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Abstract—The safety of human workers has been the main
concern in human-robot close collaboration. Along with rapidly
developed artificial intelligence techniques, deep learning
models using two-dimensional images have become feasible
solutions for human motion detection. These models serve as
“sensors” in the closed-loop system that involve humans and
robots. Most existing methods that detect human motion using
images do not consider the uncertainty from the deep learning
model itself. The mappings established by deep learning models
should not be taken blindly, and thus uncertainty should be a
natural part of this type of sensor. In particular, model
uncertainty should be explicitly quantified and incorporated
into robot motion control to guarantee safety. With this
motivation, to rigorously quantify the uncertainty of these
“sensors”, this paper proposes a probabilistic interpretation
method and automatically provides a framework to benefit from
a deep model’s uncertainty. Experimental data from human-
robot collaboration has been collected and used to validate the
proposed method. A training strategy is proposed to efficiently
train surrogate models that learn to refine the prediction of the
main Bayesian models. The proposed framework is also
compared with Ego hands benchmark showing a 4.7% increase
in mloU.

I. INTRODUCTION

Industrial manipulators have been widely employed in
manufacturing factories. The inherent merits of manipulators,
such as persistence and precision, enable the accomplishments
of tasks that are repetitive or require specific handling [1], [2].
Recently, more sophisticated tasks need collaboration between
human workers and manipulators along with the increasing
interest in flexible manufacturing. Moving manipulators
outside of cages to collaborate with humans poses significant
challenges to human workers’ safety, which needs to be
guaranteed as the top priority in human-robot collaboration
(HRC).

To enhance the safety of human workers that collaborate
with robots, various methods have been developed to enable
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robots to take reactions immediately once collision is predicted
or detected [3]-[5]. Existing workplace safet'y mechanisms
can be classified into two categories: passive and active ones.
Passive protection approaches usually use joint impedance and
motion velocity control to prevent collisions (i.e., [6], [7]). The
active protection approaches rely on supervisory systems in
which human motion is detected and robot motion is planned
in real-time to prevent collisions. Therefore, accurately
detecting and recognizing human motion is the prerequisite of
active safety mechanism and thus the safe HRC.

A considerable amount of studies has been conducted to
detect human motion based on wearable or attachable sensors,
including sensor-glove [8], surface electromyography [9],
triaxial accelerometer [10], and surface markers [11]. Image-
based detection using cameras has emerged as an effective
alternative to detect human workers’ motion due to their low
cost, comfortability to human workers, and recently increased
computational power. To list a few, Mapari et al. [12]
proposed a method to detect hand gestures by using the
infrared camera from a leap motion sensor. Zhang et al. [13]
proposed a dark channel before segmenting human hands from
complex backgrounds based on the variation of color channels.
Wang et al. [14] used the skeleton tracking function of the
Kinect software development kit to track in-depth hand images
and distinguish human hands from the background by setting
depth-based thresholds. Dardas et al. [15] used the scale-
invariant feature transform to extract key points from images
and trained multiple support vector machines to classify
human hand pose. Chen et al. [16] applied the hidden Markov
model to recognize human hand gestures based on the feature
vector extracted from images.

Along with rapidly developed artificial intelligence
techniques, deep learning models using two-dimensional
images have become feasible solutions recently for human
motion detection in HRC [17]. For example, Nuzzi et al. [18]
trained a Faster Region Proposal Convolutional neural
network to understand operators’ commands based on hand
gestures. Gao et al. [19] proposed a parallel convolutional
neural network model that enables robots’ capability of
interacting with humans. Rajnathsing and Li [20] developed a
network-based safety monitoring system in shared workspace
HRC, and relied on networks to determine if the operator
exceeds the minimum distance to the planned robot path.
Piyathilaka and Kodagoda [21] utilized a dynamic Bayesian
network to infer human activities based on three-dimensional
skeleton joints. These motion-detection models serve as
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“sensors” in the closed-loop system that involves humans and
robots.

Since these image-based “sensors” play an important role
in the safety of human workers, the mappings established by
deep learning models should not be taken blindly and a deep
neural network model’s uncertainty should be a natural part of
this type of sensor. Though the output scores (e.g., softmax
probabilities) have been considered in the HRC literature to
consider the notion of uncertainty [22], [23], it is critical to
quantify a deep model’s uncertainty and further utilize it for
reliable predictions. This is particularly critical when human
operators are working with robots in close proximity, such as
collaborative assembly and disassembly [24]-[27].

This paper proposes a probabilistic interpretation method
and automatically provides a framework to benefit from a deep
model’s uncertainty. The quantified uncertainty is expected to
make human motion detection in HRC more reliable; it can
also be incorporated into the motion planning [28] of the robot
to prevent collision with human workers. Despite the
uncertainty quantification method presented in this paper
being applicable to general HRC cases, we build the dataset
and validate our method using the collaborative assembly and
disassembly scenarios in which uncertainty is particularly
critical for human safety.

II. DEEP BAYESIAN NEURAL NETWORKS

Image processing has significantly benefitted from the
enormous progress of artificial intelligence and computer
vision in the past decade [29]. Depending on the problem at
hand, various types of neural networks have been developed
for computer vision (e.g., [30]-[32]), while the search for
better algorithms is still in progress [33]. The convolutional
neural networks (CNNs) are among the most successful deep
learning architectures to obtain valuable information from
raw images [34]. Each convolution layer may contain
thousands of learnable parameters (W) that characterize the
sliding filters. As a result, a deep CNN can have millions of
weights corresponding to the convolution layers (e.g. [35]).
After calibrating the weights in the training process, the CNN
architecture will automatically generate a prediction output
(Y) based on raw image data (X).

Despite the ever-growing robustness and accuracy of
deep learning algorithms in computer vision, the fact that such
autonomous models can make mistakes might raise concerns
regarding their reliable industrial applications. The chances of
error could be small, but achieving a mistake-free data-driven
model may not be possible. In other words, there is a level of
uncertainty in the predictions of any statistical model. For a
reliable and practical industrial implementation, it is
beneficial to measure such model uncertainty.

We will provide a brief description of approximate
Bayesian inference in what follows. Further, we elaborate on
a method to automatically benefit from the model’s
uncertainty output without requiring human intervention.

A. Approximate Bayesian Inference

Machine learning research has made several efforts to
develop methods that treat a data-driven model and its
parameters stochastically [36], [37]. Based on Bayesian

probability theory, such approaches provide the mathematical
foundation to reason about the uncertainty in predictions of a
data-driven model. However, they might be associated with a
prohibitive cost of computation when dealing with deep
neural networks having a vast number of parameters.
Regarding these restrictions, Gal and Ghahramani proposed a
novel and efficient method to capture the uncertainty output
of deep neural networks [38].

Srivastava et al. [39] initially proposed the standard
dropout to alleviate overfitting in neural networks. This
operator will randomly set a fraction of units as zero during
training. Based on [38], dropout in neural networks is
equivalent to the Bayesian approximation of a Gaussian
process model [40] over the network weights. While the
posterior probability distribution of W given the data (
p(W|X,Y)) is intractable, it can be estimated with an

approximate ¢(W) using variational inference [41]. This
approximate distribution can be learned by minimizing the
Kullback-Leibler divergence between the posterior and g(W).
During the training process, optimizing the regularized loss
function (L) will also encourage learning g(W) [42]. In this
paper, we perform semantic segmentation for hand
recognition, where each pixel is assigned a label for a binary
classification as hands or background. Hence, the loss
function is:

RN
L:VZD}[ logp(yi)+(1—y,»)log(l_yl‘)l (1
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where N, is the total number of pixel observations in the
dataset. y; is the binary ground truth label (0 or 1), and p(y;) is
the model’s output probability for the hands class in the
binary cross-entropy function.

The model weights are treated as random variables in the
Bayesian approach. Hence, elements in the output tensor will
follow certain probability distribution. Given that g(W) is an
approximation of p(W|X,Y), the predicted labels can be

expressed as the following integration [38]:
g(v*|x%) = [ P [ X5 W)g(W)aW . (2)

where x* and y* respectively denote the raw input image and
the labels for the observation being evaluated. Using Monte
Carlo dropout sampling (MCDS), the mean value of softmax
probability of a pixel representing the class hands (S;) can be
expressed as:

1,
B[S ]= 250 3)
n=1

where 7 is the number of samples obtained by random
dropout at the evaluation phase.

Furthermore, the entropy of the probability vector (as a
measure of epistemic uncertainty [43]) and the standard
deviation of S, samples (SDSS) can serve as indicators of a
model’s lack of confidence. For this binary problem, the
entropy can be expressed as:
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Figure. 1. The proposed refined hand segmentation framework.
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In hand segmentation, both metrics will capture model
uncertainty in all pixels. Therefore, the two can be represented
as 2D masks for each image.

B. Interpretation of Uncertainty

The brief description in section A explains how Bayesian
inference quantifies the model uncertainty. The uncertainty
masks described earlier can be used by a human agent to
monitor an automated system’s performance. However, the
primary purpose of using Al is to assist with automation.
Manual inspection of uncertainty masks for all images
contradicts this goal. In addition, such manual inspections can
be intellectually challenging. The model tends to show less
confidence (i.e., high values in Entropy and SDSS) in
predicting visually challenging pixels (e.g., object
boundaries) with a higher chance of misclassification. It is
noted that the values of H and SDSS depend on both the
model hyperparameters and the data itself, and thus,
modifying which pixels should be relabeled as hand or
background is complex and laborious.

This paper proposes a surrogate model to refine the hand
segmentations based on the uncertainty output. To better
explain this idea, the process is illustrated in Figure. 1. The
deep Bayesian model will take raw RGB images as input (step
1). Next, a bin of 7 Monte Carlo samples is generated where
each sample includes a mask of hand class probability (Sy) for
individual pixels (step 2). The bin is then processed to obtain
informative statistics, including the expected probability of
the two classes, SDSS, and entropy (step 3). In the final step
(4), these statistics are stacked with the initial RGB image
data and fed to the proposed surrogate model for which
another CNN architecture is selected. However, this choice
may vary depending on the use case (e.g., sending out a
warning signal based on the uncertainty output [44]). It should
be noted that work environments could substantially differ.
For example, human agents could be wearing gloves or

special work attire. In such cases, surrogate models can be
fine-tuned on a smaller dataset tailored to each work condition
for optimal performance.

The surrogate model is calibrated similarly to the deep
Bayesian model using supervised learning. The difference lies
in how the training set is utilized for the two. Two possible
approaches can be used within this framework. The simple
one is to calibrate both models using the same training
datasets. In this case, the deep Bayesian model can almost
perfectly fit the training set, and pixels with high uncertainty
(likely to be misclassified) are rare. Nevertheless, the
objective of the surrogate model is to learn from mistakes and
correct the initial prediction based on the uncertainty tensor.
We observed minor improvement following this strategy by
feeding the deep Bayesian model’s input to the surrogate

model.
Training set —'Validation & test sets ‘
[SplitA | [ Split-B |
i Y j Prediction Surrogate model
¥ o —
‘Traiuing‘ | Inference [}: T | Training
Deep Bayesian model output Inference

Figure. 2. Training and inference strategies for the deep Bayesian
and surrogate models.

In the second approach, the Bayesian model is calibrated
on a portion of the training set (split-A), and the rest is held
out (split-B). The surrogate model is subsequently calibrated
on the complete training set that includes pairs of images and
the generated uncertainty output of the Bayesian model from
the two splits. The benefit of this strategy is that the surrogate
model learns to correct the mistakes from split-B, which is not
used in training the original model. The process is shown in
Figure.2.

C. Risk Sensitive Loss function

The previously explained strategy focuses on providing
quality data for training the surrogate model. Nevertheless,
this dataset is imbalanced because the deep Bayesian model
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correctly classifies most pixels, and the ones with high
uncertainty metrics are much less frequent. Moreover, the
surrogate input already includes an E[Sh] channel from the
Bayesian model, which is accurate for most pixels (e.g.,
background class). The pixel weights in the surrogate loss
function are adjusted such that the model pays more attention
to the regions of high uncertainty. The following equation is
proposed to determine the weight of each pixel (C)):

C, =1+ (SDSS{ + H,)x ), (5)

where SDsSS¢ is the average SDSS of all classes for a pixel,

and Q is a hyperparameter to amplify the emphasis on the
uncertainty. In this formulation, the weight of each pixel
depends on the SDSS and entropy metrics obtained from the
Bayesian model.

III. DEEP LEARNING ARCHITECTURE

This section elaborates on the deep learning architectures
that will serve as the two models shown in Figure. 1. The
neural network models developed in this paper are inspired by
Fully Convolutional (FC) DenseNets [45]. Similar to many
segmentation  models, FC-DenseNet comprises a
downsampling and an upsampling path where a bottleneck
block connects the two. However, the sophistication of the
model is due to several interlayer connections. The output
feature maps from the previous layers are stacked with the
new layers’ output feature maps. It is best to break it down
into smaller building blocks to understand the algorithm
better. Table I lists all the operators required to assemble the
deep Bayesian and the surrogate model that we use for hand
segmentation.

As illustrated in Figure. 3, concatenation (C) and M, the
most frequently used modules, construct a dense block (DB).
Each layer’s input is concatenated with extracted feature
maps, where the final output is a tensor of stacked feature
maps obtained from each M; module. After each M;
convolution, the number of feature maps (known as growth
rate) is 16 in both models’ DBs.

TABLE I
DESCRIPTION OF MODULES IN THE DEEP LEARNING ARCHITECTURE
Module Definition
C Concatenation
M, The first convolution layer
M, Stack of batch normalization, ReLU activation, 3x3
Convolution, and dropout layers
M, Convolution followed by Softmax activation
DB-1 Dense block with 2 stacked layers
DB-2 Dense block with 5 stacked layers (bottleneck)
DB-3 Dense block with 3 stacked layers (bottleneck)
DB-4 Dense block with 4 stacked layers (bottleneck)

TD Transition down with a stack of batch normalization,
ReLU activation, 1x1 convolution, dropout layer,
and 2x2 max pooling

TU Transition up with 3x3 transposed convolution

DB
Input

DB
Ouput

Figure. 3. An example of a dense block with three M1 modules.

Surmogate Model

Figure. 4. Deep learning architecture for the Bayesian and surrogate
models (dashed arrows represent skip-connections between the up
and downsampling paths).

Transition down (TD) modules follow DBs in the
downsampling path while a transition up (TU) module is
placed before them in the upsampling path. The original
architecture has up to 103 layers. The dataset and number of
output classes are substantially different in our vision task,
and thus we redesign both models, as shown in Figure. 4. The
first convolution layer (Mo) will respectively output 16 and 32
channels of feature maps for the deep Bayesian and the
surrogate model, and the first model is deeper by having three
pairs of TD-TU modules.

Nadam optimizer with a learning rate of 1.0e-3 and
schedule decay of 0.004 are selected to train both models.
Furthermore, we initially consider 20 Monte Carlo samples
(7=20) for each model with a dropout probability of 20%. A
sensitivity analysis on the selection of 7T is discussed later in
the paper. We utilize Keras [46] deep learning library on a
workstation equipped with a 12 GB NVIDIA Titan GPU. The
maximum number of epochs is set to 60, with a batch size of
1 image and early stopping criteria of 10 epochs by
monitoring the validation accuracy.

IV. VALIDATION CASE STUDIES

This section provides two validation case studies for the
proposed uncertainty-assisted technique. The performance
boost using the surrogate models is investigated using two
different datasets. The first case study is dedicated to binary
hand segmentation and the second one includes 5 classes (4
distinct human hands and background).

A. HRC dataset

The HRC dataset is obtained from various interactions
between the human agent and the robot. The platform of the
data collection is illustrated in Figure. 5. A UR-5¢ Co-robot
arm was mounted on a table in the Control and Automation
Laboratory at the University at Buffalo. Three human agents
were involved in the data collection experiment after
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providing institutionally-approved  informed consent
reviewed by the University at Buffalo Institutional Review
Board. The first agent was responsible for controlling the Co-
robot arm and does not appear in the videos. As described in
Table II, each of the other two agents (referred to as O and K)
alternatively performed different tasks involving the tools.
The other one held the camera and recorded the HRC image
data. Agents individually worked on two tasks of
disassembling a wooden toy box or a hard disk. The robot arm
assisted the human agent by handing over tools, moving
objects, untightening bolts, etc. A total of 13 videos were
recorded. The agent holding the camera constantly revolved
around and changed his distance to the setup table to capture
the other agent’s interaction with the robot arm. This helps us
populate the dataset with variable distances and angles.

Figure. 5. Data collection in human-robot collaboration experiment

The videos were captured using an iPhone 11 pro with an
original resolution of 1920x 1080 pixels. 598 static images
were extracted by taking one frame per second and later
resizing them to 320X 180 resolution. Considering the relative
distance between the camera and the HRC scene, downsizing
images will not result in a significant loss of information but
helps boost the inference times. It is generally recommended
to limit such relative distance to control the hand/background
pixel imbalance. If not possible, the use of higher resolution
images might be necessary for exceptional circumstances to
minimize the loss of information due to downsizing.

The training, validation, and test split in this case study are
obtained in 4 different ways. Training and test sets are
obtained by splitting the videos based on the tools, agent,
setup, or random video selection to ensure adjacent frames
from the same activity are not present in both training and
testing sets. For each video in the training set, a 20%
validation window with a random location is held out for
evaluating the models during training.

TABLE II
HRC DATASET DESCRIPTION
ID  #Frames Agent Tool Activity
1 35 K Hammer Wooden box disassembly
2 40 K Screwdriver  Wooden box disassembly
3 42 K Wrench Wooden box disassembly
4 38 (0] Screwdriver ~ Wooden box disassembly
5 40 (6] Hammer Wooden box disassembly
6 38 (6] Wrench Wooden box disassembly
7 36 (0] Screwdriver ~ Wooden box disassembly
8 46 (6] End effector ~ Wooden box disassembly
9 48 (6] End effector ~ Wooden box disassembly
10 90 K Screwdriver ~ Wooden box disassembly
11 34 K End effector Wooden box disassembly
12 48 K Screwdriver Hard disk disassembly
13 63 (0] Screwdriver Hard disk disassembly
TABLE III
SPLIT TYPES FOR TRAINING AND INFERENCE
Tool Agent Setup Random
Training &  Screwdriver (6] Toy 2,3,4,5,6,7,
validation Effector 8,9,10,11,13"
Testing Hammer K Hard disk 1,12
Wrench
*Numbers indicate the video ID
TABLE IV
TESTING PERFORMANCE METRICS FOR THE HAND CLASS
Model ToU
Tool Agent Setup Random
Standard dropout 0.709  0.680 0.711 0.648
Bayesian trained on split-A 0.715  0.664  0.639 0.594
Bayesian trained on splits A&kB ~ 0.719  0.674  0.670 0.689
Surrogate 0.744 0.718 0.731 0.713
Fl-score
Tool Agent Setup Random
Standard dropout 0.829  0.809 0.831 0.787
Bayesian trained on split-A 0.833  0.798  0.780 0.746
Bayesian trained on splits A&B ~ 0.837  0.805  0.803 0.816
Surrogate 0.853 0.836  0.844 0.832

Training and inference are conducted considering four
different models in each split type. The first model is trained
on the HRC dataset utilizing the standard dropout and does
not perform MCDS at inference time. The second and the
third models are Bayesian, where the second one only utilizes
half of the training set (Split-A) and the third on the complete
training set (Splits A&B). The surrogate model is calibrated
on generated uncertainty masks from the complete training set
as the output of the second Bayesian model. The validation
and test sets are similar for a given split type. A summary of
Intersection over Union (IoU) and F1-score for the hand class
is given in Table IV. The performance metrics indicate that
using a surrogate model yields significant improvements over
the other methods using each split type in this case study.

The uncertainty output masks (SDSS and entropy) are also
given in Figure. 6. These masks are obtained from the
Bayesian model trained on split-A. There is relatively high
uncertainty around the object boundaries, as we mentioned
earlier. Moreover, the model often has less confidence in
physically challenging pixels that might be misclassified. One
of these challenging regions is the human forearm, more
specifically, the regions around the wrists. Given the
relatively uniform color of skin and highly variable view
angles, the mentioned areas are often misclassified in the
benchmark models. The examples in Figure. 6 indicate that
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the surrogate model can learn from the mistakes of the
previous model and enhance the overall prediction accuracy.

B. Ego Hands dataset

Ego hands [47] dataset is used as the other benchmark to
evaluate the performance of the proposed framework in this
paper. We use the portion of this dataset that deals with the
segmentation of hands. Unlike the previous case study, since
images were captured in an egocentric view, there are distinct
labels for the left and right hands of the two players (self and
other). We perform three different experiments and compare
IoU for the hand classes. These experiments change the ratio
between the splits A&B in the training set and also the value
of hyperparameter Q. A summary of the results is presented
in Table V.

TABLE V
MULTI-CLASS HAND SEGMENTATION ON EGO HANDS’ MAIN TEST SPLIT, [oU
Self/ Self Other Other  Avg.
Left Right Left right
Exp. 1@ 0.583 0.555 0.536 0.499  0.524
Exp. 2® 0.526 0.602 0.612 0.604  0.586
Exp. 3© 0.574 0.622 0.618 0.599  0.603
Bambach et al. [47]  0.515 0.579 0.560 0.569  0.556

@ Surrogate model with Q=100 and using 2/3 of training dataset for Split A
® Surrogate model with Q=200 and using 2/3 of training dataset for Split A
© Surrogate model with Q=100 and using 5/6 of training dataset for Split A

It can be observed that the surrogate models in two of the
three experiments outperform the segmentation in [47] in
terms of average loU. This study also indicates a few points.
First, the value of Q can significantly affect the accuracy since
the benchmark outperforms the surrogate model in the first
experiment. The other point is that the overall performance
can be affected by changing the ratio of the two splits in the
training sets. For example, in the third experiment, the main
Bayesian model that is trained on 5/6 of the training set
performs better than the one where split-A is comprised of 2/3
of the training set. A sensitivity analysis is recommended to
achieve optimal performance for the combination of two
models.

V. COMPUTATIONAL COSTS

Compared to the original FC-DenseNet architecture, the
proposed architecture, while with significantly reduced
computational costs, still yields robust segmentation results.
This efficiency is evident by comparing the total number of
learnable parameters (elements of W) in each network
compared with the FC-DenseNet103 in [45] (see Table VI).

TABLE VI
COMPARISON OF ARCHITECTURE SIZES

Architecture Trainable parameters
FC-DenseNet103* 9,319,778
Deep Bayesian model 372,402
Surrogate model 390,082

) The architecture is modified to be consistent with the input and output tensor shapes used in hand
segmentation

The inference time of the proposed Bayesian framework
is dominated by MCDS rather than the depth of the networks.
A sensitivity analysis is conducted on the HRC dataset by
changing 7. The results (Table VII) indicate that the reduction

in sample size substantially boosts the inference time while
the decay in IoU metrics is negligible. It is noted that the
achieved 16 fps is sufficiently fast for the robot to respond and
prevent the collision [28].

TABLE VII
HAND CLASS IOU VS. INFERENCE SPEED
Split Inference time

T  Tool Agent Setup Random (fps)
3 0.715 0.709  0.731 0.708 16.1
5 0.742 0.713  0.731 0.711 114
10 0.742 0.717 0.732  0.712 6.5
20 0.744 0.718 0.731 0.713 3.5

VI. CONCLUSIONS AND FUTURE WORK

Human motion detection is a critical step to guarantee
human workers’ safety when collaborating with robots
closely. Since data-driven models are not mistake-free, their
reliability is of crucial importance. This paper develops deep
learning models that use two-dimensional images to detect
hands in close collaboration with human-robot hands. Instead
of blindly treating these sensors as accurate, this paper
proposes a probabilistic interpretation method by inferring
distribution over the networks’ weights to quantify these
sensors’ uncertainty rigorously and benefit from this
uncertainty to enhance prediction accuracies. Bayesian FC-
DenseNets are designed as the deep learning architecture
concerning computational efficiency to segment pixels of a
human hand. Model uncertainty is then quantified in terms of
SDSS and entropy using Monte Carlo dropout sampling. A
second surrogate model is then developed to benefit from the
uncertainty output automatically and refine the Bayesian
model’s initial predictions. A novel training strategy is
proposed to improve the learning capability of the surrogate
model in refining the predictions from the Bayesian model.

This paper presents two case studies to validate the
benefits of using surrogate models. The first case study
involves gathering experimental HRC data and validating the
proposed method in different activities. Moreover, the
proposed surrogate models are evaluated on the benchmark
Ego hands dataset to highlight its superiority. The presented
method can be powerful tools to enhance the reliability of
vision-based sensors for HRC tasks, and thus has the potential
to reduce the need for wearable sensors which have been
heavily relied on in human motion monitoring.

Future studies can focus on integrating the proposed
Bayesian framework for tasks involving uncertain human
behavior such as physiology or body motion detections using
videos and recurrent-based deep learning architectures. This
framework can also benefit robotic motion planning to
guarantee collision-free collaboration between humans and
robots by providing quantified uncertainties of human motion
prediction. While surrogate models improve overall
performance, the chances of mistakes are not eliminated.
Another area for future research is to design surrogate models
that generate warning signals for human intervention based
on the uncertainty output. Finally, additional studies such as
training with quantization and pruning networks are necessary



SAJEDI et al.: UNCERTAINTY-ASSISTED IMAGE-PROCESSING FOR HUMAN-ROBOT CLOSE COLLABORATION 7

to improve the inference time of the Bayesian framework
where real-time inference is required.
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