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Discrete conformal geometry of polyhedral surfaces
and its convergence
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We prove a result on the convergence of discrete conformal maps to the Riemann
mappings for Jordan domains. It is a counterpart of Rodin and Sullivan’s theorem on
convergence of circle packing mappings to the Riemann mapping in the new setting
of discrete conformality. The proof follows the same strategy that Rodin and Sullivan
used by establishing a rigidity result for regular hexagonal triangulations of the plane
and estimating the quasiconformal constants associated to the discrete conformal
maps.
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1 Introduction

W Thurston’s conjecture on the convergence of circle packing mappings to the Riemann
mapping is a constructive and geometric approach to the Riemann mapping theorem.
The conjecture was solved in important work by Rodin and Sullivan [25] in 1987. There
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have been many research works inspired by the work of Thurston, Rodin and Sullivan
since then. This paper addresses a counterpart of Thurston’s convergence conjecture in
the setting of discrete conformal change of polyhedral surfaces associated to the notion
of vertex scaling (Definition 1.1). We prove a weak version of Rodin and Sullivan’s
theorem in this new setting. There are still many problems to be resolved in order to
prove the full convergence conjecture.

Let us begin with a recall of Thurston’s conjecture and Rodin and Sullivan’s solution.
Given a bounded simply connected domain � in the complex plane C, one constructs
a sequence of approximating triangulated polygonal disks .Dn; Tn/ whose triangles
are equilateral and whose edge lengths tend to zero such that the Dn converge to �.
For each such polygonal disk, by the Köbe–Andreev–Thurston existence theorem,
there exists a circle packing of the unit disk D such that the combinatorics (or the
nerve) of circle packing is isomorphic to the 1–skeleton of the triangulation Tn. This
produces a piecewise linear homeomorphism fn, called the circle packing mapping,
from the polygonal disk Dn to a polygonal disk inside D associated to the circle
packing. Thurston conjectured in 1985 that, under appropriate normalizations, the
sequence ffng converges uniformly on compact subsets of � to the Riemann mapping
for �. Here the normalization condition is given by choosing a point p 2 � and a
sequence of vertices vn in .Dn; Tn/ such that limn vn D p and fn.vn/D 0 such that
fn sends a small interval Œvn; vnC �n� from vn to vnC �n with �n > 0 into the positive
x–axis. The Riemann mapping f for � sends p to 0 and f 0.p/ > 0. Rodin and
Sullivan’s proof of Thurston’s conjecture is elegant and goes in two steps. In the first
step, they show that the circle packing mappings fn are K–quasiconformal for some
constant K independent of the indices. In the second step, they show that there is only
one hexagonal circle packings of the complex plane up to Möbius transformations.
This implies that the limit of the sequence ffng is conformal.

Circle packing metrics introduced by Thurston [27] can be considered as a discrete
conformal geometry of polyhedral surfaces. In recent times, there have been many
works on discretization of 2–dimensional conformal geometry (see Luo [18], Bobenko,
Pinkall and Springborn [3], Hersonsky [14], Gu, Luo, Sun and Wu [10], Glickenstein [9]
and others). We consider the counterpart of Thurston’s conjecture in the setting of
discrete conformal change defined by vertex scaling.

To state our main results, let us recall some related material and notation. A compact
topological surface S together with a nonempty finite subset of points V � S will be
called a marked surface. A triangulation T of a marked surface .S; V / is a topological
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triangulation of S such that the vertex set of T is V. We use E DE.T / and V D V.T /
to denote the sets of all edges and vertices in T, respectively. A polyhedral metric d
on .S; V /, to be called a PL metric on .S; V / for simplicity, is a flat cone metric
on .S; V /whose cone points are contained in V. We call the triple .S; V; d/ a polyhedral
surface. The discrete curvature, or simply curvature, of a PL metric d is the function
K W V ! .�1; 2�/ sending an interior vertex v to 2� minus the cone angle at v and a
boundary vertex v to � minus the sum of the angles at v. All PL metrics are obtained
by isometric gluing of Euclidean triangles along pairs of edges. If T is a triangulation
of a polyhedral surface .S; V; d/ for which all edges in T are geodesic, we say T is
geometric in d and d is a PL metric on .S; T /. In this case, we can represent d by the
length function ld WE.T /!R>0 sending each edge to its length. Thus, the polyhedral
surface .S; V; d/ can be represented by .S; T ; ld /, where ld 2RE>0. We will also call
.S; T ; ld / or ld a PL metric on T.

Definition 1.1 (vertex scaling change of PL metrics [18]) Two PL metrics l and l�

on a triangulated surface .S; T / are related by a vertex scaling if there exists a map
w W V.T /! R such that, if e is an edge in T with endpoints v and v0, then the edge
lengths l.e/ and l�.e/ are related by

(1) l�.e/D ew.v/Cw.v0/l.e/:
We denote l� by w� l if (1) holds and call l� obtained from l by a vertex scaling and w
a discrete conformal factor.

Condition (1) was proposed in [18] as a discrete conformal equivalence between
PL metrics on triangulated surfaces. There are three basic problems related to the
vertex scaling. The first is the existence problem. Namely, given a PL metric l on a
triangulated closed surface .S; T / and a function K W V.T /! .�1; 2�/ satisfying the
Gauss–Bonnet condition, is there a PL metric l� of the formw�l whose curvature isK?
Unlike the Köbe–Andreev–Thurston theorem, which guarantees the existence of circle
packing metrics, the answer to the above existence problem is negative in general. This
makes the convergence of discrete conformal mappings a difficult problem. Secondly,
on the other hand, the uniqueness of the vertex scaled PL metric l� with prescribed
curvature holds. This was established in an important paper by Bobenko, Pinkall and
Springborn [3]. The third is the convergence problem. Namely, assuming the existence
of PL metrics with prescribed curvatures, can these discrete conformal polyhedral
surfaces approximate a given Riemann surface? Our main result gives a solution to the
convergence problem for the simplest case of Jordan domain.
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The convergence theorem that we proved is the following. Let � be a Jordan domain
with three points p, q and r specified in the boundary. By Carathéodory’s extension
theorem (see Pommerenke [23]), the Riemann mapping from � to the unit disk D

extends to a homeomorphism from the closure � to the closure D. Therefore, there
exists a unique homeomorphism g from � to an equilateral Euclidean triangle �ABC
with verticesA, B and C such that p, q and r are sent toA, B and C and g is conformal
in �. For simplicity, we call g and g�1 the Riemann mappings for .�; .p; q; r//.

Given an oriented triangulated polygonal disk .D; T ; l/ and three boundary vertices
p; q; r 2 V, suppose there exists a PL metric l�Dw� l on .D; T / for some w W V !R

such that its discrete curvature at all vertices except fp; q; rg are zero and the curvatures
at p, q and r are 2�

3
. Then the associated flat metric on .D; T ; l�/ is isometric to an

equilateral triangle �ABC, ie there is a geometric triangulation T 0 of �ABC such
that .�ABC; T 0; lst/ is isometric to .D; T ; l�/. Here and below, if T is a geometric
triangulation of a domain in the plane, we use lst WE.T /!R to denote the length of
edges e in T in the standard metric on C. Let f WD!�ABC be the piecewise linear
orientation-preserving homeomorphism sending V to the vertex set V.T 0/ of T 0, and
p, q and r to A, B and C, respectively, and being linear on each triangle of T . We call
f the discrete uniformization map associated to .D; T ; l; fp; q; rg/. Note that f may
not exist due to the lack of an existence theorem.

Theorem 1.2 Suppose � is a Jordan domain in the complex plane with three distinct
points p; q; r � @�. Then there exists a sequence .�n; Tn; lst; .pn; qn; rn// of simply
connected triangulated polygonal disks in C, where Tn are triangulations by equilateral
triangles and pn, qn and rn are three boundary vertices such that

(a) �DS1
nD1�n with�n��nC1, and limn pnDp, limn qnDq and limn rnD r ,

(b) discrete uniformization maps associated to .�n; Tn; lst; .pn; qn; rn// exist and
converge uniformly to the Riemann mapping for .�; .p; q; r//.

In Rodin and Sullivan’s convergence theorem, any sequence of approximating circle
packing maps associated to the approximation triangulated polyhedral disks �n such
that�n� int.�nC1/ and�DS

n�n converges to the Riemann mapping. Theorem 1.2
is less robust in this aspect since discrete conformal maps may not exist if the triangula-
tions Tn are not carefully selected. A stronger version of convergence is conjectured in
Section 7. The conformality of the limit of the discrete conformal maps in Theorem 1.2
is a consequence of the following result. Recall that a geometric triangulation T of
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a polyhedral surface is called Delaunay if the sum of two angles facing each interior
edge is at most � . Delaunay triangulations always exist for each PL metric on compact
surfaces.

Theorem 1.3 Suppose T is a Delaunay geometric triangulations of the complex
plane C such that its vertex set is a lattice and lst W E.T / ! R is the edge length
function of T . If .C; T ; w � lst/ is a Delaunay triangulated surface isometric to an open
set in the Euclidean plane C, then w is a constant function.

We remark that the same result as above for the standard hexagonal lattice has been
proved independently by Dai, Ge and Ma [7].

Using an important result, in [3], that vertex scaling is closely related to hyperbolic
3–dimensional geometry and the work of [10], one sees that Theorem 1.3 implies the
following rigidity result on convex hyperbolic polyhedra:

Theorem 1.4 Suppose LDZC �Z is a lattice in the plane C and V �C is a discrete
set such that there exists an isometry between the boundaries of the convex hulls of L
and V in the hyperbolic 3–space H3 preserving cell structures. Then V and L differ
by a complex affine transformation of C.

This prompts us to propose the following conjecture. A closed set X in the Riemann
sphere is said to be of circle type if each connected component of X is either a point or
a round disk. Consider the Riemann sphere C[f1g as the infinity of the (upper-half-
space model of) hyperbolic 3–space H3.

Conjecture 1.5 For any genus zero connected complete hyperbolic surface �, there
exists a circle type closed set X �C[f1g such that � is isometric to the boundary
of the convex hull of X in H3.

Conjecture 1.6 Suppose X and Y are circle type closed sets in C such that the
boundaries of the convex hulls of X and Y in H3 are isometric. Then X and Y differ by
a Möbius transformation.

Many results on convergence of discrete maps to Riemann mapping have been estab-
lished since the work of Thurston and Rodin and Sullivan [25]. He and Schramm [13]
studied the approximation of conformal maps by circle packing with arbitrary combi-
natorics. In [5], Bücking considered a boundary value problem. She used the Riemann
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mapping f of the Jordan domain and looked for a discrete conformal map with scaling
factor u D log jf j on boundary vertices and proved the existence and convergence
using regular hexagonal lattices. In fact, she is able to prove that the convergence
is C1. Other related works on convergence of circle packing maps can be found in
Matthes [20], Lan and Dai [16], Bücking [4] and Hersonsky [14; 15].

The paper is organized as follows. Section 2 recalls the basic material for discrete
conformal geometry of polyhedral surfaces. Sections 3 and 4 are devoted to proving
Theorem 1.3. The main tools used are a maximum principle, a variational principle for
discrete conformal geometry of polyhedral surfaces, and spiral hexagonal triangulations
derived from linear conformal factors. Section 5 investigates the existence of flat metrics
with prescribed boundary curvature on polygonal disks. The main result (Theorem 5.1)
is an existence result for vertex scaling equivalence if triangulations of a polyhedral disk
are sufficiently finely subdivided. The basic tools used are discrete harmonic functions,
their gradient estimates and solutions to ordinary differential equations. We prove the
convergence (Theorem 1.2) in Section 6 using the results obtained in Sections 4–5
and Rado and Palka’s theorem on uniform convergence of Riemann mappings and
quasiconformal mappings. Section 7 discusses a strong version of the convergence of
discrete uniformization maps and the motivation for Conjecture 1.5.

Acknowledgement We thank Michael Freedman for discussions which led to the
formulation of Conjectures 1.5 and 1.6. The work is partially supported by the NSF
grants DMS 1405106, DMS 1760527, DMS 1811878 and DMS 1760471 of the United
States and a grant from the NSF of China.

2 Polyhedral metrics, vertex scaling and a variational
principle

We begin with some notation. Let C, R and Z be the sets of complex, real and integers,
respectively. R>0Dft 2R j t > 0g, Z�k Dfn2Z j n� kg and S1Dfz 2C j jzj D 1g.
We use D to denote the open unit disk in C and Hn to denote the n–dimensional
hyperbolic space.

Given that X is a compact surface with boundary, its interior is denoted by int.X/. A
graph with vertex set V and edge set E is denoted by .V;E/. Two vertices i and j in a
graph .V;E/ are adjacent, denoted by i �j, if they are the endpoints of an edge. If i �j,
we use Œij � (respectively ij ) to denote an oriented (respectively unoriented) edge from i
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to j. An edge path joining i; j 2 V is a sequence of vertices fv0 D i; v1; : : : ; vm D j g
such that vk � vkC1. The length of the path is m. The combinatorial distance dc.i; j /
between two vertices in a connected graph .V;E/ is the length of the shortest edge
path joining i and j. Suppose .S; T / is a triangulated surface with possibly nonempty
boundary @S and possibly noncompact S. Let E DE.T / and V D V.T / be the sets of
edges and vertices, respectively, and T .1/ D .V;E/ be the associated graph. A vertex
v 2 V.T /\ @S (resp. v 2 V \ .S � @S// is called a boundary (resp. interior) vertex.
Boundary and interior edges are defined in the same way. A PL metric on .S; T / or
simply on T can be represented by a length function l WE.T /!R>0 such that if ei , ej
and ek are three edges forming a triangle in T , then the strict triangle inequality holds:

(2) l.ei /C l.ej / > l.ek/:
We will use limits of PL metrics. To this end, we introduce the notion of generalized
PL metrics on .S; T /. Take three pairwise distinct points v1, v2 and v3 in the plane.
The convex hull of fv1; v2; v3g is a generalized triangle with vertices v1, v2 and v3.
We denote it by �v1v2v3. If v1, v2 and v3 are not in a line, then �v1v2v3 is a (usual)
triangle. If v1, v2 and v3 lie in a line, then �v1v2v3 is a degenerate triangle with
the flat vertex at vi if jvj � vi j C jvk � vi j D jvj � vkj for fi; j; kg D f1; 2; 3g. Let
li D jvj � vkj 2 R>0 be the edge length and ai 2 Œ0; �� be the angle at vi . Then
li C lj � lk > 0 and the angles are given by

(3) ai D arccos
�
l2j C l2k � l2i
2lj lk

�
:

Furthermore, the angle ai D ai .l1; l2; l3/ 2 Œ0; �� is continuous in .l1; l2; l3/. Degen-
erate triangles are characterized by either having an angle � or the lengths satisfying
li D lj C lk for some i , j and k.

A generalized PL metric on a triangulated surface .S; T / is represented by an edge
length function l W E.T /! R>0 such that if ei , ej and ek are three edges forming a
triangle in T, then the triangle inequality holds:

(4) l.ei /C l.ej /� l.ek/:
We will abuse terminology and call l a generalized PL metric on .S; T / or T. The
discrete curvatureK WV.T /! .�1; 2�� of a generalized PL metric .S; T ; l/ is defined
as follows. If v 2 V.T / is an interior vertex, K.v/ is 2� minus the sum of the angles
(of generalized triangles) at v; if v is a boundary vertex, K.v/ is � minus the sum of
the angles at v. Note that the Gauss–Bonnet theorem,

P
v2V.T /K.v/D 2��.S/, still
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holds for a compact surface S with a generalized PL metric. Clearly the curvature K
and inner angles depend continuously on the length vector l 2RE.T />0 . A generalized PL
metric is called flat if its curvatures are zero at all interior vertices v. A generalized PL
metric .S; T ; l/ (sometimes written as .T ; l/) is called Delaunay if, for each interior
edge e 2E.T /, the sum of the two angles ˛ and ˛0 facing e is at most � . Suppose �
and � 0 are the two triangles adjacent to e. If � is a degenerate triangle such that ˛ D � ,
then the Delaunay condition implies that ˛0 D 0. Therefore, � 0 is also degenerate and e
is not the longest edge in � 0. This shows that if .S; T ; l/ is a closed generalized Delaunay
PL metric surface, then no triangle in T is degenerate. Indeed, each degenerate triangle
is adjacent to another degenerate triangle of larger diameter. However, this is not the
case for infinite triangulations. For instance, there exists a generalized Delaunay PL
surface homeomorphic to the plane which contains both degenerate and nondegenerate
triangles.

If .S; T ; l/ is a Delaunay generalized PL metric such that each angle facing a boundary
edge is at most �

2
, then the metric double of .S; T ; l/ along its boundary is a Delaunay

triangulated generalized PL metric surface. Two generalized PL metrics l and Ql
on .S; T / are related by a vertex scaling if there is w 2RV such that

Ql.vv0/D ew.v/Cw.v0/l.vv0/
for all edges vv0 2E.T /. We write Ql D w � l and call w a discrete conformal factor.

Two generalized triangles �v1v2v3 and �u1u2u3 are equivalent if there exists an
isometry sending vi to ui for i D 1; 2; 3. The space of all equivalence classes of
generalized triangles can be identified with f.l1; l2; l3/2R3>0 j liC lj � lkg. It contains
the space of all equivalence classes of triangles f.l1; l2; l3/ 2 R3>0 j li C lj > lkg.
Given two generalized triangles l D .l1; l2; l3/ and Ql D . Ql1; Ql2; Ql3/, there exists w D
.w1; w2; w3/ 2R3 such that Qli D liewjCwk .

The following result was proved in [18, Theorem 2.1] for Euclidean triangles. The
extension to generalized triangles is straightforward.

Proposition 2.1 [18] Let �v1v2v3 be a fixed generalized triangle with edge length
vector l D .l1; l2; l3/ and w � l be the edge length vector of a vertex scaled generalized
triangle whose inner angle at vi is ai D ai .w/.

(a) For any two constants ci and cj , the set

f.w1; w2; w3/ 2R3 j w � l is a generalized triangle and wi D ci ; wj D cj g
is either connected or empty.
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Figure 1: Vertex scaling of a triangle.

(b) If .�v1v2v3; l/ is a nondegenerate triangle and i , j and k distinct , then

(5)

@ai

@wi

ˇ̌̌̌
wD0

D� sin.ai /
sin.aj / sin.ak/

< 0;

@ai

@wj

ˇ̌̌̌
wD0

D @aj

@wi

ˇ̌̌̌
wD0

D cot.ak/;

3X
jD1

@ai

@wj
D 0:

The matrix �Œ@ar=@ws�3�3 is symmetric , positive semidefinite with null space
spanned by .1; 1; 1/T.

(c) If .�v1v2v3; l/ is a degenerate triangle having v3 as the flat vertex, then , for
small t > 0, .�v1v2v3; .0; 0; t/ � l/ is a nondegenerate triangle. The angle
a3.0; 0; t/ is strictly decreasing in t for all t for which .0; 0; t/�l is a generalized
triangle. The angles ai .0; 0; t/ for i D 1; 2 are strictly increasing in t 2 Œ0; �/ for
some � > 0.

Proof To see part (a), without loss of generality, we may assume c1 and c2 are the given
constants. Then the variable w3 is defined by the inequalities ew3.ec1l2C ec2l1/ �
ec1Cc2l3 and ec1Cc2l3 � ew3.ec1l2� ec2l1/� �ec1Cc2l3. Each of these inequalities
defines an interval in the w3 variable. Therefore the solution space is either the empty
set or a connected set.

Part (b) is in [18, Theorem 2.1].

To see (c), since l3 D l1 C l2, we have .0; 0; t/ � l D .et l1; e
t l2; l1 C l2/ 2 � WD

f.x1; x2; x3/ 2 R2>0 j xi C xj � xkg for small t > 0. Now, by (5) and the sine law,
@a3=@w3.0; 0; t/ D �sin.a3/=sin.a1/ sin.a2/ < 0. Together with part (a), the angle
a3.0; 0; t/ as a function of t is defined on an interval and is strictly decreasing in t .
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Since limt!0C @a1=@w3D limt!0C cot.a2/D1 due to limt!0C a2.t; 0; 0/D 0, the
result holds for a1. By the same argument, the result holds for a2.

As a consequence:

Corollary 2.2 Under the same assumption as in Proposition 2.1, if

w.t/D .w1.t/; w2.t/; w3.t// 2R3

is smooth in t such that w.t/� l is the edge length vector of a triangle with inner angle
ai .t/D ai .w.t/� l/ at vi , then

(6)
dai .t/

dt
D

X
j�i

cot.ak/
�
dwj

dt
� dwi
dt

�
;

where j � i means vj is adjacent to vi and fi; j; kg D f1; 2; 3g.

Write w0j .t/D dwj =dt . Indeed, by the chain rule and (5), we have

dai .t/

dt
D @ai

@wi
w0i C

X
j¤i

@ai

@wj
w0j

D�
X
j¤i

cot.ak/w
0
i C

X
j¤i

cot.ak/w
0
j D

X
j�i

cot.ak/.w
0
j �w0i /:

Suppose .S; T ; l/ is a geometrically triangulated compact polyhedral surface and
w.t/ 2 RV is a smooth path in the parameter t such that w.t/ � l is a PL metric on
(S; T ). Let Ki D Ki .t/ be the discrete curvature at i 2 V and � i

jk
D � i

jk
.t/ be the

inner angle at the vertex i in �ijk in the metric w.t/ � l . For an edge Œij � in the
triangulation T , define �ij to be cot.�kij /Ccot.� lij / if Œij � is an interior edge facing two
angles �kij and � lij , and �ij D cot.�kij / if Œij � is a boundary edge. If Œij � is an interior
edge, then �ij � 0 if and only if �kij C � lij � � , ie the Delaunay condition holds at Œij �.

The curvature variation formula is the following:

Proposition 2.3 We have

(7)
dKi .t/

dt
D

X
j�i

�ij

�
dwi

dt
� dwj
dt

�
:

This follows directly from Corollary 2.2 since Ki D c� �
P
r;s2V �

i
rs , where c D 1

or 2 and � irs are the angles at i . Since dKi .t/=dt D�
P
r;s2V d�

i
rs=dt , equation (7)

follows from (6) and the definition of �ij .
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3 A maximum principle, a ratio lemma and spiral hexagonal
triangulations

Let Pn be a star-shaped n–sided polygon having vertices v1; : : : ; vn labeled cyclically.
A triangulation T of Pn with vertices v0; : : : ; vn with v0 2 int.Pn/ and triangles
�v0viviC1 (with vnC1 D v1) is called a star triangulation of Pn. See Figure 2.

Theorem 3.1 (maximum principle) Let T be a star triangulation ofPn and l WE.T /!
R>0 be a generalized Delaunay polyhedral metric on T. If w W fv0; v1; : : : ; vng ! R

satisfies that

(a) w � l is a generalized Delaunay polyhedral metric on T,

(b) the curvatures K0.w � l/ of w � l and K0.l/ of l at the vertex v0 satisfy
K0.w � l/�K0.l/, and

(c) w.v0/Dmaxfw.vi / j i D 0; 1; : : : ; ng,
then w.vi /D w.v0/ for all i .

As a convention, if x D .x0; : : : ; xm/ and y D .y0; y1; : : : ; ym/ are in RmC1, then
x � y means xi � yi for all i . Given w W fv0; : : : ; vmg !R, we use wi D w.vi / and
identify w with .w0; w1; : : : ; wm/ 2 RmC1. The cone angle of w � l at v0 will be
denoted by ˛.w/. Thus, Theorem 3.1(b) says ˛.w/� ˛.0/.
The proof of Theorem 3.1 depends on the following lemma:

Lemma 3.2 If w W fv0; v1; : : : ; vng !R satisfies (a)–(c) in Theorem 3.1 and there is
wi0 <w0, then there exists yw 2RnC1 such that

(a) ywi � wi for i D 1; 2; : : : ; n,

(b) ywi � yw0 D w0 for i D 1; 2; : : : ; n,

(c) yw � l is a generalized Delaunay polyhedral metric on T, and

(d) we have

(8) ˛. yw/ > ˛.w/:

Let us first prove Theorem 3.1 using Lemma 3.2.

Proof By replacing w by w �w.v0/.1; 1; : : : ; 1/, we may assume that w.v0/ D 0.
Suppose the result does not hold, ie there exists w such that w0 D 0, wi � 0 for
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i D 1; 2; : : : ; n with one wi0 < 0, and w � l is a generalized Delaunay PL metric on T
such that ˛.w/� ˛.0/. We will derive a contradiction as follows. By Lemma 3.2, we
may assume, after replacing w by yw, that

(9) ˛.w/ > ˛.0/:

Consider the set

X D fx 2RnC1 j w � x � 0; x0 D 0; x � l is a generalized Delaunay polyhedral

metric on T g:
Clearly w 2 X and therefore X ¤ ∅ and X is bounded. Since inner angles are
continuous in edge lengths, we see that X is a closed set in RnC1. Therefore, X is
compact. Let t 2 X be a maximum point of the continuous function f .x/ D ˛.x/
on X. We claim that t D 0. To prove this, we assume t ¤ 0 and t � 0. Then, by
Lemma 3.2, we can find Ot � t such that Ot0 D 0 and Ot � 0, and Ot � l is a generalized
Delaunay polyhedral metric on T with ˛.Ot / > ˛.t/. This contradicts the maximality
of t . Now, for t D 0, we have

˛.0/D ˛.t/� ˛.w/ > ˛.0/;
where the last inequality follows from (9). This is a contradiction.

Now back to the proof of Lemma 3.2:

Proof After replacing w by w � w0.1; 1; : : : ; 1/, we way assume w0 D 0. Let
ai D ai .w/ D ai .w0; wi ; wiC1/, bi D bi .w/ D bi .w0; wi�1; wi / and ci D ci .w/ D
ci .w0; wi ; wiC1/ be the inner angles †v0viC1vi , †v0vi�1vi and †viv0viC1 in the
metric w � l , respectively. See Figure 2. Let li D l.v0vi / and li;iC1 D l.viviC1/ be
the edge lengths in the metric l .

Let us begin the proof with the simplest case, where all triangles in w � l are non-
degenerate (ie w� l is a PL metric) and wi < 0 for all i � 1. Let j 2 f1; 2; 3; : : : ; ng be
the index such that w � l.v0vj /Dminfw � l.v0vk/ j kD 1; 2; : : : ; ng. It is well known
that in, a Euclidean triangle 4ABC, †A < �

2
if BC is not the unique largest edge.

Hence, due to w � l.v0vj /� w � l.v0vj˙1/, in the triangles �v0vj vj˙1, we have

(10) aj .w/ <
�
2
; bj .w/ <

�
2

and aj .w/C bj .w/ < �:
Now consider ywD .w0; w1; : : : ; wj�1; wjCt; wjC1; : : : ; wn/. For small t >0, bw.t/�l
is still a PL metric since w � l is. We claim yw � l is still Delaunay for small t . Indeed,
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bj�1

bj

vj�1

cj�1

aj�1 vj

bjC1

cj

v0
aj vjC1

ajC1

Figure 2: Star triangulation of an n–sided polygon.

by Proposition 2.1, both angles aj�1 and bjC1 decrease in t . On the other hand,
ajC1.w/ D ajC1. yw/ and bj�1.w/ D bj�1. yw/. Therefore, the Delaunay conditions
bj�1C aj�1 � � and bjC1C ajC1 � � hold for the edges v0vj˙1. The Delaunay
condition on the edge v0vj follows from the choice of j that aj C bj < � . Finally, by
Proposition 2.1(b), d˛. yw/=dt D cot.aj /Ccot.bj /D sin.aj Cbj /=sin.aj / sin.bj / > 0.
Therefore, for small t > 0, we have ˛. yw/ > ˛.w/.
In the general case, the above arguments still work.

Let J D fj 2 V j wj < 0g. By assumption, J ¤∅.

Claim 1 If j 2 J, then cj .w/ < � and cj�1.w/ < � .

We prove cj�1.w/ < � by contradiction. Suppose otherwise that cj�1.w/ D � .
Then the triangle �v0vj vj�1 is degenerate in the w � l metric, ie ewjCwj�1lj;j�1 D
ewj lj C ewj�1lj�1. Due to wj < 0 and wj�1 � 0, we have

ewjCwj�1lj;j�1 D ewj lj C ewj�1lj�1

> ewjCwj�1lj C ewjCwj�1lj�1 D ewjCwj�1.lj C lj�1/:
This shows lj;j�1 > lj C lj�1, which contradicts the triangle inequality for the l metric.
Therefore, cj�1.w/ < � . By the same argument, we have cj .w/ < � . This proves
Claim 1.
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Let I D fi > 0 j wi D 0g and

ˇ.w/D
X
i2I

.bi .w/C ai .w//

and

.w/D

X
j2J

.bj .w/C aj .w//:

Note that the cone angle at v0 is

˛.w/D
nX
iD1

.� � ai .w/� biC1.w//D �n�ˇ.w/� 
.w/:

By the assumption that ˛.w/� ˛.0/, we have

(11) ˇ.w/C 
.w/� ˇ.0/C 
.0/:

Claim 2 If I ¤∅, then ˇ.w/ > ˇ.0/.

Indeed, if i 2 I, ie wi D 0, then, in the triangle �v0vivi˙1, we have w0 D 0, wi D 0
and wi˙1 � 0. Since the �v0vivi�1 are generalized triangles in both the l and w � l
metrics, by Proposition 2.1(a), we see that �v0vivi�1 is a generalized triangle in
.w0; : : : ; wi�2; twi�1; wi ; : : : ; wn/ � l for t 2 Œ0; 1�. By Proposition 2.1 and since
wi�1 � 0, bi .w0; : : : ; wi�2; twi�1; wi ; : : : ; wn/ is increasing in t � 0 and is strictly
increasing in t � 0 if wi�1 < 0. Therefore,

bi .w/D bi .w0; wi�1; wi /
� bi .w0; 0; wi /D bi .w0; w1; : : : ; wi�2; 0; wi ; : : : ; wn/D bi .0/;

and bi .w/ > bi .0/ if wi�1 < 0. Applying the same argument to �v0viviC1 and ai ,
we have ai .w/� ai .0/ and ai .w/ > ai .0/ if wiC1 < 0. Therefore, ˇ.w/� ˇ.0/. On
the other hand, since J ¤∅, there exists an i 2 I such that either i �1 or iC1 is in J.
Say i � 1 2 J, ie wi�1 < 0. Then we have bi .w/ > bi .0/ and ˇ.w/ > ˇ.0/.

By Claim 2 and (11), if I ¤∅, we conclude that

(12) 
.w/D
X
j2J

.aj .w/C bj .w// < 
.0/:

Since w � l and l are Delaunay, we have ai .w/C bi .w/ � � and ai .0/C bi .0/ � �
for all i D 1; 2; : : : ; n. This implies, by (12), that there exists j 2 J such that

(13) aj .w/C bj .w/ < �:
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If I D∅, let j 2 J D f1; 2; 3; : : : ; ng be the index such that

w � l.v0vj /Dminfw � l.v0vk/ j k D 1; 2; : : : ; ng:

Then the same argument used in showing (10) and Claim 1 imply (13) still holds. (Here
Claim 1 is used to show that .w0; : : : ; wj�1; wj C t; wjC1; : : : ; wn/� l is a generalized
PL metric for small t > 0.)

Fix j 2 J as above. To finish the proof, we will show that there exists a small t > 0
such that, for yw D .w0; w1; : : : ; wj�1; wj C t; wjC1; : : : ; wn/ 2RnC1

�0 , the following
hold:

(i) yw � l is a generalized polyhedral metric on T.

(ii) yw � l satisfies the Delaunay condition.

(iii) ˛. yw/ > ˛.w/.

Since wj < 0, any t 2 .0;�wj / will make yw 2RnC1
�0 .

To see part (i), by Claim 1 and (13), which imply aj .w/; bj .w/; cj .w/; cj�1.w/ < � ,
the triangle .�v0vj vjC1; w � l/ (or (�v0vj vj�1; w � l/) is either nondegenerate or
is degenerate with angle � at vj , ie bjC1.w/ D � (or aj�1.w/ D � , respectively).
Therefore, by Proposition 2.1(c), for small t > 0, yw � l is still a generalized PL metric.

To see part (ii), we check the sum of opposite angles at the edges v0vj�1, v0vjC1
and v0vj . At the edge v0vj , due to (13) and continuity, we see aj . yw/Cbj . yw/ < � for
small t > 0. At the edge v0vj�1 (or similarly v0vjC1), by Proposition 2.1(c), which
says that aj�1. yw � l/ and bjC1. yw � l/ are strictly decreasing functions in t > 0 and
bj�1. yw/D bj�1.w/, we have

aj�1. yw/C bj�1. yw/ < aj�1.w/C bj�1.w/� �:

Similarly, we have the Delaunay condition for yw � l at the edge v0vjC1.

Finally, to see (iii), by Proposition 2.1 and (13), we have

d

dt

ˇ̌̌
tD0

˛. yw/D d

dt

ˇ̌̌
tD0

.cj . yw//C d

dt

ˇ̌̌
tD0

.cj�1. yw//
D cot.bj . yw//C cot.aj . yw// > 0:

Therefore, for small t > 0, ˛. yw/ > ˛.w/.
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Figure 3: Triangulated hexagon and length ratio.

Lemma 3.3 Let .PN ; T / be a star triangulation of an N –gon with boundary vertices
v1; : : : ; vN labeled cyclically and one interior vertex v0, and l W E.T /! R>0 be a
flat generalized PL metric on T. There is a constant �.l/ depending on l such that ,
if .PN ; T ; w � l/ with w W fv0; : : : ; vN g ! R is a generalized PL metric with zero
curvature at v0, then the ratio of edge lengths satisfies

(14)
w � l.viv0/
w � l.viviC1/

� �.l/

for all indices.

Proof Let xi .w/Dw� l.v0vi / and yi .w/Dw� l.viviC1/ be the edge lengths in the
metric w � l , where vNC1 D v1. By definition,

(15)
xiC2

yiC1
D �i xi

yi
;

where �i > 0 depends on l . Then

(16)
xiC1

yiC1
� xiC2�yiC1

yiC1
D xiC2

yiC1
� 1D �i xi

yi
� 1:

We prove by contradiction. If the result of the lemma is not true, then there exists a
sequence of conformal factors w.n/ such that

xi .w
.n//

yi .w.n//
!1

for some i . Without loss of generality, assume i D 1; then, by (16), inductively we
have

x2.w
.n//

y2.w.n//
!1; x3.w

.n//

y3.w.n//
!1; : : : ;

xN .w
.n//

yN .w.n//
!1:
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Then the angles ai .w.n// at v0 in the triangle �v0viviC1 (in the w.n/ � l metric) con-
verge to 0 for any i . But that contradicts the fact that the curvature 2��PN

iD1 ai .w
.n//

at v0 is zero.

The next result concerns linear discrete conformal factor and spiral hexagonal trian-
gulations. It is a counterpart of Doyle spiral circle packing in the discrete conformal
setting. Unlike Doyle spiral circle packing, not all choices of linear functions produce
generalized PL metrics.

We begin by recalling the developing maps. If .S; T ; l/ is a flat generalized PL
metric on a simply connected surface S (ie Kv D 0 for all interior vertices v), then
a developing map � W .S; T ; l/!C for .T ; l/ is an isometric immersion determined
by j�.v/��.v0/j D l.vv0/ for v � v0. It is constructed as follows. Fix a generalized
triangle t 2 T and isometrically embeds t to C. This defines �jt . If s is a generalized
triangle sharing a common edge e with t , we can extend �jt to �jt[s by isometrically
embedding s to �.s/� C sharing the edge �.e/ with �.t/ so that �.s/ and �.t/ are
on different sides of �.e/. Since the surface is simply connected, by the monodromy
theorem, we can keep extending � to all triangles in T and produce a well-defined
isometric immersion. As a convention, if � is a triangle in T and l is a generalized PL
metric on T, we use .�; l/ to denote the induced generalized PL metric on � .

Given a lattice L in C, there exists a Delaunay triangulation Tst D Tst.L/ of C with
vertex set L such that Tst is invariant under the translation action of L. In particular,
Tst descends to a 1–vertex triangulation of the torus C=L. Therefore, the degree of
each vertex v 2 Tst is 6, ie this triangulation is topologically the same as the standard
hexagonal triangulation of C. Let l0 W E.Tst/! R>0 be the edge length function of
.C; Tst.L/; dst/, where dst is the standard flat metric on C. Let � be a triangle in Tst

with vertices 0, u1 and u2. Then LD u1ZCu2Z and fu1; u2g is called a geometric
basis of L. Note that two vertices v; v0 2 L are joined by an edge e 2 Tst if and only if
v� v0 2 f˙u1;˙u2;˙.u1�u2/g.

Proposition 3.4 Suppose .C; Tst; l0/ is a hexagonal Delaunay triangulation of the
plane with vertex set a lattice V D u1ZC u2Z, where fu1; u2g is a geometric basis.
Let w W V !R be a nonconstant linear function w.nu1Cmu2/D n ln.�/Cm ln.�/
for m; n;2 Z such that w � l0 is a generalized Delaunay PL metric on Tst. Then the
following hold :

(a) The generalized PL metric .Tst; w � l0/ is flat.
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Figure 4: Flatness of spiral hexagonal triangulations.

Let � be the developing map for the flat metric .Tst; w � l0/.
(b) If there exists a nondegenerate triangle in the generalized PL metric w � l0, then

there are two distinct nondegenerate triangles �1 and �2 in .Tst; w � l0/ such that
�.int.�1//\�.int.�2//¤∅.

(c) Suppose all triangles in w� l0 are degenerate. Then there exists an automorphism
 of the triangulation Tst such that w. .nu1 Cmu2// D n ln.
1.u1; u2//C
m ln.
2.u1; u2//, where 
i .u1; u2/ are two explicit numbers depending on u1
and u2 (see (17)).

We remark that parts (a) and (b) for the lattice ZC e2�i=3Z were proved in [28].

Proof Consider two automorphisms A and B of the topological triangulation Tst

defined byA.v/DvCu1 andB.v/DvCu2 for v2V. By definition, we haveABDBA
and A and B generate the group hA;Bi Š Z2 acting on Tst. Any triangle in Tst is
equivalent, under the action of hA;Bi, to exactly one of the two triangles T1 or T2,
where the vertices of T1 are 0, u1 and u2 and the vertices of T2 are 0, �u1 and �u2. In
the generalized PL metric w� l0, the maps A and B satisfy w� l0.A.e//D �2w� l0.e/
and w � l0.B.e//D �2w � l0.e/ for each edge e 2 T. It follows that, for any triangle
� 2 Tst, the generalized triangle .A.�/; w � l0/ (resp. .B.�/; w � l0/) is the scalar
multiplication of .�; w � l0/ by �2 (resp. by �2). Hence, there are only two similarity
types of triangles in .C; Tst; w � l0/. For each v 2 V, the six angles at v are congruent
to the six inner angles in T1 and T2 in the w � l0 metric. Therefore, .T ; w � l0/ is a flat
metric. See Figure 4, center.

By the assumption that w is not a constant, we have .�; �/¤ .1; 1/. Say �¤ 1. Using
the developing map �, there exist two complex affine maps ˛ and ˇ of the complex
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plane C such that �AD ˛� and �B D ˇ�. Since A is a scaling by the factor �2 ¤ 1
and � is a local isometry, the affine map ˛ is of the form ˛.z/ D ��z C c, where
j��j D �2 ¤ 1 and ˛ has a unique fixed point p 2 C. By AB D BA, it follows that
˛ˇ D ˇ˛. Therefore, from ˇ.p/ D ˇ˛.p/ D ˛ˇ.p/, we conclude ˇ.p/ D p. After
replacing the developing map � by � ı� for an isometry � of C, we may assume that
˛ and ˇ both fix 0, ie ˛.z/ D ��z and ˇ.z/ D ��z are both scalar multiplications.
Let G D h˛; ˇi be the abelian group generated by ˛ and ˇ which acts on C by scalar
multiplication.

To see part (b), let � be the image �.C/ of the developing map which is invariant
under the action of G. By the assumption that there are nondegenerate triangles in
.Tst; w � l0/, the image � has nonempty interior. There are two cases we have to
consider. In the first case, there exists a pair of integers .n;m/¤ .0; 0/ such that ˛nˇm

is the identity element in the group G. In this case, we take �1 to be any nondegenerate
triangle and �2 D AnBm.�1/. By definition, we have �.�1/D �.�2/. Therefore, the
result holds. In the second case, for all .n;m/¤ .0; 0/, ˛nˇm ¤ id, ie the group G is
isomorphic to Z2. Since both ˛.z/ and ˇ.z/ are scalar multiplications, this implies
that the action of the group G on int.�/ is not discontinuous. In particular, for any
nonempty open set U ��, there is ˛nˇm 2 G � fidg such that ˛nˇm.U /\U ¤ ∅.
Take �1 to be a nondegenerate triangle, U D �.int.�1// and �2 D AnBm.�1/. Then
we have �.int.�1//\�.int.�2//¤∅.

To see part (c), since each triangle is degenerate, the inner angles a, b and c and
x, y and z of the two triangles T1 and T2 are 0 or � , as shown in Figure 4, center.
Composing with an automorphism of Tst, we may assume that aD � , and then, by the
Delaunay condition, y D 0.

There are two cases, depending on .x; y; z/ D .�; 0; 0/ or .0; 0; �/. The two cases
differ by the automorphism � of the lattice u1ZCu2Z and of Tst such that �.u1/D u2,
�.u2/D u2 �u1 and �.0/D 0. Thus, it suffices to consider the case z D � . Let the
lengths of u1, u2 and u2 � u1 in the l0 metric be b1, b2 and b3, respectively. The
lengths of the corresponding edges in the w � l0 metric are �b1, �b2 and ��b3. By
the same computation, one works out the edge lengths of the triangle with vertices 0,
u2 and u2�u1 in the w � l0 metric to be .�2=�/b1, �b2 and .�=�/b3. See Figure 4,
right.

We obtain two equations for the edge lengths of degenerate triangles: �b1C�b2D��b3
(due to aD �/ and .�2=�/b1 D �b2C .�=�/b3 (due to z D �/. See Figure 4, right.
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Figure 5: Spiral hexagonal triangulations.

These are same as �b1C�b2 D ��b3 and �b1 D �b2C b3. Solving � in terms of �,
we obtain a quadratic equation in �,

(17) b2b3�
2C .b23 � b21 � b22/�� b2b3 D 0:

Since bi > 0, this equation has a unique positive solution, which we call 
1.u1; u2/.
The solution in �D .
1.u1; u2/b2C b3/=b1 is 
2.u1; u2/.

4 Rigidity of hexagonal triangulations of the plane

We begin with:

Definition 4.1 A flat generalized PL metric on a simply connected surface .X; T ; l/
with developing map � is said to be embeddable into C if, for every simply connected
finite subcomplex P of T, there exists a sequence of flat PL metrics on P whose
developing maps �n converge uniformly to �jP and �n W P !C is an embedding.

For instance, all geometric triangulations of open sets in C are embeddable. However,
the spiral flat triangulations produced in Proposition 3.4 are not embeddable. The main
result in this section works for embeddable flat PL metrics only.

The following lemma is a consequence of the definition:

Lemma 4.2 Suppose .X; T ; l/ is a flat generalized PL metric on a simply connected
surface with a developing map �.

(a) Suppose � is embeddable. If t1 and t2 are two distinct nondegenerate triangles
or two distinct edges in T, then �.int.t1//\�.int.t2//D∅.

(b) If � is the pointwise convergent limit limn!1  n of the developing maps  n of
embeddable flat generalized PL metrics .X; T ; ln/, then .X; T ; l/ is embeddable.
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Proof To see (a), suppose the contrary. Take P to be a finite simply connected
subcomplex containing t1 and t2; then the developing maps �n defined on P which
converge uniformly to �jP must satisfy �n.int.t1//\�n.int.t2//¤∅ for n large. This
contradicts that the �n are embeddings.

Part (b) follows from the fact that the  n converge to � uniformly on compact subsets
and the fact that, if limn!1 an D a and limm!1 bn;m D an, then aD limj!1 bj;nj

for some subsequence.

Let Tst be a hexagonal Delaunay triangulation of the plane S DC with vertex set the
lattice V D fu1nCu2m j n;m 2Zg and l0 WE.Tst/!R>0 be the edge length function
associated to .S; Tst; dst/. Given a flat generalized PL metric .S; Tst; l/, its normalized
developing map � D �l W S !C is a developing map such that �.0/D 0 and �.u1/ is
in the positive x–axis. Suppose fu1; u2g is a geometric basis of the lattice u1ZCu2Z.
Two vertices v and v0 are adjacent in Tst, ie v � v0, if and only if v D v0C ı for some
ı 2 f˙u1;˙u2;˙.u1�u2/g. Given two vertices v; v0 2 V, the combinatorial distance
dc.v; v

0/ between v and v0 is the length of the shortest edge path joining them.

The goal of this section is to prove the following stronger version of Theorem 1.3:

Theorem 4.3 Suppose .S; Tst; l0/ is a hexagonal Delaunay triangulation whose vertex
set is a lattice in C and .S; Tst; w � l0/ is a flat generalized Delaunay PL metric on Tst.
If .S; Tst; w � l0/ is embeddable into C, then w is a constant function.

Theorem 1.3 is clearly a special case of Theorem 4.3. Theorem 4.3 will be proved
using several lemmas.

4.1 Limits of discrete conformal factors

The following lemma is a corollary of Theorem 3.1:

Lemma 4.4 Suppose .S; Tst; w � l0/ is a flat generalized Delaunay PL metric surface ,
ı 2 V and f W V ! R is defined by f .v/ D w.vC ı/�w.v/. Then f � .w � l0/ D
.f Cw/ � l0 is a flat generalized Delaunay PL metric on Tst. In particular , if there
exists a vertex v0 such that f .v0/Dmaxff .v/ j v 2 V g, then f is constant.

We next show how to produce discrete conformal factors w such that w.vC ı/�w.v/
are constants:
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Lemma 4.5 Suppose w � l0 is a flat generalized Delaunay PL metric on Tst. Then , for
any ı 2 f˙u1;˙u2;˙.u1 � u2/g, there exist vn 2 V such that wn 2 RV defined by
wn.v/D w.vC vn/�w.vn/ satisfies:

(a) For all v 2 V, the following limit exists:

w1.v/D lim
n!1

wn.v/ 2R:

(b) wn � l0 and w1 � l0 are flat generalized Delaunay PL metric on Tst.

(c) w1.vCı/�w1.v/D a for all v 2 V, where aD supfw.vCı/�w.v/ j v 2 V g.
(d) The normalized developing maps �wn�l0 of wn � l0 converges uniformly on

compact sets in S to the normalized developing map �1 ofw1�l0. In particular ,
if .S; Tst; w � l0/ is embeddable , then .S; Tst; w1 � l0/ is embeddable.

Proof By Lemma 3.3, there is a constant M DM.V /, depending only on the lattice
V D u1ZCu2Z, such that aD supfw.vC ı/�w.v/ j v 2 V g �M.V /. Take vn 2 V
such that

w.vnC ı/�w.vn/� a� 1
n
:

By definition,

(18) wn.0/D 0; wn.ı/� a� 1
n
; wn.vC ı/�wn.v/� a

and

(19) supfjwn.v/�wn.v0/j j v � v0g<1:
By Lemma 3.3, if v 2 V is of combinatorial distance m to 0, then, using wn.0/D 0,
we have

(20) jwn.v/j �mM.V /:
By (20) and the diagonal argument, we see that there exists a subsequence of fwng, still
denoted by fwng for simplicity, such that wn converges to w1 2RV in the pointwise
convergence topology. By construction, each wn � l0 is a flat generalized Delaunay PL
metric. By limn!1wn Dw1 and continuity, we conclude that w1 � l0 is again a flat
generalized Delaunay PL metric on Tst. By (18),

w1.ı/�w1.0/Dmaxfw1.vC ı/�w1.v/ j v 2 V g:
By Lemma 4.4, we see that conclusion (c) holds. Since the developing map �w�l0
depends continuously on w 2RV, limn!1 �wn�l0.v/D �1.v/ for each vertex v 2 V.
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On the other hand, a developing map � is determined by its restriction to V. We see that
�wn�l0 converges to �1 uniformly on compact subsets of the plane. The last statement
follows from Lemma 4.2(b) since each �wn�l0 is embeddable by definition.

4.2 Proof of Theorem 4.3

Suppose w � l0 is a flat generalized Delaunay PL metric on Tst with an embeddable
developing map �. Our goal is to show thatw WV !R is a constant. Suppose otherwise;
we will derive a contradiction by showing that the developing map � is not embeddable.

Since w is not a constant, we can choose ı1 2 f˙u1;˙u2;˙.u1 � u2/g such that
a1D supfw.vC ı1/�w.v/ j v 2 V g> 0. By Lemma 4.5 applied to w � l0 and ıD ı1,
we produce a function w1 W V !R such that w1� l0 is a flat generalized Delaunay PL
metric on Tst and w1.vC ı1/Dw1.v/Ca1 for all v 2 V. Now, applying Lemma 4.5
to w1 � l0 with ı2 2 f˙u1;˙u2;˙.u1�u2/g� f˙ı1g, we obtain a second function
yw D .w1/1 W V !R and b1 2R such that yw � l0 is a flat generalized Delaunay PL
metric on Tst and

yw.vC ı1/D yw.v/C a1; yw.vC ı2/D yw.v/C b1
for all v 2 V. This shows that yw W V ! R is a nonconstant affine function, ie
yw.nCme�i=3/D a2nC b2mC c2 for some a2; b2; c2 2R.

Let y�, �1 and � be the normalized developing maps for yw � l0, w1 � l0 and w � l0,
respectively. Since � is embeddable, by Lemma 4.5, y� and �1 are embeddable.

If yw � l0 contains a nondegenerate triangle, then, by Proposition 3.4, there exist two
nondegenerate triangles t1 and t2 in (Tst, yw � l0/ such that y�.int.t1//\ y�.int.t2//¤∅.
By Lemma 4.2(a), this contradicts that yw � l0 is embeddable.

Therefore, all triangles in the generalized PL metric yw � l0 are degenerate, ie all angles
in triangles are either 0 or � . We will use the same notation used in the proof of
Proposition 3.4. By Proposition 3.4(c) and Figure 6, we may assume, after composing
with an automorphism of Tst and subtracting by a constant, that yw.nu1 Cmu2/ D
n ln.
1.V //Cm ln.
2.V //, where .
1.V /; 
2.V // are given by the solutions of (17)
and the angles a, b, c, x, y and z of T1 and T2 are .a; b; c; x; y; z/D .�; 0; 0; 0; 0; �/.

Let P1 D u2 � 2u1, P2 D u2 �u1, P3 D 0 and P4 D u1 in V. See Figure 6, bottom
left. In the case of aD z D � , we claim that the length .�=�/b3 of the edge P2P3 is
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u2 �u1 b1 u2

b3

b2 b3

0 b1 u1

vertex vectors and edge lengths in the l0 metric

�=�2 �=� �

u2 � 2u1
u2 �u1

u2

�u10

conformal factors at vertices

�2b1=�3 � � �2b1=�

P1 P2

�b3=� �b2

��b3

�
�

P3 �b1 P4

edge lengths in vertex scaled metric

�n.P4/

�n.P2/

�n.P3/

�n.P1/

Figure 6: Angles a and z are zero in yw�l0. Top right is the developing image
of corresponding set in w � l0.

strictly less than the sum of the lengths �b1 of the edge P3P4 and .�2=�3/b1 of the
edge P1P2, ie

(21) �

�
b3 < �b1C �

2

�3
b1:

Indeed, by the equations �b1C�b2D ��b3 and �b1D �b2Cb3 derived in the proof
of Proposition 3.4, we obtain

b3

b1
D �2C�2
.1C�2/�:

Equation (21) says
b3

b1
<
�4C�2
�2�

:

Thus, it suffices to show that .�2C�2/=.1C�2/�< .�4C�2/=�2�. This is the same
as �2.�2C�2/ < .1C�2/.�4C�4/, ie �4C�2�2 <�4C�2�2C�6C�2. The last
inequality clearly holds since both � and � are positive.

Now consider the oriented edge path P1P2P3P4 (oriented from P1 to P4) in Tst and its
image under the developing map y� of yw�l0 in C. By the assumption that aD zD� , the
angles of the polygonal path y�.P1P2P3P4/ at y�.P2/ and y�.P3/ are 2� . See Figure 6,
bottom left. Also the sum of the lengths of y�.P1P2/ and y�.P2P4/ is larger than the
length of y�.P2P3/ by the claim above. On the other hand, since y� is embeddable, there
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exists a sequence of flat PL metrics on Tst whose developing maps �n are embeddings
that converge uniformly on compact sets to y�. This implies that, for n large, the two
line segments �n.P1P2/ and �n.P3P4/ intersect in their interiors. This contradicts the
assumption that �n is an embedding.

This ends the proof of Theorem 4.3.

Remark 4.6 The above argument also gives a new proof of Rodin and Sullivan’s
hexagonal circle packing theorem.

The following will be used to show that the limit of discrete uniformization maps is
conformal. Let Bn.v/Dfi 2 V.Tst/ j dc.i; v/� ng and Bn.v/ be the subcomplex of Tst

whose simplices have vertices in Bn.v/.

Lemma 4.7 Take the standard hexagonal lattice V D ZC e2�=3Z and its associated
standard hexagonal triangulation , whose edge length function is lst W V ! f1g. There
is a sequence sn of positive numbers decreasing to zero with the following property:
For any integer n and a vertex v, there exists N D N.n; v/ such that , if m � N and
.Bm.v/; w � lst/ is a flat Delaunay triangulated PL surface with embeddable developing
map , then the ratio of the lengths of any two edges sharing a vertex in Bm.v/ is at
most 1C sn.

The proof of the lemma is exactly the same as that of Rodin and Sullivan [25, pages
353–354] since we have Lemma 3.3 and Theorem 4.3, which play the roles of Rodin and
Sullivan’s ring lemma and rigidity of hexagonal circle packing in [25, pages 352–353].

5 Existence of discrete uniformization metrics on polyhedral
disks with special equilateral triangulations

By a polygonal disk we mean a flat PL surface .P; V; d/ which is isometrically embed-
ded in the complex plane C with P homeomorphic to the closed disk. The goal of this
section is to prove the existence of a discrete conformal metric by regular subdividing
of the given triangulations.

An equilateral triangulation T of a polyhedral surface is a geometric triangulation
whose triangles are equilateral. The edge length function of an equilaterally triangulated
connected polyhedral surface will be denoted by the constant function lst WE.T /!R.
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1st 2nd 3rd 6th

Figure 7: The standard subdivisions.

Given an equilateral Euclidean triangle��C and n2Z�1, the nth standard subdivision
of � is the equilateral triangulation of � by n2 equilateral triangles. See Figure 7. If
T is an equilateral triangulation of a polyhedral surface, its nth standard subdivision,
denoted by T.n/, is the equilateral triangulation obtained by replacing each triangle
in T by its nth standard subdivision. We use V.n/ to denote V.T.n//.

The main result of this section is the following theorem:

Theorem 5.1 Suppose .P; T ; lst/ is a flat polygonal disk with an equilateral triangula-
tion T such that exactly three boundary vertices p, q and r have curvature 2�

3
. Then ,

for sufficiently large n, there is a discrete conformal factor wn W V.n/! R for the nth

standard subdivision .P; T.n/; lst/ such that the discrete curvatureK of wn� lst satisfies:

(a) Ki D 0 for all i 2 V.n/�fp; q; rg.
(b) Ki D 2�

3
for all i 2 fp; q; rg.

(c) There is a constant �0>0, independent of n, such that all inner angles of triangles
in .T.n/; wn � lst/ are in the interval

�
�0;

�
2
C �0

�
, the sum of two angles facing

each interior edge is at most � � �0, and each angle facing a boundary edge is at
most �

2
� �0.

Conditions (a) and (b) imply that the underlying metric space of .P; T.n/; wn � lst/ is
an equilateral triangle. Condition (c) says that the metric doubles of .P; T.n/; lst/ and
.P; T.n/; wn � lst/ are two Delaunay triangulated polyhedral 2–spheres differing by a
vertex scaling.

There are two steps involved in the construction of the discrete conformal factor wn in
Theorem 5.1. In the first step, we produce a discrete conformal factor w.1/ W V.n/!R

such that w.1/ vanishes outside the union of combinatorial balls of radius
�
1
3
n
� �

the
integral part of 1

3
n
�

centered at nonflat vertices v ¤ p; q; r and the discrete curvature
satisfies Ki .w.1/ � lst/ D 0 if dc.i; v/ <

�
1
3
n
�

and Ki .w.1/ � lst/ D O.1=
p

ln.n// if
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dc.i; v/D
�
1
3
n
�
. This step diffuses the nonzero discrete curvatures �

3
, ��

3
and �2�

3

(at nonflat vertices v) to small curvatures at vertices defined by dc.i; v/ D
�
1
3
n
�
. In

the second step, by choosing n large such that all curvatures are very small, we use a
perturbation argument to show that there is w.2/ W V.n/!R such that w.2/� .w.1/� lst/

satisfies the conditions in Theorem 5.1. The required discrete conformal factor wn is
w.1/Cw.2/ since .w.2/Cw.1//� lst D w.2/ � .w.1/ � lst/.

The basic tools to be used for proving Theorem 5.1 are discrete harmonic functions,
their gradient estimates and ordinary differential equations (ODEs). We begin by
recalling the related material.

5.1 Laplace operator on a finite graph

Given a graph .V;E/, the set of all oriented edges in .V;E/ is denoted by E. If i � j
in V, we use Œij � 2E to denote the oriented edge from i to j. If x 2RV and y 2RE,
we use xi and yij to denote x.i/ and y.Œij �/, respectively. A conductance on G is a
function � WE!R�0 such that �ij D �j i .

Definition 5.2 Given a finite graph .V;E/with a conductance �, the gradient O WRV !
RE is the linear map

.Of /ij D �ij .fi �fj /;
the Laplace operator associated to � is the linear map 4WRV !RV defined by

.4f /i D
X
j�i

�ij .fi �fj /;

and the Dirichlet energy of f 2RV on .V;E; �/ is

E.f /D 1

2

X
i�j

�ij .fi �fj /2:

The following is well known (see [6]):

Proposition 5.3 (Green’s identity) Given a finite graph .V;E/ with a conductance �,

(a) for any subset V0 � V,X
i2V0

fi .4g/i �gi .4f /i D
X

i2V0;j�i;j…V0

�ij .gifj �figj /I

(b)
P
i2V .4f /i D 0.
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Given a set V0�V and g WV0!R, the Dirichlet problem asks for a function f WV !R

such that

(22) .4f /i D 0 for all i 2 V �V0 and f jV0
D g:

The Dirichlet principle states that solutions f to the Dirichlet problem (22) are the same
as minimum points of the Dirichlet energy function restricted to the affine subspace
fh 2RV j hjV0

D gg, ie

(23) E.f /DminfE.h/ j h 2RV and hjV0
D gg:

In particular, the Dirichlet problem (22) is always solvable.

A subset U � V in a graph .V;E/ is called connected if any two vertices i; j 2 U can
be joined by an edge path whose vertices are in U. For instance, a connected graph
.V;E/ means V is a connected. The following is well known (see [6]):

Proposition 5.4 Suppose .V;E/ is a finite connected graph with a conductance �ij >0
for all edges Œij � and V0 � V. Let f be a solution to the Dirichlet problem (22). Then:

(a) Maximum principle For V0 ¤∅,

max
i2V

fi Dmax
i2V0

fi :

(b) Strong maximum principle If V � V0 is connected and maxi2V�V0
fi D

maxi2V0
fi , then f jV�V0

is a constant function.

5.2 A system of ODEs associated to discrete conformal change

Let .S; T ; l/ be a compact connected polyhedral surface with discrete curvature K0.
Given a subset V0 � V and a function K� W V � V0 ! .�1; 2�/, we try to find a
function w W V ! R such that w � l is a PL metric whose curvature K.w/ is equal
to K� on V � V0 and wjV0

D 0. In the PL metric w � l , let � i
jk
D � i

jk
.w/ be the

angle at vertex i in the triangle �ijk and �ij D �ij .w/ be cot.�kij /C cot.� lij / if Œij � is
an interior edge and �ij D cot.�kij / if Œij � is a boundary edge. The associated Laplacian
� W RV ! RV is .�f /i D

P
j�i �ij .fi � fj /. We will construct w by choosing a

smooth 1–parameter family w.t/ 2RV such that w.0/D 0 and w.t/� l is a PL metric
whose curvature Ki .t/DKi .w.t/� lst/ satisfies

(24) Ki .t/D .1� t /K0i C tK�i for all i 2 V �V0; wi .t/D 0 for all i 2 V0:
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The required vector w is defined to be w.1/. Note that, by definition, K.0/DK0. Due
to the curvature evolution equation (7), that dKi .t/=dt D

P
j�i �ij .w.t//.w

0
i �w0j /,

where w0i .t/D dwi .t/=dt , we obtain the system of ODEs in w.t/, equivalent to (24),

(25)

X
j�i

�ij .w
0
i �w0j /DK�i �K0i for all i 2 V �V0;

w0i .t/D 0 for all i 2 V0;
w.0/D 0:

Using 4f, we can write (25) as

(26)

.�w0/i DK�i �K0i for all i 2 V �V0;
w0i .t/D 0 for all i 2 V0;
w.0/D 0:

We will show, under some assumptions on .T ; l/, that the solution to (25) exists for all
t 2 Œ0; 1�.
Let W �RV be the open set

(27) W D fw 2RV j w � l is a PL metric on T and �ij .w/ > 0 for all edges Œij �g:

Lemma 5.5 Suppose V0¤∅ and 02W. The initial valued problem (25) defined onW
has a unique solution in a maximum interval Œ0; t0/ with t0 > 0 such that , if t0 <1,
then either lim inft!t�0 �

i
jk
.w.t//D 0 for some angle � i

jk
or lim inft!t�0 �ij .w.t//D 0

for some edge Œij �.

Proof Indeed, (25) can be written as Y.w/ �w0.t/D ˇ and w.0/D 0, where Y.w/ is a
square matrix–valued smooth function of w 2W and w0.t/ is considered as a column
vector. We claim that Y.w/ is an invertible matrix for w 2 W. If Y.w/ is invertible,
then (25) can be written as w0.t/D Y.w/�1ˇ and, by Picard’s existence theorem, there
exists an interval on which the ODE (25) has a solution. Now Y.w/ is invertible if and
only if the following system of linear equations has only the trivial solution x D 0:

(28) Y.w/ � x D 0:
By (25), equation (28) is the same as .�x/i D 0 for i 2 V �V0 and xi D 0 for i 2 V0.
Furthermore, w 2W implies �ij .w/ > 0 for all edges Œij �. By the maximum principle
(Proposition 5.4), we see that x D 0.

If t0 < 1 and t " t0, then w.t/ leaves every compact set in W. For each ı > 0,
we claim that Wı D fw 2 W j � ijk � ı; jwi j � 1=ı; �ij � ıg is compact. Clearly
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Wı is bounded by definition. To see that Wı is closed in RV, take a sequence
xn 2 Wı such that limn!1 xn D y 2 RV. Then y � l is a generalized PL metric
with all angles � i

jk
� ı. Since each degenerate triangle has an angle which is zero,

y � l is a PL metric. Also, by continuity, we have � i
jk
.y/ � ı, �ij .y/ � ı and

jyi j � 1=ı, ie y 2Wı . Since w.t/ leaves every Wı for each ı > 0, one of the following
three occurs: lim inft!t�0 �

i
jk
.w.t//D 0 for some � i

jk
, or lim inft!t�0 �ij .w.t//D 0

for some edge Œij �, or lim supt!t�0 jwi .t/j D 1 for some i0 2 V. However, if
lim supt!t�0 jwi0.t/j D 1 for one vertex i0, then lim inft!t�0 �

l
jk
.w.t// D 0 for

some � l
jk

. Indeed, if otherwise, lim inft!t�0 �
l
jk
.w.t//� ı > 0 for all � l

jk
for some ı.

It is well known that in a Euclidean triangle whose angles are at least ı, the ratio of two
edge lengths is at most 1=sin.ı/. Therefore, in each triangle �vivj vk in T, we have
ewi .t/� ewj .t/l.vj vk/=l.vivk/ sin.ı/. Since wj .t/D 0 for j 2V0 and the surface S is
connected, we conclude that all wk.t/ for k 2 V are bounded for all t . This contradicts
lim supt!t�0 jwi0.t/j D1.

5.3 Standard subdivision of an equilateral triangle

Theorem 5.6 Let S D �ABC be an equilateral triangle , T be the nth standard
subdivision of S with the associated PL metric lst W E D E.T /! f1=ng and V0 D
fv 2 V j v is in the edge BC of the triangle �ABC g. Given any ˛ 2 �

�
6
; �
2

�
, there

exists a smooth family of vectors w.t/ 2 RV for t 2 Œ0; 1� such that w.0/ D 0 and
w.t/� lst is a PL metric on T with curvature K.t/DK.w.t/� lst/ satisfying:

(a) KA.t/D�t˛C .2C t /�3
�
angle at A is t˛C .1� t /�

3

�
.

(b) Ki .t/=0 for all i 2 V �fAg[V0.

(c) wi .t/D 0 for all i 2 V0.

(d) All inner angles � i
jk
.t/ in metric w.t/� lst are in the interval�

�
3
� ˇ̌
˛� �

3

ˇ̌
; �
3
C ˇ̌
˛� �

3

ˇ̌�� �
�
6
; �
2

�
:

(e) � i
jk
.t/� 59�

120
for i ¤ A.

(f) jKi .t/�Ki .0/j � 2000=
p

ln.n/ for i ¤ A and

(29)
X
i2V0

jKi .t/�Ki .0/j � �
6
:
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A

B C

A1 A2 A

B C

v
v

Figure 8: Discrete conformal maps of equilateral triangles and their unions.

Remark 5.7 The discrete conformal map

.�ABC; T ; lst/! .�ABC; T ; w.1/� lst/

is a discrete counterpart of the analytic function f .z/D z3˛=� .

Our proof of Theorem 5.6 relies on the following two lemmas about estimates on
discrete harmonic functions on T.

Lemma 5.8 Assume�ABC, n, T and V0 are as given in Theorem 5.6. Let � W T ! T
be the involution induced by the reflection of �ABC about the angle bisector of
†BAC and � W E ! R�0 be a conductance such that �� D � and �ij D �j i . Let
� W RV ! RV be the Laplace operator defined by .�f /i D

P
j�i �ij .fi � fj /. If

f 2 RV satisfies .�f /i D 0 for i 2 V � fAg [ V0 and f jV0
D 0, then , for all edges

Œij �, the gradient .Of /ij D �ij .fi �fj / satisfies

(30) j�ij .fi �fj /j � 1
2
j�.f /Aj:

Lemma 5.9 Assume�ABC, n, T and V0 are as given in Theorem 5.6. Let � WE.T /!
Œ1=M;M� be a conductance function for some M > 0 and � be the Laplace operator
on RV associated to �. If f W V ! R solves the Dirichlet problem .�f /i D 0 for all
i 2V �fAg[V0, f jV0

D0 and .�f /AD1, then , for all u2V0, j.�f /uj�20M=
p

lnn.

We will prove Lemmas 5.8 and 5.9 and Theorem 5.6 in order.

The simplest way to see Lemma 5.8 is to use the theory of electric networks. We
put a resistance of 1=�ij Ohms at the edge Œij � (if �ij D 0, the resistance is 1, or
remove edge Œij � from the network). Now place a one-volt battery at vertex A and
ground every vertex in V0. Then Kirchhoff’s laws show that the voltage fi at the
vertex i solves the Dirichlet problem .�f /i D 0 for all i 2 V �fAg[V0, fA D 1 and
f jV0

D 0. Ohm’s law says �ij .fi � fj / is the electric current through the edge Œij �.
Since the resistance is symmetric with respect to the symmetry � , the currents in the
network are the same as the currents in the quotient network T =� . In the quotient
network T =� , there is only one edge eA from the vertex A. Therefore, the current
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through any edge is at most the current 1
2
j.�f /Aj through eA (in the network T =�).

This shows j�ij .fi �fj /j � 1
2
j.�f /Aj.

Proof of Lemma 5.8 Removing all edges Œij � for which �ij D 0 from the graph
.V;E/, we obtain a finite collection of disjoint connected subgraphs �1; : : : ; �N from
.V;E/. By construction, the associated Laplace operators on �i with conductance
�jE.�i / is the restriction of the Laplace operator� to V.�i /. By the maximum principle
(Proposition 5.4), the function f jV.�m/ is a constant and (30) holds unless �m contains
the vertex A and some vertex in V0. Therefore, it suffices to prove the lemma for those
edges Œij � in the connected graph �m D .V 0; E 0/ such that A 2 V 0 and V 0 \V0 ¤∅.
Let A1; A2 D �.A1/ be the vertices adjacent to A. Since �.A/ D A, �� D � and
V 0\V0 ¤∅, we have �.�m/D �m and A1; A2 2 V 0.
We will work on the graph �m D .V 0; E 0/ from now on. Using the maximum principle
for f �f � , we see that f D f � . By replacing f by �f if necessary, we may assume
that fA > 0. By the maximum principle, we have that 0� fi < fA for all i 2 V 0�fAg.
Take an edge Œij � in the graph �m. If �fi; j g D fi; j g, then �i D j and �j D i . This
implies fi D f �i D fj and (30) holds. If �fi; j g D fi 0; j 0g ¤ fi; j g, say �i D i 0 and
�j D j 0, then fi D fi 0 ; fj D fj 0 . We may assume that fi � fj . If fi D fj , then
(30) holds. Hence, we may assume fi < fj . If j D A, then i D A1 or A2. Due
to fA1

D fA2
, then (30) holds. If j ¤ A, then, by the maximum principle applied

to f on the subgraph .V 0�fAg; E 0�fAA1; AA2g/, we conclude that fA1
� fj > fi .

Let U D fk 2 V 0 � fAg j fk > fig. By definition, j; j 0; A1; A2 2 U, i; i 0; A … U and
V0\U D∅. This shows .�f /k D 0 for all k 2 U and hence

P
k2U .�f /k D 0. By

Green’s formula (Proposition 5.3),X
k2U

.�f /k D
X

k2U; l…U;k�l

�kl.fk �fl/D 0:

If l …U [fAg, then, by definition, fi � fl . Therefore, if k 2U, k � l and l …U [fAg,
then fk > fi � fl . This shows

0D
X

k2U; l…U; l�k

�kl.fk �fl/

D
X

k2U; l…U[fAg; l�k

�kl.fk �fl/C
X
k�A

�kA.fk �fA/

� .Of /j i C .Of /j 0i 0 � .�f /A:
Therefore, j.�f /Aj � 2j.Of /ij j since .Of /ij D .Of /i 0j 0 .
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A

B CG2 u G1

Gk
Gk�1

Figure 9: Layers in triangle ABC.

Proof of Lemma 5.9 For the given u 2 V0, construct a function g W V !R by solving
the Dirichlet problem .�g/i D 0 for all i 2 V � V0, gu D 1 and gjV0�fug D 0. By
the maximum principle (Proposition 5.4), 0� gi � 1 for all i . Using Green’s identity
that

P
i2V Œfi .�g/i � gi .�f /i � D 0, we obtain gA.�f /A C gu.�f /u D 0. Since

.�f /A D 1 and gu D 1, we see

.�f /u D�gA:
Therefore, it suffices to show that jgAj � 20M=

p
lnn. For this purpose, take k � �

1
2
n
�

and define Uk D fi 2 V j dc.i; u/D kg, where dc.i; j / is the combinatorial distance
in the graph T .1/. Let Gk be the subgraph of T .1/ whose edges are Œij � where
i; j 2 Uk . Due to k � �

1
2
n
�
, Uk \ V0 ¤ ∅, and Gk is topologically an arc. By

the maximum principle applied to g on the subgraph whose edges consist of Œij � with
i; j 2 fv 2 V j dc.v; u/ � kg, we obtain gA �maxi2Uk

gi . Let vk 2 Uk be such that
gvk
Dmaxi2Uk

gi and edge path Ek be the shortest edge path in Gk joining vk to a
point uk in V0 � fug. By construction, guk

D 0. Since Uk contains at most 3kC 1
vertices, the length of Ek is at most 3k. The Dirichlet energy E.g/ of g on T .1/ is
given by

(31) E.g/D 1

2

X
i�j

�ij .gi �gj /2 �
Œn=2�X
kD1

Ek;

where
Ek D 1

2

X
Œij �2Ek

�ij .gi �gj /2;

andEk be the set of oriented edges inEk . Supposew0Dvk�w1�w2�� � ��wlkDuk
are the vertices in the edge path Ek where lk � 3k. Using the Cauchy–Schwarz
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inequality, we obtain

(32) Ek D
lkX
iD1

�wiwi�1
.gwi
�gwi�1

/2

� 1

M

lkX
iD1

.gwi
�gwi�1

/2

� 1

Mlk

� lkX
iD1

.gwi
�gwi�1

/

�2
� 1

3kM
.gvk
�guk

/2 D g2vk

3kM
� g2A
3kM

:

By (31) and (32), we obtain

(33) E.g/� g2A
3M

Œn=2�X
kD1

1

k
� g

2
A ln.n/
100M

:

On the other hand, the Dirichlet principle says

E.g/D min
h2RV

�
1

2

X
i�j

�ij .hi � hj /2 j hu D 1; hjV0�fug D 0
�
:

Take h 2RV to be hu D 1 and hi D 0 for all i 2 V �fug. We obtain

E.g/� 1
2

X
i�j

�ij .hi � hj /2 � 4M:

Combining this with (33), we obtain

g2A ln.n/
100M

� 4M;
ie

gA �
20Mp
ln.n/

:

Proof of Theorem 5.6 We construct the smooth family w.t/ 2 RV by solving the
system of ordinary differential equations (25), where .S; T ; l/ D .�ABC; T ; lst/,
K�jV�V0[fAg D 0, K�A D � � ˛ and wi .t/ D 0 for i 2 V0. By the assumption that
� i
jk
.0/D �

3
(ie T is an equilateral triangulation), 0 2W, where the space W is defined

by (27). By Lemma 5.5, there exists a maximum s > 0 such that a solution w.t/ to (25)
exists and condition (d) holds for all t 2 Œ0; s/. We claim that s � 1, w.1/ exists and
w.1/� lst is a PL metric. In particular, w.1/� lst satisfies condition (d) and w.1/ 2W.
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Without loss of generality, let us assume that s <1. By Lemma 5.5 and condition (d),
we conclude

(34)
either lim inf

t!s�
�ij .w.t//D 0 for some Œij �;

or lim sup
t!s�

ˇ̌
� ijk.w.t//� �

3

ˇ̌D ˇ̌
˛� �

3

ˇ̌
for some � ijk :

The conclusion lim inft!s� � ijk.w.t//D 0 is ruled out by condition (d), which implies
� i
jk
.w.t//� �

6
.

We prove the claim that s � 1 as follows. Since ˛ 2 �
�
6
; �
2

�
, we have �

3
C ˇ̌
˛� �

3

ˇ̌� �
2

and �
3
� ˇ̌
˛� �

3

ˇ̌� �
6

. This shows, by (d),

(35) � ijk.t/ 2
�
�
6
; �
2

�
for all t 2 Œ0; s/:

In particular, cot.�kij /� 0 and �ij � cot.�kij /� 0. Hence, by definition, we have

j.Ow0/ij j D �ij jw0i �w0j j � cot.�kij /jw0i �w0j j:

By Lemma 5.8 and the variation formula (7) that dKi=dt D .�w0/i , we obtain

2j.Ow0/ij j � j.�w0/Aj D
ˇ̌̌̌
dKA

dt

ˇ̌̌̌
D

ˇ̌̌
˛� �

3

ˇ̌̌
:

This implies, by (6),

(36)
ˇ̌̌̌
d�kij

dt

ˇ̌̌̌
� cot.� ijk/jw0j �w0kjC cot.�j

ik
/jw0i �w0kj

� j.Ow0/jkjC j.Ow0/ikj �
ˇ̌
˛� �

3

ˇ̌
:

Therefore, for all t 2 Œ0; s/,

(37)
ˇ̌
�kij .t/� �

3

ˇ̌D j�kij .t/� �kij .0/j � Z t

0

ˇ̌̌̌
d�kij .t/

dt

ˇ̌̌̌
dt � t ˇ̌˛� �

3

ˇ̌� sˇ̌˛� �
3

ˇ̌
:

The above inequality shows that s � 1. Indeed, if otherwise s < 1, using (37), we
conclude that � i

jk
.t/2 �

�
3
�sˇ̌˛� �

3

ˇ̌
; �
3
Csˇ̌˛� �

3

ˇ̌�
. In particular, lim inft!s� �ij .t/�

cot
�
�
3
C sˇ̌˛� �

3

ˇ̌�
> 0 and lim supt!s�

ˇ̌
�kij .t/� �

3

ˇ̌
<

ˇ̌
˛� �

3

ˇ̌
. This contradicts (34).

To see part (e), by (37), if t 2 �
0; 1
2

�
, we haveˇ̌

� ijk.t/� �
3

ˇ̌� 1
2

ˇ̌
˛� �

3

ˇ̌� �
12
; ie � ijk.t/ 2

�
�
4
; 5�
12

�
:
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Now, if Œij � is an interior edge, then, for t 2 �
0; 1
2

�
,

(38) j.Ow0/ij j D .cot.�kij /C cot.� lij //jw0i �w0j j

�
�
1C

cot.� lij /

cot.�kij /

�
cot.�kij /jw0i �w0j j

� �
1C cot

�
5�
12

��
cot.�kij /jw0i �w0j j

� 5
4

cot.�kij /jw0i �w0j j:
If � i

jk
is an angle with i ¤A, then either one of the two edges Œij � or Œik� is an interior

edge, or i 2 fB;C g. In the first case, say Œij � is an interior edge, using (38) and
Lemma 5.8, for t 2 �

0; 1
2

�
, we have

(39)
ˇ̌̌̌
d� i
jk

dt

ˇ̌̌̌
� cot.�kij /jw0i �w0j jC cot.�j

ik
/jw0i �w0kj

� 4
5
j.Ow0/ij jC j.Ow0/ikj

� �
4
5
C 1� � 1

2
j.�w0/Aj D 9

10

ˇ̌
˛� �

3

ˇ̌� 9
10
� �
6
D 3�

20
:

In the second case, that i 2 fB;C g, one of the edges Œij � or Œik�, say Œij �, is in the edge
BC of �ABC, ie w0i D w0j D 0. Therefore, by Lemma 5.8, for t 2 �

0; 1
2

�
, we have

(40)
ˇ̌̌̌
d� i
jk

dt

ˇ̌̌̌
� cot.�kij /jw0i �w0j jC cot.�j

ik
/jw0i �w0kj � j.Ow0/ikj

� 1
2
j.�w0/Aj D 1

2

ˇ̌
˛� �

3

ˇ̌� 3�
20
:

Therefore, if � i
jk

is not the angle at A and t 2 Œ0; 1/, by (39) and (40), we haveˇ̌
� ijk.t/� �

3

ˇ̌D j� ijk.t/� � ijk.0/j
�

Z t

0

ˇ̌̌̌
d� i
jk

dt

ˇ̌̌̌
dt �

Z 1

0

ˇ̌̌̌
d� i
jk

dt

ˇ̌̌̌
dt D

Z 1=2

0

ˇ̌̌̌
d� i
jk

dt

ˇ̌̌̌
dt C

Z 1

1=2

ˇ̌̌̌
d� i
jk

dt

ˇ̌̌̌
dt

� 1
2
� 3�
20
C 1
2

ˇ̌
˛� �

3

ˇ̌� 3�
40
C 1
2
� �
6
D 19�

120
:

Therefore, � i
jk
.t/ 2 �

21�
120

; 59�
120

�� �
�
6
; �
2

�
for all t 2 Œ0; 1/. Since conditions (d) and (e)

hold for all t 2 Œ0; 1/, by the definition of �ij , we see lim inft!1 �ij .w.t// > 0. Now
we prove that w.1/ is defined and w.1/ � lst is a PL metric. By the estimates above,
there exists ı > 0 such that, for all t 2 Œ0; 1/, w.t/ 2Wı D fw 2W j � iij � ı; �ij � ıg.
By Lemma 5.5, the maximum time t0 for which w.t/ exists on Œ0; t0/ must be greater
than 1. Therefore, w.1/ exists and w.1/ 2W. Since (d) and (e) are closed conditions,
it follows that w.1/� lst satisfies (d) and (e).
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Now we prove part (f). By parts (d) and (e), we have � i
jk
.t/ 2 �

�
6
; 59�
120

�
for i ¤ A and

�A
jk
2 �

�
6
; �
2

�
. Since the conductance �ij is either cot.�kij / or a sum cot.�kij /C cot.� lij /,

we obtain, for all edges Œij � in T, �ij .t/ 2
�
cot

�
59�
120

�
; 2 cot

�
�
6

�� � �
1
100
; 100

�
. Let

Ki .t/ be the curvature of the metric w.t/ � lst at the vertex i . By Lemma 5.9 for
f D 1=ˇ̌˛� �

3

ˇ̌ � dw.t/=dt and M D 100, we conclude that, for all i 2 V0,ˇ̌̌̌
dKi .t/

dt

ˇ̌̌̌
D j.�w0/i j �

2000
ˇ̌
˛� �

3

ˇ̌p
ln.n/

� 2000p
ln.n/

:

Therefore,

jKi .t/�Ki .0/j �
Z t

0

ˇ̌̌̌
dKi .t/

dt

ˇ̌̌̌
dt �

Z 1

0

ˇ̌̌̌
dKi .t/

dt

ˇ̌̌̌
dt � 2000p

ln.n/
:

Finally, to prove (29), if ˛ D �
3

, then all w.t/ D 0 and K.t/ D K.0/ and the result
follows. If ˛ ¤ �

3
, we first claim that w0A.t/ ¤ 0 for each t . Indeed, if otherwise

w0A.t1/D0 for some t1, then, by the maximum principle applied to the Dirichlet problem
.�w0.t1//i D 0 for i 2 V � fAg [ V0 and w0i .t1/D 0 for i 2 V0 [ fAg, we conclude
w0i .t1/D 0 for all i 2 V. In particular, ˛� �

3
D .�w0/AD 0 at t D t1, which is a contra-

diction. Therefore, w0A.t/¤ 0 and, by the maximum principle again, w0A.t/w
0
i .t/� 0.

Now, if i 2 V0, then K 0i .t/ D
P
j�i �j i .w

0
i �w0j / D �

P
j�i �j iw

0
j . Since �ij � 0,

therefore w0A.t/K
0
i .t/ � 0 for i 2 V0. It follows that .Ki .t/�Ki .0//w0A.t/ � 0 for

all i 2 V0. At the vertex A, jKA.t/�KA.0/j D
ˇ̌
t
�
˛ � �

3

�ˇ̌ � �
6

. Therefore, by the
Gauss–Bonnet theorem that KA.t/C

P
i2V0

Ki .t/DKA.t/C
P
i2V Ki .t/D 2� and

sinceKi .t/�Ki .0/ have the same signs for i 2V0, we obtain
P
i2V0
jKi .t/�Ki .0/jDˇ̌P

i2V0
.Ki .t/�Ki .0//

ˇ̌D jKA.t/�KA.0/j � �
6

.

5.4 A gradient estimate of discrete harmonic functions

The proof Theorem 5.1 is based on the following estimate. Given a triangulated surface
.S; T /, v 2 V.T / and r > 0, we use Br.v/D fj 2 V.T / j dc.j; v/� rg to denote the
combinatorial ball of radius r centered at the vertex i , where dc is the combinatorial
distance on T .1/.

Proposition 5.10 Suppose .P; T 0; l/ is a polygonal disk with an equilateral trian-
gulation and T is the nth standard subdivision of the triangulation T 0with n � e106

.
Let � W E D E.T /! Œ1=M;M� be a conductance function and � W RV ! RV be the
associated Laplace operator. Let V0 � V.T / be a thin subset , such that for all v 2 V
and m� 1

2
n, jBm.v/\V0j � 10m. If f W V !R satisfies .�f /i D 0 for i 2 V �V0,
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j.�f /i j � M=
p

ln.n/ for i 2 V0 and
P
i2V0
j.�f /i j � M, then , for all edges Œuv�

in T,
jfu�fvj � 200M 3p

ln.ln.n//
:

Proof Fix an edge Œuv� in the triangulation T . Construct a function g WV DV.T /!R

by solving the Dirichlet problem .�g/i D 0 for i ¤ u; v, and gu D 1 and gv D 0. By
the maximum principle, we have 0 � gi � 1. By the identity

P
i2V .�g/i D 0 and

since g is not a constant, we obtain .�g/u D�.�g/v ¤ 0. Using Green’s identity thatP
i2V .fi .�g/i �gi .�f /i /D 0 and the assumptions on f and g, we obtain

fu.�g/uCfv.�g/v �
X
i2V0

gi .�f /i D 0:

Since .�g/v D�.�g/u, this shows

fu�fv D 1

.�g/u

X
i2V0

gi .�f /i :

On the other hand, by the maximum principle gu � gj � 0, we have j.�g/uj Dˇ̌P
j�u �ju.gj �gu/

ˇ̌DP
j�u �ju.gu�gj /� .1=M/.gu�gv/D 1=M . Therefore,

(41) jfu�fvj �M
ˇ̌̌̌X
i2V0

gi .�f /i

ˇ̌̌̌
:

To estimate the right-hand side of (41), take r D Œ 3
p

ln.n/� and select a … Br.u/. Then,
using 0 DP

i2V .�f /i D
P
i2V0

.�f /i , jgi j � 1, (41) and Lemma 5.11 below, we
obtain

jfu�fvj �M
ˇ̌̌̌X
i2V0

gi .�f /i

ˇ̌̌̌
DM

ˇ̌̌̌X
i2V0

.gi �ga/.�f /i
ˇ̌̌̌

�M
X
i2V0

j.gi �ga/jj.�f /i j

�M
� X
i2V0\Br .u/

jgi �gajj.�f /i jC
X

i2V0�Br .u/

jgi �gajj.�f /i j
�

�M
�

2Mp
ln.n/

jV0\Br.u/jC 100Mp
ln.r/

X
i2V0

j.�f /i j
�

�M
�
20M 3

p
ln.n/p

ln.n/
C 100M 2p

ln. 3
p

ln.n//

�
� 200M 3p

ln.ln.n//
:
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In the last two steps, we have used jV0 \Br.u/j � 10r D 10 3
p

lnn and n � e106

to
ensure 1=

p
ln. 3
p

ln.n//� 3
p

ln.n/=
p

ln.n/.

Lemma 5.11 Assume .P; T 0; l/; T ; E;M; � and � are as given in Proposition 5.10,
and g is as given in the proof of Proposition 5.10, ie .�g/i D 0 for i ¤u; v, and guD 1
and gv D 0. If 100� r � 1

3
n and fa; bg\Br.u/D∅, then

jga �gbj �
100Mp

ln.r/
:

The strategy of the proof of Lemma 5.11 is similar to that of Lemma 5.9.

Proof For k � 1
3
r , let Uk D fi 2 V j dc.i; u/ D kg. Since T is an equilateral

triangulation of a flat surface, we have jUkj � 6k. Recall that a subset U of V D V.T /
is called connected if any two points in U can be joined by an edge path in T .1/ whose
vertices are in U. Each subset U � V is a disjoint of connected subsets, which are
called connected components of U. We claim that there exists a connected component
Gk of Uk such that fa; bg lies in a connected component of V � Gk . To see this,
note that, since T is the nth standard subdivision of T 0, for all k � 1

3
r � 1

9
n, the set

Bk.u/D fi 2 V j dc.i; u/ � kg is connected and Bk.u/c D fi 2 V jdc.i; u/ > kg has
at most two connected components which are also connected components of V �Uk .
If Bk.u/c is connected, then Uk is connected and we take Gk D Uk . If Bk.u/c has
two connected components R1 and R2, then there exists a nonflat boundary vertex
v0 2 R2 such that dc.u; v0/ � 3k � r . This shows that v0 2 Br.u/. See Figure 10.
The component R2 is contained in Br.u/ due to dc.v0; u/� r . Since a; b … Br.u/, it
follows that a and b are in R1. We take Gk to be the connected component of Uk such
that R1 is a connected component of V �Gk . Therefore, the claim follows.

Let us assume without loss of generality that ga � gb . By the maximum principle
applied to g on the connected graph whose vertex set is the connected component of
V �Gk containing fa; bg, there exist two vertices uk; u0k 2Gk such that

guk
� gb and gu0

k
� ga:

Let Ek be the shortest edge path with vertices in Gk connecting uk to u0
k

and Ek
be the set of all oriented edges in Ek . The length of Ek is at most jGkj � 6k. The
Dirichlet energy of g on the graph T .1/ is

(42) E.g/D 1

2

X
i�j

�ij .gi �gj /2 � 1

2M

X
i�j

.gi �gj /2 � 1

2M

Œr=3�X
kD1

X
Œij �2Ek

.gi �gj /2:
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a

Bk.u/ v0

u

b

Figure 10: Triangulated polygonal disks.

Suppose w0 D uk � w1 � w2 � � � � � wlk D u0k is the edge path Ek , where lk � 6k.
Then, by the Cauchy–Schwarz inequality, we have

(43) 1

2

X
Œij �2Ek

.gi �gj /2 D
lkX
iD1

.gwi
�gwi�1

/2 � 1

lk

� lkX
iD1

.gwi
�gwi�1

/

�2

� 1

lk
.guk

�gu0
k
/2 � .ga �gb/

2

6k
:

Combining (42) and (43), we obtain

(44) E.g/� 1

2M

.ga �gb/2
6

Œr=3�X
iD1

1

k
� .ga �gb/

2 ln.r/
100M

:

On the other hand, by the Dirichlet principle we have E.g/ � 1
2

P
i�j �ij .hi � hj /2

for any h 2 RV such that hu D 1 and hv D 0. Take h to be hu D 1 and hi D 0

for all i 2 V � fug. We obtain E.g/ � 1
2

P
i�j �ij .hi � hj /2 � 6M. Therefore,

.gb �ga/2 ln.r/=100M � 6M, which implies

jgb �gaj �
100Mp

ln.r/
:
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5.5 A proof of Theorem 5.1

For simplicity, a boundary vertex v 2P�fp; q; rg with nonzero curvature will be called
a corner. Note that corners in T and its nth standard subdivision T.n/ are the same. In
particular, the total number of corners is independent of n. Let Vc be the set of all corner
vertices. Since P is embedded in C, given a corner v 2 Vc , the degree m of v has to be
3, 5 or 6. Consider the combinatorial ball BŒn=3�.v/ of radius

�
1
3
n
�

centered at a corner
v 2Vc in T.n/. By construction, BŒn=3�.v/\BŒn=3�.v0/D∅ for distinct corners v and v0.
Each BŒn=3�.v/ is a union of m� 1 �

1
3
n
�th standard subdivided equilateral triangles

�1; : : : ; �m�1 in T. Applying Theorem 5.6 with ˛ D �=.m� 1/ to the triangulated
equilateral triangle .�i ; v/ for each iD1; 2; : : : ; m�1, we produce a discrete conformal
factor w.�i / 2 RV.�i / for each �i such that, if a vertex u 2 V.�i /\ V.�j /, then
wu.�i / D wu.�j /. In particular, there is a well-defined discrete conformal factor
w.BŒn=3�.v// on BŒn=3�.v/ obtained by gluing these w.�i /. See Figure 8. Define
w.1/ W V.T.n//! R as follows: if u 2S

v2Vc
BŒn=3�.v/, then w.1/u D wu.BŒn=3�.v//

for u 2 BŒn=3�.v/ and w.1/.u/D 0 for u …S
v2Vc

BŒn=3�.v/. Let Ol D w.1/ � lst be the
PL metric on T.n/ and yK be its the discrete curvature. Let K� W V.n/!R be defined by
K�i D 0 if i … fp; q; rg, and K�i D 2�

3
if i 2 fp; q; rg. By Theorem 5.6, the PL metric

Ol and yK satisfy the following:

(a) The curvature yKi D K�i at all vertices i such that dc.i; v/ ¤
�
1
3
n
�

for some
corner v 2 Vc .

(b) w
.1/
i D 0 for i …S

v2Vc
BŒn=3�.v/.

(c) All inner angles at a corner v 2 Vc are in
�
�
6
; �
2

�
.

(d) All inner angles at a noncorner vertex are in
�
�
6
; 59�
120

�
.

(e) j yKi �K�i j � 4000=
p

ln.n/ and
P
i2V j yKi �K�i j � �

3
N, where N is the number

of corners in P.

We will find a discrete conformal factor w.2/ W V.n/ ! R such that w.2/ � Ol and its
curvature satisfy Theorem 5.1 by solving the system of ordinary differential equations
in w.t/

(45)

dKi .w.t/� Ol/
dt

DK�i � yKi for all i 2 V.T.n//�fp; q; rg;
ws.t/D 0 for all s 2 fp; q; rg;
w.0/D 0:

Let K.t/ D K.w.t/ � Ol/. Note that (45) and the Gauss–Bonnet formula imply that
K 0p.t/ D K�p � yKp. By Lemma 5.5, the solution w.t/ exists on some interval Œ0; �/.
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Our goal is to show that, for n large, the solution w.t/ exists on Œ0; 1�. In this case, the
conformal factor w.2/ is taken to be w.1/. The required discrete conformal factor wn
in Theorem 5.1 is taken to be w.1/Cw.2/.
Consider the maximum time t0 such that the solution w.t/ to (45) exists for t 2 Œ0; t0/
and the PL metrics w.t/� Ol satisfy:

(c0) All inner angles at a corner v 2 Vc are in
�
�
6
� �
1000

; �
2
C �
1000

�
.

(d0) All inner angles at a noncorner vertex are in
�
�
6
� �
1000

; 59�
120
C �
1000

�
.

Let V0 D
S
v2Vc

˚
i 2 V.n/ j dc.i; v/ D

�
1
3
n
�	

. By construction, jBr.i/\ V0j � 10r
for all r � 1

3
n. Then

P
i2V0
j.�w0.t//i j D

P
i2V0
jK 0i .t/j �

P
i2V0
j yKi �K�i j � �

3
N

and j.�w0/i j D jK 0i .t/j � j yKi �K�i j � 4000=
p

ln.n/. Choose M Dmax
˚
4000; �

3
N

	
.

Then, by (c0), (d0), (e) and the formula cot.a/C cot.b/D sin.aC b/=sin.a/ sin.b/, for
all t 2 Œ0; t0/, we have �ij .t/D �ij .w.t/� Ol/ 2

�
1

4000
; 4000

�� Œ1=M;M�, .�w0/i D 0
for i 2 V.T.n//� V0, j.�w0/i j �M=

p
ln.n/ and

P
i2V0
j.�w0/i j �M. In summary,

f Dw0 satisfies the conditions in Proposition 5.10 for all t 2 Œ0; t0/. By Proposition 5.10,
if i � j, then

jw0i .t/�w0j .t/j �
200M 3p
ln.ln.n//

:

On the other hand, by the variation of angle formula (6) and M � jcot.�kij /j, we haveˇ̌̌̌
d�kij

dt

ˇ̌̌̌
� jcot.� ijk/.w

0
j �w0k/jC jcot.�j

ik
/.w0i �w0k/j

�M.jw0j �w0kjC jw0i �w0kj/�
400M 4p
ln.ln.n//

:

Therefore, for t 2 Œ0; t0/ and sufficiently large n,

(46) j�kij .w.t//� �kij .0/j �
Z t

0

ˇ̌̌̌
d�kij .w.t//

dt

ˇ̌̌̌
dt � 400M 4t0p

ln.ln.n//
� �t0

2000
:

It follows that t0 > 1 (or t0 D1) since, otherwise, by (46), the choices of angles in
(c), (d), (c0), (d0) and Lemma 5.5, we can extend the solution w.t/ to Œ0; t0C �/ for
some � > 0 such that (c0) and (d0) still hold. To be more precise, by Lemma 5.5 on the
maximality of t0, we have either lim supt!t0

ˇ̌
� i
jk
.t/� �

3

ˇ̌D �
1000

for an inner angle � i
jk

at a corner i 2Vc , or lim supt!t0 �
i
jk
.t/D �

6
� �
1000

or lim supt!t0 �
i
jk
.t/D 59�

120
C �
1000

for an angle � i
jk

at a noncorner vertex i . But, due to (46), none of these conditions
holds if t0 � 1. Therefore the solution w.1/ exists. By construction, the curvature K.1/
of w.1/� Ol is K.0/C R 1

0 K
0.t/ dt D yKCK�� yK DK�. Furthermore, condition (c)

in Theorem 5.1 follows from (c0) and (d0).
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6 A proof of the convergence theorem

We will prove the following theorem:

Theorem 6.1 Let � be a Jordan domain in the complex plane and fp; q; rg � @�.
There exists a sequence of triangulated polygonal disks .�n; Tn; dst; .pn; qn; rn//,
where Tn is an equilateral triangulation and pn, qn and rn are three boundary vertices
such that

(a) �DS1
nD1�n with�n��nC1, and limn pnDp, limn qnDq and limn rnD r ,

(b) discrete uniformization maps fn associated to .�n; Tn; dst; .pn; qn; rn// exist
and converge uniformly to the Riemann mapping associated to .�; .p; q; r//.

Before giving the proof, let us recall Rado’s theorem and its generalization to quasi-
conformal maps. If � WD!� is a K–quasiconformal map onto a Jordan domain �,
then � extends continuously to a homeomorphism x� WD!� between their closures
(see [1, Corollary on page 30]). If K D 1, x� is the Carathéodory extension of the
Riemann mapping. A sequence of Jordan curves Jn in C is said to converge uniformly
to a Jordan J curve in C if there exist homeomorphisms �n W S1! Jn and � W S1! J

such that �n converges uniformly to �. Rado’s theorem [23] and its extension by Palka
[21, Corollary 1] states that:

Theorem 6.2 (Rado, Palka) Suppose �n is a sequence of Jordan domains such that
@�n converges uniformly to @�. If fn W D ! �n is a K–quasiconformal map for
each n such that the sequence {fn} converges to a K–quasiconformal map f WD!�

uniformly on compact sets of D, then xfn converges to xf uniformly on D.

The following compactness result is a consequence of Palka’s theorem [21, Corollary 1]
and Lehto and Virtanen’s work [17, Theorems 5.1 and 5.5].

Theorem 6.3 Suppose �n is a sequence of Jordan domains such that @�n converges
uniformly to @� and K > 0 is a constant. Let pn; qn; rn 2 @�n and p; q; r 2 @� be
distinct points such that limn pn D p, limn qn D q, limn rn D r and hn W D!�n be
K–quasiconformal maps such that Nhn sends .1;

p�1;�1/ to .pn; qn; rn/. Then there
exists a subsequence fhni

g of {hng converging uniformly on D to a K–quasiconformal
map h WD!� sending .1;

p�1;�1/ to .p; q; r/.

Now we prove Theorem 6.1.
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Proof Given a Jordan domain � with three distinct points p, q and r in @�, construct
a sequence of approximating polygonal disks �n such that

(1) each �n is triangulated by equilateral triangles of side lengths tending to 0,

(2) @�n converges uniformly to the Jordan curve @� such that �n ��nC1,

(3) there are three boundary vertices pn; qn; rn � @�n such that limn pn D p,
limn qn D q and limn rn D r , and

(4) the curvatures of �n at pn, qn and rn are 2�
3

and curvatures of �n at all other
boundary vertices are not 2�

3
.

By Theorem 5.1, we produce a standard subdivision Tn of �n and wn 2 RV.Tn/

such that .�n; Tn; wn � lst/ is isometric to the equilateral triangle .�ABC; T 0n; l 0n/
with a Delaunay triangulation T 0n and A, B and C correspond to pn, qn and rn.
Let fn W .�ABC; T 0n; .A;B; C // ! .�n;Tn; .pn; qn; rn// be the associated discrete
conformal map and xf W .�ABC; .A;B; C //! .�; .p; q; r// be the Riemann mapping.
We claim that fn converges uniformly to xf on �ABC.

To establish the claim, first, by Theorem 5.1, we know all angles of triangles in the
triangulated PL surface .�ABC; T 0n; l 0n/ are at least �0 > 0. Therefore, the discrete
conformal maps fn are K–quasiconformal for a constant K independent of n. By
Theorem 6.3, it follows that every limit function g of a convergent subsequence {fni

}
is a K–quasiconformal map from int.�ABC/ to � which extends continuously to
�ABC, sending A, B and C to p, q and r , respectively. We claim that the limit
map g is conformal. Indeed, by Lemma 4.7, the discrete conformal map f �1n , when
restricted to a fixed compact set R of �, maps equilateral triangles in Tn which are
inside R to triangles of T 0n that become arbitrarily close to equilateral triangles as
n ! 1. Therefore, the limit map g of the subsequence fni

is 1–conformal and
therefore conformal in int.�ABC/. The continuous extension of g sends A, B and C
to p, q and r , respectively, by Theorem 6.3. On the other hand, there is only one
Riemann mapping f W int.�/! � whose continuous extension sends A, B and C
to p, q and r , respectively. Therefore, g D f. This shows all limits of convergent
subsequences of {fn} are equal f. Therefore ffng converges to f uniformly on
compact sets in int.�ABC/. By Theorem 6.2, xfn converges uniformly to xf.

7 A convergence conjecture on discrete uniformization maps

We discuss a general approximation conjecture and the related topics of discrete
conformal equivalence of polyhedral metrics.
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7.1 A strong version of convergence of discrete conformal maps

As discussed before, the main drawback of the vertex scaling operation on polyhedral
metrics is the lacking of an existence theorem. For instance, given a PL metric on a
closed triangulated surface .S; T ; l/, there is in general no discrete conformal factor
w W V !R such that the new PL metric .S; T ; w � l/ has constant discrete curvature.

The recent work of [10] established an existence and a uniqueness theorem for polyhe-
dral metrics by allowing the triangulations to be changed.

Definition 7.1 (discrete conformality of PL metrics [10]) Two PL metrics d and d 0 on
.S; V / are discrete conformal if there exist sequences of PL metrics d1Dd; : : : ; dmDd 0
on .S; V / and triangulations T1; : : : ; Tm of .S; V / satisfying:

(a) Delaunay Each Ti is Delaunay in di .

(b) Vertex scaling If Ti D TiC1, there exists a function w W V ! R such that, if
e is an edge in Ti with endpoints v and v0, then the lengths ldiC1

.e/ and ldi
.e/

of e in di and diC1 are related by

(47) ldiC1
.e/D ew.v/Cw.v0/ldi

.e/:

(c) If Ti ¤ TiC1, then .S; di / is isometric to .S; diC1/ by an isometry homotopic
to the identity in .S; V /.

The main theorem proved in [10] is the following:

Theorem 7.2 Suppose .S; V / is a closed connected marked surface and d is a PL
metric on .S; V /. Then , for any K� W V ! .�1; 2�/ with

P
v2V K

�.v/D 2��.S/,
there exists a PL metric d�, unique up to scaling and isometry homotopic to the identity,
on .S; V / such that d� is discrete conformal to d and the discrete curvature of d�

is K�. Furthermore , the metric d� can be found using a finite-dimensional (convex)
variational principle.

There is a close relation between the discrete conformal equivalence in Definition 7.1
and convex geometry in hyperbolic 3–space. The first work relating the vertex scaling
operation and hyperbolic geometry is by Bobenko, Pinkall and Springborn [3]. They
associated to each polyhedral metric on .S; T ; l/ a hyperbolic metric with cusp end on
the punctured surface S�V.T /. However, the Delaunay condition on the triangulation T
was missing in their definition. The discrete conformal equivalence in Definition 7.1 is
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equivalent to the following hyperbolic geometry construction: Let .S; V; d/ be a PL
surface. Take a Delaunay triangulation T of .S; V; d/ and consider the PL metric d
as isometric gluing of Euclidean triangles � 2 T. Consider each triangle � in T as
the Euclidean convex hull of three points v1, v2 and v3 in the complex plane C. Let
�� be the convex hull of fv1; v2; v3g in the upper-half-space model of the hyperbolic
3–space H3. Thus, �� is an ideal hyperbolic triangle having the same vertices as those
of � . If � and � are two Euclidean triangles in T glued isometrically along two edges
by an isometry f considered as an isometry of the Euclidean plane, we glue �� and ��

along the corresponding edges using the same map f considered as an isometry of H3.
Here we have used the fact that each isometry of the complex plane extends naturally
to an isometry of the hyperbolic 3–space H3. The result of the gluing of these ��

produces a hyperbolic metric d� on the punctured surface S � V. It is easy to see
that d� is independent of the choices of Delaunay triangulations. It is shown in [10]
(see also [11]) that two PL metrics d1 and d2 on .S; V / are discrete conformal in the
sense of Definition 7.1 if and only if the associated hyperbolic metrics d�1 and d�2 are
isometric by an isometry homotopic to the identity on S �V.

Using this hyperbolic geometry interpretation, one defines the discrete conformal map
between two discrete conformally equivalent PL metrics d1 and d2 as follows (see
[3; 10]). The vertical projection of the ideal triangle �� to � induces a homeomorphism
�d W .S � V; d�/ ! .S � V; d/. Suppose d1 and d2 are two discrete conformally
equivalent PL metrics on .S; V /. Then the discrete conformal map from .S; V; d1/ to
.S; V; d2/ is given by �d2

ı ı��1
d1

where  W .S; V; d�1 /! .S; V; d�2 / is the hyperbolic
isometry. Note that in this new setting, discrete conformal maps are piecewise projective
instead of piecewise linear.

Theorem 7.2 can be used for approximating Riemann mappings for Jordan domains.
Given a simply connected polygonal disk with a PL metric .D; V; d/ and three boundary
vertices p; q; r 2 V, let the metric double of .D; V; d/ along the boundary be the
polyhedral 2–sphere .S2; V 0; d 0/. Using Theorem 7.2, one produces a new polyhedral
surface .S2; V 0; d�/ such that

(1) .S2; V 0; d�/ is discrete conformal to .S2; V 0; d 0/,

(2) the discrete curvatures of d� at p, q and r are 4�
3

,

(3) the discrete curvatures of d� at all other vertices are zero, and

(4) the area of .S2; V 0; d�/ is
p
3
2

.
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Therefore, .S2; V 0; d�/ is isometric to the metric double (D.�ABC/; V 00; d 00/ of an
equilateral triangle �ABC of edge length 1. Let F be the discrete conformal map
from (D.�ABC/; V 00; d 00/ to .S2; V 0; d 0/ such that F sends A, B and C to p, q
and r , respectively. Due to the uniqueness part of Theorem 7.2, we may assume that
f D F jW�ABC !D and f sends A, B and C to p, q and r , respectively. We call
f the discrete uniformization map associated to .D; V; d; .p; q; r//.

A strong form of the convergence is the following:

Conjecture 7.3 Let .�, .p; q; r/) be a Jordan domain in the complex plane with three
marked boundary points and .�n; Tn; dst; .pn; qn; rn// be any sequence of triangulated
flat polygonal disks with three marked boundary vertices such that

(a) Tn is an equilateral triangulation ,

(b) @�n converges uniformly to @�,

(c) the edge length of Tn goes to zero ,

(d) limn pn D p, limn qn D q and limn rn D r .

Then the discrete uniformization maps fn associated to .�n; Tn; dst, .pn; qn; rn//
converge uniformly to the Riemann mapping associated to .�; .p; q; r//.

7.2 Discrete conformal equivalence and convex sets in the hyperbolic
3–space

We now discuss the relationship between the discrete conformal equivalence given in
Definition 7.1, ideal convex sets in the hyperbolic 3–space H3 and the motivation for
Conjectures 1.5 and 1.6.

The classical uniformization theorem for Riemann surfaces follows from the special
case that every simply connected Riemann surface is biholomorphic to C, D or S2.
The discrete analogous should be the statement that each noncompact simply connected
polyhedral surface is discrete conformal to either .C; V; dst/ or .D; V; dst/, where V
is a discrete set and dst is the standard Euclidean metric. Furthermore, the set V is
unique up to Möbius transformations. For a noncompact polyhedral surface .S; V; d/
with an infinite set V, the hyperbolic geometric viewpoint of discrete conformality is a
better approach. Namely, discrete conformal equivalence between two PL metrics is
the same as the Teichmüller equivalence between their associated hyperbolic metrics.
For instance, if we take a Delaunay triangulation T of the complex plane .C; dst/
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with vertex set V, then the associated hyperbolic metric d�st on C�V is isometric to
the boundary of the convex hull @CH.V / in H3. Therefore, a PL surface .S; V 0; d /
is discrete conformal to .C; V; dst/ for some discrete subset V � C if and only if
the associated hyperbolic metric d� is isometric to the boundary of the convex hull
@CH.V /. It shows discrete uniformization is the same as realizing hyperbolic metrics
as the boundaries of convex hulls (in H3) of closed sets in @H3. One can formulate
the conjectural discrete uniformization theorem as follows. Given a discrete set V 0

in C or D, let Od be the unique conformal complete hyperbolic metric on C � V 0 or
D�V 0. Then Od is isometric to the boundary of the convex hull of a discrete set V �C

or .C[f1g�D/[V, where V is discrete and unique up to Möbius transformations.
This is the original motivation for proposing Conjectures 1.5 and 1.6.

These two conjectures bring discrete uniformization close to the classical Weyl problem
on realizing surfaces of nonnegative Gaussian curvature as the boundaries of convex
bodies in 3–space. In the hyperbolic 3–space H3, convex surfaces have curvature
at least �1. The work of Alexandrov [2] and Pogorelov [22] shows that, for each
path metric d on the 2–sphere S2 of curvature � �1, there exists a compact convex
body, unique up to isometry, in H3 whose boundary is isometric to .S2; d /. The
interesting remaining cases are noncompact surfaces of genus zero in the hyperbolic
3–space H3. A theorem of Alexandrov [2] states that any complete surface of genus
zero whose curvature is at least �1 is isometric to the boundary of a closed convex
set in H3. On the other hand, given a closed set X � C, Thurston proved that the
intrinsic metric on @CH.X/ is complete hyperbolic (see [8] for a proof). Putting these
two theorems together, one sees that each complete hyperbolic metric on a surface
of genus zero is isometric to the boundary of the convex hull of a closed set in the
Riemann sphere. However, in this generality, the uniqueness of the convex surface is
false. Conjectures 1.5 and 1.6 say that one has both the existence and uniqueness if
one restricts to the boundaries of the convex hulls of closed sets.

There is some evidence supporting Conjectures 1.5 and 1.6. The work of Rivin [24]
and Schlenker [26] shows that Conjectures 1.5 and 1.6 hold if � has finite area (ie X is
a finite set) or if � is conformal to the 2–sphere with a finite number of disjoint disks
removed (ie X is a finite disjoint union of round disks). Our recent work [19] shows
that Conjecture 1.5 holds for � having countably many topological ends using the
work of He and Schramm on the Köbe conjecture. In particular, we prove that every
noncompact simply connected polyhedral surface is discrete conformal to a marked
plane or a marked disk.
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Figure 11: Regular hexagonal square tiling.

One should compare Conjectures 1.5 and 1.6 with the Köbe circle domain conjecture,
which states that each genus zero Riemann surface is biholomorphic to the complement
of a circle type closed set in the Riemann sphere. The work of He and Schramm [12]
shows that Köbe conjecture holds for surfaces with countably many ends and the circle
type set is unique up to Möbius transformations. Uniqueness is known to be false for
the Köbe conjecture in general. Our recent work [19] shows that the Köbe conjecture
is equivalent to Conjecture 1.5.

We end by proposing the following conjecture. The work of Rodin and Sullivan [25]
and Theorem 1.3 show the rigidity phenomena for the two most regular patterns
(regular hexagonal circle packing and regular hexagonal triangulation) in the plane.
These rigidity results can be used to approximate the Riemann mappings and the
uniformization metrics. The third regular pattern in the plane is the hexagonal square
tiling in which each square of side length 1 interests exactly six others. See Figure 11.

Conjecture 7.4 Suppose fSi j i 2 I g is a locally finite square tiling of the complex
plane C such that each square intersects exactly six others. Then all squares Si have
the same size.
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