HatRPC: Hint-Accelerated Thrift RPC over RDMA

Tianxi Li*
The Ohio State University
Columbus, USA
li.9443@buckeyemail.osu.edu

ABSTRACT

In this paper, we propose a novel hint-accelerated Remote Proce-
dure Call (RPC) framework based on Apache Thrift over Remote
Direct Memory Access (RDMA) protocols, called HatRPC. HatRPC
proposes a hierarchical hint scheme towards optimizing hetero-
geneous RPC services and functions. The proposed hint design is
composed of service-granularity and function-granularity hints for
achieving varied optimization goals and reducing design space for
further optimizing the underneath RDMA communication engine.
We co-design a key-value store called HatKV with HatRPC and
LMDB. The effectiveness and efficiency of HatRPC are validated
and evaluated with our proposed Apache Thrift Benchmarks (ATB),
YCSB, and TPC-H workloads. Performance evaluations show that
the proposed HatRPC approach can deliver up to 55% performance
improvement for ATB benchmarks and up to 1.51X speedup for
TPC-H queries compared with vanilla Thrift over IPoIB. In addition,
the co-designed HatKV can achieve up to 85.5% improvement for
YCSB workloads.

CCS CONCEPTS

« Networks — Network protocols; - Computer systems orga-
nization — Architectures.

KEYWORDS
RDMA, Hint, Code Generation, RPC, Thrift

ACM Reference Format:

Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu. 2021. HatRPC: Hint-Accelerated
Thrift RPC over RDMA. In The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC "21), November 14-19, 2021,
St. Louis, MO, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3458817.3476191

1 INTRODUCTION

With the convergence of High-Performance Computing (HPC),
Big Data, and Artificial Intelligence, more and more data center
applications have started leveraging modern HPC technologies

*Tianxi Li and Haiyang Shi contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC °21, November 14-19, 2021, St. Louis, MO, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11...$15.00
https://doi.org/10.1145/3458817.3476191

Haiyang Shi*
The Ohio State University
Columbus, USA
shi.876 @buckeyemail.osu.edu

Xiaoyi Lu
University of California, Merced
Merced, USA
xiaoyilu@ucmerced.edu

to accelerate the performance of their codes. Along with this di-
rection, high-performance networking technologies, such as Re-
mote Direct Memory Access (RDMA), have been widely adopted in
many data center applications recently, such as RPC [40], key-value
stores [36, 46, 54, 65], distributed file systems [29, 31, 32], database
systems [31], and deep learning frameworks [18, 34, 42, 50], etc.

RDMA has been proven that it can deliver high throughput, low
latency, and low CPU utilization to data center applications [32, 36,
50]. However, one of the major burdens of using RDMA is its low
productivity for application development. The defacto standard of
programming with RDMA is by using a user-space communication
library, called verbs [45]. verbs provides many low-level network
primitives, such as post_send, post_recv, poll_cq, etc. These low-level
primitives can give a lot of flexibility for the applications to design
efficient communication protocols, while it typically requires the
developers to spend much effort and time on programming, de-
bugging, and tuning the code for achieving high performance and
scalability. For instance, based on our experience, even for a simple
communication program with verbs (like hello world on verbs), we
need to write around 600 lines of code (LOC). Unified Communica-
tion X (UCX) [7] has been proposed to ease the programming with
RDMA. It includes various transports and has more understand-
able APIs than verbs. However, the hello world example [11] given
by the library repository is still more than 500 LOC. Hence, UCX
does not ease users’ RDMA programming a lot. Such a situation
motivates us to rethink a fundamental challenge facing the RDMA
community: Can we propose an approach which can allow appli-
cations to use native RDMA-based communication protocols while
significantly improve application developers’ productivity? To ad-
dress this challenge, this paper further investigates the following
research problems.

1. Can we design an approach to automatically generate
efficient RDMA-based communication substrates for data cen-
ter applications? Since directly programming with verbs is very
difficult, this inspires us to explore whether we can generate RDMA-
based communication substrates fully or partially for data center
applications. If so, applications can achieve both high performance
and high productivity.

2. How can the proposed approach satisfy different com-
munication requirements on various RDMA protocols in data
center applications? Datacenter applications typically need sup-
ports for different performance goals (like latency-sensitive or
throughput-sensitive), varied payload sizes, unpredictable concur-
rences, etc. These are all significant challenges to make such an
efficient code generation approach become viable.

3. How can we guarantee the effectiveness and efficiency
of the generated RDMA-based communication protocols for
heterogeneous data center applications? If such a code gener-
ation approach becomes available, we still need to validate and

SC ’21, November 14-19, 2021, St. Louis, MO, USA

evaluate whether the generated RDMA-based communication sub-
strates can effectively and efficiently support end applications.

After we seriously explored the answers for the above-mentioned
problems, we have soon realized that it could be impossible or very
difficult to design a generic code generation approach for generat-
ing and optimizing RDMA communication substrates in all kinds
of data center applications. However, through our investigations,
we find that if we can leverage some existing widely used code
generation frameworks in data center systems and applications, we
can significantly reduce the complexity of these research problems.

In this paper, we find that Apache Thrift [58] can become a
promising code generation framework for achieving our objectives
to a great extent. First of all, Apache Thrift is an open-source Remote
Procedure Call (RPC) framework. RPC is the most widely used
communication mechanism in distributed data center applications.
RPC is very flexible and productive so that it can easily satisfy
different communication requirements in data center applications.

Second, Apache Thrift has a well-modularized architecture, which
contains a communication transport layer together with a compiler
to generate modules in support of connection establishment and
message passing. Even though default Apache Thrift does not have
the native RDMA support in its transport layer yet, the modularized
architecture of Thrift allows us to extend it to enable RDMA-based
communication.

Thirdly, Apache Thrift provides an extensible code generation
framework based on flex [13] and Bison [2], which can be extended
to support customized code generation approaches.

Based on these observations, this paper proposes a novel code
generation approach based on Apache Thrift RPC library for auto-
matically generating and optimizing RDMA-based communication
substrates via a hierarchical hint scheme. We call it HatRPC, which
stands for Hint-Accelerated Thrift RPC framework over RDMA.

The key ideas of the HatRPC approach include: 1) Proposing a
hierarchical hint scheme towards optimizing heterogeneous RPC
services and functions. To achieve varied optimization goals and
reduced design space for further optimizing the underneath RDMA
communication engine, the desired hint scheme is shown in Fig-
ure 1. The hierarchical hint scheme is composed of vertical hints
(i.e., Service Level Hints and Function Level Hints) and lateral hints
(i.e., Server Hints and Client Hints). These hint granularities are
necessary to support heterogeneous RPC services/functions and op-
timization isolation. 2) Proposing a new abstraction, named TRdma,
as a bridge layer for RPC engine and underneath RDMA engine.
We intentionally keep the programming model of TRdma fully com-
patible with that of TSocket, which is the default programming
interface for Socket-based communication in Apache Thrift. With
this idea, the code generator can reuse essential codes in Apache
Thrift for both TSocket and TRdma, which can significantly reduce
the design and development complexity of HatRPC. 3) Extensively
examining state-of-the-art RDMA communication protocols for dif-
ferent communication scenarios. Based on our analysis, we are able
to create a novel mapping between user-input hints to low-level
RDMA protocols.

In general, different kinds of RDMA-based communication en-
gines can be plugged into HatRPC. The unique feature of our pro-
posed RDMA engine under HatRPC is its capability of supporting
hint-aware RDMA protocols.

Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

Service Echo { Service Level Hints

Shared Hints | Server Hints | Client Hints

Func Ping() Shared Hints | Server Hints | Client Hints

}
Service Level Hints . T .
. . Function Level Hints
Service Mail { |

Shared Hints | Server Hints | Client Hints l

Func Post() Shared Hints | Server Hints | Client Hints
Func Deliver() Shared Hints| Server Hints | Client Hints

Figure 1: RPC IDL File with Desired Hint Scheme

To demonstrate the usability of HatRPC, we further co-design a
key-value (KV) store, called HatKV, based on HatRPC and LMDB [1].
Then, we extend the YCSB [22] benchmarking framework to sup-
port HatKV. The effectiveness and efficiency of HatRPC are vali-
dated and evaluated with our proposed Apache Thrift Benchmarks
(ATB), YCSB, and TPC-H [61] workloads. ATB contains benchmarks
for evaluating RPC latency, throughput, and workloads with service-
or function-level hints. All ATB benchmarks are developed based
on the generated code skeletons by HatRPC.

Performance evaluations show that the proposed HatRPC ap-
proach can deliver up to 55% performance improvement for ATB
benchmarks and up to 1.51x speedup for TPC-H queries with 1TB
input data size, compared with vanilla Thrift running over a 10-
node InfiniBand EDR (100 Gbps) cluster. HatKV can also achieve
up to 85.5% performance improvement in the YCSB evaluations.

We present in this paper the following contributions:

e We analyze nine state-of-the-art RDMA protocols and demon-
strate the requirements of hints for accelerating RDMA pro-
tocols.

e We propose HatRPC, enabling Apache Thrift RPC framework
over RDMA, which is further accelerated by the proposed hi-
erarchical hint scheme. HatRPC supports generating RDMA
communication substrates for heterogeneous data center
applications, which can significantly ease the RDMA pro-
gramming and usage.

e We present a co-design example (i.e., HatKV) and detailed
evaluations with various workloads to validate the effective-
ness and efficiency of HatRPC.

To the best of our knowledge, this is the first work to propose a
hierarchical hint scheme towards achieving various optimization goals
for heterogeneous RPCs over RDMA. Also, this is the first attempt to
explore a practical code generation approach for RDMA.

This paper is organized as follows. Section 2 provides background
about the Apache Thrift and RDMA for data center applications.
Section 3 analyzes state-of-the-art RDMA protocols along with
their characteristics. Section 4 elaborates on our HatRPC, starting
from the hint design, code generation to our RDMA communication
engine and a co-designed KV store. Section 5 presents the detailed
evaluation methodology and results. Section 6 lists the related work
and Section 7 concludes this work.

2 BACKGROUND

This section presents some necessary background information.
Overview of Apache Thrift: Apache Thrift is an open-source
Remote Procedure Call (RPC) framework. The framework adopts a

HatRPC: Hint-Accelerated Thrift RPC over RDMA

protocol stack together with a compiler to generate modules in sup-
port of connection establishment and message passing. It is portable
across several platforms and supports multiple languages including:
C, C++, Java, Perl, PHP, Python, Ruby, Rust, Swift, etc. Thrift is
advantageous in generating templates thus the users can write their
logic without concerns about the low-level implementations.

As shown in Figure 2, each layer in the hierarchy has multiple
options tuned for different needs. The Protocol layer is for serializ-
ing and deserializing the messages across different architectures.
Transport Wrapper is an enhanced layer boosting the performance
of the communication. The Low-Level Transport layer implements
how the data will be sent and received. Because of these many
advantages, Thrift has been widely used in data center applications.

‘ Client/Server || Client Forking|Non-Blocking| Simple | Threaded ‘ Threaded
Server Server Server | Server |Pool Server
‘Thrift ProtocoIH Binary H Compact H JSON H Multiplexed ‘
‘ Juansocs H Buffered H Framed H HTTP H Zlib ‘
Wrapper
Low-Level . Memory | . Unix Domain S
Transport H File ‘ Buffer Pipe HTCP/IPH TLS ‘ Socket ‘l\RDMAJ

‘ as3 ‘c,glib‘ C++ ‘ C# ‘ D ‘ dart |erlang‘ go ‘ lua ‘
‘ java ‘ node.jsl perl ‘ php ‘ python ‘ ruby ‘ rust ‘ haskell ‘

‘ Language

‘ 0os ‘ ‘ Windows H Linux ‘

Figure 2: Overview of Thrift Architecture

RDMA for Data Center Applications: RDMA (Remote Direct
Memory Access) allows one node to access another node’s mem-
ory remotely without the involvement of the operating system. It
utilizes several techniques that aim to increase the throughput and
cut the latency. Zero-copy can eliminate the cost of extra copies
of data from userspace to operating systems, which is helpful in
improving the performance. In addition, the RDMA communication
can bypass the kernel of both the source and the destination, reduc-
ing the overhead of the context switch. In contrast to the excellent
performance it provides, the RDMA code is hard to write. Even a
simple demo will have hundreds of lines in comparison to the ease
of programming with POSIX Sockets. Since RDMA and Thrift are
both very popular in designing distributed systems, integrating the
feature of RDMA into Thrift seems inviting and promising, which
motivates us investigating along with this research direction.

3 ANALYSIS OF STATE-OF-THE-ART RDMA
PROTOCOLS

In recent years, there have been many research works in the commu-
nity to take advantage of the ultra-low latency and high bandwidth
of RDMA in designing high-performance communication schemes.
Many design approaches and guidelines have been proposed by
both industry and academia. However, there is no one-size-fits-all
approach for various applications. Even small differences in applica-
tion requirements significantly affect the performance of different
design approaches. For instance, [37] shows that a general-purpose
RPC design that performs best for a key-value store delivers lower
scalability and 16% lower throughput than the best design for a
networked sequencer. Therefore, even a well-tuned RPC framework
in a complicated distributed system could not deliver optimized

SC ’21, November 14-19, 2021, St. Louis, MO, USA

performance to all kinds of RPCs. Fortunately, we come up with
HatRPC, a hint-accelerated RPC over RDMA design, to address this
challenging problem. In this section, we first recall some represen-
tative design choices for RDMA-accelerated RPC frameworks and
then elaborate on the methodology in designing HatRPC.

3.1 RDMA Protocols

We evaluate different RDMA protocols with RPC-like workloads,
which transfer fix-sized messages between client(s) and a server.
For each iteration in the experiments, client(s) send message(s) to
the server. Once arrived at the server-side, messages are processed
by the server and the results are either sent back to the client by
the server or fetched back from the server by the corresponding
client. The experimental setup for the evaluations in this section
can be found in Section 5.1.

Figure 3 illustrates typical implementations of nine representa-
tive RDMA protocols. Eager protocol (i.e., Eager-SendRecv in Fig-
ure 3a) is a widely-used and well-studied RDMA protocol [41, 47,
62]. With the Eager protocol, each buffer slot of the pre-registered
circular buffers for serving control messages has extra room to
carry out a data payload. Such that a payload is able to be sent
out together with a control message in the same trip. However,
the data payload has to be copied from a user buffer to a slot of
the pre-posted circular buffers. Consequently, we usually use Ea-
ger protocol for small messages to avoid expensive memory copy
overhead and reduce memory footprint. Rendezvous protocols are
therefore designed to efficiently transmit large data payloads. To
deliver a data payload by the rendezvous protocol, the initiator
and the target have to exchange the metadata of the payload. Thus,
the target can either prepare a buffer that the initiator can write
to or fetch the payload from the initiator. There are mainly two
types of rendezvous protocols. RDMA WRITE-based rendezvous
protocol (i.e., Write-RNDV in Figure 3d) has been used in MPI for
decades [39, 62] because of its capability of reducing memory foot-
print and improving scalability. RDMA READ-based rendezvous
protocol [41, 60, 62] (i.e., Read-RNDV in Figure 3e) is an alterna-
tive to Write-RNDV protocol as it also delivers optimized memory
utilization and scalability.

Figures 3b, 3c, and 3f show three RDMA protocols that are de-
signed for further optimizing performance. Direct-Write-Send pro-
tocol [66] in Figure 3b uses an RDMA WRITE to write data to a
pre-known, pre-registered message buffer on the remote side and
an RDMA SEND to notify the peer the existence of an available
message in the pre-known message buffer. Chained-Write-Send pro-
tocol [25, 36, 37] in Figure 3c adopts the same idea as Direct-Write-
Send except that it chains the successive RDMA WRITE and SEND
as one chained Work Request (WR) to reduce Memory-Mapped
I/0O (MMIO) over the PCle bus. Another alternative approach is
as shown in Figure 3f, Direct-WriteIMM protocol [25, 43] uses an
RDMA WRITE_WITH_IMM to replace the chained RDMA WRITE
and SEND in Chained-Write-Send protocol. These protocols are
useful and performant in some use cases, but all of them require
the remote peer has a pre-known and pre-registered message buffer
that is reserved for each connection. It is easy to reason that the
reserved message buffer is not feasible to serve all message sizes
and needs to protect against being overwritten.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

In recent years, there have been many research works focusing
on offloading some portion of workloads to clients by leveraging
RDMA READ. Figures 3g-3i depict three pre-known designs to-
wards achieving server-bypass. Pilaf [46] (a key-value store) uses
~3.2 RDMA READs for each GET request on average even with read-
heavy workloads [59]. Therefore, we use three RDMA READs (two
READs for fetching metadata and one READ for getting payload)
to study its performance implications for RPC-like communication.
Similarly, FaRM [23] (a key-value store) needs >2 RDMA READs
per GET (at least one READ for fetching the index entry, and one
for fetching the value) [37], while RFP [59], an RDMA-based RPC
paradigm, claims that it usually gets the whole data and metadata
with one single RDMA READ. Therefore, we implement FaRM and
RFP accordingly as shown in Figures 3h and 3i, respectively.

3.2 Performance Characterization

Our comprehensive evaluations on these representative RDMA
protocols with RPC-like workloads present that they have varied
characteristics and performance implications. We typically elabo-
rate the evaluation results from three perspectives: performance
(i.e., latency and throughput), concurrency, and resource utilization.
The goal of the following analyses is to clarify how we can use hints
to narrow down design space for designing RDMA-accelerated RPC
frameworks and why the proposed hint design is able to meet the
desired requirements of RPC frameworks.

As shown in Figures 4 and 5, we vary message sizes, number of
clients, and Completion Queue (CQ) polling mechanisms to study
their impact on performance, concurrency, and resource utilization.
RDMA provides two polling mechanisms to check for the avail-
ability of new messages. The first approach is to busily poll NIC
to get new completion notifications. While busy polling guaran-
tees low latency it also consumes many CPU cycles. The second
mechanism uses events to signal new completion notifications. The
NIC raises an interrupt when a new message is available and wakes
threads that are waiting for this event. [51] shows that, compared
with busy polling, the event polling mechanism reduces the CPU
overhead to ~4% for a full-speed bidirectional transfer with 512KB
messages at the cost of a relatively higher latency. In terms of la-
tency performance comparison, we observe similar results when
carrying out the RPC-like latency benchmarks (single client to sin-
gle server communication). As shown in Figure 4, RDMA protocols
with busy polling deliver better latency performance than their
counterparts with event polling. These results also suggest that,
with busy polling, Direct-WriteIMM is the best choice for transfer-
ring small messages, and RFP protocol is suitable for message sizes
less than 1KB. The reason behind the observations is that, as shown
in Figure 3, they use one-sided RDMA operations to complete single-
round-trip RPC-like communication. On the other hand, we also
use busy polling for large messages to achieve better latency. While
Direct-Write-Send and Direct-WriteIMM perform very well, MPI
libraries and other applications usually use either Write-RNDV or
Read-RNDYV to achieve comparable latency performance, reduce
memory footprint, and improve scalability.

Figure 5 presents the results of our evaluations with multi-clients
to single-server throughput benchmarks. In addition to varying
message sizes, polling mechanisms, and number of clients, we bind

Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

clients to the NUMA (Non-Uniform Memory Access) node to which
the NIC is plugged, when the number of clients is less than or equal
to the number of cores of the bound NUMA node on our testbed
(i.e., under-subscription). Towards fully leveraging the CPU cores,
we do not employ NUMA binding for full-subscription and over-
subscription evaluations. As illustrated in the figure, busy polling
incurs significant performance degradation with over-subscription
setup for message sizes of 512B and 128KB. This is because busy
polling mechanism consumes much more CPU cycles than the event
polling counterpart and thereby is not as scalable as event polling.
Another insight we can get from the figure is that, for small mes-
sage sizes such as 512B, Direct-WriteIMM with event polling deliv-
ers the best performance for under-subscription, full-subscription,
and over-subscription setups. However, for large message sizes
like 128KB, we observe that the event polling mechanism is more
suitable. With event polling, Direct-WriteIMM outperforms other
protocols for under-subscription setup, while RFP delivers consid-
erable performance advantage over other protocols. This insight
also reflects the observation from the RFP paper [59] that issuing
a one-sided RDMA operation (i.e, out-bound RDMA) has much
higher overhead than that of serving one (i.e, in-bound RDMA).

3.3 Design Space Analyses

Through the comprehensive performance evaluations in Section 3.2,
we know that the design scope for a high-performance RDMA-
accelerated RPC framework is too broad, and there is no single
design and optimization can beat all others. Prior studies like AR-
gRPC [18], HERD [36], FaRM [23], and RFP [59], are optimized
towards specific types of applications or adopt relatively generic
design approaches to serve some common workloads. However,
as an RPC framework, optimizing for specific types of applica-
tions or adopting balanced design approaches for generic use cases
are far from the desired RPC design. The desired RPC framework
should perform well in not only homogeneous services/functions
but also heterogeneous ones. For instance, an RPC framework in
a distributed file system needs to fetch metadata from metadata
servers with low latency and write to (or read from) chunk servers
with high throughput. But for existing RPC frameworks, they are
not performant in this use case since they are not aware of the
heterogeneous functionality requirements. Motivated by the idea
of using hints in optimizing database query plans and cache man-
agement [19, 20, 38, 48, 52], we come up with a hint-accelerated
approach for effectively and efficiently serving heterogeneous ser-
vices and functions. This hint-accelerated approach enables applica-
tions to customize the optimization goal of each service or function,
such that our proposed RPC framework can select appropriate and
optimal RDMA designs based on the given hint set for these het-
erogeneous services/functions. Also, the applied optimizations are
isolated such that one optimized setup for a service or a function
has no side effects on other services and functions.

Figure 6 summarizes the major hint categories and their corre-
sponding design space. Compared with the design space of non-
hint-accelerated RPC frameworks, the figure illustrates that hints
are able to significantly narrow down the design space. Towards
optimizing concurrency performance, we have concurrency hint

HatRPC: Hint-Accelerated Thrift RPC over RDMA

SC ’21, November 14-19, 2021, St. Louis, MO, USA

@ Payload WR Client Server Client Server Client Server ClienStENSer
@ Ctl/Flag WR head__ @2END |
SE WRITE WRITE
@ Chained WR @D M t‘S@ SEND
Payload WR head] WRITE tail head
w/ IMM Data . o, tail~ EH———— v
== Metadata in WR tail head tail head w/ IMM
* Metadata Mismatch] -- -1
.: Data Process ---r® i

@ Circular Buffer (a) Eager-SendRecy

(b) Direct-Write-Send

(c) Chained-Write-Send (d) Write-RNDV

E_lienStE\NIS)erve Client Server Client Server Client Server Client Server
READ | @il pcag “y}\ﬁfq m_%’ w—\y}\ll\}fq ﬁ\ll\gfr
SEND —X: READ _é_’R_EéD/’ ’Rﬂ
head tail - - -4?&% -4936% =)
(e) Read-RNDV (f) Direct-WriteIMM (g) Pilaf (h) FaRM (i) RFP (Best Case)

Figure 3: RDMA Protocols. WR: Work Request. Dashed lines indi

icate that servers repeat the same procedures as what clients have done.

4 Eager-SendRecv “* Direct-Write-Send O Chained-Write-Send © Write-RNDV 4 Read-RNDV Direct-WriteIMM & Pilaf FaRM < RFP
?
2
=
<
£
]
=
-
4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 6K 128K 256K 512K 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)
(a) Latency Performance with Busy Polling (b) Latency Performance with Event Polling
Figure 4: Performance Impact of Different RDMA Protocols on RPC-like Communication Latency
[M Eager-SendRecv W Direct-Write-Send M Chained-Write-Send B Write-RNDV B Read-RNDV Direct-WriteIMM B RFP |
450 E 512 B Payload Size; Busy Polling 15 | 128KB Payload Size; Busy Polling ‘ 450 ‘ 512 B Payload Size; Event Polling 15 | 128KB Payload Size; Event Polling ‘
& : ‘;
=
=4
X 300 300 10
=
=
2
%
2 150 | ||| 150 5
= I
g I F-u Full ||| ||| Full
NUMABmdmg Over Subs. +— NUMA Binding —— Subs.Over Subs. LS s, bs. 7 NUMA Binding ——~Sups Over 3 V" “ 5
0 dadenen Illlll PITYTT] " I (][] B 0 RLlll Bl Mimidos Memsdie Meiimia umidch | 8sues
1 2 4 8 14 28 64 128 1 2 4 8 14 28 64 128 1 2 4 8 14 28 64 128 1 2 4 8 14 28 64 128
Number of Clients Number of Clients Number of Clients Number of Clients

(a) Busy Polling Throughput (512B)

(b) Busy Polling Throughput (128KB)

(c) Event Polling Throughput (512B) (d) Event Polling Throughput (128KB)

Figure 5: Performance Impact of Different RDMA Protocols on RPC-like Communication Throughput.

(y-axis) that includes three values, i.e., under-subscription, full-
subscription, and over-subscription. The x-axis shows the proposed
performance goal hint, which is comprised of latency, throughput,
and resource utilization. Each service and function in HatRPC can

also indicate a payload hint to guide our framework for better under-
standing about the payload size distributions. The design space of
each optimization goal is shown in the figure. For instance, if a ser-
vice or function is marked with over-subscription and throughput

SC ’21, November 14-19, 2021, St. Louis, MO, USA

hints, HatRPC will use event polling mechanism, and choose RFP
for large messages, Direct-WriteIMM for small messages. If applica-
tions care about resource utilization, for under-subscription setup,
HatRPC will use Direct-WriteIMM and Write-RNDV for small and
large messages, respectively. While for full-subscription and over-
subscription setups, the design space converges to Eager-SendRecv
for small messages and Write/Read-RNDV for large messages. This
is because that pre-registered buffers used by Direct-WriteIMM and
Eager-SendRecv for transferring small messages do not occupy too
much memory. However, for large messages, we cannot achieve
resource efficiency if we pre-register too much memory. In this
case, Write-/Read-RNDV is used for large message communication.

Payload Hint \
Small Payload Large Payload Event Busy

Concurrency Hint

| Direct-WriteIMM | | RFP (One Read) Wnte/Read RNDV 1|
Over Subs.
Dlrect WriteIMM Direct-WriteIMM Eager-Send-Recv
Full Subs.
_____________________ S
| Direct-WriteMM ' P Direct- WriteIMM ' { WrieRNDV 1
Under Subs. |- = ===="~= e | S
| Direct-WriteIMM | i | Direct-WriteIMM | | Direct-WriteIMM |
: : _
>
Latency Throughput Res. Util.

Performance Goal Hint

Figure 6: Design Space for Hints and RDMA Protocols

In this paper, we mainly focus on performance-oriented hints,
i.e., the hint categories in Figure 6. In addition to these hints, Ha-
tRPC also supports NUMA binding and hybrid transports (i.e., using
TCP for some services/functions and RDMA for other services/-
functions), etc. The evaluation in Section 5.5 presents the benefit of
using hints to support NUMA binding and hybrid transports.

4 DESIGN

In this section, we first clarify the goals and non-goals of HatRPC.
Then we illustrate the proposed hints to achieve the goals. Finally,
we discuss how we implement HatRPC within Apache Thrift and
what optimizations are adopted in HatRPC.
Non-Goals: a. We do not lay out guidelines for designing the best
RDMA-accelerated RPC frameworks. b. We do not aim to explore
all existing RDMA designs for RPC frameworks.

HatRPC instead strives to gain the following goals:
Hint Design with Minimized Overhead: The end-to-end per-
formance of RPC frameworks is an essential metric to upper-layer
applications, thus the proposed hint design should minimize its
overhead when we design hint-accelerated RPC frameworks.
Optimized Design Flexibility: Prior studies [17, 21, 23, 24, 36, 46,
65, 68] in the literature have comprehensively explored RDMA’s

Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

transports, primitives, and optimizations. All of these impressive
features of RDMA provide tremendous amount of opportunities for
designing high-performance systems. However, the design scope
is too broad, and there is no one-size-fits-all design yet. HatRPC
aims to adopt hints to indicate desired optimization goals for dif-
ferent RPC services or functions, such that the underneath RDMA
communication engine can figure out optimized execution plans
for them.

Optimization Isolation: We have seen many papers that have
proposed designs towards improving performance, scalability, or
resource efficiency (e.g., minimized CPU utilization and memory
footprint). These designs are globally applied to entire systems.
By contrast, this paper attempts to illustrate that hints are able to
deliver scalability, reliability, fast connection establishments, and
high performance with various granularities. That is, RPC services
and functions can simultaneously target different metrics and opti-
mizations by leveraging RPC hints.

4.1 Proposed Hierarchical Hints

Existing RPC systems like Apache Thrift [58] and gRPC [28] re-
ceive IDL file from users to generate RPC services. These IDL files
typically include user-defined data structures, constant variables,
and at least one service with one or several RPC functions. This
design partitions the file space into three scopes: global, service and
function space. The global scope does not belong to any services
but is visible and accessible by all the services. A service/function
scope exists for each service/function, respectively. Again, a ser-
vice scope is viewable by all the function it includes. This vertical
partitioning enables us to design the hints in a hierarchical way.
Our HatRPC supports service-level hints and function-level hints.
The service-level hints set tones for all the functions defined in the
service while the function-level hints realize a finer grained control
over the behavior of some particularly important functions. The
hints defined in the function level will override the same type of
hints with their own values defined in the enclosing service level,
only for that specific RPC function. Since Thrift typically maps one
service to one server instance, global-level hints and service-level
hints are overlapped. Thus, we target at service-level hints and
function-level hints in this work.

The hierarchical hint design is meaningful and crucial in real
world applications. Because some applications have heterogeneous
communication workloads and often desire different performance
goals, especially for RPC functions that need responsiveness, thereby
they should be allowed to use more resources than other functions
in the same service. On the other hand, it is common for a high
priority service to have unimportant functions, e.g., some func-
tions that are called periodically like heartbeats between server and
client. These functions neither require a lot of resources, nor have
critical performance requirement. With the function-level hints,
these functions can be optimized with low priority and give way to
other significant RPC functions.

Apart from the hierarchical design, we can also distinguish be-
tween the server side and client side, splitting the hints horizon-
tally. In many application scenarios, the performance requirements
for server and client are different. Particularly in the literature of
RDMA, the mechanism of busy polling which usually brings the

HatRPC: Hint-Accelerated Thrift RPC over RDMA

best performance can take up exceeding resources like CPU. This
frustrates the server which is often loaded with computation or
other intensive I/O tasks while the clients tend to be relatively idle
and free to use more resources for network. Another major distinc-
tion between server and client lies in the different targets that they
have. Servers with high concurrent connections and intensive com-
munications are often optimized towards overall throughput. In the
mean time, users or clients typically care more about responsive-
ness of the communication such that latency is their performance
goal. Based on these observations, we further enable the user to
give individual hints for server and client.

Figure 7 presents the syntax rules of HatRPC IDL file. It is based
on Apache Thrift’s IDL file [9] and extends the syntax to accommo-
date the user-defined hints. Hence, HatRPC is fully compatible with
the original Apache Thrift and existing Thrift applications can be
easily altered to leverage HatRPC. Service level hints are declared
before the functions inside the scope. Function level hints take
nearly identical format except that an additional pair of brackets
is required as the delimiter after the argument list. Horizontally,
‘HintGroup’ is separated by three keywords ‘hint’, ‘s_hint’ (server
side), ‘c_hint’ (client side), and a semicolon at the end. Within
each ‘HintList’ scope, key value hint pairs (‘Hint’) are separated by
comma. Hence, the extended syntax is consistent with that of the
original Thrift IDL syntax and made easy to understand and use.

Service ::= 'service' Identifier ('extends' Identifier)?
'{"' HintGroup* Function* '}'
Function ::= 'oneway'? FunctionType Identifier '(' Field* ')'

Throws? ListSeparator? FunctionHint?

FunctionHint ::= '[' HintGroup* ']'
HintGroup ::= 'hint' ':' HintList ';'
| 'c_hint' ':' HintList ';'
| 's_hint' ':' HintList ';'
HintList ::= Hint ',' HintList | Hint
Hint ::= key '=' value

Figure 7: HatRPC IDL File Syntax. HatRPC Abstract Syntax Tree
(AST) nodes are marked red. *” and ‘?” are Regex quantifiers.

4.2 Code Generation

In order to transform the user-defined hints to program-recognized
and -friendly syntax, we augment the Thrift code generator with
hint-related functionalities and propose the HatRPC code generator.
The HatRPC code generator first uses flex [13] to generate a lexical
analyzer called flex scanner. HatRPC also leverages Bison [2] to
generate the parser. The flex and Bison rule files are modified to
enable tokenizing and parsing user-defined hints.

As shown in Figure 8, the flex scanner first scans the IDL file
and recognizes hint related keywords. These texts are extracted to
a sequence of tokens for the Bison parser. The Bison parser defines
one-to-one mappings between a sequence of tokens and a grammar
node. Each grammar node consists of a matching rule, a function
and a return value type that is pre-defined as a class in HatRPC. The
parsing of the tokenized input starts from a matching process: The
parser traverses all grammar nodes’ definitions and chooses the first
(and only) node whose mapping rule satisfies the sequence of tokens.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Then the grammar node is added to an Abstract Syntax Tree (AST)
which grows in a top-down manner. The matched tokens are then
replaced by the grammar node in the sequence and the matching
continues until all the input tokens are transformed to grammar
nodes and added to the AST. The final task of the parser is to run
the function defined in each grammar node in a reverse direction, in
other words, from leaves to the root. A grammar node can proceed
its processing only when all its sub-trees have finished executing
and returned from their rule functions. This way, a grammar node
can use more detailed information collected from its children’s
return values.

HatRPC code generator prepares several global containers to
collect information about hints, RPC-related types and constants
during the execution of the rule functions. After the parsing proce-
dure, the code generator will first check the validity of each hint
key-value pair, filtering out the hints that have undefined types or
unsupported values. Then a merging process will group common
hints from the same level for conciseness and readability. When the
check, merge, and analysis steps are done, the hints are organized
and output as a hierarchical map in the generated files along with
the other RPC templates and skeleton for the runtime TRdma.

HatRPC flex HatRPC Bison]
flex Bison
ule file rule file
HatRPC IDL flex
with Hint scanner
Object

HatRPC Code [
Generator [

Generate Hierarchical Hint Map]
[Generate '"Hint+tRDMA'-based Services & Stubs]

Figure 8: Code Generation of HatRPC

Tokens

Bison parser

C++ Types &
User Hints

User Hints Check, Analysis and Merge

4.3 RDMA Communication Engine

The RDMA communication engine in HatRPC is enabled by two
layers. As shown in Figure 9, TRdma is a layer that bridges the un-
derlying RDMA engine with Thrift library. To be specific, TRdma
and TServerRdma are the counterparts of TSocket and TServer-
Socket in the original Thrift that use TCP/IP. Particular for RDMA,
we add TRdmaTransport, a class that is responsible for RDMA
handshaking. Upon connection establishment, A TRdmaEndPoint
is created that interfaces with the underlying RDMA engine.
When a HatRPC service generated from IDL files starts, the static
hints will be passed through TRdma layer and eventually to the
RDMA engine for RDMA initialization and connection establish-
ment. In some protocols, buffers need to be pre-allocated, registered
and exchanged during handshake, and proper parameters need to be
set up for creating queue pairs or completion queues. Later during
active communication, function-level hints are passed dynamically
for RPC calls. We minimize the overhead of the dynamic hints by
only passing the pointer and caching the RPC function type at a
high level and only pass hints when a new RPC function is invoked.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Inside the RDMA engine, the hints will be translated to RDMA-
related parameters and configurations. The configuration affects
both receiving (polling) and sending messages. The performance
goal hint plays a major role in determining the polling mecha-
nism. Hint ‘latency’ prioritizes busy polling while hint ‘throughput’
prefers event-based polling. Other hints like concurrency also affect
the decision. Our RDMA engine has implemented several protocols
that can be used for the suitable use case, including Eager-SendRecv,
Write-RNDYV, Direct-Write-Send, Direct-WriteIMM, and RFP. The
protocol selection algorithm is based on the results of the prelimi-
nary experiments shown in Figure 6.

Generate 'Hint+tRDMA'-based Services & Stubs

y setHints) v HatRPC Core
TServer TRdma TRdma
Rdma > TRdma > Transport > EndPoint
Y
HatRPC RDMA Engine

Hint2Conf Performance = Concurrency Payload .
Translator Goal Hint Hint Size Hint Other Hints
Polling Busy Polling Event Polling Adaptive Polling
Mechanism
RDMA Eager- | = Write- Direct- Direct- REP
Protocols SendRecv | RNDV | ‘Write-Send | WriteImm
Memory Pinned RDMA Buffer Shared RDMA Buffer
Mgmt Scheme per Connection Scheme over Connections

Figure 9: Hint-Accelerated RDMA Communication Engine
of HatRPC

While performance receives the most attention in previous works
about RDMA, it is not the sole focus in our HatRPC. Though RDMA
WRITE and RDMA READ do not involve remote side’s CPU, they
require exchanging pre-registered buffers’ information beforehand.
This typically implies that the buffer is pinned throughout the con-
nection and is exclusive to a pair of peers. When the scale expands,
especially at server side, memory could become a big problem. The
idle connection also needs to maintain the buffer, which possibly
prevents accepting new connections. Protocols including Direct-
Write-Send and Direct-Write-Imm are faced with such problems. On
the other hand, protocols like Write-RNDV and Eager-SendRecv are
more flexible and can improve the memory utilization. For the for-
mer, HatRPC pre-allocates and registers a buffer pool which makes
requesting memories fast during the communication. For the latter,
HatRPC will allocate a circular buffer. The size of each buffer slot
is equal to the Hybrid-EagerRNDV threshold (4KB). These small
buffers are posted to receive packets from remote side. In HatRPC,
if the performance goal is set to res_util (resources utilization), then
these two protocols are prioritized.

4.4 Co-design with KV Store

To demonstrate the effectiveness and ease of use of HatRPC, we
co-design a simple key-value store called HatKV with HatRPC. We
choose LMDB [1], a B-Tree based embedded database as the storage
backend. We later present the experiment results of HatKV with

Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

YCSB benchmark in Section 5.4. Figure 10 shows the overview of
HatKV with the IDL file for YCSB benchmark [22]. HatKV server
and clients communicate by RPCs that are generated by HatRPC.
Within the server handler, an LMDB instance will serve the requests.

We add MultiPUT and MultiGET operations in YCSB and tailor
the ‘payload_size” hint for each operation. Our evaluation uses fixed
key length of 24 bytes and fixed field length of 100 bytes. The field
count for each operation is 10. Furthermore, we set the batch size of
MultiPUT and MultiGET to 10. For each of the four RPC functions,
we set the function level hints accordingly. For instance, client
only transfers 1024 bytes for PUT, including the key and value,
while for MultiPUT, the batched key-value pair size can reach up
to 10240 bytes for a single RPC. Different payload sizes will result
in different optimal choices and HatRPC is able to adapt to the
best. Different function level hints can be applied to the server and
client separately. This again is based on their characteristics and
needs. It is especially important for PUT or MultiPUT since there
could be a big difference in the message size transferred by client
and server. In addition to applying hints to the communication
engine, we are inspired by the effective SQL Hints [3, 4, 6, 12, 63]
and make further efforts to optimize the LMDB backend through
hints. For instance, the number of max readers can be set according
to ‘concurrency hint’. Varied query, synchronization, and commit
strategies are adopted based on different protocols chosen such
that the interactions with LMDB will not hinder the critical path in
communication.

Apart from the fine-grained control over important RPCs through
function-level hints, we can add service-level hints to all the func-
tions of the service for conciseness. As in Figure 10, we add ‘con-
currency’ and the ‘perf_goal” hints for the whole service. These
two kinds of hints are often the pre-knowledge of the users and
can also help HatRPC choose the best protocol and configurations.

HatkV

Server
HatRPC
RPC (PUT/GET

HatRPC
Client Server LMDB
A / MultiPUT / MultiGET) A

Generate Generate

HatKV Client

HatRPC Code Generator

T Feed

Service Level, Shared Hints
service YCSB { !
hint: concurrency = 128, perf_ goal=throughput;

namespace cpp ycsb

i32 PUT(1l:binary key, 2:binary val)
[c_hint: payload size=1024; s_hint: payload size=4;]
binary GET(1l:binary key)

[c_hint: payload size=24; s_hint: payload_size=1000;]
list<i32> MultiPUT(1l:1list<binary> keys, 2:list<binary> vals)
[c_hint: payload size=10240; s_hint:payload size=40;]

list<binary> MultiGET(1l:list<binary> keys)
[c_hint: payload size=240; s_hint: payload_size=10000;]

Function Level,
Server Side Hints

Function Level,
} Client side Hints

Figure 10: HatKV with IDL File for YCSB. Hints are marked red.

HatRPC: Hint-Accelerated Thrift RPC over RDMA

5 EVALUATION

In this section, we conduct multiple experiments to evaluate the
effectiveness and efficiency of our proposed HatRPC. Our experi-
ments show that HatRPC is flexible and achieves high performance
and scalability in different scenarios.

5.1 Experimental Setup

Our test environment has 10 nodes in a cluster. Each node is
equipped with an Intel Skylake CPU, Xeon Gold 6132. The pro-
cessor has 28 cores and a frequency of 2.60GHz. The machine has
192GB of RAM and 1TB of HDD for storage. The cluster is con-
nected by Infiniband’s ConnectX-5 IB-EDR (100Gbps) and we use
MLNX_OFED_LINUX-4.7.

We evaluate HatRPC with three different benchmarks: 1) Apache
Thrift Benchmarks (ATB) that comprises of three benchmarks, a
latency benchmark, a multi-threaded throughput benchmark, and a
mix communication benchmark where clients will issue two differ-
ent RPCs. The two RPCs design is useful for demonstrating function
level hints in Section 5.3. 2) Extended YCSB benchmark [22] to study
the performance implications of the co-designed HatKV. 3) Stan-
dard TPC-H benchmark [61] with a commercial database system
applying HatRPC approach.

5.2 Evaluation with Service-level Hints

We first test the efficiency of the service-level hints with the latency
and throughput benchmarks from the ATB benchmark suite.

For latency evaluation, we mark the service in the HatRPC IDL
file with the performance goal hint of ‘latency’, concurrency hint
of ‘1”. With this hint setting, HatRPC can automatically select busy
polling as the polling mechanism and Direct-WriteIMM as the pro-
tocol. We uses varied payload sizes from 4B to 512KB for this bench-
mark. Figure 11 illustrates the latency of HatRPC and four other
protocols. Our HatRPC can always switch to the appropriate pro-
tocol and achieve the best performance. Quantitatively, for small
payload sizes (< 4KB), HatRPC improves the latency by 37% - 54%
over Hybrid-EagerRNDV and outperforms Direct-Write-Send by
up to 21%. Compared with RFP protocol, the latency performance
gain is from 18% - 25%. Since HatRPC is configured to use Direct-
WriteIMM with busy polling according to Figure 6, the difference
between HatRPC and Direct-WriteIMM is within 3%. For large pay-
load sizes (> 4KB), HatRPC can improve the latency by 20% - 51%
over Hybrid-EagerRNDV. The latency improvement is up to 38%
and 55% compared with Direct-Write-Send and RFP, respectively.
The gap between Direct-WriteIMM and HatRPC is negligible.

For the throughput evaluation, our test spans from a single client
scenario to a large scale environment of 512 clients. As shown in
Figure 12, we partition the x axis into three spaces based on the
machine’s hardware specifics. Particularly, For the Server Under
Subs (number of clients < 16), we also apply NUMA bindings to
all the protocol testings. In order to optimize the performance
towards throughput, we label the IDL file with performance goal
hint of ‘throughput’ and payload_size hint based on the test cases.
For small payload size (e.g., 512B), the best protocol is also Direct-
WriteIMM which upgrades the aggregated throughput by up to
14% compared with Hybrid-EagerRNDV and up to 20% over Direct-
Write-Send. Compared with RFP, HatRPC can also achieve up to

SC ’21, November 14-19, 2021, St. Louis, MO, USA

12% of performance gain. For large payload sizes (e.g., 128KB),
HatRPC uses Direct-WriteIMM with busy polling when the number
of clients is less than 16 and switches to RFP with event-based
polling when the concurrency is above the threshold 16. To compare
the performance, HatRPC gains up to 56% and 21% of benefits over
Hybrid-EagerRNDV and Direct-Write-Send, respectively. HatRPC
also delivers up to 15% of performance gain over RFP protocol
in small scale experiments (< 16 clients). When the number of
clients exceeds 16, RFP has the advantage and improves over Direct-
WriteIMM by 7% — 9%.

5.3 Evaluation with Function-level Hints

To show the flexibility and demonstrate the effectiveness of HatRPC,
we evaluate the performance of heterogeneous communication
workloads and patterns using the Mix Comm Benchmark in ATB.
We set up two RPC calls in the service. One function is marked with
the performance goal hint ‘latency’ and the other function with
hint ‘throughput’. Both functions are correctly labeled with the
payload size hint. The clients will randomly issue one of the two
RPC functions based on the ratio setting of the two functions. To
mimic the server processing in real applications, the service handler
at server side will compute a checksum whose overhead increases
with the payload size. We adopt a balanced configuration that has
50% of latency function calls and 50% throughput function calls,
respectively. We record the latency metrics for latency function
calls and throughput for throughput function calls.

As shown in Figure 13, for small message sizes (512B), HatRPC
improves the latency over Hybrid-EagerRNDV by up to 12% and
18% over Direct-Write-Send. Compared with RFP, HatRPC can also
improve the latency by up to 9%. For throughput function calls,
HatRPC can upgrade the throughput performance by up to 11%,
10%, and 8% compared with Hybrid-EagerRNDV, Direct-Write-Send
and RFP protocol, respectively. Throughout the test, HatRPC sticks
to Direct-WriteIMM for both latency and throughput function calls.

Figure 14 shows the Mix Comm Benchmark with large payload
size (128KB). In this case, the latency function calls will still go
through Direct-WriteIMM, achieving a latency cutdown of up to
12% over Hybrid-EagerRNDV. Compared with Direct-Write-Send
and RFP, HatRPC can improve by 6% and 7%, respectively. In terms
of throughput, HatRPC upgrades the throughput performance by
up to 25% and 14% over Hybrid-EagerRNDV and Direct-Write-Send,
respectively. When in the NUMA Binding section, RFP is inferior
to HatRPC by up to 11%. And when the concurrency exceeds the
threshold 16, HatRPC moves to use RFP and gains a boost of up to
7% over Direct-WriteIMM.

5.4 Evaluation of HatKV with YCSB

To illustrate the applicability of HatRPC, we study the performance
of HatKV with YCSB benchmark [22]. We deploy 4 nodes in the
cluster to run a total of 128 clients and 1 node to run the server.
The server node saves LMDB lock file and data file in tmpfs and
reserves 32GB for the memory map. We halve the proportion of GET
and PUT in YCSB workload-A and B for MultiGET and MultiPUT,
respectively. Thus, workload-A has the proportion of 25% for GET,
PUT, MultiGET and MultiPUT, respectively and workload-B has
47.5% of GET and MultiGET, 2.5% of PUT and MultiPUT. The key

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

& HatRPC = Hybrid-EagerRNDV ‘ 4 HatRPC * Hybrid-EagerRNDV O Direct-Write-Send Direct-WriteIMM % RFP ‘
‘O Direct-Write-Send Direct-WriteIMM 600 1i - 40 1 "
A RFP i 512 B Payload Size i 128 KB Payload Size
450 500
@ 2
5 g =050
375 g 400 g %g
2 300 £ 300 5
2 = =
> Ed]
2 225 g 200 NUMA Binding e
= ﬁ 4 Server ﬁ
= S Server
3150 100 Ser'ver - Server
. Full Subs Over Subs. NUMA Binding Full Subs_Over Subs. |
75 0 0
1 2 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

8K 16K 32K 64K 128K 256K 512K

Number of Clients Number of Clients

(a) Throughput Performance with 512B Payloads. (b) Throughput Performance with 128KB Payloads.

Message Size (Bytes)

Higher is better.

Higher is better.

Figure 11: Impact of service-level hints on Figure 12: Impact of service-level hints on aggregated throughput with different

latency with various payload sizes.

| 4 HatRPC - Hybrid-EagerRNDV O Direct-Write-Send Direct-WriteIMM 4 RFP ‘

600 ELatency-Sensitive Function 600 Throughput-Sensitive Function
500 i 500
i 2
2 3
;, 400 g 400
g 300 E 300
3 H]
= 200 indi 200
NUMA Binding ‘ E NUMA Binding /
100 S f er;el;) 100 Server Server
"Full Subs,_OYer Subs. Full Subs._Over Subs.
0 - 0
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

Number of Clients Number of Clients

(a) Latency Performance. Lower is better. (b) Throughput Performance. Higher is better.

Figure 13: Impact of function-level hints on latency and
throughput with various number of clients (512 Byte pay-
load size).

Direct-WriteIMM 4 RFP

‘ 4 HatRPC + Hybrid-EagerRNDV O Direct-Write-Send

10000 1 1 atency-Sensitive Function | 40 1! Throughput-Sensitive Function |
9000 d
8000 2 %
= 7000 S
£ 6000 =
e F
g 5000 22
£ 4000] Ed
= 3000 | NUMABinding | Server £ "
g
2000 Full Subs. Server NUMA Binding, Server Server
1000 & Over Subs. Full Subs. Qver Subs.
0d o ————— 0)
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

Number of Clients Number of Clients

(a) Latency Performance. Lower is better. (b) Throughput Performance. Higher is beter.

Figure 14: Impact of function-level hints on latency and
throughput with various number of clients (128 KB payload
size).

and field lengths are 24 and 100 Bytes, respectively and the field
count is set to 10 which makes the value size 1000 Bytes. For both
workload-A and B, the batching size for MultiGET and MultiPUT
is 10. Hence, for MultiGET and MultiPUT, each request will have a
total of 240 Bytes of keys and 10,000 Bytes of values.

We use two variations of HatRPC, HatRPC-Service only sets
hints at service level while HatRPC-Function distinguishes each
RPC by setting function level hints. We compare them against four
popular RDMA systems, AR-gRPC [18], HERD [36], Pilaf [46] and
RFP [59]. Since the four systems design their own backends and
have different data layouts, it is hard to unify them. Therefore, we
only study their communication protocols and emulate them in

scales (up to 512 clients).

this evaluation. We make all six candidates share the same backend
implementation to avoid unfair comparison.

Figure 15 shows the throughput and latency evaluation results
of YCSB workload-A. It can be seen that HatRPC-Service enhances
the throughput over AR-gRPC, HERD, Pilaf and RFP by up to 1.19X,
2.68%, 2.21X and 2.22X, respectively. HatRPC-Function further up-
grades the throughput by up to 1.68X%, 3.80x%, 2.29x and 2.31X, re-
spectively. In terms of latency, it can be reduced by HatRPC-Service
by up to 35.8%, 73.2%, 53.0% and 52.0%, respectively, compared
against AR-gRPC, HERD, Pilaf and RFP. HatRPC-Function can cut
off latency by up to 50.3%, 79.7%, 58.1% and 57.2%, respectively.

Figure 16 presents the evaluations results with YCSB workload-B
that is read intensive. We can see that HatRPC-Service can raise
the throughput by up to 3.80%, 6.38x%, 2.28x and 2.36X over AR-
gRPC, HERD, Pilaf and RFP, respectively. HatRPC-Function can im-
prove the throughput performance by 4.42x, 7.42%, 2.79x and 2.90X%,
respectively. Latency performance can be enhanced by HatRPC-
Service by up to 75.3%, 84.0%, 62.9% and 64.7%, respectively. It can
be further improved by HatRPC-Function by up to 77.4%, 85.5%,
66.3% and 67.9%, respectively.

We come up with possible explanations for the results. For Pilaf
and RFP, both of them use RDMA READ for GET to fetch results
without server’s participation. They expect short or no server pro-
cessing time and are designed for small payload sizes. Thus, their
performance drops abruptly from GET to MultiGET, as the fetched
sizes are 10 times larger. HERD uses RDMA SEND for sending
server’s response, thereby it can not deliver good performance for
GET or MultiGET operations. On the other hand, PUT only re-
turns few bytes from server and HERD is expected to have higher
performance in this case. AR-gRPC uses two protocols (Eager and
Read-RNDV) and adaptively switches between them. It can handle
large payload sizes by using Read-RNDYV, but will incur more con-
trol messages when payload sizes are slightly larger than switching
point. These protocols can deliver good performance in their own
comfort zones but none of them can adapt to different workloads
and scenarios. However, HatRPC can adapt to different settings and
deliver good performance based on the user given hints. Apart from
the improvement from communication perspective, the backend’s
optimization by hints also plays an important role in magnifying

HatRPC: Hint-Accelerated Thrift RPC over RDMA

the boost. The detailed evaluations of the co-designed KV store suf-
ficiently demonstrate the effectiveness of HatRPC and the potential
of hints in other applications and systems.

5.5 Evaluation with TPC-H Workload

To further show benefits of HatRPC, we successfully apply HatRPC
to a commercial database system to enable hint-accelerated RDMA
communications. We conduct our experiments on the standard
TPC-H benchmark with a scale factor of SF1000 (i.e., 1TB data)
to evaluate HatRPC. These experiments are run on all 10 Infini-
Band nodes as described in Section 5.1. The TPC-H benchmark is a
Decision Support System (DSS) benchmark consisting of complex
business-oriented queries against a database scheme that models
real-world business databases.

Figure 17 gives the execution time of all TPC-H queries. Com-
pared with default Thrift over IPoIB, the HatRPC-Service approach
reduces the total execution time of all 22 queries by 7.2% and im-
proves the query performance by up to 21.2% (Q20). To further
extract the performance potential of HatRPC, we utilize function-
granularity performance hints as well as NUMA binding hints and
hybrid transport hints, and we call this approach HatRPC-Function.
By using HatRPC-Function, the database obtains noticeable per-
formance improvements than using HatRPC-Service. Figure 17
shows HatRPC-Function outperforms Thrift over IPoIB and Ha-
tRPC-Service by 1.27x and 1.18X, respectively, with respect to total
execution time. For specific queries, HatRPC-Function delivers per-
formance improvement by up to 1.51x (Q19) and 1.44x (Q19) if
compared with Thrift over IPoIB and HatRPC-Service, respectively.

6 RELATED WORK

Application Definability: Existing systems have proposed sev-
eral solutions for users to define the behaviors of applications.
Apart from the widely adopted methods like configuring through
systems APIs [8, 10, 16, 26, 27, 33, 49] or individual configuration
files [30, 67], OpenMP [5] exploits preprocessing directives in C/C++
and uses ‘#pragma’ to create, manage, and synchronize parallel
code segments. The idea of using hints to define application behav-
iors was previously proposed in SQL [4] and supported by various
vendors [3, 6, 12, 63] to optimize query, resource utilization, and
consistency, etc. Inspired by these previous efforts, this paper pro-
poses the HatRPC framework, which is the first work to propose
a hierarchical hint scheme towards achieving various optimiza-
tion goals for heterogeneous RPCs over RDMA. HatRPC is the first
attempt to explore a practical code generation approach for RDMA.
Remote Procedure Call Optimization: There are many existing
methods to implement RPC for higher throughput and lower la-
tency. Previously, [64] defers procedure selection from client to
runtime, hence expediting the procedure calling and further in-
creasing scalability. [44] puts forward an RPC model in Java using
specialized serialization. Serialization and deserialization guaran-
tee the portability and [14, 15] adopt differential approaches to
cut the cost. The approach in [14, 15] is based on the observation
of repeated procedure calls in the service. It saves the serialized
messages after each RPC call and only serialize the differential
parts of subsequent calls to reduce the overhead. LRPC [53] uses

SC ’21, November 14-19, 2021, St. Louis, MO, USA

coarse-grained protection architecture and transfer control to elim-
inate high overhead within the same protection domain. eRPC [35]
designs new RPC library tuned for data center.
High-Performance RDMA Applications: Many recent studies
have focused on applying RDMA to different application scenar-
ios. [17, 24] merge the features of RDMA and DBMS to eliminate the
bottleneck of communications between nodes. FaRM [23] adopts
RDMA over TCP/IP and Ethernet and reports great performance
improvement. HERD [36] and other models [46, 65] utilize RDMA
to cut the round trip cost by using one-sided RDMA read and
write in key-value systems. The studies in [21, 68] construct scal-
able distributed systems using RDMA instead of the prevailing co-
partitioning. Researchers in [18, 34, 50] combine RDMA with Deep
Learning frameworks like Tensorflow, Caffe, and Parameter Server
model. [55-57] leverage RDMA and Erasure Coding (EC) offload
capability on modern RNICs to build high-performance erasure-
coded distributed storage systems. Despite a large amount of ex-
isting works on designing high-performance RDMA-accelerated
systems, few have studied how to design RPC frameworks for het-
erogeneous services and functions. This work complements this
important support to a great extent for the community.

RDMA Protocol Selection: Existing RDMA systems typically se-
lect their RDMA protocol depending on request/response packets,
payload sizes, or server delays. In addition, most of the past RDMA
designs in RPC engines such as AR-gRPC [18], HERD ([36], Pi-
laf [46], RFP [59] etc. only support two or three different protocols.
For instance, AR-gRPC only provides eager or read rendezvous pro-
tocols. Herd only supports direct-write for request and send-recv
for response. Pilaf only supports RDMA-READ based polling. RFP
uses RDMA-READ polling first and then falls back to send-recv.
As we can see, none of them can adapt their designs to different
application scenarios easily. In contrast, our work supports various
protocols and utilize user given hints to adapt to heterogeneous
application needs and improve the system’s performance.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose HatRPC, a hint-accelerated Thrift RPC
framework over RDMA transport. HatRPC adopts a hierarchical
hint scheme to narrow down the RDMA protocol design space
for achieving different optimization goals. The proposed hint de-
sign consists of service-granularity and function-granularity hints
and supports optimization isolation. With the hint design, HatRPC
enables upper-layer applications to mark each RPC service and func-
tion with different sets of hints to guide the underneath RDMA com-
munication engine for particular optimization preferences. There-
fore, HatRPC is a hint-accelerated design towards heterogeneous
RPC services, which are the practical use cases in common sys-
tems. Performance evaluations with our proposed Apache Thrift
Benchmarks (ATB), extended YCSB benchmark, and TPC-H work-
load demonstrate the effectiveness and efficiency of the proposed
HatRPC. Quantitatively, HatRPC-Function can deliver up to 55%
performance improvement for ATB benchmarks and up to 1.51x
speedup for TPC-H queries if compared with Thrift over IPoIB. In
addition, the co-designed HatKV with HatRPC and LMDB can also
achieve up to 85.5% performance improvement in the YCSB evalu-
ations. In the future, we will try to support more hint categories

SC ’21, November 14-19, 2021, St. Louis, MO, USA Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

[B HatRPC-Service B HatRPC-Function [AR-gRPC [HERD M Pilaf RFP
g‘ 15 1500 150 6000 7000 600 800 40
2‘ 12 1200 120 4800 g 5600 480 640 32
s 9 900 90 3600 g 4200 360 480 24
-F; 6 600 60 2400 g 2800 240 320 16
E 3 300 30 1200 = 1400 120 160
=0 0 0 0 0 0 0 0
Put Get Multi-Put Multi-Get Put Get Multi-Put Multi-Get
(a) Throughput Performance of Different Operations. Higher is better. (b) Latency Performance of Different Operations. Lower is better.
Figure 15: Benchmarking HatKV with YCSB-A Workload and 128 Clients
Bl HatRPC-Service Bl HatRPC-Function W AR-gRPC W HERD M Pilaf RFP
50 1000 400 3000 10000 600 600 180
& 40 800 320 2400 8000 480 480 144
§ 30 600 240 1800 B 6000 360 360 108
s 20 400 160 1200 E: 4000 240 240 72
-a 10 200 30 600 § 2000 120 120 36
2 o 0 0 0 S0 0 0 0
ﬁ Put Get Multi-Put Multi-Get Put Get Multi-Put Multi-Get
(a) Throughput Performance of Different Operations. Higher is better. (b) Latency Performance of Different Operations. Lower is better.

Figure 16: Benchmarking HatKV with YCSB-B Workload and 128 Clients
2500 T @ IPolB W HatRPC-Service M HatRPC-Function

2000 T IPoIB
HatRPC-Service

2
2
@D
£
=
5 1500 HatRPC-Function
E
E 1000 + 0 2000 4000 6000 8000
Fi Total Execution Time (sec)
St
Q
2 500
o
0

- QI Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QI0 QIl QI2 QI3 QlI4 Q15 QI6 Q17 QI8 QI9 Q20 Q21 Q22
Query No.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 QIl QI2 QI3 Q4 QI5 QI6 Q17 QI8 Q19 Q20 Q21 Q22 Total

IPolB 297 90 153 128 272 14 419 222 342 294 119 85 349 30 46 48 771 415 2420 151 1184 121 7970
HatRPC-Service 289 84 149 123 221 13 416 180 314 244 104 81 329 23 44 43 705 382 2312 119 1109 115 7399
HatRPC-Function 246 83 137 122 215 12 400 167 274 222 99 74 313 22 42 41 626 358 1599 108 1001 97 6258

Figure 17: Performance Comparison with TPC-H Benchmark (17B Data). HatRPC-Service approach only adopts service-granularity hints,
while HatRPC-Function adopts function-granularity hints.

beyond the scope of performance. We plan to make the system Lab. This work was supported in part by the NSF research grant

more generic and adapt it to other RPC systems. CCF #1822987.

ACKNOWLEDGMENTS REFERENCES

We would like to sincerely thank Yujie Hui from The Ohio State [1] 2016. LMDB: Lightning Memory-Mapped Database Manager (LMDB). http:
. //www.lmdb.tech/doc/.

UnlverSIty for his help n conductlng some of the experiments. [2] 2021. Bison - GNU Project - Free Software Foundation. https://www.gnu.org/

We want to thank the anonymous reviewers for their insightful software/bison/.

comments and suggestions. This work was done when Tianxi Li [3] 2021. EDB Optimizer Hints. https://www.enterprisedb.com/edb-docs/d/edb-

R g8 X ! R postgres-advanced-server/user-guides/database-compatibility-for-oracle-
and Dr. Halyang Shi were students in PADSYS Lab, led by Prof. developers-guide/11/Database_Compatibility for Oracle_Developers_Guide.1.
Xiaoyi Lu. We want to sincerely thank all the sponsors to PADSYS 038 html.

[4] 2021. Hint (SQL). https://en.wikipedia.org/wiki/Hint_(SQL).
[5] 2021. Home - OpenMP. https://www.openmp.org/.

HatRPC: Hint-Accelerated Thrift RPC over RDMA

(6]

[7

[

[14]

(15

[16

[17]

[18]

[19

[20

[21]

[22

[23

[24]

[25]

[26]

[27]

[28]

[29

[30]

2021. MySQL :: MySQL 8.0 Reference Manual :: 8.9.3 Optimizer Hints. https:
//dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html.

2021. OpenUCX/UCX: Unified Communication X. https://github.com/openucx/
ucx.

2021. The Info Object. https://www.mpi-forum.org/docs/mpi-2.1/mpi21-report-
bw/node194.htm.

2021. Thrift Interface Description Language. https://github.com/apache/thrift/
blob/master/doc/specs/idl.md.

2021. Tool Interfaces (MPI-T), MPICH Parameters and Instrumentation - MPICH.
2021. UCP Hello World Example. https://github.com/openucx/ucx/blob/master/
examples/ucp_hello_world.c.

2021. Using Optimizer Hints. https://docs.oracle.com/cd/B19306_01/server.102/
b14211/hintsref htm#i8327.

2021. westes/flex: The Fast Lexical Analyzer - scanner generator for lexing in C
and C++. https://github.com/westes/flex.

N Abu-Ghazaleh and MJ Lewis. 2004. Madhusudhan Govindaraju. Differential
Serialization for Optimized SOAP Performance. In Proceedings of the 13th IEEE
International Symposium on High Performance. Distributed Computing (HPDC-13),
Honolulu, Hawaii, Vol. 55.

Nayef Abu-Ghazaleh and Michael J Lewis. 2005. Differential Deserialization
for Optimized Soap Performance. In SC’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. IEEE, 21-21.

M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Hashmi, and D. K. Panda. 2021.
BluesMPI: Efficient MPI Non-blocking Alltoall Offloading Designs on Modern
BlueField Smart NICs. In Proceedings of ISC HIGH PERFORMANCE (Frankfurt,
Germany).

Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proceedings of the
VLDB Endowment 9, 7 (2016), 528—539.

Rajarshi Biswas, Xiaoyi Lu, and Dhabaleswar K Panda. 2018. Accelerating Tensor-
flow with Adaptive RDMA-Based gRPC. In 2018 IEEE 25th International Conference
on High Performance Computing (HiPC). IEEE, 2-11.

Nicolas Bruno, Surajit Chaudhuri, and Ravishankar Ramamurthy. 2009. In-
teractive Plan Hints for Query Optimization. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data (Providence, Rhode
Island, USA) (SIGMOD ’09). Association for Computing Machinery, New York,
NY, USA, 1043-1046. https://doi.org/10.1145/1559845.1559976

Nicolas Bruno, Surajit Chaudhuri, and Ravi Ramamurthy. 2009. Power Hints
for Query Optimization. In 2009 IEEE 25th International Conference on Data
Engineering. 469-480. https://doi.org/10.1109/ICDE.2009.68

Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC on Reliable
Connection with Efficient Resource Sharing. In Proceedings of the Fourteenth
EuroSys Conference 2019. ACM, 19.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143-154.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
2014. FaRM: Fast Remote Memory. In 11th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 14). 401-414.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Compro-
mises: Distributed Transactions with Consistency, Availability, and Performance.
In Proceedings of the 25th Symposium on Operating Systems Principles. ACM,
54-70.

Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas Neumann,
and Alfons Kemper. 2020. Low-Latency Communication for Fast DBMS Using
RDMA and Shared Memory. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 1477-1488. https://doi.org/10.1109/ICDE48307.2020.00131
William Fox, Devarshi Ghoshal, Abel Souza, Gonzalo P. Rodrigo, and Lavanya
Ramakrishnan. 2017. E-HPC: A Library for Elastic Resource Management in HPC
Environments. In Proceedings of the 12th Workshop on Workflows in Support of
Large-Scale Science (Denver, Colorado) (WORKS °17). Association for Computing
Machinery, New York, NY, USA, Article 1, 11 pages. https://doi.org/10.1145/
3150994.3150996

Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack] Dongarra,
Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, et al. 2004. Open MPI: Goals, Concept, and Design of a Next Genera-
tion MPI Implementation. In European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer, 97-104.

Google. 2021. grpc/grpe: The C Based gRPC (C++, Python, Ruby, Objective-C,
PHP, C). https://github.com/grpc/grpc.

Shashank Gugnani, Xiaoyi Lu, and Dhabaleswar K Panda. 2017. Swift-X: Acceler-
ating OpenStack Swift with RDMA for Building an Efficient HPC Cloud. In 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 238-247.

Chris Harris, Patrick O’Leary, Michael Grauer, Aashish Chaudhary, Chris Kotfila,
and Robert O’Bara. 2016. Dynamic Provisioning and Execution of HPC Workflows

)
=

[32

(33]

(34

[35

[36

(37]

[38

[40

[41

=
)

[43

[44]

[45

[50

[51

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Using Python. In 2016 6th Workshop on Python for High-Performance and Scientific
Computing (PyHPC). IEEE, 1-8.

Nusrat S Islam, Xiaoyi Lu, Md Wasi-ur Rahman, and Dhabaleswar K Panda.
2014. SOR-HDFS: A SEDA-Based Approach to Maximize Overlapping in RDMA-
Enhanced HDFS. In Proceedings of the 23rd international symposium on High-
performance parallel and distributed computing. ACM, 261-264.

Nusrat Sharmin Islam, Xiaoyi Lu, Md Wasi-ur Rahman, Dipti Shankar, and Dha-
baleswar K Panda. 2015. Triple-H: A Hybrid Approach to Accelerate HDFS on
HPC Clusters with Heterogeneous Storage Architecture. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE, 101-110.
J. Zhang and X. Lu and D. K. Panda. 2017. High-Performance Virtual Machine
Migration Framework for MPI Applications on SR-IOV Enabled InfiniBand Clus-
ters. In 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). Orlando, USA.

Chengfan Jia, Junnan Liu, Xu Jin, Han Lin, Hong An, Wenting Han, Zheng Wu,
and Mengxian Chi. 2018. Improving the Performance of Distributed Tensorflow
with RDMA. International Journal of Parallel Programming 46, 4 (2018), 674-685.
Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs can
be General and Fast. In 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19). 1-16.

Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Using RDMA
Efficiently for Key-Value Services. In ACM SIGCOMM Computer Communication
Review, Vol. 44. ACM, 295-306.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guide-
lines for High Performance RDMA Systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). USENIX Association, Denver, CO, 437-450. https:
//www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and Shaobo Gao.
2005. Second-Tier Cache Management Using Write Hints. In Proceedings of the
4th Conference on USENIX Conference on File and Storage Technologies - Volume 4
(San Francisco, CA) (FAST 05). USENIX Association, USA, 9.

Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dhabaleswar K.
Panda. 2003. High Performance RDMA-based MPI Implementation over In-
finiBand. In Proceedings of the 17th Annual International Conference on Super-
computing, ICS 2003, San Francisco, CA, USA, June 23-26, 2003, Utpal Baner-
jee, Kyle A. Gallivan, and Antonio Gonzalez (Eds.). ACM, 295-304. https:
//doi.org/10.1145/782814.782855

Xiaoyi Lu, Nusrat S Islam, Md Wasi-Ur-Rahman, Jithin Jose, Hari Subramoni, Hao
Wang, and Dhabaleswar K Panda. 2013. High-Performance Design of Hadoop
RPC with RDMA over InfiniBand. In 2013 42nd International Conference on Parallel
Processing. IEEE, 641-650.

Xiaoyi Lu, Dipti Shankar, Shashank Gugnani, and Dhabaleswar K Panda. 2016.
High-Performance Design of Apache Spark with RDMA and Its Benefits on
Various Workloads. In 2016 IEEE International Conference on Big Data (Big Data).
IEEE, 253-262.

Xiaoyi Lu, Haiyang Shi, Rajarshi Biswas, M Haseeb Javed, and Dhabaleswar K
Panda. 2018. DLoBD: A Comprehensive Study of Deep Learning over Big Data
Stacks on HPC Clusters. IEEE Transactions on Multi-Scale Computing Systems 4,
4(2018), 635-648.

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an rdma-enabled
distributed persistent memory file system. In 2017 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 17). 773-785.

Jason Maassen, Rob Van Nieuwpoort, Ronald Veldema, Henri Bal, Thilo Kiel-
mann, Ceriel Jacobs, and Rutger Hofman. 2001. Efficient Java RMI for Parallel
Programming. ACM Transactions on Programming Languages and Systems 23, 6
(2001), 747-775.

Mellanox. 2019. RDMA Aware Networks Programming User Man-
ual. http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_
Programming_user_manual.pdf.

Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In Presented as part of the
2013 {USENIX} Annual Technical Conference ({USENIX}{ATC} 13). 103-114.
MPICH. 2021. MPICH. https://www.mpich.org/.

Oracle. 2021. Using Optimizer Hints. https://docs.oracle.com/cd/B19306_01/
server.102/b14211/hintsref.htm.

Aarthi Raveendran, Tekin Bicer, and Gagan Agrawal. 2011. A Framework for
Elastic Execution of Existing MPI Programs. In 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and Phd Forum. 940-947. https:
//doi.org/10.1109/IPDPS.2011.240

Yufei Ren, Xingbo Wu, Li Zhang, Yandong Wang, Wei Zhang, Zijun Wang, Michel
Hack, and Song Jiang. 2017. iRDMA: Efficient USE of RDMA in Distributed
Deep Learning Systems. In 2017 IEEE 19th International Conference on High
Performance Computing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 231-238.

Wolf Rédiger, Tobias Miihlbauer, Alfons Kemper, and Thomas Neumann. 2015.
High-Speed Query Processing over High-Speed Networks. Proc. VLDB Endow. 9,
4 (2015), 228-239. https://doi.org/10.14778/2856318.2856319

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Microsoft SQL Server. 2021. Hints (Transact-SQL). https://docs.microsoft.com/en-
us/sql/t-sql/queries/hints-transact-sql?view=sql-server-ver15.

Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Dongarra, Craig Lee,
and Henri Casanova. 2002. Overview of GridRPC: A Remote Procedure Call
APT for Grid Computing. In International Workshop on Grid Computing. Springer,
274-278.

Dipti Shankar, Xiaoyi Lu, Nusrat Islam, Md Wasi-Ur-Rahman, and Dhabaleswar K
Panda. 2016. High-Performance Hybrid Key-Value Store on Modern Clusters
with RDMA Interconnects and SSDs: Non-Blocking Extensions, Designs, and
Benefits. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 393-402.

Haiyang Shi and Xiaoyi Lu. 2019. TriEC: Tripartite Graph Based Erasure Coding
NIC Offload. In The 32nd International Conference for High Performance Computing,
Networking, Storage and Analysis (SC).

Haiyang Shi and Xiaoyi Lu. 2020. INEC: Fast and Coherent In-Network Era-
sure Coding. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC "20). IEEE Press.

Haiyang Shi, Xiaoyi Lu, Dipti Shankar, and Dhabaleswar K Panda. 2019. UMR-
EC: A Unified and Multi-Rail Erasure Coding Library for High-Performance
Distributed Storage Systems. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing. ACM, 219-230.

Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. 2007. Thrift: Scalable Cross-
Language Services Implementation. Facebook White Paper 5, 8 (2007).
Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei Wu. 2017.
RFP: When RPC is Faster than Server-Bypass with RDMA. In Proceedings of the
Twelfth European Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia,
April 23-26, 2017, Gustavo Alonso, Ricardo Bianchini, and Marko Vukolic (Eds.).
ACM, 1-15. https://doi.org/10.1145/3064176.3064189

Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K. Panda. 2006. RDMA
Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives

(65

[66

[67]

Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

and Benefits. In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2006, New York, New York, USA, March
29-31, 2006, Josep Torrellas and Siddhartha Chatterjee (Eds.). ACM, 32-39. https:
//doi.org/10.1145/1122971.1122978

Transaction Processing Performance Council. 2019. TPC-H Benchmark. http:
//www.tpc.org/tpch/.

The Ohio State University. 2021. MVAPICH. http://mvapich.cse.ohio-state.edu/.
VanMSFT. 2021. Hints (Transact-SQL) - SQL Server | Microsoft
Docs. https://docs.microsoft.com/en-us/sql/t-sql/queries/hints- transact-
sql?view=sql-server-ver15.

Rangaswamy Vasudevan and Caveh Jalali. 1999. Remote Procedure Call System
and Method for RPC Mechanism Independent Client and Server Interfaces Inter-
operable with Any of a Plurality of Remote Procedure Call Backends. US Patent
5,887,172.

Yandong Wang, Xiaogiao Meng, Li Zhang, and Jian Tan. 2014. C-hint: An Effective
and Reliable Cache Management for RDMA-Accelerated Key-Value Stores. In
Proceedings of the ACM Symposium on Cloud Computing. ACM, 1-13.

Yandong Wang, Xiaoqiao Meng, Li Zhang, and Jian Tan. 2014. C-Hint: An
Effective and Reliable Cache Management for RDMA-Accelerated Key-Value
Stores. In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA,
USA) (SOCC ’14). Association for Computing Machinery, New York, NY, USA,
1-13. https://doi.org/10.1145/2670979.2671002

Md Wasi-ur Rahman, Nusrat Sharmin Islam, Xiaoyi Lu, Dipti Shankar, and Dha-
baleswar K DK Panda. 2018. MR-Advisor: A Comprehensive Tuning, Profiling,
and Prediction Tool for MapReduce Execution Frameworks on HPC Clusters. 7.
Parallel and Distrib. Comput. 120 (2018), 237-250.

Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of
a Myth: Distributed Transactions can Scale. Proceedings of the VLDB Endowment
10, 6 (2017), 685-696.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

HatRPC

Introduction This is the README of the HatRPC (Hint-
Accelerated Thrift RPC over RDMA). HatRPC exploits hints for
users to define the behavior of RPC communication in a convenient
and easy way. For details, please check out the paper: HatRPC:
Hint-Accelerated Thrift RPC over RDMA

This repository includes the necessary components to reproduce
the results in the paper. lib contains libraries of HatRPC with its
dependencies. bin contains the executables for the experiments and
evaluations. cluster _a_env.out describes the hardware and environ-
ment information of the cluster in the evaluation setup section in
the paper. example includes two example HatRPC IDL (Interface
Description Language) files for generating templates for atb and
ycsb experiments.

Dependencies All dependencies and the pre-compiled libraries
are included in lib. HatRPC library is dependent on Gflags (v2.2.1),
Glog (v0.3.5), Hwloc(v2.0), TBB(2019_U2) and our RDMA commu-
nication library Marlin. ATB and YCSB benchmark executables
are dependent on Boost (v1.58.0) YCSB experiments are backed by
LMDB (v0.9.29). LMDB libraries are not included because of file
size limit.

Build All executables are pre-built and included in bin direc-
tory. The bin/hatrpc_gen is the HatRPC generator which takes
HatRPC idl files as input and output generated templates with
corresponding hints. For instance, to generate templates from
atb_example.thrift in direcotry gen, one can use hatrpc_gen -out
gen —gen cpp ar_grpc.thrift

Run For Figure 11 14, we use ATB benchmark suites. The cor-
responding executables are named as bin/atb_*. For Figure 15 16,
we use YCSB benchmark suites. The executables are named as
bin/ycsb_*.

General Usage: ATB Latency:

bin/atb_lat_server —port <port no> bin/atb_lat_client —ip
<server_ip> —port <port_no> —iter <n_iterations> —~min <min pay-
load size> —max <max payload size>

ATB Throughput:

bin/atb_thr_server —-port <port_no> -clients <n_clients>
bin/atb_thr_client -ip <server ip> -port <port no> -iter
<n_iterations> —size <payload size> —threads <n_threads>

ATB Mix Comm:

bin/atb_thr_server -port <port_no> -—clients <n_clients>
bin/atb_thr_client —ip <server_ip> -port <port no> -iter
<n_iterations> -l_req_sz <latency request size> -l _res_sz
<latency response size> -t_req_sz <throughput request size>
—t_res_sz <throughput response size> -threads <n_threads>
-latency_percent <percentage of latency functions>

YCSB:

yesb_hatrpe_server —port <port_no> -clients <n_clients>
ycsb_hatrpe_client -db hatrpc -threads <n_threads> -host
<server_ip> -port <port_no> -P <workload_file>

Experiments: We use the following commands and parameters
for our experiments. Note numa is not used for over-subscription.

ATB Latency:

THRIFT_RDMA_ROUNDROBIN_ENABLED=0

THRIFT_RDMA_LIMIT=20480 GLOG=-1 numactl -
membind=1 —cpunodebind=1 otb_lat_server —port
9090 THRIFT_RDMA_ROUNDROBIN_ENABLED=0

THRIFT_RDMA_LIMIT=20480 GLOG=-1 numactl -membind=1
—cpunodebind=1 otb_lat_client —ip ${server_ip} —port 9090 —iter
10000 —max 1048576

ATB Throughput (Note that the sum of all client processes thread
count must equal thread count for server):

THRIFT_RDMA_ROUNDROBIN_ENABLED=0
THRIFT_RDMA_LIMIT=20480 GLOG=-1 numactl -membind=1
—cpunodebind=1 otb_thr_server —port 9090 —port 9090 —clients
<n_threads: 1 512> THRIFT_RDMA_ROUNDROBIN_ENABLED=0
THRIFT_RDMA_LIMIT=20480 GLOG=-1 numactl -membind=1
—cpunodebind=1 otb_thr_client —ip ${server_ip} —port 9090 —size
<payload size: 512 or 131072> —threads <threads_per_process>

YCSB

THRIFT_RDMA_ROUNDROBIN_ENABLED=0

THRIFT_RDMA_LIMIT=20480 GLOG=-1 MULTI-
READ_BATCH=10 MULTIUPDATE_BATCH=10
yesb_hatrpe_server —port 9090 —clients 128
THRIFT_RDMA_ROUNDROBIN_ENABLED=0

THRIFT_RDMA_LIMIT=20480 GLOG=-1 MULTI-

READ_BATCH=10 MULTIUPDATE_BATCH=10
yesb_hatrpe_client -db hatrpc -threads 128 -host <server_ip> -port
9090 -P workloady.spec

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/FlyingHObb1t/HatRP
— C-Artifact.git
Artifact name: HatRPC-Artifact

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER
Relevant hardware details: MLNX_OFED_LINUX 4.7

Operating systems and versions: Linux kernel 3.10.0

Compilers and versions: g++ 4.8.5

