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Discrete conformal geometry of polyhedral surfaces
and its convergence
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We prove a result on the convergence of discrete conformal maps to the Riemann
mappings for Jordan domains. It is a counterpart of Rodin and Sullivan’s theorem on
convergence of circle packing mappings to the Riemann mapping in the new setting
of discrete conformality. The proof follows the same strategy that Rodin and Sullivan
used by establishing a rigidity result for regular hexagonal triangulations of the plane
and estimating the quasiconformal constants associated to the discrete conformal
maps.
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1 Introduction
W Thurston’s conjecture on the convergence of circle packing mappings to the Riemann

mapping is a constructive and geometric approach to the Riemann mapping theorem.
The conjecture was solved in important work by Rodin and Sullivan [25] in 1987. There
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have been many research works inspired by the work of Thurston, Rodin and Sullivan
since then. This paper addresses a counterpart of Thurston’s convergence conjecture in
the setting of discrete conformal change of polyhedral surfaces associated to the notion
of vertex scaling (Definition 1.1). We prove a weak version of Rodin and Sullivan’s
theorem in this new setting. There are still many problems to be resolved in order to
prove the full convergence conjecture.

Let us begin with a recall of Thurston’s conjecture and Rodin and Sullivan’s solution.
Given a bounded simply connected domain €2 in the complex plane C, one constructs
a sequence of approximating triangulated polygonal disks (D, T,) whose triangles
are equilateral and whose edge lengths tend to zero such that the D, converge to 2.
For each such polygonal disk, by the Kobe—Andreev—Thurston existence theorem,
there exists a circle packing of the unit disk D such that the combinatorics (or the
nerve) of circle packing is isomorphic to the 1-skeleton of the triangulation 7,. This
produces a piecewise linear homeomorphism f;,, called the circle packing mapping,
from the polygonal disk D, to a polygonal disk inside DD associated to the circle
packing. Thurston conjectured in 1985 that, under appropriate normalizations, the
sequence { f, } converges uniformly on compact subsets of €2 to the Riemann mapping
for 2. Here the normalization condition is given by choosing a point p € 2 and a
sequence of vertices vy in (Dy, T,) such that lim, v, = p and f; (v,) = 0 such that
fn sends a small interval [vy, v, + €,] from v, to v, + €, with €, > 0 into the positive
x—axis. The Riemann mapping f for Q sends p to 0 and f’(p) > 0. Rodin and
Sullivan’s proof of Thurston’s conjecture is elegant and goes in two steps. In the first
step, they show that the circle packing mappings f; are K—quasiconformal for some
constant K independent of the indices. In the second step, they show that there is only
one hexagonal circle packings of the complex plane up to Mobius transformations.
This implies that the limit of the sequence { f,,} is conformal.

Circle packing metrics introduced by Thurston [27] can be considered as a discrete
conformal geometry of polyhedral surfaces. In recent times, there have been many
works on discretization of 2—dimensional conformal geometry (see Luo [18], Bobenko,
Pinkall and Springborn [3], Hersonsky [14], Gu, Luo, Sun and Wu [10], Glickenstein [9]
and others). We consider the counterpart of Thurston’s conjecture in the setting of
discrete conformal change defined by vertex scaling.

To state our main results, let us recall some related material and notation. A compact
topological surface S together with a nonempty finite subset of points V' C S will be
called a marked surface. A triangulation 7 of a marked surface (S, V') is a topological
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Discrete conformal geometry of polyhedral surfaces and its convergence 939

triangulation of S such that the vertex set of 7 is V. Weuse £ = E(7) and V = V(T)
to denote the sets of all edges and vertices in T, respectively. A polyhedral metric d
on (S, V), to be called a PL metric on (S, V) for simplicity, is a flat cone metric
on (S, V') whose cone points are contained in V. We call the triple (S, V, d) a polyhedral
surface. The discrete curvature, or simply curvature, of a PL metric d is the function
K:V — (—o0,2m) sending an interior vertex v to 27 minus the cone angle at v and a
boundary vertex v to 7 minus the sum of the angles at v. All PL metrics are obtained
by isometric gluing of Euclidean triangles along pairs of edges. If T is a triangulation
of a polyhedral surface (S, V, d) for which all edges in T are geodesic, we say 7 is
geometric in d and d is a PL metric on (S, 7). In this case, we can represent d by the
length function /; : E(T) — R~ ¢ sending each edge to its length. Thus, the polyhedral
surface (S, V, d) can be represented by (S, 7,/;), where [; € REO. We will also call
(S,7T,lz) orl; aPL metric on 7.

Definition 1.1 (vertex scaling change of PL metrics [18]) Two PL metrics / and [*
on a triangulated surface (S, T) are related by a vertex scaling if there exists a map
w: V(T) — R such that, if e is an edge in 7 with endpoints v and v/, then the edge
lengths /(e) and [*(e) are related by

(1) I*(e) = ewWHw @) (o),

We denote /* by w ! if (1) holds and call /* obtained from / by a vertex scaling and w
a discrete conformal factor.

Condition (1) was proposed in [18] as a discrete conformal equivalence between
PL metrics on triangulated surfaces. There are three basic problems related to the
vertex scaling. The first is the existence problem. Namely, given a PL metric / on a
triangulated closed surface (S, 7)) and a function K: V(T) — (—o0, 27) satisfying the
Gauss—Bonnet condition, is there a PL metric /* of the form w */ whose curvature is K ?
Unlike the Kobe—Andreev—Thurston theorem, which guarantees the existence of circle
packing metrics, the answer to the above existence problem is negative in general. This
makes the convergence of discrete conformal mappings a difficult problem. Secondly,
on the other hand, the uniqueness of the vertex scaled PL metric /* with prescribed
curvature holds. This was established in an important paper by Bobenko, Pinkall and
Springborn [3]. The third is the convergence problem. Namely, assuming the existence
of PL metrics with prescribed curvatures, can these discrete conformal polyhedral
surfaces approximate a given Riemann surface? Our main result gives a solution to the
convergence problem for the simplest case of Jordan domain.
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The convergence theorem that we proved is the following. Let €2 be a Jordan domain
with three points p, ¢ and r specified in the boundary. By Carathéodory’s extension
theorem (see Pommerenke [23]), the Riemann mapping from €2 to the unit disk D
extends to a homeomorphism from the closure  to the closure D). Therefore, there
exists a unique homeomorphism g from  to an equilateral Euclidean triangle AABC
with vertices A, B and C such that p, g and r are sentto A, B and C and g is conformal
in Q. For simplicity, we call g and g~! the Riemann mappings for (22, (p, q.r)).

Given an oriented triangulated polygonal disk (D, T,[) and three boundary vertices
p.q.r €V, suppose there exists a PL metric [* = w [ on (D, T) for some w: V — R
such that its discrete curvature at all vertices except {p, ¢, r } are zero and the curvatures
at p, g and r are ZT” Then the associated flat metric on (D, 7, 1*) is isometric to an
equilateral triangle A ABC, ie there is a geometric triangulation 7" of AABC such
that (AABC, T, ly) is isometric to (D, T,1*). Here and below, if 7 is a geometric
triangulation of a domain in the plane, we use /y: E(7) — R to denote the length of
edges e in T in the standard metric on C. Let f: D — AABC be the piecewise linear
orientation-preserving homeomorphism sending V to the vertex set V(7”) of 77, and
p,qand r to A, B and C, respectively, and being linear on each triangle of 7. We call
f the discrete uniformization map associated to (D, T,1,{p,q,r}). Note that f may
not exist due to the lack of an existence theorem.

Theorem 1.2 Suppose 2 is a Jordan domain in the complex plane with three distinct
points p,q,r C dS2. Then there exists a sequence (2, Tn, lst, (Pn,qn,n)) of simply
connected triangulated polygonal disks in C, where T, are triangulations by equilateral
triangles and py, q, and r, are three boundary vertices such that

(a) Q= Uzozl Qp, with 2, C Qy 41, and lim,, p, = p,lim, g, =¢q and lim,, r, =7,

(b) discrete uniformization maps associated to (2, Tn, lst, (Pn, qn, ¥n)) exist and
converge uniformly to the Riemann mapping for (2, (p,q,r)).

In Rodin and Sullivan’s convergence theorem, any sequence of approximating circle
packing maps associated to the approximation triangulated polyhedral disks €2,, such
that 2, Cint(,41) and Q =_J,, 25, converges to the Riemann mapping. Theorem 1.2
is less robust in this aspect since discrete conformal maps may not exist if the triangula-
tions 7, are not carefully selected. A stronger version of convergence is conjectured in
Section 7. The conformality of the limit of the discrete conformal maps in Theorem 1.2
is a consequence of the following result. Recall that a geometric triangulation 7 of
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a polyhedral surface is called Delaunay if the sum of two angles facing each interior
edge is at most 7. Delaunay triangulations always exist for each PL metric on compact
surfaces.

Theorem 1.3 Suppose 7 is a Delaunay geometric triangulations of the complex
plane C such that its vertex set is a lattice and ly: E(T) — R is the edge length
function of T. If (C, T, w % ly) is a Delaunay triangulated surface isometric to an open
set in the Euclidean plane C, then w is a constant function.

We remark that the same result as above for the standard hexagonal lattice has been
proved independently by Dai, Ge and Ma [7].

Using an important result, in [3], that vertex scaling is closely related to hyperbolic
3—dimensional geometry and the work of [10], one sees that Theorem 1.3 implies the
following rigidity result on convex hyperbolic polyhedra:

Theorem 1.4 Suppose L = 7 + tZ is a lattice in the plane C and V C C is a discrete
set such that there exists an isometry between the boundaries of the convex hulls of L
and V in the hyperbolic 3—space H? preserving cell structures. Then V and L differ
by a complex affine transformation of C.

This prompts us to propose the following conjecture. A closed set X in the Riemann
sphere is said to be of circle type if each connected component of X is either a point or
a round disk. Consider the Riemann sphere C U {oo} as the infinity of the (upper-half-
space model of) hyperbolic 3—space H?3.

Conjecture 1.5 For any genus zero connected complete hyperbolic surface €2, there
exists a circle type closed set X C C U {oo} such that Q2 is isometric to the boundary
of the convex hull of X in H3.

Conjecture 1.6 Suppose X and Y are circle type closed sets in C such that the
boundaries of the convex hulls of X and Y in H? are isometric. Then X and Y differ by
a Mobius transformation.

Many results on convergence of discrete maps to Riemann mapping have been estab-
lished since the work of Thurston and Rodin and Sullivan [25]. He and Schramm [13]
studied the approximation of conformal maps by circle packing with arbitrary combi-
natorics. In [5], Biicking considered a boundary value problem. She used the Riemann
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mapping f of the Jordan domain and looked for a discrete conformal map with scaling
factor u = log| f| on boundary vertices and proved the existence and convergence
using regular hexagonal lattices. In fact, she is able to prove that the convergence
is C®°. Other related works on convergence of circle packing maps can be found in
Matthes [20], Lan and Dai [16], Biicking [4] and Hersonsky [14; 15].

The paper is organized as follows. Section 2 recalls the basic material for discrete
conformal geometry of polyhedral surfaces. Sections 3 and 4 are devoted to proving
Theorem 1.3. The main tools used are a maximum principle, a variational principle for
discrete conformal geometry of polyhedral surfaces, and spiral hexagonal triangulations
derived from linear conformal factors. Section 5 investigates the existence of flat metrics
with prescribed boundary curvature on polygonal disks. The main result (Theorem 5.1)
is an existence result for vertex scaling equivalence if triangulations of a polyhedral disk
are sufficiently finely subdivided. The basic tools used are discrete harmonic functions,
their gradient estimates and solutions to ordinary differential equations. We prove the
convergence (Theorem 1.2) in Section 6 using the results obtained in Sections 4-5
and Rado and Palka’s theorem on uniform convergence of Riemann mappings and
quasiconformal mappings. Section 7 discusses a strong version of the convergence of
discrete uniformization maps and the motivation for Conjecture 1.5.

Acknowledgement We thank Michael Freedman for discussions which led to the
formulation of Conjectures 1.5 and 1.6. The work is partially supported by the NSF
grants DMS 1405106, DMS 1760527, DMS 1811878 and DMS 1760471 of the United
States and a grant from the NSF of China.

2 Polyhedral metrics, vertex scaling and a variational
principle

We begin with some notation. Let C, R and Z be the sets of complex, real and integers,
respectively. Rso={f €R |t >0}, Zsx ={n€Z|n>k}andS' ={z € C||z| = 1}.
We use D to denote the open unit disk in C and H” to denote the n—dimensional
hyperbolic space.

Given that X is a compact surface with boundary, its interior is denoted by int(X). A
graph with vertex set V' and edge set E is denoted by (V, E). Two vertices i and j in a
graph (V, E) are adjacent, denoted by i ~ j, if they are the endpoints of an edge. Ifi ~ j,
we use [i]] (respectively ij) to denote an oriented (respectively unoriented) edge from i
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to j. An edge path joining i, j € V is a sequence of vertices {vg =1i,V1,...,Vm = j}
such that vg ~ vg4 1. The length of the path is m. The combinatorial distance d.(i, j)
between two vertices in a connected graph (V, E) is the length of the shortest edge
path joining i and j. Suppose (S, 7) is a triangulated surface with possibly nonempty
boundary dS and possibly noncompact S. Let E = E(7) and V = V(T) be the sets of
edges and vertices, respectively, and 7 () = (V, E) be the associated graph. A vertex
veV(T)NaS (resp. v € VN (S —09)) is called a boundary (resp. interior) vertex.
Boundary and interior edges are defined in the same way. A PL metric on (S, 7) or
simply on 7 can be represented by a length function /: E(7) — Rx¢ such thatif ¢;, e;
and ey, are three edges forming a triangle in 7, then the strict triangle inequality holds:

2 [(ei) +1(ej) > I(ek).

We will use limits of PL metrics. To this end, we introduce the notion of generalized
PL metrics on (S, T). Take three pairwise distinct points v, v, and v3 in the plane.
The convex hull of {vq, vy, v3} is a generalized triangle with vertices vy, v and v3.
We denote it by Avyv,vs. If v, v and v3 are not in a line, then Avyv,v3 is a (usual)
triangle. If vy, vy and v3 lie in a line, then Avjvav3 is a degenerate triangle with
the flat vertex at v; if |v; —v;| + |vg —v;i| = |v; —vi| for {7, j, k} = {1,2,3}. Let
li = |vj —vg| € Rsq be the edge length and a; € [0, ] be the angle at v;. Then
li +1j > I} > 0 and the angles are given by

2,92 72
3) a; = arccos(m)

211y

Furthermore, the angle a; = a;(l1,[2,[3) € [0, ] is continuous in (/1, [2, [3). Degen-
erate triangles are characterized by either having an angle & or the lengths satisfying
li =1j 4 I} for some i, j and k.

A generalized PL metric on a triangulated surface (S, T') is represented by an edge
length function /: E(7) — R such that if ¢;, e; and e are three edges forming a
triangle in 7, then the triangle inequality holds:

“4) I(ei) +1(ej) = I(ex).

We will abuse terminology and call / a generalized PL metric on (S,7) or 7. The
discrete curvature K : V(T) — (—o0, 27] of a generalized PL metric (S, 7, ) is defined
as follows. If v € V(7)) is an interior vertex, K(v) is 2 minus the sum of the angles
(of generalized triangles) at v; if v is a boundary vertex, K(v) is 7 minus the sum of
the angles at v. Note that the Gauss—Bonnet theorem, ) _, ev(r) K() =27 x(S), still

Geometry € Topology, Volume 26 (2022)



944 Feng Luo, Jian Sun and Tiangi Wu

holds for a compact surface S with a generalized PL metric. Clearly the curvature K
and inner angles depend continuously on the length vector / € RE(T) A generalized PL
metric is called flat if its curvatures are zero at all interior vertices v. A generalized PL
metric (S, T7,1) (sometimes written as (7, 1)) is called Delaunay if, for each interior
edge e € E(T), the sum of the two angles « and &’ facing e is at most 7. Suppose t
and 7’ are the two triangles adjacent to e. If T is a degenerate triangle such that @ = 7,
then the Delaunay condition implies that ’ = 0. Therefore, t’ is also degenerate and e
is not the longest edge in T’ This shows that if (S, 7, ) is a closed generalized Delaunay
PL metric surface, then no triangle in 7 is degenerate. Indeed, each degenerate triangle
is adjacent to another degenerate triangle of larger diameter. However, this is not the
case for infinite triangulations. For instance, there exists a generalized Delaunay PL
surface homeomorphic to the plane which contains both degenerate and nondegenerate
triangles.

If (S,7,1) is a Delaunay generalized PL metric such that each angle facing a boundary
edge is at most Z, then the metric double of (S, 7,[) along its boundary is a Delaunay
triangulated generalized PL metric surface. Two generalized PL metrics / and !
on (S, T) are related by a vertex scaling if there is w € RV such that

ZN(UU/) — ew(v)—‘,—w(u/)l(vv/)
for all edges vv’ € E(T). We write I = w1 and call w a discrete conformal factor.

Two generalized triangles Avjvovs and Aujusus are equivalent if there exists an
isometry sending v; to u; for i = 1,2,3. The space of all equivalence classes of
generalized triangles can be identified with {(/1, [», [3) € R3 2o | li +1; > I }. It contains
the space of all equivalence classes of triangles {(l 1,12, l3) e R3 2o I i +1; > Ii}.
Given two generalized trlangles [ =(l1.1,13) and [ = (l 1, 12, l3) there exists w =
(w1, wa, w3) € R3 such that ll = [jeWi Wk,

The following result was proved in [18, Theorem 2.1] for Euclidean triangles. The
extension to generalized triangles is straightforward.

Proposition 2.1 [18] Let Aviv,vs be a fixed generalized triangle with edge length
vector [ = (I1,15,13) and w [ be the edge length vector of a vertex scaled generalized
triangle whose inner angle at v; is a; = a; (w).

(a) For any two constants ¢; and c;, the set
{(wy,wy, w3) e R? | w * [ is a generalized triangle and w; = ¢;, wj = ¢}

is either connected or empty.
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Figure 1: Vertex scaling of a triangle.

(b) If (Avqvavs,l) is a nondegenerate triangle and i, j and k distinct, then

da; . sin(a;)
dw; |,—o  sin(aj)sin(ag)
oa; da;
= = t
5) By |y Bwr |, O
3 da;
D 5w =0
= ow;

The matrix —[da, /dws]|3x3 IS symmetric, positive semidefinite with null space
spanned by (1,1, 1)7.

(¢c) If (Avyvavs,l) is a degenerate triangle having vs as the flat vertex, then, for
small t > 0, (Avyvpv3,(0,0,¢) * [) is a nondegenerate triangle. The angle
a3(0,0,¢) is strictly decreasing in t for all t for which (0,0, t)*/ is a generalized
triangle. The angles a; (0,0,¢) for i = 1,2 are strictly increasing in t € [0, €) for
some € > 0.

Proof To see part (a), without loss of generality, we may assume c; and ¢, are the given
constants. Then the variable w3 is defined by the inequalities e*3(e€!l, + e2[y) >
e€11¢2]3 and e€11¢2[3 > W3 (e€1], —e€2]y) > —e€1 725, Each of these inequalities
defines an interval in the w3 variable. Therefore the solution space is either the empty
set or a connected set.

Part (b) is in [18, Theorem 2.1].

To see (c), since I3 = [ + I, we have (0,0,7) x I = (e’ly,ellr,]1 + 1) € A :=
{(x1,x2,x3) € R2>0 | x; +x; > xi} for small # > 0. Now, by (5) and the sine law,
daz/0ws(0,0,7) = —sin(a3z)/sin(ay) sin(az) < 0. Together with part (a), the angle
a3(0,0,¢) as a function of ¢ is defined on an interval and is strictly decreasing in ¢.
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Since lim;_, o+ da1/0ws = lim;_, o+ cot(az) = oo due to lim;_, o+ a2(z,0,0) = 0, the
result holds for a;. By the same argument, the result holds for a5. O

Asa consequence:

Corollary 2.2 Under the same assumption as in Proposition 2.1, if
w(t) = (w1 (1), wa (1), w3 (1)) € R

is smooth in t such that w(t) %[ is the edge length vector of a triangle with inner angle
a;i(t) =a;(w(t) x1) at v;, then

6) dait) _ 3" cot(ag) (% _ M),
j~i

dt dt  dt
where j ~ i means v; is adjacent tov; and {i, j, k} = {1,2,3}.

Write wj/ (t) = dw;/dt. Indeed, by the chain rule and (5), we have
dai(t)  da; n da;. ,

= w! w
dt 3wl’ ! oy Bwj
= —Z cot(ag)w, + Z cot(ag)w; = Zcot(ak)(w} —w)).
i J#i j~i

Suppose (S, T,1) is a geometrically triangulated compact polyhedral surface and
w(t) € RV is a smooth path in the parameter ¢ such that w(¢) % [ is a PL metric on
(S, 7). Let K; = K;(¢) be the discrete curvature at i € V' and le:k = GJ’:k(t) be the
inner angle at the vertex i in Aijk in the metric w(¢) * /. For an edge [ij] in the
triangulation 7, define 7;; to be cot(@i’j-) + cot(@l-lj) if [ij] is an interior edge facing two
angles GZ-kj and lej, and n;; = cot(@i’;) if [ij] is a boundary edge. If [ij] is an interior
edge, then 7;; > 0 if and only if 9{; + GZ.ZJ. < m, ie the Delaunay condition holds at [i]].

The curvature variation formula is the following:

Proposition 2.3 We have

dKi0) _ 5, (dunduy
2 dt —Z”l-/(d, dt )

j~i

This follows directly from Corollary 2.2 since K; = cm —)_, ccy 6i;, where ¢ = 1
or 2 and 6. are the angles at i. Since dK;(t)/dt = = rsev dol./dt, equation (7)

follows from (6) and the definition of 7;;.
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3 A maximum principle, a ratio lemma and spiral hexagonal
triangulations

Let P, be a star-shaped n—sided polygon having vertices v, ..., v, labeled cyclically.
A triangulation 7 of P, with vertices vy, ..., v, with vg € int(P,) and triangles
Avgv;vi 41 (with v, 41 = vy) is called a star triangulation of P,. See Figure 2.

Theorem 3.1 (maximum principle) Let T be a star triangulation of P, and [ : E(T) —
R~ be a generalized Delaunay polyhedral metric on T. If w: {vg,v1,...,vp} > R
satisfies that

(a) w *! is a generalized Delaunay polyhedral metric on T,

(b) the curvatures Ko(w * ) of w * [ and Ko(l) of | at the vertex vo satisty
Ko(w *1) < Ko(l), and

(¢) w(vo) =max{w(v;)|i=0,1,...,n},

then w(v;) = w(vg) forall i.

As a convention, if x = (Xo,...,Xm) and y = (o, ¥1,..., ym) are in R™+1 then
X > y means x; > y; for all i. Given w: {vo, ..., vm} — R, we use w; = w(v;) and
identify w with (wg, w1, ..., w;,) € R™T1. The cone angle of w * [ at vy will be

denoted by «(w). Thus, Theorem 3.1(b) says a(w) > «(0).
The proof of Theorem 3.1 depends on the following lemma:
Lemma 3.2 If w:{vg, v1,...,V,} — R satisfies (a)—(c) in Theorem 3.1 and there is
Wi, < Wo, then there exists W € R”*1 such that
(a) w; >w; fori =1,2,...,n,
(b) w; <wog=wp fori =1,2,...,n,
(c) w ! is a generalized Delaunay polyhedral metric on T, and

(d) we have
3) a(®) > a(w).

Let us first prove Theorem 3.1 using Lemma 3.2.

Proof By replacing w by w — w(vg)(1,1,...,1), we may assume that w(vg) = 0.
Suppose the result does not hold, ie there exists w such that wo = 0, w; < 0 for
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i =1,2,...,n with one w;, <0, and w */ is a generalized Delaunay PL metric on 7
such that o(w) > «(0). We will derive a contradiction as follows. By Lemma 3.2, we
may assume, after replacing w by w, that

©) a(w) > a(0).
Consider the set

X={xeR" |w<x<0,x9=0, x ! is a generalized Delaunay polyhedral

metric on 7}.

Clearly w € X and therefore X # @ and X is bounded. Since inner angles are
continuous in edge lengths, we see that X is a closed set in R”**1. Therefore, X is
compact. Let ¢ € X be a maximum point of the continuous function f(x) = a(x)
on X. We claim that ¢ = 0. To prove this, we assume ¢ # 0 and ¢ < 0. Then, by
Lemma 3.2, we can find 7 > ¢ such that 7o = 0 and 7 < 0, and 7 * [ is a generalized
Delaunay polyhedral metric on 7 with () > (¢). This contradicts the maximality
of ¢t. Now, for t = 0, we have

a(0) = a(t) = a(w) > «(0),

where the last inequality follows from (9). This is a contradiction. |
Now back to the proof of Lemma 3.2:

Proof After replacing w by w — wo(1,1,...,1), we way assume wo = 0. Let
a;j = aj(w) = a;(wo, i, wi+1), bi = bij(w) = bj(wo, wi—1,w;) and ¢; = ¢;(w) =
ci(wg, w;, w;i+1) be the inner angles Zvgv;4+1v;, Lvov;—1v; and Zv;vgv; 41 in the
metric w * [, respectively. See Figure 2. Let [; = [(vov;) and /; ;41 = [(vivi4+1) be
the edge lengths in the metric /.

Let us begin the proof with the simplest case, where all triangles in w * [ are non-
degenerate (ie w */ is a PL. metric) and w; <O foralli > 1. Let j € {1,2,3,...,n} be
the index such that w * [(vov;) = min{w * [ (vovg) |k =1,2,...,n}. Itis well known
that in, a Euclidean triangle AABC, ZA < 7 if BC is not the unique largest edge.
Hence, due to w * [(vov;) < w * [(vov;+1), in the triangles Avov;v;+1, we have

(10) aj(w)< %, bj(w)<% and a;(w)+b;j(w)<m.

Now consider @ = (wo, W1, ..., W;—1, W; +1, W41, ..., Ws). Forsmall # >0, 117(7)*1
is still a PL metric since w * [ is. We claim W * [ is still Delaunay for small z. Indeed,

Geometry € Topology, Volume 26 (2022)



Discrete conformal geometry of polyhedral surfaces and its convergence 949

Figure 2: Star triangulation of an n—sided polygon.

by Proposition 2.1, both angles a;_1 and b; 1 decrease in . On the other hand,
aj+1(w) = aj+1(w) and bj_1(w) = bj—1(W). Therefore, the Delaunay conditions
bj—1+aj—1 <mand b;jy1 +a;j1 < m hold for the edges vov;+1. The Delaunay
condition on the edge vov; follows from the choice of j that a; + b; < m. Finally, by
Proposition 2.1(b), da(w)/dt = cot(a;) +cot(b;) = sin(a; + b;)/sin(a; ) sin(b;) > 0.
Therefore, for small ¢ > 0, we have () > a(w).

In the general case, the above arguments still work.

Let J ={j € V | w; <0}. By assumption, J # .
Claim1 Ifj e J thencj(w) <m and cj—1(w) < 7.

We prove cj—1(w) < m by contradiction. Suppose otherwise that ¢;_j(w) = 7.
Then the triangle Avov;v;_; is degenerate in the w * [ metric, ie ¥/ TW-1]; ;| =
el +e%—1l;_1. Due to w; <0and w;—; <0, we have
ewj+wj—1lj,j_l — ewjlj +ewj—llj_l
> ewj+wj—1]j 4 ew.i+w./—1[j_1 = eWitwj—1 (; +1-1).
This shows /;, j—1 > [; +1;_1, which contradicts the triangle inequality for the / metric.

Therefore, ¢;_1(w) < 7. By the same argument, we have c¢;j(w) < . This proves
Claim 1.
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Let /] ={i >0|w; =0} and
Bw) =Y " (bi(w) + a; (w))
iel
and

y(w) =Y (bj(w) +a;(w)).

jeJ

Note that the cone angle at vg is

a(w) = (r —a;(w) —bi+1(w)) = wn — B(w) —y(w).

i=1

By the assumption that a(w) > «(0), we have
(11) Bw) +y(w) < B(0) + y(0).

Claim 2 If [ # @, then B(w) > B(0).

Indeed, if i € I, ie w; = 0, then, in the triangle Avgv;v;+1, we have wg =0, w; =0
and w;+1 < 0. Since the Avgv;v;—; are generalized triangles in both the / and w */
metrics, by Proposition 2.1(a), we see that Avgv;v;—;1 is a generalized triangle in
(wo, ..., wj—2,twj—1,w;j,...,wy) *x [ for t € [0,1]. By Proposition 2.1 and since
wi—1 <0, bj(wg, ..., Wj—2,tWw;j—1,Wj, ..., Wy,) is increasing in ¢ > 0 and is strictly
increasing in t > 0 if w;—; < 0. Therefore,

bi(w) = bi (wo, wi—1, w;)
> bi(wo, 0, w;) = b; (wo, w1, ..., Wi—2,0,w;,...,wy) = b; (0),

and b; (w) > b; (0) if w;—; < 0. Applying the same argument to Avgv;v;+1 and a;,
we have a; (w) > a;(0) and a; (w) > a; (0) if w;1+; < 0. Therefore, f(w) > B(0). On
the other hand, since J # &, there exists an i € I such that eitheri —1 ori 4+ 1 isin J.
Say i — 1 € J, ie w;—1 <0. Then we have b; (w) > b; (0) and B(w) > B(0).

By Claim 2 and (11), if I # &, we conclude that
(12) y(w) =Y (aj(w) +b;(w)) < y(0).

jeJ
Since w * [ and [ are Delaunay, we have a; (w) + b;(w) < 7 and a; (0) + b;(0) <=
foralli =1,2,...,n. This implies, by (12), that there exists j € J such that

(13) aj(w)+bj(w) <m.
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Iftl=a,letjeJ ={1,2,3,...,n} be the index such that
w * [(vovj) = min{w * [(vovg) |k =1,2,...,n}.

Then the same argument used in showing (10) and Claim 1 imply (13) still holds. (Here
Claim 1 is used to show that (wog, ..., wj—1,W; +7,Wj41,...,Ws)*/ is a generalized
PL metric for small ¢ > 0.)

Fix j € J as above. To finish the proof, we will show that there exists a small # > 0

Rn—i—l

such that, for w = (wo, w1, ..., Wj—1,W; + 1, Wj41,...,w,) € RLF,

hold:

the following

(i) w =1 is a generalized polyhedral metric on 7.
(ii) w * [ satisfies the Delaunay condition.

(iii) a(w) > a(w).

Since w; <0, any ¢ € (0, —w;) will make W € ]R';gl.

To see part (i), by Claim 1 and (13), which imply a; (w), b;(w), ¢j(w), cj—1(w) < m,
the triangle (Avov;vj41, w * ) (or (Avov;vj—1, w * [)) is either nondegenerate or
is degenerate with angle m at v;, ie bj11(w) = 7 (or a;—1(w) = m, respectively).
Therefore, by Proposition 2.1(c), for small ¢ > 0, w * [ is still a generalized PL metric.

To see part (ii), we check the sum of opposite angles at the edges vov;—1, VoV +1
and vov;. At the edge vov;, due to (13) and continuity, we see a; () + b; (W) < n for
small 7 > 0. At the edge vov;—1 (or similarly vov;+1), by Proposition 2.1(c), which
says that a;_1 (W % [) and b; (W * [) are strictly decreasing functions in ¢ > 0 and
bj_1(W) = b;_1(w), we have

aj—1(W)+bj_1(0) <aj_1(w)+bj_1(w) <.
Similarly, we have the Delaunay condition for o * / at the edge vov; +1.
Finally, to see (iii), by Proposition 2.1 and (13), we have
d . d o d PP
di @) =) )+ (¢-1(@))
= cot(b; (W)) + cot(a; (w)) > 0.

Therefore, for small 7 > 0, «(W) > a(w). O
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Vi+1

Figure 3: Triangulated hexagon and length ratio.

Lemma 3.3 Let (Py,7T) be a star triangulation of an N —gon with boundary vertices
v1,...,VvN labeled cyclically and one interior vertex vg, and [: E(T) — R~ be a
flat generalized PL metric on T. There is a constant A(l) depending on [ such that,
if (Py,7T,w x1l) with w: {vg,...,vny} — R is a generalized PL metric with zero

curvature at vo, then the ratio of edge lengths satisfies
* [ (v;
(14) W0 )

w *(vjviy1) ~

for all indices.

Proof Let x; (w) = w *[(vov;) and y; (w) = w * [ (v; v;+1) be the edge lengths in the
metric w * [, where vy +1 = vy. By definition,

X; X;
(15) 2= s
Yi+1 Yi
where A; > 0 depends on /. Then
(16) Xi4+1 > Xi+2 —Yi+1 _ Xit+2 | = kiﬁ 1
Yi+1 Yi+1 Yi+1 Yi

We prove by contradiction. If the result of the lemma is not true, then there exists a
sequence of conformal factors w® such that

xi (w™)
yi(w®)
for some i. Without loss of generality, assume i = 1; then, by (16), inductively we

have
x2(w™) x3(w™) xy (w™)

e — m, e — s e ——
y2(w) y3(w®) yn (w®™)
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Then the angles a; (w(”)) at vg in the triangle Avgv;v;4+1 (in the w®™ x| metric) con-
verge to O for any i. But that contradicts the fact that the curvature 27w — ZzN:1 a;(w®™)
at vg 1s zero. O

The next result concerns linear discrete conformal factor and spiral hexagonal trian-
gulations. It is a counterpart of Doyle spiral circle packing in the discrete conformal
setting. Unlike Doyle spiral circle packing, not all choices of linear functions produce
generalized PL metrics.

We begin by recalling the developing maps. If (S,7,/) is a flat generalized PL
metric on a simply connected surface S (ie K, = O for all interior vertices v), then
a developing map ¢: (S, T,l) — C for (T,1) is an isometric immersion determined
by |¢(v) — @ (V)| = I(vv) for v ~ v’ Tt is constructed as follows. Fix a generalized
triangle ¢ € 7 and isometrically embeds ¢ to C. This defines ¢|;. If s is a generalized
triangle sharing a common edge e with ¢, we can extend ¢|; to ¢|;us by isometrically
embedding s to ¢(s) C C sharing the edge ¢ (e) with ¢(¢) so that ¢(s) and ¢(¢) are
on different sides of ¢(e). Since the surface is simply connected, by the monodromy
theorem, we can keep extending ¢ to all triangles in 7 and produce a well-defined
isometric immersion. As a convention, if t is a triangle in 7 and / is a generalized PL
metric on 7, we use (7, /) to denote the induced generalized PL metric on 7.

Given a lattice L in C, there exists a Delaunay triangulation Ty = 7« (L) of C with
vertex set L such that 7 is invariant under the translation action of L. In particular,
Tst descends to a 1-vertex triangulation of the torus C/L. Therefore, the degree of
each vertex v € T is 6, ie this triangulation is topologically the same as the standard
hexagonal triangulation of C. Let ly: E(7s) — Rx¢ be the edge length function of
(C,To(L), dy), where dy is the standard flat metric on C. Let 7 be a triangle in Ty
with vertices 0, u1 and u,. Then L = uZ + usZ and {uy,us} is called a geometric
basis of L. Note that two vertices v, v” € L are joined by an edge e € Ty if and only if
v—v" €{tuy, tuy, £(u; —uz)}.

Proposition 3.4 Suppose (C, Ty, lo) is a hexagonal Delaunay triangulation of the
plane with vertex set a lattice V = u1Z + u,7Z, where {uy,u,} is a geometric basis.
Let w: V — R be a nonconstant linear function w(nuy + mus) = nln(d) + mIn(u)
form,n, € 7Z such that w x ly is a generalized Delaunay PL metric on Ty. Then the
following hold:

(a) The generalized PL metric (Tg, w * lo) is flat.
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bip?/A

/A K
b3l//v
B(T2) b b\s
T b2
A~L(T) a c\fa by ¢ y
1/A\x Y/ X y
Iz A(T2)
B~1(T) z/ A2
1/u Alp
inner angle distribution edge angle distribution

Figure 4: Flatness of spiral hexagonal triangulations.

Let ¢ be the developing map for the flat metric (Tg, w * ly).

(b) If there exists a nondegenerate triangle in the generalized PL metric w * [y, then
there are two distinct nondegenerate triangles o1 and o, in (Tg, w * o) such that
¢(int(o1)) N ¢ (int(02)) # 2.

(c) Suppose all triangles in w *x [y are degenerate. Then there exists an automorphism
Y of the triangulation Ty such that w(y (nuy + muz)) = nln(y1(u1,u2)) +
mIn(y2(u1,uz)), where y;(u1, us) are two explicit numbers depending on u
and u» (see (17)).

We remark that parts (a) and (b) for the lattice Z + 7 1137, were proved in [28].

Proof Consider two automorphisms A and B of the topological triangulation 7
defined by A(v) =v+4u; and B(v) =v+u, for v € V. By definition, we have AB = BA
and A4 and B generate the group (A4, B) = Z? acting on Ty. Any triangle in Ty is
equivalent, under the action of (A, B), to exactly one of the two triangles Ty or T3,
where the vertices of T are 0, u1 and u, and the vertices of 7> are 0, —u1 and —u5,. In
the generalized PL metric w * [o, the maps A and B satisfy w * [o(A(e)) = 22w * [o(e)
and w * [o(B(e)) = n?w * ly(e) for each edge e € T. It follows that, for any triangle
T € Ty, the generalized triangle (A(t), w * lg) (resp. (B(t), w * lp)) is the scalar
multiplication of (t, w * [g) by A? (resp. by u?). Hence, there are only two similarity
types of triangles in (C, Tg, w * lp). For each v € V, the six angles at v are congruent
to the six inner angles in 77 and 75 in the w * lo metric. Therefore, (T, w * ) is a flat
metric. See Figure 4, center.

By the assumption that w is not a constant, we have (A, i) # (1, 1). Say A # 1. Using
the developing map ¢, there exist two complex affine maps o and § of the complex
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plane C such that ¢4 = a¢ and $B = B¢. Since A is a scaling by the factor A? # 1
and ¢ is a local isometry, the affine map « is of the form «(z) = A*z 4 ¢, where
|A*| = A% # 1 and « has a unique fixed point p € C. By AB = BA, it follows that
af = Ba. Therefore, from B(p) = Ba(p) = af(p), we conclude B(p) = p. After
replacing the developing map ¢ by p o ¢ for an isometry p of C, we may assume that
« and S both fix 0, ie (z) = A*z and B(z) = u*z are both scalar multiplications.
Let G = («, B) be the abelian group generated by & and 8 which acts on C by scalar
multiplication.

To see part (b), let 2 be the image ¢ (C) of the developing map which is invariant
under the action of G. By the assumption that there are nondegenerate triangles in
(Tst, w * lp), the image Q2 has nonempty interior. There are two cases we have to
consider. In the first case, there exists a pair of integers (n, m) # (0, 0) such that o ™
is the identity element in the group G. In this case, we take o to be any nondegenerate
triangle and o, = A” B™(01). By definition, we have ¢(01) = ¢(02). Therefore, the
result holds. In the second case, for all (n,m) # (0,0), a” B # id, ie the group G is
isomorphic to Z?2. Since both «(z) and B(z) are scalar multiplications, this implies
that the action of the group G on int(£2) is not discontinuous. In particular, for any
nonempty open set U C 2, there is «” B € G — {id} such that " " (U) N U # @.
Take 01 to be a nondegenerate triangle, U = ¢ (int(o1)) and 65 = A" B™(01). Then
we have ¢ (int(o1)) N ¢ (int(o2)) # 2.

To see part (c), since each triangle is degenerate, the inner angles a, b and ¢ and
x, y and z of the two triangles 77 and T3 are O or &, as shown in Figure 4, center.
Composing with an automorphism of 7y, we may assume that @ = 7, and then, by the
Delaunay condition, y = 0.

There are two cases, depending on (x, y,z) = (7,0,0) or (0,0, 7). The two cases
differ by the automorphism p of the lattice 11 Z + u»7Z and of T such that p(u1) = us,
p(uz2) =uy —u; and p(0) = 0. Thus, it suffices to consider the case z = 7. Let the
lengths of u1, us and up — uy in the Iy metric be b1, b and b3, respectively. The
lengths of the corresponding edges in the w * [y metric are Aby, ub, and Aubsz. By
the same computation, one works out the edge lengths of the triangle with vertices 0,
us and up —uy in the w * [y metric to be (u?/A)by, by and (1/A)bs. See Figure 4,
right.

We obtain two equations for the edge lengths of degenerate triangles: Aby + by, = Aubs
(due to @ = ) and (u?/A)by = juby + (1/A)b3 (due to z = 7). See Figure 4, right.
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Figure 5: Spiral hexagonal triangulations.

These are same as Aby + by = Aubs and uby = Aby + bs. Solving w in terms of A,
we obtain a quadratic equation in A,

(17) b2b312 + (b% — b% — b%))t —bybs =0.

Since b; > 0, this equation has a unique positive solution, which we call y;(uy, u2).
The solution in . = (y1(u1, u2)bs + b3)/b1 is y2(uy, uz). m]

4 Rigidity of hexagonal triangulations of the plane

We begin with:

Definition 4.1 A flat generalized PL metric on a simply connected surface (X, 7T,/)
with developing map ¢ is said to be embeddable into C if, for every simply connected
finite subcomplex P of 7, there exists a sequence of flat PL. metrics on P whose
developing maps ¢, converge uniformly to ¢|p and ¢, : P — C is an embedding.

For instance, all geometric triangulations of open sets in C are embeddable. However,
the spiral flat triangulations produced in Proposition 3.4 are not embeddable. The main
result in this section works for embeddable flat PL. metrics only.

The following lemma is a consequence of the definition:
Lemma 4.2 Suppose (X, T,1) is a flat generalized PL metric on a simply connected
surface with a developing map ¢.

(a) Suppose ¢ is embeddable. If t, and t, are two distinct nondegenerate triangles
or two distinct edges in T, then ¢ (int(z1)) N ¢ (int(z2)) = <.

(b) If ¢ is the pointwise convergent limit lim,— o ¥y, of the developing maps V,, of
embeddable flat generalized PL metrics (X, T, 1), then (X, T,!) is embeddable.
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Proof To see (a), suppose the contrary. Take P to be a finite simply connected
subcomplex containing #; and #;; then the developing maps ¢, defined on P which
converge uniformly to ¢| p must satisfy ¢, (int(¢1)) N ¢y, (int(#;)) # @ for n large. This
contradicts that the ¢,, are embeddings.

Part (b) follows from the fact that the ¥, converge to ¢ uniformly on compact subsets
and the fact that, if lim, o0 @, = a and limy,— 00 bpm = an, then a = lim; bj,nj
for some subsequence. a

Let 75 be a hexagonal Delaunay triangulation of the plane S = C with vertex set the
lattice V ={uin+usm |n,me Z} and ly: E(Ty) — R~¢ be the edge length function
associated to (S, Ty, ds;). Given a flat generalized PL metric (S, Ty, ), its normalized
developing map ¢ = ¢;: S — C is a developing map such that ¢(0) = 0 and ¢ (u1) is
in the positive x—axis. Suppose {u1, 12} is a geometric basis of the lattice u1Z + u>Z.
Two vertices v and v’ are adjacent in Ty, ie v ~ v/, if and only if v = v’ + § for some
8 € {duy, *us, +(u; —uy)}. Given two vertices v, v’ € V, the combinatorial distance
dc(v,v") between v and v’ is the length of the shortest edge path joining them.

The goal of this section is to prove the following stronger version of Theorem 1.3:

Theorem 4.3 Suppose (S, Ty, lo) is a hexagonal Delaunay triangulation whose vertex
set is a lattice in C and (S, Ty, w * lg) is a flat generalized Delaunay PL metric on T.
If (S, Ts, w % lg) is embeddable into C, then w is a constant function.

Theorem 1.3 is clearly a special case of Theorem 4.3. Theorem 4.3 will be proved
using several lemmas.

4.1 Limits of discrete conformal factors

The following lemma is a corollary of Theorem 3.1:

Lemma 4.4 Suppose (S, Ty, w * lg) is a flat generalized Delaunay PL metric surface,
deVand f:V — R is defined by f(v) = w(v+38) —w(v). Then f * (w *ly) =
(f 4+ w) * [y is a flat generalized Delaunay PL metric on Ty. In particular, if there

exists a vertex vo such that f(vg) = max{ f(v) | v € V}, then f is constant.

We next show how to produce discrete conformal factors w such that w(v + §) — w(v)
are constants:
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Lemma 4.5 Suppose w * [y is a flat generalized Delaunay PL metric on Ty. Then, for
any § € {xuy, tuy, £(uy —uy)}, there exist v, € V such that w, € RY defined by
wp(v) = w(v + v,) —w(vy,) satisfies:

(a) Forall v €V, the following limit exists:
Woo (V) = lim wy,(v) € R.
n—>0o0

(b) wy *1lp and weo * I are flat generalized Delaunay PL metric on Tg.
(€) Woo(V+8)—weo(v) =a forall v eV, wherea =sup{w(v+38)—w(v) |veV}.

(d) The normalized developing maps ¢y, «1, of wy * lop converges uniformly on
compact sets in S to the normalized developing map ¢oc 0of Weo *lg. In particular,
if (S, Tg, w * lg) is embeddable, then (S, Tst, Woo * L) is embeddable.

Proof By Lemma 3.3, there is a constant M = M (V'), depending only on the lattice
V =u1Z +uyZ, such that a = sup{w(v +6) —w@) |ve V} < M(V). Take v, € V
such that

w, +68) —w(v,) >a— rlz
By definition,

(18) wy (0) =0, wn(S)za—%, wp(v+8) —wu(v) <a
and
(19) sup{|wn (v) — w, (V)| | v ~ "} < c0.

By Lemma 3.3, if v € V' is of combinatorial distance m to 0, then, using w,(0) = 0,
we have

(20) lwa (V)] =mM (V).

By (20) and the diagonal argument, we see that there exists a subsequence of {w, }, still
denoted by {wj} for simplicity, such that w, converges to wo, € RY in the pointwise
convergence topology. By construction, each wy, * lo is a flat generalized Delaunay PL
metric. By limy, 00 Wy = W and continuity, we conclude that wee * [g is again a flat
generalized Delaunay PL metric on 7. By (18),

Woo (8) — Weo(0) = max{weo (v + ) —weo(v) | v € V}.

By Lemma 4.4, we see that conclusion (¢) holds. Since the developing map ¢y, «j,
depends continuously on w € RY, lim,, _ oo P, +1, (V) = Poo(v) for each vertex v € V.
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On the other hand, a developing map ¢ is determined by its restriction to V. We see that
D, x1, CONVErges to Poo uniformly on compact subsets of the plane. The last statement
follows from Lemma 4.2(b) since each ¢y, «, is embeddable by definition. m|

4.2 Proof of Theorem 4.3

Suppose w * [ is a flat generalized Delaunay PL metric on 7y with an embeddable
developing map ¢. Our goal is to show that w: V' — R is a constant. Suppose otherwise;
we will derive a contradiction by showing that the developing map ¢ is not embeddable.

Since w is not a constant, we can choose 61 € {£uy, +u,, £(u1 —uz)} such that
ay =sup{w(w+681)—w() |veV}>0. By Lemma 4.5 applied to w * [y and § = 41,
we produce a function W : V' — R such that wee * [g is a flat generalized Delaunay PL
metric on Ty and Weo (v + §1) = Weo (V) + ay for all v € V. Now, applying Lemma 4.5
to Weo * [o With 85 € {Fuq, Fus, £(uy —uy)} —{£481}, we obtain a second function
W = (Woo)oo: V — R and by € R such that w * [y is a flat generalized Delaunay PL
metric on 7y and

W +61) =ww)+ar, wW+5)=w)+b;

for all v € V. This shows that w: V — R is a nonconstant affine function, ie
W(n +me™/3) = asn + bam + ¢, for some as, by, c5 € R.

Let <}5, oo and ¢ be the normalized developing maps for W * [y, Wee * [p and w * [y,
respectively. Since ¢ is embeddable, by Lemma 4.5, (}5 and ¢ are embeddable.

If w = [y contains a nondegenerate triangle, then, by Proposition 3.4, there exist two
nondegenerate triangles #1 and 7, in (7g, W * [g) such that $(int(tl)) N $(int(t2)) #* .
By Lemma 4.2(a), this contradicts that w * [y is embeddable.

Therefore, all triangles in the generalized PL metric W * /o are degenerate, ie all angles
in triangles are either 0 or 7. We will use the same notation used in the proof of
Proposition 3.4. By Proposition 3.4(c) and Figure 6, we may assume, after composing
with an automorphism of 7y and subtracting by a constant, that W(nu; + muy) =
nin(y;(V)) +mn(y2(V)), where (y1(V), y2(V)) are given by the solutions of (17)
and the angles a, b, ¢, x, y and z of T and T> are (a,b,c,x,y,z) = (7,0,0,0,0, 7).

Let Py =up —2uy, P =uz —uj, P3=0and P4 = u; in V. See Figure 6, bottom
left. In the case of @ = z = 7, we claim that the length (1u/A)b3 of the edge P, P3 is
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0 by U
vertex vectors and edge lengths in the /o metric conformal factors at vertices
" @n(P2)
prhi/A Tig w2bi/A !
Py $n(Ps)
Ps Aby Py $n(P1)
¢n (P 3)

edge lengths in vertex scaled metric

Figure 6: Angles a and z are zero in W * [o. Top right is the developing image
of corresponding set in w * /.

strictly less than the sum of the lengths Ab; of the edge P3 P4 and (u?/A3)by of the

edge P P, ie
1) Epy < Ab +“—2b
103 1+ b

Indeed, by the equations Ab; + wby = Aubs and uby = Aby 4 b3 derived in the proof
of Proposition 3.4, we obtain

by A%+ pu?

by (1+A2)u
Equation (21) says

b 4 2

03 < A +u

bl /\2/,L

Thus, it suffices to show that (A2 4+ 2)/(1+A?)u < (A* + 2) /A2 . This is the same
as A2(A2 4+ u?) < (1+A2)A* + u%), ie A* +22u? < A* 4+ 12u2 + A% + u2. The last
inequality clearly holds since both A and p are positive.

Now consider the oriented edge path Py P P3 P4 (oriented from Pp to P4) in T and its
image under the developing map <}5 of wxlg in C. By the assumption that a =z = 7, the
angles of the polygonal path $(P1 P P3Py) at q;(Pz) and (}5(P3) are 2. See Figure 6,
bottom left. Also the sum of the lengths of $ (P P3) and (E (P Py) is larger than the
length of $ (P P3) by the claim above. On the other hand, since $ is embeddable, there
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exists a sequence of flat PL. metrics on 7y whose developing maps ¢, are embeddings
that converge uniformly on compact sets to qAS . This implies that, for n large, the two
line segments ¢, (P P2) and ¢, (P3 P4) intersect in their interiors. This contradicts the
assumption that ¢, is an embedding.

This ends the proof of Theorem 4.3. O

Remark 4.6 The above argument also gives a new proof of Rodin and Sullivan’s
hexagonal circle packing theorem.

The following will be used to show that the limit of discrete uniformization maps is
conformal. Let By, (v) ={i € V(Ty) | dc(i,v) <n} and B, (v) be the subcomplex of Ty
whose simplices have vertices in B, (v).

Lemma 4.7 Take the standard hexagonal lattice V = 7, + % /37, and its associated
standard hexagonal triangulation, whose edge length function is l.: V — {1}. There
is a sequence s, of positive numbers decreasing to zero with the following property:
For any integer n and a vertex v, there exists N = N(n, v) such that, if m > N and
(Bm(v), w *x ly) is a flat Delaunay triangulated PL surface with embeddable developing
map, then the ratio of the lengths of any two edges sharing a vertex in By, (v) is at
most 1 + s.

The proof of the lemma is exactly the same as that of Rodin and Sullivan [25, pages
353-354] since we have Lemma 3.3 and Theorem 4.3, which play the roles of Rodin and
Sullivan’s ring lemma and rigidity of hexagonal circle packing in [25, pages 352-353].

5 Existence of discrete uniformization metrics on polyhedral
disks with special equilateral triangulations

By a polygonal disk we mean a flat PL surface (P, V, d) which is isometrically embed-
ded in the complex plane C with P homeomorphic to the closed disk. The goal of this
section is to prove the existence of a discrete conformal metric by regular subdividing
of the given triangulations.

An equilateral triangulation T of a polyhedral surface is a geometric triangulation
whose triangles are equilateral. The edge length function of an equilaterally triangulated
connected polyhedral surface will be denoted by the constant function Iy: E(7) — R.
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A

18t 2nd 3rd 6lh

Figure 7: The standard subdivisions.

Given an equilateral Euclidean triangle A C C and n € Z>1, the n'™ standard subdivision
of A is the equilateral triangulation of A by n? equilateral triangles. See Figure 7. If
T is an equilateral triangulation of a polyhedral surface, its n”* standard subdivision,
denoted by 7y, is the equilateral triangulation obtained by replacing each triangle
in 7 by its n'" standard subdivision. We use Vin) to denote V(7).

The main result of this section is the following theorem:

Theorem 5.1 Suppose (P, T, ly) is a flat polygonal disk with an equilateral triangula-
tion T such that exactly three boundary vertices p, q and r have curvature 27” Then,
for sufficiently large n, there is a discrete conformal factor wy, : V() — R for the nth
standard subdivision (P, T(y), [st) such that the discrete curvature K of wy, * I satisfies:

(@ K;=O0foralli €V —1{p.q.r}.
b) K;= 27” foralli € {p,q,r}.

(c) There is a constant € > 0, independent of n, such that all inner angles of triangles
in (T(n), Wn * l) are in the interval [60, % + eo], the sum of two angles facing
each interior edge is at most w — €g, and each angle facing a boundary edge is at
most 5 — €.

Conditions (a) and (b) imply that the underlying metric space of (P, 7(,), Wn * [s) is
an equilateral triangle. Condition (c) says that the metric doubles of (P, 7(,), [s;) and
(P, T(n), wn * lt) are two Delaunay triangulated polyhedral 2—spheres differing by a
vertex scaling.

There are two steps involved in the construction of the discrete conformal factor wy, in
Theorem 5.1. In the first step, we produce a discrete conformal factor w®: Vi) > R
such that w(!) vanishes outside the union of combinatorial balls of radius [%n] (the
integral part of %n) centered at nonflat vertices v # p, ¢, r and the discrete curvature
satisfies K; (w® % Iy) = 0 if d.(i,v) < [%n] and K; (w® x Iy) = 0(1//In(n)) if
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de(i,v) = [%n] This step diffuses the nonzero discrete curvatures %, —% and —27”
(at nonflat vertices v) to small curvatures at vertices defined by d. (i, v) = [%n] In
the second step, by choosing n large such that all curvatures are very small, we use a
perturbation argument to show that there is w®: Vin) — R such that w® (w(l) * lgt)
satisfies the conditions in Theorem 5.1. The required discrete conformal factor w, is

w® + w® since (W +wMD) %Iy = w® s« (WD xIy).

The basic tools to be used for proving Theorem 5.1 are discrete harmonic functions,
their gradient estimates and ordinary differential equations (ODEs). We begin by
recalling the related material.

5.1 Laplace operator on a finite graph

Given a graph (V, E), the set of all oriented edges in (V, E) is denoted by E. If i ~ j

in V, we use [ij] € E to denote the oriented edge from i to j. If x € RV and y € RE,
we use x; and y;; to denote x(7) and y([ij]), respectively. A conductance on G is a
function n: E — R~ such that ;; = 7n;;.

Definition 5.2 Given a finite graph (V, E) with a conductance 7, the gradient V: RY —
RE is the linear map

(Vh)ij =nij (fi = f5),

the Laplace operator associated to 7 is the linear map A:RY — RY defined by

(A =Y mij(fi = i)

i
and the Dirichlet energy of £ € RY on (V, E, n) is

) =35 Y milhi— i)

i~J
The following is well known (see [6]):

Proposition 5.3 (Green’s identity) Given a finite graph (V, E) with a conductance 1,

(a) for any subset Vo C V,

Yo hi—gibfi= Y mieifi— fig):;

i€Vo i€Vo,j~i,j€Vo

(b) ey (Af)i=0.
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Given aset Vo C V and g: Vo — R, the Dirichlet problem asks for a function f:V —R
such that

(22) (Af)y=0 forallieV -V, and flvo =g

The Dirichlet principle states that solutions f to the Dirichlet problem (22) are the same
as minimum points of the Dirichlet energy function restricted to the affine subspace
{heRY | hly, = g}, ie

(23) E(f) =min{E(h) | h e RY and h|y, = g}.
In particular, the Dirichlet problem (22) is always solvable.

A subset U C V in a graph (V, E) is called connected if any two vertices i, j € U can
be joined by an edge path whose vertices are in U. For instance, a connected graph
(V, E) means V is a connected. The following is well known (see [6]):

Proposition 5.4 Suppose (V, E) is a finite connected graph with a conductance n;; >0
for all edges [ij] and Vo C V. Let f be a solution to the Dirichlet problem (22). Then:

(a) Maximum principle For Vy # @,

max f; = max f;.
ieV fl i€V fl
(b) Strong maximum principle If V — Vj is connected and max;ey—v, fi =

max;ey, fi, then f|y_y, is a constant function.

5.2 A system of ODEs associated to discrete conformal change

Let (S, 7, 1) be a compact connected polyhedral surface with discrete curvature K°.
Given a subset Vo C V and a function K*: V — Vy — (—o00,27), we try to find a
function w: V — R such that w *x [ is a PL. metric whose curvature K(w) is equal
to K* on V —Vj and wly, = 0. In the PL metric w %/, let 9]’:,( = ij(w) be the
angle at vertex i in the triangle Aijk and n;; = n;; (w) be COt(Ql-]j-) + Cot(Gl-lj) if [ij] is
an interior edge and 7;; = cot(@i’;) if [ij] is a boundary edge. The associated Laplacian
A:RY >RV is (Af); = ijl- nij (fi — fj). We will construct w by choosing a
smooth 1—parameter family w(¢) € RY such that w(0) = 0 and w(¢) %/ is a PL metric
whose curvature K; (1) = K; (w(t) * ly) satisfies

(24) Ki(t)=(1—1)K? +tK}* forall i € V —Vp, wi(t) =0 forall i €Vj.
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The required vector w is defined to be w(1). Note that, by definition, K(0) = K°. Due

to the curvature evolution equation (7), that dK; (t)/dt = ;. _; nij (w(?))(w; — w}),

where w! (1) = dw; (t)/dt, we obtain the system of ODEs in w(t), equivalent to (24),
> nij(wj—wj) =K}~ K forall i €V -V,

j~i

(25) wl(t) =0 for all i € Vp,
w(0) = 0.

Using A f, we can write (25) as

(Aw'); = K} —K? forall i e V-V,
(26) wl{(t) =0 for all i € 1,

w(0) = 0.

We will show, under some assumptions on (7, 7), that the solution to (25) exists for all
t €]0,1].
Let W c RY be the open set

(27) W ={w eR" | w1 is a PL metric on 7 and nij (w) > 0 for all edges [ij]}.

Lemma 5.5 Suppose Vp # @ and 0 € W. The initial valued problem (25) defined on W
has a unique solution in a maximum interval [0, ty) with ty > 0 such that, if ty < oo,
then either lim inf; 5 G;k(w(t)) =0 for some angle le:k or liminf; 5 i (w(t)) =0
for some edge [ij].

Proof Indeed, (25) can be written as Y (w)-w’(z) = B and w(0) = 0, where Y (w) is a
square matrix—valued smooth function of w € W and w’(¢) is considered as a column
vector. We claim that Y (w) is an invertible matrix for w € W. If Y(w) is invertible,
then (25) can be written as w’(t) = Y(w) ™! 8 and, by Picard’s existence theorem, there
exists an interval on which the ODE (25) has a solution. Now Y (w) is invertible if and
only if the following system of linear equations has only the trivial solution x = 0:

(28) Y(w)-x =0.

By (25), equation (28) is the same as (Ax); =0 fori € V—Vyand x; =0 fori € V.
Furthermore, w € W implies n;; (w) > 0 for all edges [ij]. By the maximum principle
(Proposition 5.4), we see that x = 0.

If 1o < oo and t 1 fo, then w(?) leaves every compact set in W. For each § > 0,
we claim that Wy = {w € W | G;k > 6, lw;| < 1/68, n;j = 6} is compact. Clearly
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Wy is bounded by definition. To see that Ws is closed in RY, take a sequence
Xn € Ws such that limyeo X, = y € RY. Then vy *x [ is a generalized PL metric
with all angles 9} & = 0. Since each degenerate triangle has an angle which is zero,
y = [ is a PL metric. Also, by continuity, we have Q;k(y) > 8, nij(y) = 6 and
|vi| <1/8,ie y € Wg. Since w(t) leaves every W for each § > 0, one of the following
three occurs: liminf;¢; Q}k (w(t)) = 0 for some Q}k’ or liminf; ;5 nij (w(r)) =0
for some edge [ij], or limsup,_,,o— |w; (¢)| = oo for some iy € V. However, if
lim SUP; s |wiy(t)] = oo for one vertex io, then liminf; 5 G;k(w(t)) = 0 for
some Gjl.k. Indeed, if otherwise, lim inf; - Q;k (w(t)) =& > 0 for all Q}k for some §.
It is well known that in a Euclidean triangle whose angles are at least §, the ratio of two
edge lengths is at most 1/sin(8). Therefore, in each triangle Av;v;vg in 7, we have
eWi® < Wi (v;vy)/1(vivy) sin(8). Since w; (1) =0 for j € Vo and the surface S is
connected, we conclude that all wy (¢) for k € V are bounded for all z. This contradicts
lim SUPt 1, |wio (1)] = o0. o

5.3 Standard subdivision of an equilateral triangle

Theorem 5.6 Let S = AABC be an equilateral triangle, T be the n'" standard
subdivision of S with the associated PL. metric ly: E = E(T) — {1/n} and Vp =
{v € V | visin the edge BC of the triangle AABC}. Given any « € [%, %], there
exists a smooth family of vectors w(t) € RY fort € [0,1] such that w(0) = 0 and
w(t) * I is a PL metric on T with curvature K(t) = K(w(t) * ly) satisfying:

(a) Kq(t)=—ta+ 2+ t)% (ang]e at Aista + (1 —t)%).

(b) K;i(t)=0foralli e V—{A}UV,.

(¢) w;i(t)=0foralli €V,.

(d) All inner angles 9]’: (1) in metric w(¢) * Iy are in the interval
[F-le=3|5+|e-5c[% 3]

(e) Q}k(t) < 3% fori # A.

(f) |Ki(t)— K;(0)] <2000//In(n) fori # A and

(29) YK - Ki(0) < .

ieVy
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Figure 8: Discrete conformal maps of equilateral triangles and their unions.

Remark 5.7 The discrete conformal map

(AABC,T,ly) — (AABC, T, w(l) * Iy

is a discrete counterpart of the analytic function f(z) = z3%/7,

Our proof of Theorem 5.6 relies on the following two lemmas about estimates on
discrete harmonic functions on 7.

Lemma 5.8 Assume AABC, n, T and Vy are as given in Theorem 5.6. Let t:T — T
be the involution induced by the reflection of AABC about the angle bisector of
ZBAC and n: E — R be a conductance such that nt = n and n;; = n;;. Let
A:RY — RY be the Laplace operator defined by (Af); = ij’ nij(fi — fj). If
f e RV satisfies (Af); =0 fori € V —{A}U Vp and flv, =0, then, for all edges
[ij], the gradient (Vf);; = n;; (fi — f;) satisfies

(30) Inij (fi = £1)] < AIA()al.

Lemma 5.9 Assume AABC, n,T and Vy are as given in Theorem 5.6. Let n: E(T) —
[1/M, M] be a conductance function for some M > 0 and A be the Laplace operator
on RY associated to n. If f: V — R solves the Dirichlet problem (A f); = 0 for all
i€ V—{AYUVy, flv, =0and (Af)a =1, then, forall u € Vo, |(Af)y| <20M//Inn.

We will prove Lemmas 5.8 and 5.9 and Theorem 5.6 in order.

The simplest way to see Lemma 5.8 is to use the theory of electric networks. We
put a resistance of 1/n;; Ohms at the edge [ij] (if n;; = 0, the resistance is oo, or
remove edge [ij] from the network). Now place a one-volt battery at vertex A and
ground every vertex in V. Then Kirchhoff’s laws show that the voltage f; at the
vertex i solves the Dirichlet problem (Af); =0 foralli e V—{A}UVp, f4 =1 and
f1v, = 0. Ohm’s law says n;; (fi — f;) is the electric current through the edge [ij].
Since the resistance is symmetric with respect to the symmetry 7, the currents in the
network are the same as the currents in the quotient network 7 /7. In the quotient
network 7 /7, there is only one edge e4 from the vertex A. Therefore, the current
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through any edge is at most the current %|(A f)a| through e4 (in the network 7 /7).
This shows |17 (fi — /)| < 21(AS)al.

Proof of Lemma 5.8 Removing all edges [ij] for which 7;; = 0 from the graph
(V, E), we obtain a finite collection of disjoint connected subgraphs I, ..., Iy from
(V, E). By construction, the associated Laplace operators on I; with conductance
Nl E (1) is the restriction of the Laplace operator A to V(I;). By the maximum principle
(Proposition 5.4), the function f |y (r,,) is a constant and (30) holds unless I, contains
the vertex A and some vertex in V. Therefore, it suffices to prove the lemma for those
edges [ij] in the connected graph I}, = (V’, E’) such that A € V' and V' NV # &.
Let A1, A2 = 7(A1) be the vertices adjacent to A. Since t(4) = A, nt = n and
V' NVy # @, we have t(I};) = I}, and Ay, A, € V',

We will work on the graph I},, = (V/, E’) from now on. Using the maximum principle
for f — f1, wesee that f = ft. By replacing f by — f if necessary, we may assume
that f4 > 0. By the maximum principle, we have that 0 < f; < f4 foralli € V' —{A}.

Take an edge [ij] in the graph I;,,. If t{i, j} = {i, j}, then t; = j and t; =i. This
implies f; = ftr; = f; and (30) holds. If ¢{i, j} = {i’, j'} # {i. j}, say t; =i’ and
tj = j', then f; = fir, fj = fj». We may assume that f; < f;. If f; = f;, then
(30) holds. Hence, we may assume f; < f;. If j = A, theni = A; or A2. Due
to f4, = fa,, then (30) holds. If j # A, then, by the maximum principle applied
to f on the subgraph (V' —{A}, E' —{AA;, AA>}), we conclude that f4, > f; > f;.
LetU ={k € V' —{A}| fx > fi}. By definition, j, j’, Ay, A2 € U, i,i’, A ¢ U and
VoNU = @. This shows (Af)x =0 forall k € U and hence ) ; r; (A f)x =0. By
Green’s formula (Proposition 5.3),

Y= D> malfi—f)=0.

keU keU,l¢U, k~I
If [ ¢ U U{A}, then, by definition, f; > f;. Therefore,ifk e U, k ~ 1 and [ ¢ U U{A},
then fr > f; > f;. This shows

0= > nulfi—/)

keU,l1¢U, I~k
= > et (fie = /) + D mealfic = fa)
keU,l¢UU{A}, I~k k~A
> (V)i +(V)jrir—(Af)a.
Therefore, |(Af)al = 2|(VSf);j| since (Vf)ij = (Vf)irjr. o
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A

Figure 9: Layers in triangle ABC.

Proof of Lemma 5.9 For the given u € Vj, construct a function g: V' — R by solving
the Dirichlet problem (Ag); = 0 foralli € V —Vp, gy = 1 and g|y,—y = 0. By
the maximum principle (Proposition 5.4), 0 < g; <1 for all i. Using Green’s identity

that 3y [fi(Ag)i — gi(Af)i] = 0, we obtain g4(Af)a + gu(Af)u = 0. Since
(Af)a=1and g, =1, we see

(Af)u=—ga.

Therefore, it suffices to show that |g4| < 20M /+/Inn. For this purpose, take k < [%n]
and define Uy, = {i € V | d.(i,u) = k}, where d. (i, j) is the combinatorial distance
in the graph 7. Let Gy be the subgraph of 7(!) whose edges are [ij] where
i,j € Ug. Due to k < [%n], Ur N Vo # @, and G is topologically an arc. By
the maximum principle applied to g on the subgraph whose edges consist of [ij] with
i,je{veV |dc(v,u) >k}, we obtain g4 < max;cy, gi. Let vx € Ui be such that
gvx = max;ey, & and edge path Ej be the shortest edge path in G joining vg to a
point uy in Vo — {u}. By construction, g,, = 0. Since Uy contains at most 3k + 1
vertices, the length of Ej is at most 3k. The Dirichlet energy £(g) of g on 7 is

given by
| [n/2]
(€29) 5(g)=§Z77ij(gi—gj)22 ZSk,
i~j k=1
where

1
fe=7 > e — )
lij]eEk
and E} be the set of oriented edges in E. Suppose wo = Vg ~ W1 ~ Wy ~- -+~ Wy, =Ug
are the vertices in the edge path E; where [, < 3k. Using the Cauchy—Schwarz
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inequality, we obtain

Ik
(32) Ec =Y Nwwi_ (§uw; — Gwi_,)”
i=1
| &
= H Z(gw[ _gwi_l)z
i=1

ML[Z(ng 8w;_ 1)]

i=1

By (31) and (32), we obtain

33 1 .
(33) g(g)—3Mk k= 100M

On the other hand, the Dirichlet principle says

E(g) = mm{ an] (hi —h; )2|hu—l h'Vo {u}—O

Take h e RY tobe hy, =1 and h; =0 forall i € V — {u}. We obtain
1
£(g) = 5 ; nij(hi —h;)* < 4M.
Combining this with (33), we obtain
G _,
100M —
20M
In(n

ie

84 =

g

Proof of Theorem 5.6 We construct the smooth family w(z) € RV by solving the
system of ordinary differential equations (25), where (S,7,l) = (AABC,T,ly),
K*|ly_yyuiay =0, Ky = m —a and w; (t) = 0 for i € Vp. By the assumption that
9}’: «(0) = % (ie T is an equilateral triangulation), 0 € W, where the space W is defined
by (27). By Lemma 5.5, there exists a maximum s > 0 such that a solution w(z) to (25)
exists and condition (d) holds for all z € [0, s). We claim that s > 1, w(1) exists and
w(1l) x lg is a PL metric. In particular, w(1) * I satisfies condition (d) and w(1l) € W.
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Without loss of generality, let us assume that s < co. By Lemma 5.5 and condition (d),
we conclude

either lim igf nij(w(t)) =0 for some [ij],

S or 11m sup| k(w(t)) 3 | = }oc - %! for some G}k.

The conclusion lim inf;_,— 9]’: £ (w(?)) = 0 is ruled out by condition (d), which implies

b (w(t) = 2

We prove the claim that s > 1 as follows. Since « € [%, %], we have 3 + ‘O‘ - %‘ =3
and Z — |o — Z| > Z. This shows, by (d),

(35) k(t) € [’67 Z] forallz €]0,s).

In particular, cot(@i]j-) >0 and n;; > cot(@i’;) > 0. Hence, by definition, we have
(V)i | = nij|w] —w}| = cot(6f)|w] —wi].

By Lemma 5.8 and the variation formula (7) that dK; /dt = (Aw’);, we obtain

dKy

20(V)ij| < [(Aw)al = | =

This implies, by (6),

J

(36) < cot(f k)lw —w |+ cot(Gl.J}c)|wl{ —wy|

'dek

< 1Vl + (T )ie] < o — % |.
Therefore, for all ¢ € [0, ),
U() F14 b1
(37) \0 0 -% }_|9 (t) — 6k (0)|_ di <tlo—%| <sla—%|

The above inequality shows that s > 1. Indeed, if otherwise s < 1, using (37), we
conclude that Oik tel5- ‘a— % | s ] In particular, liminf; , s— 7, (t) >
cot(Z + s|a— —!) > 0 and limsup,_, .— ‘Qk (t) — Z| < | — Z|. This contradicts (34).

To see part (e), by (37), if t € [O, %], we have
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Now, if [ij] is an interior edge, then, for ¢ € [0, %],
(38) |(Vw)ij| = (eot(6)5) + cot(B])) [w] — w}|
cot(6.
(1 + Lli)) cot(9 )| w! —w; A
cot(@ij)
> (1 + cot(s—”)) cot(G )| w; — w; A

%cot(@ | w) —w; L.

A%

If 0}’: & 1s an angle with i # A, then either one of the two edges [ij] or [ik] is an interior
edge, or i € {B,C}. In the first case, say [ij] is an interior edge, using (38) and
Lemma 5.8, for f € [0, %], we have

<cot(9 )| w; —w; |+cot(0 )|w wy|
< 2(Vw)ij |+ [(Vw')k]
< (s +1)3l(Aw)al = ple -5 < 15§ = 55-

In the second case, that i € {B, C}, one of the edges [ij] or [i k], say [i]], is in the edge
BC of AABC, ie w) = w]’ = 0. Therefore, by Lemma 5.8, for ¢ € [0, %], we have

de!
Jjk
(39) ' or

do!
(40) ‘ djtk <cot(9 )| w! —w) |+cot(9 i —wi| < [(Vw')ix]

<) =le-% < &

Therefore, if 9} & s not the angle at A and 7 € [0, 1), by (39) and (40), we have

|05 (0) = Z| =10, (1) — 02, (0)]

t1do! do! 1/2 d@’ dot
5/ —Jk a’ti/ —Jk dt:/ dt+/ —Jk| gy

o | dt 0 0 dt 1/2| dt
5; +2‘°‘ ‘—40+22:11977(§‘

Therefore, 6}’:,{ (r) e [211775 519775] C (6 2) for all € [0, 1). Since conditions (d) and (e)
hold for all ¢ € [0, 1), by the definition of 7;;, we see liminf; 1 7;; (w(7)) > 0. Now
we prove that w(1) is defined and w(1) * [y is a PL metric. By the estimates above,
there exists § > 0 such that, forall € [0, 1), w(t) e Wy ={w e W | 91‘] >3, nij > 8}.
By Lemma 5.5, the maximum time #o for which w(¢) exists on [0, #o) must be greater
than 1. Therefore, w(1) exists and w(1) € W. Since (d) and (e) are closed conditions,

it follows that w(1) * [y satisfies (d) and (e).
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Now we prove part (f). By parts (d) and (e), we have 9’ (1) € [” , 51% ] fori # A and

9A [ ] Since the conductance 7);; is either cot(@ ) or a sum cot(9 )+ cot(@ ),
we obtain, for all edges [ij] in T, n;;(t) € [cot(slgzg) 2cot(6)] [100, 100] Let
K;(t) be the curvature of the metric w(z) * Iy at the vertex i. By Lemma 5.9 for

f= 1/}0{— %| -dw(t)/dt and M = 100, we conclude that, for all i € Vj,

2000{c —Z| 2000
<

'dKl([) —|(AU)/)'|<
dr |~ YT Umm) Vin(n)
Therefore,
o t dKi(f)' '|dKi (f)‘ 2000
KO- KO = | |=—=|d = ()’

Finally, to prove (29), if @ = %, then all w(t) = 0 and K(¢) = K(0) and the result
follows. If o # %, we first claim that w/;(¢) # O for each ¢. Indeed, if otherwise
w’; (t1) =0 for some 11, then, by the maximum principle applied to the Dirichlet problem
(Aw'(t1))i =0fori € V—{A} U Vp and w;(t;) = 0 for i € Vo U {A}, we conclude
wj(t1) =0 forall i € V. In particular, « — = (Aw’)4 = 0 at t = 1, which is a contra-
diction. Therefore, w’;(¢) # 0 and, by the maximum principle again, w’, (f)w}(¢) > 0.
Now, if i € Vp, then K;(¢) = >, ; nji(w; — wj’-) == i Ujiw}- Since n;; > 0,
therefore w/, (t)K/(t) < 0 for i € Vp. It follows that (K; (1) — K;(0))w/(t) < 0 for
all i € V. At the vertex A, |K4(t) — K4(0)| = ‘t(a — %)‘ < %. Therefore, by the
Gauss—Bonnet theorem that K4 () + ZieVO Ki(t) = Ka(t)+ ) ;cy Ki(t) =27 and
since K; (1) — K; (0) have the same signs for i € Vo, we obtain ) _; ¢y, | Ki (1) — K (0)| =
X iew, (Ki(6) = Ki (0))| = | Ka(t) — Ka(0)] < % =

5.4 A gradient estimate of discrete harmonic functions

The proof Theorem 5.1 is based on the following estimate. Given a triangulated surface
(S, T),veV(T)and r >0, we use B, (v) ={j € V(T) | dc(j,v) <r} to denote the
combinatorial ball of radius » centered at the vertex i, where d, is the combinatorial
distance on 7).

Proposition 5.10 Suppose (P,7’,[) is a polygonal disk with an equilateral trian-
gulation and T is the n" standard subdivision of the triangulation T’ with n > e10°,
Let n: E = E(T) — [1/M, M] be a conductance function and A: RV — RY be the
associated Laplace operator. Let Vo C V(T be a thin subset, such that for all v e V

and m < %n, | B (v) N Vo| < 10m. If f:V — R satisfies (Af); =0 fori € V-1V,
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[((Af)i| < M/\/In(n) for i € Vy and ZieVO [(Af)i| < M, then, for all edges [uv]
in, 200M3

VIn(In(n))

Proof Fix an edge [uv] in the triangulation 7. Construct a function g: V =V(T) —> R

| fu—=fol =

by solving the Dirichlet problem (Ag); = 0 for i # u, v, and g, =1 and g, = 0. By
the maximum principle, we have 0 < g; < 1. By the identity ) ;.,(Ag); = 0 and
since g is not a constant, we obtain (Ag),, = —(Ag)y # 0. Using Green’s identity that
Y iev(fi(Ag)i —gi(Af);) =0 and the assumptions on f and g, we obtain

Ju(AQ)u + fo(Ag)y — Z gi(Af)i =0.

ieVy
Since (Ag)y = —(Ag)uy, this shows
1
— fo= i(Af);.
Ju—So (A2)u iGXV: gi(Af)i
0

On the other hand, by the maximum principle g, — g; > 0, we have |(Ag)y| =
1> (&) — )| = X Mju(gu — &) = (1/M)(gu — gv) = 1/ M . Therefore,

(41) [fu—fol M|~ gi(Af)i
i€V

To estimate the right-hand side of (41), take r = [ {/In(n)] and select a ¢ B, (u). Then,
using 0 =3 ey (Af)i = D iey, (AS)is 1gil <1, (41) and Lemma 5.11 below, we

obtain
|fu= Lol M| D" gi(Af)i| =M | (g —ga)(Af»-'
i€y i€V
<MY (g —ga)lI(AF)i
ieVy
fM( Y lgigdlanle Y |gi—ga||(Af)i|)
i€VoNB,(u) i€Vo—B,(u)

IA

2M 100M
M( ln(n)WOmBr(u)Hmiezvomfm)

<M|:2OM3ln(n) 100M?2 ]
UL Vi V()
200M 3

= VIn(In(n))
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In the last two steps, we have used |Vo N B, ()| < 10r = 104/Inn and n > 1% to

ensure 1/vIn(¥/In(n)) > ¥In(n)/~/In(n). O

Lemma 5.11 Assume (P,7',1),T,E, M, n and A are as given in Proposition 5.10,
and g is as given in the proof of Proposition 5.10, ie (Ag); =0 fori #u,v, and g, =1
and g, =0. If 100 <r < %n and {a,b} N B,(u) = @, then

100M

_ < .
|ga — gl < o)

The strategy of the proof of Lemma 5.11 is similar to that of Lemma 5.9.

Proof For k < %r, let Uy ={i € V |d.(i,u) = k}. Since T is an equilateral
triangulation of a flat surface, we have |Uy| < 6k. Recall that a subset U of V = V(T)
is called connected if any two points in U can be joined by an edge path in 7(!) whose
vertices are in U. Each subset U C V is a disjoint of connected subsets, which are
called connected components of U. We claim that there exists a connected component
Gy of Uy such that {a, b} lies in a connected component of V — Gy. To see this,
note that, since 7 is the n™ standard subdivision of 77, for all k < %r < %n, the set
Bi(u)=1{i €V |d.(i,u) <k}is connected and By (u)¢ = {i € V|d.(i,u) > k} has
at most two connected components which are also connected components of V — Uy,.
If By (u)€ is connected, then Uy is connected and we take Gy = Uy. If B (u)€ has
two connected components R and R;, then there exists a nonflat boundary vertex
v’ € R such that d.(u,v’) < 3k < r. This shows that v’ € B,(u). See Figure 10.
The component R, is contained in B, (u) due to d.(v',u) <r. Since a,b ¢ B, (u), it
follows that @ and b are in R1. We take G to be the connected component of Uy such
that R; is a connected component of V' — Gy.. Therefore, the claim follows.

Let us assume without loss of generality that g, < g;. By the maximum principle
applied to g on the connected graph whose vertex set is the connected component of
V — Gy containing {a, b}, there exist two vertices u, u) € Gy such that

Sur =8 and gy < gq.

Let Ej be the shortest edge path with vertices in G connecting uj to u;c and Ej
be the set of all oriented edges in E. The length of Ej is at most |G| < 6k. The
Dirichlet energy of g on the graph T is

[r/3]
I | 1
(42) £(3) = Z nij(8i =8/ = 57 Z(gi ~&)’ 257 D Zﬁ (gi—gj)>
i~j i~j k=1{ijleEx
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Figure 10: Triangulated polygonal disks.

Suppose wo = ug ~ wi ~wp ~ -~ Wy = u;( is the edge path Ej, where [} < 6k.
Then, by the Cauchy—Schwarz inequality, we have

Ix Iy 2
(43) % Z (& _gj)z = Z(gwi _gwi_1)2 Z i(Z(gwl _gwi_l))

lij1eE) i=1 i=1

(&a —gb)z_

1 2
zE(guk—gu;) > =

Combining (42) and (43), we obtain

[r/3]
o1 (8a—8p)? N~ 1 _ (8a—8p)°In(r)
- 2M 6 . k — 100M

(44) £(g)

1=

On the other hand, by the Dirichlet principle we have £(g) < % doin jnijChi —h )2
for any h € RY such that h, = 1 and h, = 0. Take h to be h, = 1 and h; = 0
for all i € V —{u}. We obtain £(g) < %Ziwj nij(hi —hj)*> < 6M. Therefore,
(gp — ga)?In(r)/100M < 6M, which implies

100M

|gp — gal = \/m
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5.5 A proof of Theorem 5.1

For simplicity, a boundary vertex v € P—{p, ¢, r} with nonzero curvature will be called
a corner. Note that corners in 7 and its n'" standard subdivision T(n) are the same. In
particular, the total number of corners is independent of n. Let V. be the set of all corner
vertices. Since P is embedded in C, given a corner v € V,, the degree m of v has to be
3, 5 or 6. Consider the combinatorial ball By, /3)(v) of radius [%n] centered at a corner
v € V in T(y). By construction, By, /31(v) N By, 3)(v") = @ for distinct corners v and v’
Each By, /31(v) is a union of m — 1 [%n]t standard subdivided equilateral triangles
Aq,...,Ap—1 in 7. Applying Theorem 5.6 with « = 7 /(m — 1) to the triangulated
equilateral triangle (A;, v) foreachi =1,2,...,m—1, we produce a discrete conformal
factor w(A;) € RV(A1) for each A; such that, if a vertex u € V(A;) N V(Aj), then
Wy (A;) = wy(Aj). In particular, there is a well-defined discrete conformal factor
w(B[,/31(v)) on By, 31(v) obtained by gluing these w(A;). See Figure 8. Define
w®: V(Tn)) — R as follows: if u € Jyey, Bpny3)(v). then wil = Wy (B3 (v))
for u € B, 3)(v) and w® (w) =0 for u ¢ Uvch B /31 (v). Let [ =w® x ls; be the
PL metric on 7,) and K be its the discrete curvature. Let K*: Vin) — R be defined by
K =0ifi ¢{p.q.r}, and K = 27” ifi € {p,q,r}. By Theorem 5.6, the PL metric
[ and K satisfy the following:

(a) The curvature I?l- = K at all vertices i such that d.(i,v) # [%n] for some

corner v € V.

®) w” =0fori ¢,y Brusa(v).
(¢) All inner angles at a corner v € V, are in [ £, Z].

& ol

) |Ki— K| <4000/y/In(n) and ),y |K; — K| < 5N, where N is the number
of corners in P.

(d) All inner angles at a noncorner vertex are in [

We will find a discrete conformal factor w®: Vin) = R such that w?® [ and its
curvature satisfy Theorem 5.1 by solving the system of ordinary differential equations
in w(t) R

dKi(w(t)=1)

T = Kl?" —I?i forall i € V(Tn)) —1{p.q.7},

“5) ws(t) =0 forall s € {p,q,r},

w(0) = 0.

Let K(t) = K(w(¢) * [ ). Note that (45) and the Gauss—Bonnet formula imply that
K;,(t) =K, - I?p. By Lemma 5.5, the solution w(z) exists on some interval [0, €).
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Our goal is to show that, for n large, the solution w(z) exists on [0, 1]. In this case, the
conformal factor w® is taken to be w(1). The required discrete conformal factor w,,
in Theorem 5.1 is taken to be w® 4w,

Consider the maximum time #y such that the solution w(z) to (45) exists for ¢ € [0, #g)
and the PL metrics w(t) * [ satisfy:

() All inner angles at a corner v € V are in [£ — 1555 5 + 1055 -

(d’) All inner angles at a noncorner vertex are in [% ~ 000" 51977(; + u;TW]'

Let Vo = Uvch {i € Vi | de(iv) = [%n]} By construction, |B,(i) N V| < 10r
for all 7 < $n. Then Y, ey (AW ())i] = Y ey, KL <Y ey, |Ki — KX <EZN
and |(Aw');| = |K!(t)| < |K; — K| < 4000/,/In(n). Choose M = max{4000, ZN}.
Then, by (¢’), (d'), (e) and the formula cot(a) + cot(h) = sin(a + b)/sin(a) sin(b), for
all £ € [0, 7o), we have 7;; () = nij (w () %) € [ 3055, 4000] C [1/ M, M], (Aw'); =0
fori € V(T)) — Vo, [(Aw');| < M/\/In(n) and >iev, [(Aw');| < M. Tn summary,
f = w’ satisfies the conditions in Proposition 5.10 for all ¢ € [0, ¢9). By Proposition 5.10,

if i ~ J, then 200M3

VIn(In(n))

On the other hand, by the variation of angle formula (6) and M > |c0t(0i’j.)|, we have

|[wi (1) —wj (1)] <

dok . ~
— 2| < [eot(B) (w) — wp) |+ leot(8) (w] —w})

400M

VIn(In(n))

p

< M(|w} —wp |+ |w; —wy|) <

Therefore, for ¢ € [0, #9) and sufficiently large n,
ok (w (1)) 400M*ty _ o

a1 "= /in(inn)) — 2000°

It follows that tg > 1 (or 9 = 00) since, otherwise, by (46), the choices of angles in
(¢), (d), (¢"), (d") and Lemma 5.5, we can extend the solution w(¢) to [0, fp + €) for
some € > 0 such that (¢’) and (d’) still hold. To be more precise, by Lemma 5.5 on the

t

46) 16k ()65 ) < [0

maximality of 79, we have either lim sup,_, ‘9]’ MOEE ‘ = Tooo for an inner angle 9; x
atacorneri € Vc, or limsup,_, Q}k(l) = % —Tooo OF limsup,_,, Q;k ()= SIQTJ(I;_FIJI:W
for an angle QJ’. & at a noncorner vertex i. But, due to (46), none of these conditions
holds if #9 < 1. Therefore the solution w(1) exists. By construction, the curvature K(1)
of w(l) x 1 is K(0)+ fol K'(t)dt = K + K* — K = K*. Furthermore, condition (c)

in Theorem 5.1 follows from (c¢) and (d').
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6 A proof of the convergence theorem

We will prove the following theorem:

Theorem 6.1 Let Q be a Jordan domain in the complex plane and {p,q,r} C 0.
There exists a sequence of triangulated polygonal disks (2p, Tn, dst, (Pn,qn,Tn)),
where T, is an equilateral triangulation and p,, q, and r, are three boundary vertices
such that

(a) Q= Uflozl Qp with 2, C Qy 41, and lim,, p, = p, lim, g, =¢q and lim,, r, =7,

(b) discrete uniformization maps f, associated to (2, Tn, dst, (Pn,qn,n)) exist
and converge uniformly to the Riemann mapping associated to (2, (p,q,r)).

Before giving the proof, let us recall Rado’s theorem and its generalization to quasi-
conformal maps. If ¢: D — Q is a K—quasiconformal map onto a Jordan domain €2,
then ¢ extends continuously to a homeomorphism ¢: D —  between their closures
(see [1, Corollary on page 30]). If K = 1, ¢ is the Carathéodory extension of the
Riemann mapping. A sequence of Jordan curves J, in C is said to converge uniformly
to a Jordan J curve in C if there exist homeomorphisms ¢, : S' — J, and ¢: S' — J
such that ¢, converges uniformly to ¢. Rado’s theorem [23] and its extension by Palka
[21, Corollary 1] states that:

Theorem 6.2 (Rado, Palka) Suppose €2, is a sequence of Jordan domains such that
02, converges uniformly to dQ2. If f,: D — Q, is a K—quasiconformal map for
each n such that the sequence { f,, } converges to a K—quasiconformal map f:D — Q
uniformly on compact sets of D, then ﬁ converges to f_ uniformly on D.

The following compactness result is a consequence of Palka’s theorem [21, Corollary 1]
and Lehto and Virtanen’s work [17, Theorems 5.1 and 5.5].

Theorem 6.3 Suppose 2, is a sequence of Jordan domains such that 92, converges
uniformly to dQ2 and K > 0 is a constant. Let py,qn,n, € 02y, and p,q,r € Q2 be
distinct points such that limy, p, = p, lim, g, = q,lim, r, =r and h,: D — Q, be
K —quasiconformal maps such that h,, sends (1, /—1,—1) to (pn.qn.rn). Then there
exists a subsequence {hy, } of {h,} converging uniformly on D to a K —quasiconformal
map h: D — Q sending (1,~/—1,—1) to (p,q.,r).

Now we prove Theorem 6.1.
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Proof Given a Jordan domain €2 with three distinct points p, g and r in d€2, construct
a sequence of approximating polygonal disks €2, such that

(1) each €2, is triangulated by equilateral triangles of side lengths tending to O,
(2) 0L2, converges uniformly to the Jordan curve 92 such that Q, C Qp4+1,

(3) there are three boundary vertices py,qn,’n C 022, such that lim, p, = p,
lim, g, = q and lim,, r, = r, and
(4) the curvatures of 2, at p,, g, and r, are ZT” and curvatures of 2, at all other

boundary vertices are not 27”

By Theorem 5.1, we produce a standard subdivision 7, of 2, and w, € RY ()
such that (Qp, Tn, wy * ly) is isometric to the equilateral triangle (AABC,T,,1,)
with a Delaunay triangulation 7, and A, B and C correspond to py,, g, and ry.
Let f4: (AABC,T,.(A,B,C)) = (24, Tn. (Pn.qn, 1)) be the associated discrete
conformal map and f: (AABC, (A, B,C))— (2. (p.q.r)) be the Riemann mapping.
We claim that f, converges uniformly to f on AABC.

To establish the claim, first, by Theorem 5.1, we know all angles of triangles in the
triangulated PL surface (AABC,T,,1;) are at least €9 > 0. Therefore, the discrete
conformal maps f, are K—quasiconformal for a constant K independent of n. By
Theorem 6.3, it follows that every limit function g of a convergent subsequence { f, }
is a K—quasiconformal map from int(AABC) to 2 which extends continuously to
AABC, sending A, B and C to p, g and r, respectively. We claim that the limit
map g is conformal. Indeed, by Lemma 4.7, the discrete conformal map £, !, when
restricted to a fixed compact set R of €2, maps equilateral triangles in 7,, which are
inside R to triangles of 7, that become arbitrarily close to equilateral triangles as
n — oo. Therefore, the limit map g of the subsequence f,, is 1-conformal and
therefore conformal in int(A ABC). The continuous extension of g sends A, B and C
to p, q and r, respectively, by Theorem 6.3. On the other hand, there is only one
Riemann mapping f: int(A) — 2 whose continuous extension sends A, B and C
to p, g and r, respectively. Therefore, g = f. This shows all limits of convergent
subsequences of { f,} are equal f. Therefore { f,,} converges to f uniformly on
compact sets in int(A ABC). By Theorem 6.2, f, converges uniformly to f. |

7 A convergence conjecture on discrete uniformization maps

We discuss a general approximation conjecture and the related topics of discrete
conformal equivalence of polyhedral metrics.
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7.1 A strong version of convergence of discrete conformal maps

As discussed before, the main drawback of the vertex scaling operation on polyhedral
metrics is the lacking of an existence theorem. For instance, given a PL metric on a
closed triangulated surface (S, 7, /), there is in general no discrete conformal factor
w: V — R such that the new PL metric (S, 7, w * [) has constant discrete curvature.

The recent work of [10] established an existence and a uniqueness theorem for polyhe-
dral metrics by allowing the triangulations to be changed.

Definition 7.1 (discrete conformality of PL metrics [10]) Two PL metrics d and d’ on
(S, V) are discrete conformal if there exist sequences of PL metrics dy =d, ..., dy, =d’
on (S, V) and triangulations 71, ..., Tmn of (S, V) satisfying:

(a) Delaunay Each 7; is Delaunay in d;.

(b) Vertex scaling If 7; = 7;+1, there exists a function w: V' — R such that, if

e is an edge in 7; with endpoints v and v’, then the lengths /4, , , (¢) and Iz, (e)

i+1
of e in d; and d;; are related by

(47) ldi_H (e) = ew(U)+w(v’)ldi (e).

(c) If T; # Ti+1, then (S, d;) is isometric to (S, d;j+1) by an isometry homotopic
to the identity in (S, V).

The main theorem proved in [10] is the following:

Theorem 7.2 Suppose (S, V) is a closed connected marked surface and d is a PL
metric on (S, V). Then, for any K*: V — (—o00,2n) with ), oy K*(v) =27 x(S),
there exists a PL metric d*, unique up to scaling and isometry homotopic to the identity,
on (S, V) such that d* is discrete conformal to d and the discrete curvature of d*
is K*. Furthermore, the metric d* can be found using a finite-dimensional (convex)
variational principle.

There is a close relation between the discrete conformal equivalence in Definition 7.1
and convex geometry in hyperbolic 3—space. The first work relating the vertex scaling
operation and hyperbolic geometry is by Bobenko, Pinkall and Springborn [3]. They
associated to each polyhedral metric on (S, 7, /) a hyperbolic metric with cusp end on
the punctured surface S—V (7). However, the Delaunay condition on the triangulation 7
was missing in their definition. The discrete conformal equivalence in Definition 7.1 is
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equivalent to the following hyperbolic geometry construction: Let (S, V, d) be a PL
surface. Take a Delaunay triangulation 7 of (S, V, d) and consider the PL metric d
as isometric gluing of Euclidean triangles T € 7. Consider each triangle 7 in 7 as
the Euclidean convex hull of three points v;, v2 and v3 in the complex plane C. Let
7* be the convex hull of {vy, vy, v3} in the upper-half-space model of the hyperbolic
3—space H3. Thus, t* is an ideal hyperbolic triangle having the same vertices as those
of 7. If o and 7 are two Euclidean triangles in 7 glued isometrically along two edges
by an isometry f considered as an isometry of the Euclidean plane, we glue t* and o *
along the corresponding edges using the same map f considered as an isometry of H?3.
Here we have used the fact that each isometry of the complex plane extends naturally
to an isometry of the hyperbolic 3—space H3. The result of the gluing of these t*
produces a hyperbolic metric d* on the punctured surface S — V. It is easy to see
that d* is independent of the choices of Delaunay triangulations. It is shown in [10]
(see also [11]) that two PL metrics d; and d5 on (S, V') are discrete conformal in the
sense of Definition 7.1 if and only if the associated hyperbolic metrics d* and d; are
isometric by an isometry homotopic to the identity on S — V.

Using this hyperbolic geometry interpretation, one defines the discrete conformal map
between two discrete conformally equivalent PL metrics d; and d5 as follows (see
[3; 10]). The vertical projection of the ideal triangle 7* to T induces a homeomorphism
¢a: (S—=V,d*) — (S —V,d). Suppose di and d, are two discrete conformally
equivalent PL. metrics on (S, V). Then the discrete conformal map from (S, V, d1) to
(S,V,dy) is given by ¢4, 0y od);ll where ¥ : (S, V,d[") — (S, V, dJ) is the hyperbolic
isometry. Note that in this new setting, discrete conformal maps are piecewise projective
instead of piecewise linear.

Theorem 7.2 can be used for approximating Riemann mappings for Jordan domains.
Given a simply connected polygonal disk with a PL. metric (D, V, d) and three boundary
vertices p,q,r € V, let the metric double of (D, V,d) along the boundary be the
polyhedral 2—sphere (S2, V', d’). Using Theorem 7.2, one produces a new polyhedral
surface (S2, V', d*) such that

(1) (S?,V’,d*)is discrete conformal to (S2, V', d’),

(2) the discrete curvatures of d* at p, g and r are 47”,

(3) the discrete curvatures of d* at all other vertices are zero, and
(4) the area of (S2, V', d*) is “/75
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Therefore, (S2, V', d*) is isometric to the metric double (D(AABC), V", d") of an
equilateral triangle AABC of edge length 1. Let F be the discrete conformal map
from (D(AABC),V",d") to (S%,V’,d’) such that F sends A, B and C to p, g
and r, respectively. Due to the uniqueness part of Theorem 7.2, we may assume that
f=F|:AABC — D and f sends A, B and C to p, g and r, respectively. We call
f the discrete uniformization map associated to (D, V,d, (p,q,r)).

A strong form of the convergence is the following:

Conjecture 7.3 Let (L2, (p, q,r)) be a Jordan domain in the complex plane with three
marked boundary points and (2, Tn., dsi, (Pn.qn.n)) be any sequence of triangulated
flat polygonal disks with three marked boundary vertices such that

(a) Tn is an equilateral triangulation,

(b) 0K, converges uniformly to 0%2,

(c) the edge length of T, goes to zero,

(d) lim, p, = p,lim, g, = ¢q and lim, rp, = 7.

Then the discrete uniformization maps f, associated to (2, Tn, dst, (Pnsqns¥n))
converge uniformly to the Riemann mapping associated to (2, (p,q,1)).

7.2 Discrete conformal equivalence and convex sets in the hyperbolic
3-space

We now discuss the relationship between the discrete conformal equivalence given in
Definition 7.1, ideal convex sets in the hyperbolic 3-space H? and the motivation for
Conjectures 1.5 and 1.6.

The classical uniformization theorem for Riemann surfaces follows from the special
case that every simply connected Riemann surface is biholomorphic to C, D or S2.
The discrete analogous should be the statement that each noncompact simply connected
polyhedral surface is discrete conformal to either (C, V, dg) or (D, V, dy), where V
is a discrete set and d; is the standard Euclidean metric. Furthermore, the set V is
unique up to Mobius transformations. For a noncompact polyhedral surface (S, V, d)
with an infinite set V, the hyperbolic geometric viewpoint of discrete conformality is a
better approach. Namely, discrete conformal equivalence between two PL metrics is
the same as the Teichmiiller equivalence between their associated hyperbolic metrics.
For instance, if we take a Delaunay triangulation 7 of the complex plane (C, dy)
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with vertex set V, then the associated hyperbolic metric d on C — V is isometric to
the boundary of the convex hull dCy (V) in H3. Therefore, a PL surface (S, V', d)
is discrete conformal to (C, V, dy) for some discrete subset IV C C if and only if
the associated hyperbolic metric d* is isometric to the boundary of the convex hull
dCy (V). It shows discrete uniformization is the same as realizing hyperbolic metrics
as the boundaries of convex hulls (in H3) of closed sets in dH?3. One can formulate
the conjectural discrete uniformization theorem as follows. Given a discrete set V'
in C or D, let d be the unique conformal complete hyperbolic metric on C — V'’ or
D — V' Then d is isometric to the boundary of the convex hull of a discrete set 1 C C
or (CU{oo}—D) UV, where V is discrete and unique up to Mobius transformations.
This is the original motivation for proposing Conjectures 1.5 and 1.6.

These two conjectures bring discrete uniformization close to the classical Weyl problem
on realizing surfaces of nonnegative Gaussian curvature as the boundaries of convex
bodies in 3—space. In the hyperbolic 3—space H?3, convex surfaces have curvature
at least —1. The work of Alexandrov [2] and Pogorelov [22] shows that, for each
path metric d on the 2—sphere S? of curvature > —1, there exists a compact convex
body, unique up to isometry, in H3 whose boundary is isometric to (S?,d). The
interesting remaining cases are noncompact surfaces of genus zero in the hyperbolic
3—space H3. A theorem of Alexandrov [2] states that any complete surface of genus
zero whose curvature is at least —1 is isometric to the boundary of a closed convex
set in HI3. On the other hand, given a closed set X C C, Thurston proved that the
intrinsic metric on dCyr(X) is complete hyperbolic (see [8] for a proof). Putting these
two theorems together, one sees that each complete hyperbolic metric on a surface
of genus zero is isometric to the boundary of the convex hull of a closed set in the
Riemann sphere. However, in this generality, the uniqueness of the convex surface is
false. Conjectures 1.5 and 1.6 say that one has both the existence and uniqueness if
one restricts to the boundaries of the convex hulls of closed sets.

There is some evidence supporting Conjectures 1.5 and 1.6. The work of Rivin [24]
and Schlenker [26] shows that Conjectures 1.5 and 1.6 hold if €2 has finite area (ie X is
a finite set) or if 2 is conformal to the 2—sphere with a finite number of disjoint disks
removed (ie X is a finite disjoint union of round disks). Our recent work [19] shows
that Conjecture 1.5 holds for 2 having countably many topological ends using the
work of He and Schramm on the K&be conjecture. In particular, we prove that every
noncompact simply connected polyhedral surface is discrete conformal to a marked
plane or a marked disk.
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Figure 11: Regular hexagonal square tiling.

One should compare Conjectures 1.5 and 1.6 with the K&be circle domain conjecture,
which states that each genus zero Riemann surface is biholomorphic to the complement
of a circle type closed set in the Riemann sphere. The work of He and Schramm [12]
shows that Kdbe conjecture holds for surfaces with countably many ends and the circle
type set is unique up to Mobius transformations. Uniqueness is known to be false for
the Kobe conjecture in general. Our recent work [19] shows that the Kobe conjecture
is equivalent to Conjecture 1.5.

We end by proposing the following conjecture. The work of Rodin and Sullivan [25]
and Theorem 1.3 show the rigidity phenomena for the two most regular patterns
(regular hexagonal circle packing and regular hexagonal triangulation) in the plane.
These rigidity results can be used to approximate the Riemann mappings and the
uniformization metrics. The third regular pattern in the plane is the hexagonal square
tiling in which each square of side length 1 interests exactly six others. See Figure 11.

Conjecture 7.4 Suppose {S; | i € I} is a locally finite square tiling of the complex
plane C such that each square intersects exactly six others. Then all squares S; have
the same size.
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