2L3

∫

L
t ∩TL

[(x2)2 − (x3)2](x2g23,3 − x3g32,2).

(6.25)

We then have that (6.22) and (6.25) yield

∫

L
t ∩TL

κt,L = 2π + 1

2L3

∫

L
t ∩TL

x2x3[x3g22,2 + x2g33,3]

− 1

2L3

∫

L
t ∩TL

x2x3[x2g22,3 + x3g33,2]

+ 1

2L3

∫

L
t ∩TL

[(x2)2 − (x3)2](x2g23,3 − x3g32,2)

−
∫

L
t ∩TL

1

2L3
(x2(x3)2g22,2 + (x2)2x3g33,3)

+
∫

L
t ∩TL

([
(x2)2x3 + 1

2
(x3)3

]
g22,3
L3

+
[
(x3)2x2 + 1

2
(x2)3

]
g33,2
L3

)

−
∫

L
t ∩TL

(
(x2)3

g23,3
L3

+ (x3)3
g32,2
L3

)
+ O(L−1−q + L−2q )

= 2π + 1

2L

∫

L
t ∩TL

(x3g22,3 − x3g32,2 + x2g33,2

− x2g23,3) + O(L−1−q + L−2q ). (6.26)

Finally, integrating over [−L, L] gives the desired identity. �

6.2 Proof of Theorem 1.2

Recall that from (6.4) we have

1

2

∫
�L

( |∇2u|2
|∇u| + Rg|∇u|

)
dV ≤ 4πL −

∫ L

−L

(∫

L
t ∩TL

κt,L

)
dt
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+
∫
CL

∂υ |∇u|dA. (6.27)

On the other hand, it follows from Lemmas 6.1 and 6.2 that

∫
CL

∂υ |∇u|dA −
∫ L

−L

(∫

L
t ∩TL

κt,L

)
dt

= 1

2

∫
D±
L

±
∑
j

(g1 j, j − g j j,1)dA

+ 1

2

∫
TL

[
x2

L
(g21,1 − g11,2) + x3

L
(g31,1 − g11,3)

]
dA

+ 1

2

∫
TL

[
x2

L
(g23,3 − g33,2) + x3

L
(g32,2 − g22,3)

]
dA

− 4πL + o(1)

= −4πL + 1

2

∫
CL

∑
j

(gi j, j − g j j,i )υ
idA + o(1),

(6.28)

Therefore

1

2

∫
�L

( |∇2u|2
|∇u| + Rg|∇u|

)
dV ≤ 1

2

∫
CL

∑
j

(gi j, j − g j j,i )υ
idA + o(1), (6.29)

and taking the limit as L → ∞ gives the desired inequality (1.3).
Consider now the case of equality when m = 0. From the arguments above, this

implies that the harmonic coordinate function is linear |∇2u| ≡ 0 and that the Euler
characteristic of the level sets is constant χ(
t ) = 1. In particular the boundary
of the exterior region is empty ∂N = ∅, and thus M ∼= R

3. Since there are three
linearly independent harmonic coordinate functions with ∇2u ≡ 0, the manifold is
flat, yielding the isometry (M, g) ∼= (R3, δ).
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