
HatRPC: Hint-Accelerated Thri! RPC over RDMA
Tianxi Li*

The Ohio State University
Columbus, USA

li.9443@buckeyemail.osu.edu

Haiyang Shi*
The Ohio State University

Columbus, USA
shi.876@buckeyemail.osu.edu

Xiaoyi Lu
University of California, Merced

Merced, USA
xiaoyi.lu@ucmerced.edu

ABSTRACT
In this paper, we propose a novel hint-accelerated Remote Proce-
dure Call (RPC) framework based on Apache Thrift over Remote
Direct Memory Access (RDMA) protocols, called HatRPC. HatRPC
proposes a hierarchical hint scheme towards optimizing hetero-
geneous RPC services and functions. The proposed hint design is
composed of service-granularity and function-granularity hints for
achieving varied optimization goals and reducing design space for
further optimizing the underneath RDMA communication engine.
We co-design a key-value store called HatKV with HatRPC and
LMDB. The e!ectiveness and e"ciency of HatRPC are validated
and evaluated with our proposed Apache Thrift Benchmarks (ATB),
YCSB, and TPC-H workloads. Performance evaluations show that
the proposed HatRPC approach can deliver up to 55% performance
improvement for ATB benchmarks and up to 1.51× speedup for
TPC-H queries compared with vanilla Thrift over IPoIB. In addition,
the co-designed HatKV can achieve up to 85.5% improvement for
YCSB workloads.

CCS CONCEPTS
• Networks→ Network protocols; • Computer systems orga-
nization→ Architectures.

KEYWORDS
RDMA, Hint, Code Generation, RPC, Thrift

ACM Reference Format:
Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu. 2021. HatRPC: Hint-Accelerated
Thrift RPC over RDMA. In The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’21), November 14–19, 2021,
St. Louis, MO, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3458817.3476191

1 INTRODUCTION
With the convergence of High-Performance Computing (HPC),
Big Data, and Arti#cial Intelligence, more and more data center
applications have started leveraging modern HPC technologies

*Tianxi Li and Haiyang Shi contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro#t or commercial advantage and that copies bear this notice and the full citation
on the #rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci#c permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476191

to accelerate the performance of their codes. Along with this di-
rection, high-performance networking technologies, such as Re-
mote Direct Memory Access (RDMA), have been widely adopted in
many data center applications recently, such as RPC [40], key-value
stores [36, 46, 54, 65], distributed #le systems [29, 31, 32], database
systems [31], and deep learning frameworks [18, 34, 42, 50], etc.

RDMA has been proven that it can deliver high throughput, low
latency, and low CPU utilization to data center applications [32, 36,
50]. However, one of the major burdens of using RDMA is its low
productivity for application development. The defacto standard of
programming with RDMA is by using a user-space communication
library, called verbs [45]. verbs provides many low-level network
primitives, such as post_send, post_recv, poll_cq, etc. These low-level
primitives can give a lot of $exibility for the applications to design
e"cient communication protocols, while it typically requires the
developers to spend much e!ort and time on programming, de-
bugging, and tuning the code for achieving high performance and
scalability. For instance, based on our experience, even for a simple
communication program with verbs (like hello world on verbs), we
need to write around 600 lines of code (LOC). Uni#ed Communica-
tion X (UCX) [7] has been proposed to ease the programming with
RDMA. It includes various transports and has more understand-
able APIs than verbs. However, the hello world example [11] given
by the library repository is still more than 500 LOC. Hence, UCX
does not ease users’ RDMA programming a lot. Such a situation
motivates us to rethink a fundamental challenge facing the RDMA
community: Can we propose an approach which can allow appli-
cations to use native RDMA-based communication protocols while
signi!cantly improve application developers’ productivity? To ad-
dress this challenge, this paper further investigates the following
research problems.

1. Can we design an approach to automatically generate
e!cientRDMA-based communication substrates for data cen-
ter applications? Since directly programming with verbs is very
di"cult, this inspires us to explore whether we can generate RDMA-
based communication substrates fully or partially for data center
applications. If so, applications can achieve both high performance
and high productivity.

2. How can the proposed approach satisfy di"erent com-
munication requirements on variousRDMAprotocols in data
center applications? Datacenter applications typically need sup-
ports for di!erent performance goals (like latency-sensitive or
throughput-sensitive), varied payload sizes, unpredictable concur-
rences, etc. These are all signi#cant challenges to make such an
e"cient code generation approach become viable.

3. How can we guarantee the e"ectiveness and e!ciency
of the generated RDMA-based communication protocols for
heterogeneous data center applications? If such a code gener-
ation approach becomes available, we still need to validate and

SC ’21, November 14–19, 2021, St. Louis, MO, USA Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

evaluate whether the generated RDMA-based communication sub-
strates can e!ectively and e"ciently support end applications.

After we seriously explored the answers for the above-mentioned
problems, we have soon realized that it could be impossible or very
di"cult to design a generic code generation approach for generat-
ing and optimizing RDMA communication substrates in all kinds
of data center applications. However, through our investigations,
we #nd that if we can leverage some existing widely used code
generation frameworks in data center systems and applications, we
can signi#cantly reduce the complexity of these research problems.

In this paper, we #nd that Apache Thrift [58] can become a
promising code generation framework for achieving our objectives
to a great extent. First of all, Apache Thrift is an open-source Remote
Procedure Call (RPC) framework. RPC is the most widely used
communication mechanism in distributed data center applications.
RPC is very $exible and productive so that it can easily satisfy
di!erent communication requirements in data center applications.

Second, Apache Thrift has awell-modularized architecture, which
contains a communication transport layer together with a compiler
to generate modules in support of connection establishment and
message passing. Even though default Apache Thrift does not have
the native RDMA support in its transport layer yet, the modularized
architecture of Thrift allows us to extend it to enable RDMA-based
communication.

Thirdly, Apache Thrift provides an extensible code generation
framework based on $ex [13] and Bison [2], which can be extended
to support customized code generation approaches.

Based on these observations, this paper proposes a novel code
generation approach based on Apache Thrift RPC library for auto-
matically generating and optimizing RDMA-based communication
substrates via a hierarchical hint scheme. We call it HatRPC, which
stands for Hint-Accelerated Thrift RPC framework over RDMA.

The key ideas of the HatRPC approach include: 1) Proposing a
hierarchical hint scheme towards optimizing heterogeneous RPC
services and functions. To achieve varied optimization goals and
reduced design space for further optimizing the underneath RDMA
communication engine, the desired hint scheme is shown in Fig-
ure 1. The hierarchical hint scheme is composed of vertical hints
(i.e., Service Level Hints and Function Level Hints) and lateral hints
(i.e., Server Hints and Client Hints). These hint granularities are
necessary to support heterogeneous RPC services/functions and op-
timization isolation. 2) Proposing a new abstraction, named TRdma,
as a bridge layer for RPC engine and underneath RDMA engine.
We intentionally keep the programming model of TRdma fully com-
patible with that of TSocket, which is the default programming
interface for Socket-based communication in Apache Thrift. With
this idea, the code generator can reuse essential codes in Apache
Thrift for both TSocket and TRdma, which can signi#cantly reduce
the design and development complexity of HatRPC. 3) Extensively
examining state-of-the-art RDMA communication protocols for dif-
ferent communication scenarios. Based on our analysis, we are able
to create a novel mapping between user-input hints to low-level
RDMA protocols.

In general, di!erent kinds of RDMA-based communication en-
gines can be plugged into HatRPC. The unique feature of our pro-
posed RDMA engine under HatRPC is its capability of supporting
hint-aware RDMA protocols.

Service Echo {

Shared Hints | Server Hints | Client Hints

Func Ping() Shared Hints | Server Hints | Client Hints
}

Service Mail {
Shared Hints | Server Hints | Client Hints

Func Post() Shared Hints | Server Hints | Client Hints
Func Deliver() Shared Hints| Server Hints | Client Hints

}

Service Level Hints

Service Level Hints
Function Level Hints

Figure 1: RPC IDL File with Desired Hint Scheme

To demonstrate the usability of HatRPC, we further co-design a
key-value (KV) store, called HatKV, based onHatRPC and LMDB [1].
Then, we extend the YCSB [22] benchmarking framework to sup-
port HatKV. The e!ectiveness and e"ciency of HatRPC are vali-
dated and evaluated with our proposed Apache Thrift Benchmarks
(ATB), YCSB, and TPC-H [61] workloads. ATB contains benchmarks
for evaluating RPC latency, throughput, andworkloads with service-
or function-level hints. All ATB benchmarks are developed based
on the generated code skeletons by HatRPC.

Performance evaluations show that the proposed HatRPC ap-
proach can deliver up to 55% performance improvement for ATB
benchmarks and up to 1.51× speedup for TPC-H queries with 1TB
input data size, compared with vanilla Thrift running over a 10-
node In#niBand EDR (100 Gbps) cluster. HatKV can also achieve
up to 85.5% performance improvement in the YCSB evaluations.

We present in this paper the following contributions:
• Weanalyze nine state-of-the-art RDMAprotocols and demon-
strate the requirements of hints for accelerating RDMA pro-
tocols.

• We proposeHatRPC, enabling Apache Thrift RPC framework
over RDMA, which is further accelerated by the proposed hi-
erarchical hint scheme. HatRPC supports generating RDMA
communication substrates for heterogeneous data center
applications, which can signi#cantly ease the RDMA pro-
gramming and usage.

• We present a co-design example (i.e., HatKV) and detailed
evaluations with various workloads to validate the e!ective-
ness and e"ciency of HatRPC.

To the best of our knowledge, this is the !rst work to propose a
hierarchical hint scheme towards achieving various optimization goals
for heterogeneous RPCs over RDMA. Also, this is the !rst attempt to
explore a practical code generation approach for RDMA.

This paper is organized as follows. Section 2 provides background
about the Apache Thrift and RDMA for data center applications.
Section 3 analyzes state-of-the-art RDMA protocols along with
their characteristics. Section 4 elaborates on our HatRPC, starting
from the hint design, code generation to our RDMA communication
engine and a co-designed KV store. Section 5 presents the detailed
evaluation methodology and results. Section 6 lists the related work
and Section 7 concludes this work.

2 BACKGROUND
This section presents some necessary background information.
Overview of Apache Thrift: Apache Thrift is an open-source
Remote Procedure Call (RPC) framework. The framework adopts a

HatRPC: Hint-Accelerated Thri! RPC over RDMA SC ’21, November 14–19, 2021, St. Louis, MO, USA

protocol stack together with a compiler to generate modules in sup-
port of connection establishment and message passing. It is portable
across several platforms and supports multiple languages including:
C, C++, Java, Perl, PHP, Python, Ruby, Rust, Swift, etc. Thrift is
advantageous in generating templates thus the users can write their
logic without concerns about the low-level implementations.

As shown in Figure 2, each layer in the hierarchy has multiple
options tuned for di!erent needs. The Protocol layer is for serializ-
ing and deserializing the messages across di!erent architectures.
Transport Wrapper is an enhanced layer boosting the performance
of the communication. The Low-Level Transport layer implements
how the data will be sent and received. Because of these many
advantages, Thrift has been widely used in data center applications.

Client/Server

Thrift Protocol

Transport
Wrapper

Low-Level
Transport

Language

OS

Client Forking
Server

Non-Blocking
Server

Simple
Server

Threaded
Server

Threaded
Pool Server

Binary Compact JSON Multiplexed

Buffered Framed HTTP zlib

File Memory
Buffer Pipe TCP/IP TLS Unix Domain

Socket RDMA

python ruby rustjava
lua

node.js perl php
dart erlang go

haskell
as3 c_glib C++ C# D

Windows Linux

Figure 2: Overview of Thrift Architecture

RDMA for Data Center Applications: RDMA (Remote Direct
Memory Access) allows one node to access another node’s mem-
ory remotely without the involvement of the operating system. It
utilizes several techniques that aim to increase the throughput and
cut the latency. Zero-copy can eliminate the cost of extra copies
of data from userspace to operating systems, which is helpful in
improving the performance. In addition, the RDMA communication
can bypass the kernel of both the source and the destination, reduc-
ing the overhead of the context switch. In contrast to the excellent
performance it provides, the RDMA code is hard to write. Even a
simple demo will have hundreds of lines in comparison to the ease
of programming with POSIX Sockets. Since RDMA and Thrift are
both very popular in designing distributed systems, integrating the
feature of RDMA into Thrift seems inviting and promising, which
motivates us investigating along with this research direction.

3 ANALYSIS OF STATE-OF-THE-ART RDMA
PROTOCOLS

In recent years, there have beenmany researchworks in the commu-
nity to take advantage of the ultra-low latency and high bandwidth
of RDMA in designing high-performance communication schemes.
Many design approaches and guidelines have been proposed by
both industry and academia. However, there is no one-size-#ts-all
approach for various applications. Even small di!erences in applica-
tion requirements signi#cantly a!ect the performance of di!erent
design approaches. For instance, [37] shows that a general-purpose
RPC design that performs best for a key-value store delivers lower
scalability and 16% lower throughput than the best design for a
networked sequencer. Therefore, even a well-tuned RPC framework
in a complicated distributed system could not deliver optimized

performance to all kinds of RPCs. Fortunately, we come up with
HatRPC, a hint-accelerated RPC over RDMA design, to address this
challenging problem. In this section, we #rst recall some represen-
tative design choices for RDMA-accelerated RPC frameworks and
then elaborate on the methodology in designing HatRPC.

3.1 RDMA Protocols
We evaluate di!erent RDMA protocols with RPC-like workloads,
which transfer #x-sized messages between client(s) and a server.
For each iteration in the experiments, client(s) send message(s) to
the server. Once arrived at the server-side, messages are processed
by the server and the results are either sent back to the client by
the server or fetched back from the server by the corresponding
client. The experimental setup for the evaluations in this section
can be found in Section 5.1.

Figure 3 illustrates typical implementations of nine representa-
tive RDMA protocols. Eager protocol (i.e., Eager-SendRecv in Fig-
ure 3a) is a widely-used and well-studied RDMA protocol [41, 47,
62]. With the Eager protocol, each bu!er slot of the pre-registered
circular bu!ers for serving control messages has extra room to
carry out a data payload. Such that a payload is able to be sent
out together with a control message in the same trip. However,
the data payload has to be copied from a user bu!er to a slot of
the pre-posted circular bu!ers. Consequently, we usually use Ea-
ger protocol for small messages to avoid expensive memory copy
overhead and reduce memory footprint. Rendezvous protocols are
therefore designed to e"ciently transmit large data payloads. To
deliver a data payload by the rendezvous protocol, the initiator
and the target have to exchange the metadata of the payload. Thus,
the target can either prepare a bu!er that the initiator can write
to or fetch the payload from the initiator. There are mainly two
types of rendezvous protocols. RDMAWRITE-based rendezvous
protocol (i.e., Write-RNDV in Figure 3d) has been used in MPI for
decades [39, 62] because of its capability of reducing memory foot-
print and improving scalability. RDMA READ-based rendezvous
protocol [41, 60, 62] (i.e., Read-RNDV in Figure 3e) is an alterna-
tive to Write-RNDV protocol as it also delivers optimized memory
utilization and scalability.

Figures 3b, 3c, and 3f show three RDMA protocols that are de-
signed for further optimizing performance. Direct-Write-Send pro-
tocol [66] in Figure 3b uses an RDMA WRITE to write data to a
pre-known, pre-registered message bu!er on the remote side and
an RDMA SEND to notify the peer the existence of an available
message in the pre-knownmessage bu!er. Chained-Write-Send pro-
tocol [25, 36, 37] in Figure 3c adopts the same idea as Direct-Write-
Send except that it chains the successive RDMA WRITE and SEND
as one chained Work Request (WR) to reduce Memory-Mapped
I/O (MMIO) over the PCIe bus. Another alternative approach is
as shown in Figure 3f, Direct-WriteIMM protocol [25, 43] uses an
RDMA WRITE_WITH_IMM to replace the chained RDMA WRITE
and SEND in Chained-Write-Send protocol. These protocols are
useful and performant in some use cases, but all of them require
the remote peer has a pre-known and pre-registered message bu!er
that is reserved for each connection. It is easy to reason that the
reserved message bu!er is not feasible to serve all message sizes
and needs to protect against being overwritten.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

In recent years, there have been many research works focusing
on o%oading some portion of workloads to clients by leveraging
RDMA READ. Figures 3g–3i depict three pre-known designs to-
wards achieving server-bypass. Pilaf [46] (a key-value store) uses
∼3.2 RDMAREADs for each GET request on average evenwith read-
heavy workloads [59]. Therefore, we use three RDMA READs (two
READs for fetching metadata and one READ for getting payload)
to study its performance implications for RPC-like communication.
Similarly, FaRM [23] (a key-value store) needs !2 RDMA READs
per GET (at least one READ for fetching the index entry, and one
for fetching the value) [37], while RFP [59], an RDMA-based RPC
paradigm, claims that it usually gets the whole data and metadata
with one single RDMA READ. Therefore, we implement FaRM and
RFP accordingly as shown in Figures 3h and 3i, respectively.

3.2 Performance Characterization
Our comprehensive evaluations on these representative RDMA
protocols with RPC-like workloads present that they have varied
characteristics and performance implications. We typically elabo-
rate the evaluation results from three perspectives: performance
(i.e., latency and throughput), concurrency, and resource utilization.
The goal of the following analyses is to clarify how we can use hints
to narrow down design space for designing RDMA-accelerated RPC
frameworks and why the proposed hint design is able to meet the
desired requirements of RPC frameworks.

As shown in Figures 4 and 5, we vary message sizes, number of
clients, and Completion Queue (CQ) polling mechanisms to study
their impact on performance, concurrency, and resource utilization.
RDMA provides two polling mechanisms to check for the avail-
ability of new messages. The #rst approach is to busily poll NIC
to get new completion noti#cations. While busy polling guaran-
tees low latency it also consumes many CPU cycles. The second
mechanism uses events to signal new completion noti#cations. The
NIC raises an interrupt when a new message is available and wakes
threads that are waiting for this event. [51] shows that, compared
with busy polling, the event polling mechanism reduces the CPU
overhead to ∼4% for a full-speed bidirectional transfer with 512KB
messages at the cost of a relatively higher latency. In terms of la-
tency performance comparison, we observe similar results when
carrying out the RPC-like latency benchmarks (single client to sin-
gle server communication). As shown in Figure 4, RDMA protocols
with busy polling deliver better latency performance than their
counterparts with event polling. These results also suggest that,
with busy polling, Direct-WriteIMM is the best choice for transfer-
ring small messages, and RFP protocol is suitable for message sizes
less than 1KB. The reason behind the observations is that, as shown
in Figure 3, they use one-sided RDMA operations to complete single-
round-trip RPC-like communication. On the other hand, we also
use busy polling for large messages to achieve better latency. While
Direct-Write-Send and Direct-WriteIMM perform very well, MPI
libraries and other applications usually use either Write-RNDV or
Read-RNDV to achieve comparable latency performance, reduce
memory footprint, and improve scalability.

Figure 5 presents the results of our evaluations with multi-clients
to single-server throughput benchmarks. In addition to varying
message sizes, polling mechanisms, and number of clients, we bind

clients to the NUMA (Non-UniformMemory Access) node to which
the NIC is plugged, when the number of clients is less than or equal
to the number of cores of the bound NUMA node on our testbed
(i.e., under-subscription). Towards fully leveraging the CPU cores,
we do not employ NUMA binding for full-subscription and over-
subscription evaluations. As illustrated in the #gure, busy polling
incurs signi#cant performance degradation with over-subscription
setup for message sizes of 512B and 128KB. This is because busy
pollingmechanism consumesmuchmore CPU cycles than the event
polling counterpart and thereby is not as scalable as event polling.
Another insight we can get from the #gure is that, for small mes-
sage sizes such as 512B, Direct-WriteIMM with event polling deliv-
ers the best performance for under-subscription, full-subscription,
and over-subscription setups. However, for large message sizes
like 128KB, we observe that the event polling mechanism is more
suitable. With event polling, Direct-WriteIMM outperforms other
protocols for under-subscription setup, while RFP delivers consid-
erable performance advantage over other protocols. This insight
also re$ects the observation from the RFP paper [59] that issuing
a one-sided RDMA operation (i.e, out-bound RDMA) has much
higher overhead than that of serving one (i.e, in-bound RDMA).

3.3 Design Space Analyses
Through the comprehensive performance evaluations in Section 3.2,
we know that the design scope for a high-performance RDMA-
accelerated RPC framework is too broad, and there is no single
design and optimization can beat all others. Prior studies like AR-
gRPC [18], HERD [36], FaRM [23], and RFP [59], are optimized
towards speci#c types of applications or adopt relatively generic
design approaches to serve some common workloads. However,
as an RPC framework, optimizing for speci#c types of applica-
tions or adopting balanced design approaches for generic use cases
are far from the desired RPC design. The desired RPC framework
should perform well in not only homogeneous services/functions
but also heterogeneous ones. For instance, an RPC framework in
a distributed #le system needs to fetch metadata from metadata
servers with low latency and write to (or read from) chunk servers
with high throughput. But for existing RPC frameworks, they are
not performant in this use case since they are not aware of the
heterogeneous functionality requirements. Motivated by the idea
of using hints in optimizing database query plans and cache man-
agement [19, 20, 38, 48, 52], we come up with a hint-accelerated
approach for e!ectively and e"ciently serving heterogeneous ser-
vices and functions. This hint-accelerated approach enables applica-
tions to customize the optimization goal of each service or function,
such that our proposed RPC framework can select appropriate and
optimal RDMA designs based on the given hint set for these het-
erogeneous services/functions. Also, the applied optimizations are
isolated such that one optimized setup for a service or a function
has no side e!ects on other services and functions.

Figure 6 summarizes the major hint categories and their corre-
sponding design space. Compared with the design space of non-
hint-accelerated RPC frameworks, the #gure illustrates that hints
are able to signi#cantly narrow down the design space. Towards
optimizing concurrency performance, we have concurrency hint

HatRPC: Hint-Accelerated Thri! RPC over RDMA SC ’21, November 14–19, 2021, St. Louis, MO, USA

Payload WR
Ctrl/Flag WR

IMM Payload WR
w/ IMM Data

Data Process

Chained WR

Circular Buffer

Metadata in WR
Metadata Mismatch

head
tail

Client Server
SEND

(a) Eager-SendRecv

headtail

Client Server

SEND

WRITE

(b) Direct-Write-Send

headtail

Client Server

SEND
WRITE

(c) Chained-Write-Send

headtail

Client Server
head

tail

SEND

WRITE
w/ IMM

IMMIMM

SEND

IMM

(d) Write-RNDV

headtail

Client Server

head tail

SEND

READ

SEND

(e) Read-RNDV

Client Server

WRITE
w/ IMM

IMM

IMM

IMM

(f) Direct-WriteIMM

Client Server

WRITE
w/ IMM

IMM
IMM

READ

READ

(g) Pilaf

Client Server

WRITE
w/ IMM

IMM
IMM

READ

READ

(h) FaRM

Client Server

WRITE
w/ IMM

IMM
IMM

READ

(i) RFP (Best Case)

Figure 3: RDMA Protocols. WR: Work Request. Dashed lines indicate that servers repeat the same procedures as what clients have done.

0
2
4
6
8
10
12
14
16

4 8 16 32 64 128 256 512 1K 2K 4K
0

120

240

360

480

600

8K 16K 32K 64K 128K 256K 512K

Eager-SendRecv Direct-Write-Send Chained-Write-Send Write-RNDV Read-RNDV Direct-WriteIMM Pilaf FaRM RFP

L
at

en
cy

 (u
s)

(a) Latency Performance with Busy Polling (b) Latency Performance with Event Polling

0

120

240

360

480

600

8K 16K 32K 64K 128K 256K 512K
0
2
4
6
8
10
12
14
16

4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (Bytes)Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

Figure 4: Performance Impact of Di"erent RDMA Protocols on RPC-like Communication Latency

Th
ro

ug
hp

ut
 (k

Q
PS

)

0

150

300

450

Number of Clients

1 2 4 8 14 28 64 128

Eager-SendRecv Direct-Write-Send Chained-Write-Send Write-RNDV Read-RNDV Direct-WriteIMM RFP

512 B Payload Size; Busy Polling

0

5

10

15

Number of Clients

1 2 4 8 14 28 64 128

NUMA Binding
Full
Subs. Over Subs.

128 KB Payload Size; Busy Polling

NUMA Binding
Full
Subs.Over Subs.

0

150

300

450

Number of Clients

1 2 4 8 14 28 64 128

512 B Payload Size; Event Polling

0

5

10

15

Number of Clients

1 2 4 8 14 28 64 128

NUMA Binding
Full
Subs. Over Subs.

128 KB Payload Size; Event Polling

NUMA Binding
Full
Subs. Over Subs.

(a) Busy Polling Throughput (512B) (b) Busy Polling Throughput (128KB) (c) Event Polling Throughput (512B) (d) Event Polling Throughput (128KB)

Figure 5: Performance Impact of Di"erent RDMA Protocols on RPC-like Communication Throughput.

(y-axis) that includes three values, i.e., under-subscription, full-
subscription, and over-subscription. The x-axis shows the proposed
performance goal hint, which is comprised of latency, throughput,
and resource utilization. Each service and function in HatRPC can

also indicate a payload hint to guide our framework for better under-
standing about the payload size distributions. The design space of
each optimization goal is shown in the #gure. For instance, if a ser-
vice or function is marked with over-subscription and throughput

SC ’21, November 14–19, 2021, St. Louis, MO, USA Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

hints, HatRPC will use event polling mechanism, and choose RFP
for large messages, Direct-WriteIMM for small messages. If applica-
tions care about resource utilization, for under-subscription setup,
HatRPC will use Direct-WriteIMM and Write-RNDV for small and
large messages, respectively. While for full-subscription and over-
subscription setups, the design space converges to Eager-SendRecv
for small messages and Write/Read-RNDV for large messages. This
is because that pre-registered bu!ers used by Direct-WriteIMM and
Eager-SendRecv for transferring small messages do not occupy too
much memory. However, for large messages, we cannot achieve
resource e"ciency if we pre-register too much memory. In this
case, Write-/Read-RNDV is used for large message communication.

Concurrency Hint

Performance Goal Hint

Latency Throughput

Under Subs.

Full Subs.

Over Subs.

Res. Util.

Direct-WriteIMM

Direct-WriteIMM

Small Payload Large Payload Event Busy

Direct-WriteIMM

Direct-WriteIMM

Direct-WriteIMM

RFP (One Read)

Direct-WriteIMM

RFP (One Read)

Direct-WriteIMM

Write-RNDV

Eager-Send-Recv

Write/Read-RNDV

Eager-Send-Recv

Write/Read-RNDV

Payload Hint

Direct-WriteIMM

Direct-WriteIMM

Direct-WriteIMM

Direct-WriteIMM

Figure 6: Design Space for Hints and RDMA Protocols

In this paper, we mainly focus on performance-oriented hints,
i.e., the hint categories in Figure 6. In addition to these hints, Ha-
tRPC also supports NUMA binding and hybrid transports (i.e., using
TCP for some services/functions and RDMA for other services/-
functions), etc. The evaluation in Section 5.5 presents the bene#t of
using hints to support NUMA binding and hybrid transports.

4 DESIGN
In this section, we #rst clarify the goals and non-goals of HatRPC.
Then we illustrate the proposed hints to achieve the goals. Finally,
we discuss how we implement HatRPC within Apache Thrift and
what optimizations are adopted in HatRPC.
Non-Goals: a. We do not lay out guidelines for designing the best
RDMA-accelerated RPC frameworks. b.We do not aim to explore
all existing RDMA designs for RPC frameworks.

HatRPC instead strives to gain the following goals:
Hint Design with Minimized Overhead: The end-to-end per-
formance of RPC frameworks is an essential metric to upper-layer
applications, thus the proposed hint design should minimize its
overhead when we design hint-accelerated RPC frameworks.
Optimized Design Flexibility: Prior studies [17, 21, 23, 24, 36, 46,
65, 68] in the literature have comprehensively explored RDMA’s

transports, primitives, and optimizations. All of these impressive
features of RDMA provide tremendous amount of opportunities for
designing high-performance systems. However, the design scope
is too broad, and there is no one-size-#ts-all design yet. HatRPC
aims to adopt hints to indicate desired optimization goals for dif-
ferent RPC services or functions, such that the underneath RDMA
communication engine can #gure out optimized execution plans
for them.
Optimization Isolation: We have seen many papers that have
proposed designs towards improving performance, scalability, or
resource e"ciency (e.g., minimized CPU utilization and memory
footprint). These designs are globally applied to entire systems.
By contrast, this paper attempts to illustrate that hints are able to
deliver scalability, reliability, fast connection establishments, and
high performance with various granularities. That is, RPC services
and functions can simultaneously target di!erent metrics and opti-
mizations by leveraging RPC hints.

4.1 Proposed Hierarchical Hints
Existing RPC systems like Apache Thrift [58] and gRPC [28] re-
ceive IDL #le from users to generate RPC services. These IDL #les
typically include user-de#ned data structures, constant variables,
and at least one service with one or several RPC functions. This
design partitions the #le space into three scopes: global, service and
function space. The global scope does not belong to any services
but is visible and accessible by all the services. A service/function
scope exists for each service/function, respectively. Again, a ser-
vice scope is viewable by all the function it includes. This vertical
partitioning enables us to design the hints in a hierarchical way.
Our HatRPC supports service-level hints and function-level hints.
The service-level hints set tones for all the functions de#ned in the
service while the function-level hints realize a #ner grained control
over the behavior of some particularly important functions. The
hints de#ned in the function level will override the same type of
hints with their own values de#ned in the enclosing service level,
only for that speci#c RPC function. Since Thrift typically maps one
service to one server instance, global-level hints and service-level
hints are overlapped. Thus, we target at service-level hints and
function-level hints in this work.

The hierarchical hint design is meaningful and crucial in real
world applications. Because some applications have heterogeneous
communication workloads and often desire di!erent performance
goals, especially for RPC functions that need responsiveness, thereby
they should be allowed to use more resources than other functions
in the same service. On the other hand, it is common for a high
priority service to have unimportant functions, e.g., some func-
tions that are called periodically like heartbeats between server and
client. These functions neither require a lot of resources, nor have
critical performance requirement. With the function-level hints,
these functions can be optimized with low priority and give way to
other signi#cant RPC functions.

Apart from the hierarchical design, we can also distinguish be-
tween the server side and client side, splitting the hints horizon-
tally. In many application scenarios, the performance requirements
for server and client are di!erent. Particularly in the literature of
RDMA, the mechanism of busy polling which usually brings the

HatRPC: Hint-Accelerated Thri! RPC over RDMA SC ’21, November 14–19, 2021, St. Louis, MO, USA

best performance can take up exceeding resources like CPU. This
frustrates the server which is often loaded with computation or
other intensive I/O tasks while the clients tend to be relatively idle
and free to use more resources for network. Another major distinc-
tion between server and client lies in the di!erent targets that they
have. Servers with high concurrent connections and intensive com-
munications are often optimized towards overall throughput. In the
mean time, users or clients typically care more about responsive-
ness of the communication such that latency is their performance
goal. Based on these observations, we further enable the user to
give individual hints for server and client.

Figure 7 presents the syntax rules of HatRPC IDL #le. It is based
on Apache Thrift’s IDL #le [9] and extends the syntax to accommo-
date the user-de#ned hints. Hence, HatRPC is fully compatible with
the original Apache Thrift and existing Thrift applications can be
easily altered to leverage HatRPC. Service level hints are declared
before the functions inside the scope. Function level hints take
nearly identical format except that an additional pair of brackets
is required as the delimiter after the argument list. Horizontally,
‘HintGroup’ is separated by three keywords ‘hint’, ‘s_hint’ (server
side), ‘c_hint’ (client side), and a semicolon at the end. Within
each ‘HintList’ scope, key value hint pairs (‘Hint’) are separated by
comma. Hence, the extended syntax is consistent with that of the
original Thrift IDL syntax and made easy to understand and use.

Service ::= 'service' Identifier ('extends' Identifier)?

'{' HintGroup* Function* '}'

Function ::= 'oneway'? FunctionType Identifier '(' Field* ')'

Throws? ListSeparator? FunctionHint?

FunctionHint ::= '[' HintGroup* ']'

HintGroup ::= 'hint' ':' HintList ';'

| 'c_hint' ':' HintList ';'

| 's_hint' ':' HintList ';'

HintList ::= Hint ',' HintList | Hint

Hint ::= key '=' value

Figure 7: HatRPC IDL File Syntax. HatRPC Abstract Syntax Tree
(AST) nodes are marked red. ‘*’ and ‘?’ are Regex quanti#ers.

4.2 Code Generation
In order to transform the user-de#ned hints to program-recognized
and -friendly syntax, we augment the Thrift code generator with
hint-related functionalities and propose the HatRPC code generator.
The HatRPC code generator #rst uses $ex [13] to generate a lexical
analyzer called $ex scanner. HatRPC also leverages Bison [2] to
generate the parser. The $ex and Bison rule #les are modi#ed to
enable tokenizing and parsing user-de#ned hints.

As shown in Figure 8, the $ex scanner #rst scans the IDL #le
and recognizes hint related keywords. These texts are extracted to
a sequence of tokens for the Bison parser. The Bison parser de#nes
one-to-one mappings between a sequence of tokens and a grammar
node. Each grammar node consists of a matching rule, a function
and a return value type that is pre-de#ned as a class in HatRPC. The
parsing of the tokenized input starts from a matching process: The
parser traverses all grammar nodes’ de#nitions and chooses the #rst
(and only) nodewhosemapping rule satis#es the sequence of tokens.

Then the grammar node is added to an Abstract Syntax Tree (AST)
which grows in a top-down manner. The matched tokens are then
replaced by the grammar node in the sequence and the matching
continues until all the input tokens are transformed to grammar
nodes and added to the AST. The #nal task of the parser is to run
the function de#ned in each grammar node in a reverse direction, in
other words, from leaves to the root. A grammar node can proceed
its processing only when all its sub-trees have #nished executing
and returned from their rule functions. This way, a grammar node
can use more detailed information collected from its children’s
return values.

HatRPC code generator prepares several global containers to
collect information about hints, RPC-related types and constants
during the execution of the rule functions. After the parsing proce-
dure, the code generator will #rst check the validity of each hint
key-value pair, #ltering out the hints that have unde#ned types or
unsupported values. Then a merging process will group common
hints from the same level for conciseness and readability. When the
check, merge, and analysis steps are done, the hints are organized
and output as a hierarchical map in the generated #les along with
the other RPC templates and skeleton for the runtime TRdma.

HatRPC IDL
with Hint

flex
scanner Tokens Bison parser

C++ Types &
User Hints

Program
ObjectValidation

flexHatRPC flex
rule file

HatRPC Bison
rule file Bison

TRdma Generate 'Hint+RDMA'-based Services & Stubs

HatRPC Code
Generator

User Hints Check, Analysis and Merge

Generate Hierarchical Hint Map

Figure 8: Code Generation of HatRPC

4.3 RDMA Communication Engine
The RDMA communication engine in HatRPC is enabled by two
layers. As shown in Figure 9, TRdma is a layer that bridges the un-
derlying RDMA engine with Thrift library. To be speci#c, TRdma
and TServerRdma are the counterparts of TSocket and TServer-
Socket in the original Thrift that use TCP/IP. Particular for RDMA,
we add TRdmaTransport, a class that is responsible for RDMA
handshaking. Upon connection establishment, A TRdmaEndPoint
is created that interfaces with the underlying RDMA engine.

When a HatRPC service generated from IDL #les starts, the static
hints will be passed through TRdma layer and eventually to the
RDMA engine for RDMA initialization and connection establish-
ment. In some protocols, bu!ers need to be pre-allocated, registered
and exchanged during handshake, and proper parameters need to be
set up for creating queue pairs or completion queues. Later during
active communication, function-level hints are passed dynamically
for RPC calls. We minimize the overhead of the dynamic hints by
only passing the pointer and caching the RPC function type at a
high level and only pass hints when a new RPC function is invoked.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

Inside the RDMA engine, the hints will be translated to RDMA-
related parameters and con#gurations. The con#guration a!ects
both receiving (polling) and sending messages. The performance
goal hint plays a major role in determining the polling mecha-
nism. Hint ‘latency’ prioritizes busy polling while hint ‘throughput’
prefers event-based polling. Other hints like concurrency also a!ect
the decision. Our RDMA engine has implemented several protocols
that can be used for the suitable use case, including Eager-SendRecv,
Write-RNDV, Direct-Write-Send, Direct-WriteIMM, and RFP. The
protocol selection algorithm is based on the results of the prelimi-
nary experiments shown in Figure 6.

 Hint2Conf
 Translator

TServer
Rdma TRdma TRdma

Transport
TRdma

EndPoint

HatRPC CoresetHints()

HatRPC RDMA Engine

Performance
Goal Hint

Concurrency
Hint

Payload
Size Hint Other Hints

 Polling
 Mechanism Busy Polling Event Polling Adaptive Polling

 RDMA
 Protocols

Eager-
SendRecv

Write-
RNDV

Direct-
Write-Send

Direct-
WriteImm RFP

 Memory
 Mgmt

Pinned RDMA Buffer
Scheme per Connection

Shared RDMA Buffer
Scheme over Connections

Generate 'Hint+RDMA'-based Services & Stubs

Figure 9: Hint-Accelerated RDMA Communication Engine
of HatRPC

While performance receives themost attention in previousworks
about RDMA, it is not the sole focus in our HatRPC. Though RDMA
WRITE and RDMA READ do not involve remote side’s CPU, they
require exchanging pre-registered bu!ers’ information beforehand.
This typically implies that the bu!er is pinned throughout the con-
nection and is exclusive to a pair of peers. When the scale expands,
especially at server side, memory could become a big problem. The
idle connection also needs to maintain the bu!er, which possibly
prevents accepting new connections. Protocols including Direct-
Write-Send and Direct-Write-Imm are faced with such problems. On
the other hand, protocols likeWrite-RNDV and Eager-SendRecv are
more $exible and can improve the memory utilization. For the for-
mer, HatRPC pre-allocates and registers a bu!er pool which makes
requesting memories fast during the communication. For the latter,
HatRPC will allocate a circular bu!er. The size of each bu!er slot
is equal to the Hybrid-EagerRNDV threshold (4KB). These small
bu!ers are posted to receive packets from remote side. In HatRPC,
if the performance goal is set to res_util (resources utilization), then
these two protocols are prioritized.

4.4 Co-design with KV Store
To demonstrate the e!ectiveness and ease of use of HatRPC, we
co-design a simple key-value store called HatKV with HatRPC. We
choose LMDB [1], a B-Tree based embedded database as the storage
backend. We later present the experiment results of HatKV with

YCSB benchmark in Section 5.4. Figure 10 shows the overview of
HatKV with the IDL #le for YCSB benchmark [22]. HatKV server
and clients communicate by RPCs that are generated by HatRPC.
Within the server handler, an LMDB instance will serve the requests.

We add MultiPUT and MultiGET operations in YCSB and tailor
the ‘payload_size’ hint for each operation. Our evaluation uses #xed
key length of 24 bytes and #xed #eld length of 100 bytes. The #eld
count for each operation is 10. Furthermore, we set the batch size of
MultiPUT and MultiGET to 10. For each of the four RPC functions,
we set the function level hints accordingly. For instance, client
only transfers 1024 bytes for PUT, including the key and value,
while for MultiPUT, the batched key-value pair size can reach up
to 10240 bytes for a single RPC. Di!erent payload sizes will result
in di!erent optimal choices and HatRPC is able to adapt to the
best. Di!erent function level hints can be applied to the server and
client separately. This again is based on their characteristics and
needs. It is especially important for PUT or MultiPUT since there
could be a big di!erence in the message size transferred by client
and server. In addition to applying hints to the communication
engine, we are inspired by the e!ective SQL Hints [3, 4, 6, 12, 63]
and make further e!orts to optimize the LMDB backend through
hints. For instance, the number of max readers can be set according
to ‘concurrency hint’. Varied query, synchronization, and commit
strategies are adopted based on di!erent protocols chosen such
that the interactions with LMDB will not hinder the critical path in
communication.

Apart from the #ne-grained control over important RPCs through
function-level hints, we can add service-level hints to all the func-
tions of the service for conciseness. As in Figure 10, we add ‘con-
currency’ and the ‘perf_goal’ hints for the whole service. These
two kinds of hints are often the pre-knowledge of the users and
can also help HatRPC choose the best protocol and con#gurations.

HatRPC Code Generator

Feed

RPC (PUT / GET
/ MultiPUT / MultiGET)

GenerateGenerate

HatRPC
Server LMDB

HatKV
Server

HatRPC
Client

HatKV Client

Figure 10: HatKV with IDL File for YCSB. Hints are marked red.

HatRPC: Hint-Accelerated Thri! RPC over RDMA SC ’21, November 14–19, 2021, St. Louis, MO, USA

5 EVALUATION
In this section, we conduct multiple experiments to evaluate the
e!ectiveness and e"ciency of our proposed HatRPC. Our experi-
ments show that HatRPC is $exible and achieves high performance
and scalability in di!erent scenarios.

5.1 Experimental Setup
Our test environment has 10 nodes in a cluster. Each node is
equipped with an Intel Skylake CPU, Xeon Gold 6132. The pro-
cessor has 28 cores and a frequency of 2.60GHz. The machine has
192GB of RAM and 1TB of HDD for storage. The cluster is con-
nected by In#niband’s ConnectX-5 IB-EDR (100Gbps) and we use
MLNX_OFED_LINUX-4.7.

We evaluate HatRPC with three di!erent benchmarks: 1) Apache
Thrift Benchmarks (ATB) that comprises of three benchmarks, a
latency benchmark, a multi-threaded throughput benchmark, and a
mix communication benchmark where clients will issue two di!er-
ent RPCs. The two RPCs design is useful for demonstrating function
level hints in Section 5.3. 2) Extended YCSB benchmark [22] to study
the performance implications of the co-designed HatKV. 3) Stan-
dard TPC-H benchmark [61] with a commercial database system
applying HatRPC approach.

5.2 Evaluation with Service-level Hints
We #rst test the e"ciency of the service-level hints with the latency
and throughput benchmarks from the ATB benchmark suite.

For latency evaluation, we mark the service in the HatRPC IDL
#le with the performance goal hint of ‘latency’, concurrency hint
of ‘1’. With this hint setting, HatRPC can automatically select busy
polling as the polling mechanism and Direct-WriteIMM as the pro-
tocol. We uses varied payload sizes from 4B to 512KB for this bench-
mark. Figure 11 illustrates the latency of HatRPC and four other
protocols. Our HatRPC can always switch to the appropriate pro-
tocol and achieve the best performance. Quantitatively, for small
payload sizes (≤ 4KB), HatRPC improves the latency by 37% – 54%
over Hybrid-EagerRNDV and outperforms Direct-Write-Send by
up to 21%. Compared with RFP protocol, the latency performance
gain is from 18% – 25%. Since HatRPC is con#gured to use Direct-
WriteIMM with busy polling according to Figure 6, the di!erence
between HatRPC and Direct-WriteIMM is within 3%. For large pay-
load sizes (> 4KB), HatRPC can improve the latency by 20% – 51%
over Hybrid-EagerRNDV. The latency improvement is up to 38%
and 55% compared with Direct-Write-Send and RFP, respectively.
The gap between Direct-WriteIMM and HatRPC is negligible.

For the throughput evaluation, our test spans from a single client
scenario to a large scale environment of 512 clients. As shown in
Figure 12, we partition the x axis into three spaces based on the
machine’s hardware speci#cs. Particularly, For the Server Under
Subs (number of clients ≤ 16), we also apply NUMA bindings to
all the protocol testings. In order to optimize the performance
towards throughput, we label the IDL #le with performance goal
hint of ‘throughput’ and payload_size hint based on the test cases.
For small payload size (e.g., 512B), the best protocol is also Direct-
WriteIMM which upgrades the aggregated throughput by up to
14% compared with Hybrid-EagerRNDV and up to 20% over Direct-
Write-Send. Compared with RFP, HatRPC can also achieve up to

12% of performance gain. For large payload sizes (e.g., 128KB),
HatRPC uses Direct-WriteIMM with busy polling when the number
of clients is less than 16 and switches to RFP with event-based
polling when the concurrency is above the threshold 16. To compare
the performance, HatRPC gains up to 56% and 21% of bene#ts over
Hybrid-EagerRNDV and Direct-Write-Send, respectively. HatRPC
also delivers up to 15% of performance gain over RFP protocol
in small scale experiments (≤ 16 clients). When the number of
clients exceeds 16, RFP has the advantage and improves over Direct-
WriteIMM by 7% – 9%.

5.3 Evaluation with Function-level Hints
To show the $exibility and demonstrate the e!ectiveness ofHatRPC,
we evaluate the performance of heterogeneous communication
workloads and patterns using the Mix Comm Benchmark in ATB.
We set up two RPC calls in the service. One function is marked with
the performance goal hint ‘latency’ and the other function with
hint ‘throughput’. Both functions are correctly labeled with the
payload size hint. The clients will randomly issue one of the two
RPC functions based on the ratio setting of the two functions. To
mimic the server processing in real applications, the service handler
at server side will compute a checksum whose overhead increases
with the payload size. We adopt a balanced con#guration that has
50% of latency function calls and 50% throughput function calls,
respectively. We record the latency metrics for latency function
calls and throughput for throughput function calls.

As shown in Figure 13, for small message sizes (512B), HatRPC
improves the latency over Hybrid-EagerRNDV by up to 12% and
18% over Direct-Write-Send. Compared with RFP, HatRPC can also
improve the latency by up to 9%. For throughput function calls,
HatRPC can upgrade the throughput performance by up to 11%,
10%, and 8% compared with Hybrid-EagerRNDV, Direct-Write-Send
and RFP protocol, respectively. Throughout the test, HatRPC sticks
to Direct-WriteIMM for both latency and throughput function calls.

Figure 14 shows the Mix Comm Benchmark with large payload
size (128KB). In this case, the latency function calls will still go
through Direct-WriteIMM, achieving a latency cutdown of up to
12% over Hybrid-EagerRNDV. Compared with Direct-Write-Send
and RFP, HatRPC can improve by 6% and 7%, respectively. In terms
of throughput, HatRPC upgrades the throughput performance by
up to 25% and 14% over Hybrid-EagerRNDV and Direct-Write-Send,
respectively. When in the NUMA Binding section, RFP is inferior
to HatRPC by up to 11%. And when the concurrency exceeds the
threshold 16, HatRPC moves to use RFP and gains a boost of up to
7% over Direct-WriteIMM.

5.4 Evaluation of HatKV with YCSB
To illustrate the applicability of HatRPC, we study the performance
of HatKV with YCSB benchmark [22]. We deploy 4 nodes in the
cluster to run a total of 128 clients and 1 node to run the server.
The server node saves LMDB lock #le and data #le in tmpfs and
reserves 32GB for thememorymap.We halve the proportion of GET
and PUT in YCSB workload-A and B for MultiGET and MultiPUT,
respectively. Thus, workload-A has the proportion of 25% for GET,
PUT, MultiGET and MultiPUT, respectively and workload-B has
47.5% of GET and MultiGET, 2.5% of PUT and MultiPUT. The key

SC ’21, November 14–19, 2021, St. Louis, MO, USA Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu
La

te
nc

y
(u

s)

0

75

150

225

300

375

450

Message Size (Bytes)

8K 16K 32K 64K 128K 256K 512K

HatRPC Hybrid-EagerRNDV
Direct-Write-Send Direct-WriteIMM
RFP

0

5

10

15

4 16 64 256 1K 4K

Figure 11: Impact of service-level hints on
latency with various payload sizes.

Th
ro

ug
hp

ut
 (k

Q
PS

)

0

100

200

300

400

500

600

Number of Clients

1 2 4 8 16 32 64 128 256 512

HatRPC Hybrid-EagerRNDV Direct-Write-Send Direct-WriteIMM RFP

NUMA Binding

Server
Full Subs.

Server
Over Subs.

512 B Payload Size

Th
ro

ug
hp

ut
 (k

Q
PS

)

0

10

20

30

40

Number of Clients

1 2 4 8 16 32 64 128 256 512

NUMA Binding Server
Full Subs.

Server
Over Subs.

128 KB Payload Size

(a) Throughput Performance with 512B Payloads.
Higher is better.

(b) Throughput Performance with 128KB Payloads.
Higher is better.

Figure 12: Impact of service-level hints on aggregated throughputwith di"erent
scales (up to 512 clients).

La
te

nc
y

(u
s)

0

100

200

300

400

500

600

Number of Clients

1 2 4 8 16 32 64 128 256 512

HatRPC Hybrid-EagerRNDV Direct-Write-Send Direct-WriteIMM RFP

NUMA Binding

Server
Full Subs.

Server
Over Subs.

Latency-Sensitive Function

Th
ro

ug
hp

ut
 (k

Q
PS

)

0

100

200

300

400

500

600

Number of Clients

1 2 4 8 16 32 64 128 256 512

NUMA Binding
Server

Full Subs.

Server
Over Subs.

Throughput-Sensitive Function

(a) Latency Performance. Lower is better. (b) Throughput Performance. Higher is better.

Figure 13: Impact of function-level hints on latency and
throughput with various number of clients (512 Byte pay-
load size).

La
te

nc
y

(u
s)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Number of Clients

1 2 4 8 16 32 64 128 256 512

HatRPC Hybrid-EagerRNDV Direct-Write-Send Direct-WriteIMM RFP

Th
ro

ug
hp

ut
 (k

Q
PS

)

0

10

20

30

40

Number of Clients

1 2 4 8 16 32 64 128 256 512

NUMA Binding Server
Full Subs. Server

Over Subs.

Latency-Sensitive Function

NUMA Binding Server
Full Subs.

Server
Over Subs.

Throughput-Sensitive Function

(a) Latency Performance. Lower is better. (b) Throughput Performance. Higher is better.

Figure 14: Impact of function-level hints on latency and
throughput with various number of clients (128 KB payload
size).

and #eld lengths are 24 and 100 Bytes, respectively and the #eld
count is set to 10 which makes the value size 1000 Bytes. For both
workload-A and B, the batching size for MultiGET and MultiPUT
is 10. Hence, for MultiGET and MultiPUT, each request will have a
total of 240 Bytes of keys and 10,000 Bytes of values.

We use two variations of HatRPC, HatRPC-Service only sets
hints at service level while HatRPC-Function distinguishes each
RPC by setting function level hints. We compare them against four
popular RDMA systems, AR-gRPC [18], HERD [36], Pilaf [46] and
RFP [59]. Since the four systems design their own backends and
have di!erent data layouts, it is hard to unify them. Therefore, we
only study their communication protocols and emulate them in

this evaluation. We make all six candidates share the same backend
implementation to avoid unfair comparison.

Figure 15 shows the throughput and latency evaluation results
of YCSB workload-A. It can be seen that HatRPC-Service enhances
the throughput over AR-gRPC, HERD, Pilaf and RFP by up to 1.19×,
2.68×, 2.21× and 2.22×, respectively. HatRPC-Function further up-
grades the throughput by up to 1.68×, 3.80×, 2.29× and 2.31×, re-
spectively. In terms of latency, it can be reduced by HatRPC-Service
by up to 35.8%, 73.2%, 53.0% and 52.0%, respectively, compared
against AR-gRPC, HERD, Pilaf and RFP. HatRPC-Function can cut
o! latency by up to 50.3%, 79.7%, 58.1% and 57.2%, respectively.

Figure 16 presents the evaluations results with YCSB workload-B
that is read intensive. We can see that HatRPC-Service can raise
the throughput by up to 3.80×, 6.38×, 2.28× and 2.36× over AR-
gRPC, HERD, Pilaf and RFP, respectively. HatRPC-Function can im-
prove the throughput performance by 4.42×, 7.42×, 2.79× and 2.90×,
respectively. Latency performance can be enhanced by HatRPC-
Service by up to 75.3%, 84.0%, 62.9% and 64.7%, respectively. It can
be further improved by HatRPC-Function by up to 77.4%, 85.5%,
66.3% and 67.9%, respectively.

We come up with possible explanations for the results. For Pilaf
and RFP, both of them use RDMA READ for GET to fetch results
without server’s participation. They expect short or no server pro-
cessing time and are designed for small payload sizes. Thus, their
performance drops abruptly from GET to MultiGET, as the fetched
sizes are 10 times larger. HERD uses RDMA SEND for sending
server’s response, thereby it can not deliver good performance for
GET or MultiGET operations. On the other hand, PUT only re-
turns few bytes from server and HERD is expected to have higher
performance in this case. AR-gRPC uses two protocols (Eager and
Read-RNDV) and adaptively switches between them. It can handle
large payload sizes by using Read-RNDV, but will incur more con-
trol messages when payload sizes are slightly larger than switching
point. These protocols can deliver good performance in their own
comfort zones but none of them can adapt to di!erent workloads
and scenarios. However, HatRPC can adapt to di!erent settings and
deliver good performance based on the user given hints. Apart from
the improvement from communication perspective, the backend’s
optimization by hints also plays an important role in magnifying

HatRPC: Hint-Accelerated Thri! RPC over RDMA SC ’21, November 14–19, 2021, St. Louis, MO, USA

the boost. The detailed evaluations of the co-designed KV store suf-
#ciently demonstrate the e!ectiveness of HatRPC and the potential
of hints in other applications and systems.

5.5 Evaluation with TPC-HWorkload
To further show bene#ts of HatRPC, we successfully apply HatRPC
to a commercial database system to enable hint-accelerated RDMA
communications. We conduct our experiments on the standard
TPC-H benchmark with a scale factor of !"1000 (i.e., 1#$ data)
to evaluate HatRPC. These experiments are run on all 10 In#ni-
Band nodes as described in Section 5.1. The TPC-H benchmark is a
Decision Support System (DSS) benchmark consisting of complex
business-oriented queries against a database scheme that models
real-world business databases.

Figure 17 gives the execution time of all TPC-H queries. Com-
pared with default Thrift over IPoIB, the HatRPC-Service approach
reduces the total execution time of all 22 queries by 7.2% and im-
proves the query performance by up to 21.2% (%20). To further
extract the performance potential of HatRPC, we utilize function-
granularity performance hints as well as NUMA binding hints and
hybrid transport hints, and we call this approach HatRPC-Function.
By using HatRPC-Function, the database obtains noticeable per-
formance improvements than using HatRPC-Service. Figure 17
shows HatRPC-Function outperforms Thrift over IPoIB and Ha-
tRPC-Service by 1.27× and 1.18×, respectively, with respect to total
execution time. For speci#c queries, HatRPC-Function delivers per-
formance improvement by up to 1.51× (%19) and 1.44× (%19) if
compared with Thrift over IPoIB andHatRPC-Service, respectively.

6 RELATEDWORK
Application De#nability: Existing systems have proposed sev-
eral solutions for users to de#ne the behaviors of applications.
Apart from the widely adopted methods like con#guring through
systems APIs [8, 10, 16, 26, 27, 33, 49] or individual con#guration
#les [30, 67], OpenMP [5] exploits preprocessing directives in C/C++
and uses ‘#pragma’ to create, manage, and synchronize parallel
code segments. The idea of using hints to de#ne application behav-
iors was previously proposed in SQL [4] and supported by various
vendors [3, 6, 12, 63] to optimize query, resource utilization, and
consistency, etc. Inspired by these previous e!orts, this paper pro-
poses the HatRPC framework, which is the #rst work to propose
a hierarchical hint scheme towards achieving various optimiza-
tion goals for heterogeneous RPCs over RDMA. HatRPC is the #rst
attempt to explore a practical code generation approach for RDMA.
Remote Procedure Call Optimization: There are many existing
methods to implement RPC for higher throughput and lower la-
tency. Previously, [64] defers procedure selection from client to
runtime, hence expediting the procedure calling and further in-
creasing scalability. [44] puts forward an RPC model in Java using
specialized serialization. Serialization and deserialization guaran-
tee the portability and [14, 15] adopt di!erential approaches to
cut the cost. The approach in [14, 15] is based on the observation
of repeated procedure calls in the service. It saves the serialized
messages after each RPC call and only serialize the di!erential
parts of subsequent calls to reduce the overhead. LRPC [53] uses

coarse-grained protection architecture and transfer control to elim-
inate high overhead within the same protection domain. eRPC [35]
designs new RPC library tuned for data center.
High-Performance RDMA Applications:Many recent studies
have focused on applying RDMA to di!erent application scenar-
ios. [17, 24] merge the features of RDMA and DBMS to eliminate the
bottleneck of communications between nodes. FaRM [23] adopts
RDMA over TCP/IP and Ethernet and reports great performance
improvement. HERD [36] and other models [46, 65] utilize RDMA
to cut the round trip cost by using one-sided RDMA read and
write in key-value systems. The studies in [21, 68] construct scal-
able distributed systems using RDMA instead of the prevailing co-
partitioning. Researchers in [18, 34, 50] combine RDMA with Deep
Learning frameworks like Tensor$ow, Ca!e, and Parameter Server
model. [55–57] leverage RDMA and Erasure Coding (EC) o%oad
capability on modern RNICs to build high-performance erasure-
coded distributed storage systems. Despite a large amount of ex-
isting works on designing high-performance RDMA-accelerated
systems, few have studied how to design RPC frameworks for het-
erogeneous services and functions. This work complements this
important support to a great extent for the community.
RDMA Protocol Selection: Existing RDMA systems typically se-
lect their RDMA protocol depending on request/response packets,
payload sizes, or server delays. In addition, most of the past RDMA
designs in RPC engines such as AR-gRPC [18], HERD [36], Pi-
laf [46], RFP [59] etc. only support two or three di!erent protocols.
For instance, AR-gRPC only provides eager or read rendezvous pro-
tocols. Herd only supports direct-write for request and send-recv
for response. Pilaf only supports RDMA-READ based polling. RFP
uses RDMA-READ polling #rst and then falls back to send-recv.
As we can see, none of them can adapt their designs to di!erent
application scenarios easily. In contrast, our work supports various
protocols and utilize user given hints to adapt to heterogeneous
application needs and improve the system’s performance.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose HatRPC, a hint-accelerated Thrift RPC
framework over RDMA transport. HatRPC adopts a hierarchical
hint scheme to narrow down the RDMA protocol design space
for achieving di!erent optimization goals. The proposed hint de-
sign consists of service-granularity and function-granularity hints
and supports optimization isolation. With the hint design, HatRPC
enables upper-layer applications tomark each RPC service and func-
tion with di!erent sets of hints to guide the underneath RDMA com-
munication engine for particular optimization preferences. There-
fore, HatRPC is a hint-accelerated design towards heterogeneous
RPC services, which are the practical use cases in common sys-
tems. Performance evaluations with our proposed Apache Thrift
Benchmarks (ATB), extended YCSB benchmark, and TPC-H work-
load demonstrate the e!ectiveness and e"ciency of the proposed
HatRPC. Quantitatively, HatRPC-Function can deliver up to 55%
performance improvement for ATB benchmarks and up to 1.51×
speedup for TPC-H queries if compared with Thrift over IPoIB. In
addition, the co-designed HatKV with HatRPC and LMDB can also
achieve up to 85.5% performance improvement in the YCSB evalu-
ations. In the future, we will try to support more hint categories

SC ’21, November 14–19, 2021, St. Louis, MO, USA Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

0
3
6
9

12
15

Put

HatRPC-Service HatRPC-Function AR-gRPC HERD Pilaf RFP

T
hr

ou
gh

pu
t (

kQ
PS

)

(a) Throughput Performance of Different Operations. Higher is better.

0
300
600
900

1200
1500

Get
0

30
60
90

120
150

Multi-Put
0

1200
2400
3600
4800
6000

Multi-Get
0

1400
2800
4200
5600
7000

Put

L
at

en
cy

 (u
s)

(b) Latency Performance of Different Operations. Lower is better.

0
120
240
360
480
600

Get
0

160
320
480
640
800

Multi-Put
0
8

16
24
32
40

Multi-Get

Figure 15: Benchmarking HatKV with YCSB-A Workload and 128 Clients

0
10
20
30
40
50

Put

HatRPC-Service HatRPC-Function AR-gRPC HERD Pilaf RFP

T
hr

ou
gh

pu
t (

kQ
PS

)

0
200
400
600
800
1000

Get
0

80
160
240
320
400

Multi-Put
0

600
1200
1800
2400
3000

Multi-Get
0

2000
4000
6000
8000

10000

Put
L

at
en

cy
 (u

s)

0
120
240
360
480
600

Get
0

120
240
360
480
600

Multi-Put
0

36
72

108
144
180

Multi-Get

(a) Throughput Performance of Different Operations. Higher is better. (b) Latency Performance of Different Operations. Lower is better.

Figure 16: Benchmarking HatKV with YCSB-B Workload and 128 Clients

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
 (s

ec
)

0

500

1000

1500

2000

2500

Query No.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

IPoIB HatRPC-Service HatRPC-Function

IPoIB

HatRPC-Service

HatRPC-Function

Total Execution Time (sec)

0 2000 4000 6000 8000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Total

IPoIB 297 90 153 128 272 14 419 222 342 294 119 85 349 30 46 48 771 415 2420 151 1184 121 7970

HatRPC-Service 289 84 149 123 221 13 416 180 314 244 104 81 329 23 44 43 705 382 2312 119 1109 115 7399

HatRPC-Function 246 83 137 122 215 12 400 167 274 222 99 74 313 22 42 41 626 358 1599 108 1001 97 6258

Figure 17: Performance Comparison with TPC-H Benchmark (1#$ Data). HatRPC-Service approach only adopts service-granularity hints,
while HatRPC-Function adopts function-granularity hints.

beyond the scope of performance. We plan to make the system
more generic and adapt it to other RPC systems.

ACKNOWLEDGMENTS
We would like to sincerely thank Yujie Hui from The Ohio State
University for his help in conducting some of the experiments.
We want to thank the anonymous reviewers for their insightful
comments and suggestions. This work was done when Tianxi Li
and Dr. Haiyang Shi were students in PADSYS Lab, led by Prof.
Xiaoyi Lu. We want to sincerely thank all the sponsors to PADSYS

Lab. This work was supported in part by the NSF research grant
CCF #1822987.

REFERENCES
[1] 2016. LMDB: Lightning Memory-Mapped Database Manager (LMDB). http:

//www.lmdb.tech/doc/.
[2] 2021. Bison - GNU Project - Free Software Foundation. https://www.gnu.org/

software/bison/.
[3] 2021. EDB Optimizer Hints. https://www.enterprisedb.com/edb-docs/d/edb-

postgres-advanced-server/user-guides/database-compatibility-for-oracle-
developers-guide/11/Database_Compatibility_for_Oracle_Developers_Guide.1.
038.html.

[4] 2021. Hint (SQL). https://en.wikipedia.org/wiki/Hint_(SQL).
[5] 2021. Home - OpenMP. https://www.openmp.org/.

HatRPC: Hint-Accelerated Thri! RPC over RDMA SC ’21, November 14–19, 2021, St. Louis, MO, USA

[6] 2021. MySQL :: MySQL 8.0 Reference Manual :: 8.9.3 Optimizer Hints. https:
//dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html.

[7] 2021. OpenUCX/UCX: Uni#ed Communication X. https://github.com/openucx/
ucx.

[8] 2021. The Info Object. https://www.mpi-forum.org/docs/mpi-2.1/mpi21-report-
bw/node194.htm.

[9] 2021. Thrift Interface Description Language. https://github.com/apache/thrift/
blob/master/doc/specs/idl.md.

[10] 2021. Tool Interfaces (MPI-T), MPICH Parameters and Instrumentation - MPICH.
[11] 2021. UCP Hello World Example. https://github.com/openucx/ucx/blob/master/

examples/ucp_hello_world.c.
[12] 2021. Using Optimizer Hints. https://docs.oracle.com/cd/B19306_01/server.102/

b14211/hintsref.htm#i8327.
[13] 2021. westes/$ex: The Fast Lexical Analyzer - scanner generator for lexing in C

and C++. https://github.com/westes/$ex.
[14] N Abu-Ghazaleh and MJ Lewis. 2004. Madhusudhan Govindaraju. Di!erential

Serialization for Optimized SOAP Performance. In Proceedings of the 13th IEEE
International Symposium on High Performance. Distributed Computing (HPDC-13),
Honolulu, Hawaii, Vol. 55.

[15] Nayef Abu-Ghazaleh and Michael J Lewis. 2005. Di!erential Deserialization
for Optimized Soap Performance. In SC’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. IEEE, 21–21.

[16] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Hashmi, and D. K. Panda. 2021.
BluesMPI: E"cient MPI Non-blocking Alltoall O%oading Designs on Modern
BlueField Smart NICs. In Proceedings of ISC HIGH PERFORMANCE (Frankfurt,
Germany).

[17] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proceedings of the
VLDB Endowment 9, 7 (2016), 528–539.

[18] Rajarshi Biswas, Xiaoyi Lu, and Dhabaleswar K Panda. 2018. Accelerating Tensor-
$owwith Adaptive RDMA-Based gRPC. In 2018 IEEE 25th International Conference
on High Performance Computing (HiPC). IEEE, 2–11.

[19] Nicolas Bruno, Surajit Chaudhuri, and Ravishankar Ramamurthy. 2009. In-
teractive Plan Hints for Query Optimization. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data (Providence, Rhode
Island, USA) (SIGMOD ’09). Association for Computing Machinery, New York,
NY, USA, 1043–1046. https://doi.org/10.1145/1559845.1559976

[20] Nicolas Bruno, Surajit Chaudhuri, and Ravi Ramamurthy. 2009. Power Hints
for Query Optimization. In 2009 IEEE 25th International Conference on Data
Engineering. 469–480. https://doi.org/10.1109/ICDE.2009.68

[21] Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC on Reliable
Connection with E"cient Resource Sharing. In Proceedings of the Fourteenth
EuroSys Conference 2019. ACM, 19.

[22] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[23] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In 11th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 14). 401–414.

[24] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Compro-
mises: Distributed Transactions with Consistency, Availability, and Performance.
In Proceedings of the 25th Symposium on Operating Systems Principles. ACM,
54–70.

[25] Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas Neumann,
and Alfons Kemper. 2020. Low-Latency Communication for Fast DBMS Using
RDMA and Shared Memory. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 1477–1488. https://doi.org/10.1109/ICDE48307.2020.00131

[26] William Fox, Devarshi Ghoshal, Abel Souza, Gonzalo P. Rodrigo, and Lavanya
Ramakrishnan. 2017. E-HPC: A Library for Elastic Resource Management in HPC
Environments. In Proceedings of the 12th Workshop on Work"ows in Support of
Large-Scale Science (Denver, Colorado) (WORKS ’17). Association for Computing
Machinery, New York, NY, USA, Article 1, 11 pages. https://doi.org/10.1145/
3150994.3150996

[27] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra,
Je!rey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, et al. 2004. Open MPI: Goals, Concept, and Design of a Next Genera-
tion MPI Implementation. In European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer, 97–104.

[28] Google. 2021. grpc/grpc: The C Based gRPC (C++, Python, Ruby, Objective-C,
PHP, C). https://github.com/grpc/grpc.

[29] Shashank Gugnani, Xiaoyi Lu, and Dhabaleswar K Panda. 2017. Swift-X: Acceler-
ating OpenStack Swift with RDMA for Building an E"cient HPC Cloud. In 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 238–247.

[30] Chris Harris, Patrick O’Leary, Michael Grauer, Aashish Chaudhary, Chris Kot#la,
and Robert O’Bara. 2016. Dynamic Provisioning and Execution of HPCWork$ows

Using Python. In 2016 6th Workshop on Python for High-Performance and Scienti!c
Computing (PyHPC). IEEE, 1–8.

[31] Nusrat S Islam, Xiaoyi Lu, Md Wasi-ur Rahman, and Dhabaleswar K Panda.
2014. SOR-HDFS: A SEDA-Based Approach to Maximize Overlapping in RDMA-
Enhanced HDFS. In Proceedings of the 23rd international symposium on High-
performance parallel and distributed computing. ACM, 261–264.

[32] Nusrat Sharmin Islam, Xiaoyi Lu, Md Wasi-ur Rahman, Dipti Shankar, and Dha-
baleswar K Panda. 2015. Triple-H: A Hybrid Approach to Accelerate HDFS on
HPC Clusters with Heterogeneous Storage Architecture. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE, 101–110.

[33] J. Zhang and X. Lu and D. K. Panda. 2017. High-Performance Virtual Machine
Migration Framework for MPI Applications on SR-IOV Enabled In#niBand Clus-
ters. In 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). Orlando, USA.

[34] Chengfan Jia, Junnan Liu, Xu Jin, Han Lin, Hong An, Wenting Han, Zheng Wu,
and Mengxian Chi. 2018. Improving the Performance of Distributed Tensor$ow
with RDMA. International Journal of Parallel Programming 46, 4 (2018), 674–685.

[35] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs can
be General and Fast. In 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19). 1–16.

[36] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Using RDMA
E"ciently for Key-Value Services. In ACM SIGCOMM Computer Communication
Review, Vol. 44. ACM, 295–306.

[37] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guide-
lines for High Performance RDMA Systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). USENIX Association, Denver, CO, 437–450. https:
//www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

[38] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and Shaobo Gao.
2005. Second-Tier Cache Management Using Write Hints. In Proceedings of the
4th Conference on USENIX Conference on File and Storage Technologies - Volume 4
(San Francisco, CA) (FAST’05). USENIX Association, USA, 9.

[39] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wycko!, and Dhabaleswar K.
Panda. 2003. High Performance RDMA-based MPI Implementation over In-
#niBand. In Proceedings of the 17th Annual International Conference on Super-
computing, ICS 2003, San Francisco, CA, USA, June 23-26, 2003, Utpal Baner-
jee, Kyle A. Gallivan, and Antonio González (Eds.). ACM, 295–304. https:
//doi.org/10.1145/782814.782855

[40] Xiaoyi Lu, Nusrat S Islam, MdWasi-Ur-Rahman, Jithin Jose, Hari Subramoni, Hao
Wang, and Dhabaleswar K Panda. 2013. High-Performance Design of Hadoop
RPCwith RDMA over In#niBand. In 2013 42nd International Conference on Parallel
Processing. IEEE, 641–650.

[41] Xiaoyi Lu, Dipti Shankar, Shashank Gugnani, and Dhabaleswar K Panda. 2016.
High-Performance Design of Apache Spark with RDMA and Its Bene#ts on
Various Workloads. In 2016 IEEE International Conference on Big Data (Big Data).
IEEE, 253–262.

[42] Xiaoyi Lu, Haiyang Shi, Rajarshi Biswas, M Haseeb Javed, and Dhabaleswar K
Panda. 2018. DLoBD: A Comprehensive Study of Deep Learning over Big Data
Stacks on HPC Clusters. IEEE Transactions on Multi-Scale Computing Systems 4,
4 (2018), 635–648.

[43] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an rdma-enabled
distributed persistent memory #le system. In 2017 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 17). 773–785.

[44] Jason Maassen, Rob Van Nieuwpoort, Ronald Veldema, Henri Bal, Thilo Kiel-
mann, Ceriel Jacobs, and Rutger Hofman. 2001. E"cient Java RMI for Parallel
Programming. ACM Transactions on Programming Languages and Systems 23, 6
(2001), 747–775.

[45] Mellanox. 2019. RDMA Aware Networks Programming User Man-
ual. http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_
Programming_user_manual.pdf.

[46] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-E"cient Key-Value Store. In Presented as part of the
2013 {USENIX} Annual Technical Conference ({USENIX}{ATC} 13). 103–114.

[47] MPICH. 2021. MPICH. https://www.mpich.org/.
[48] Oracle. 2021. Using Optimizer Hints. https://docs.oracle.com/cd/B19306_01/

server.102/b14211/hintsref.htm.
[49] Aarthi Raveendran, Tekin Bicer, and Gagan Agrawal. 2011. A Framework for

Elastic Execution of ExistingMPI Programs. In 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and Phd Forum. 940–947. https:
//doi.org/10.1109/IPDPS.2011.240

[50] Yufei Ren, XingboWu, Li Zhang, YandongWang, Wei Zhang, ZijunWang, Michel
Hack, and Song Jiang. 2017. iRDMA: E"cient USE of RDMA in Distributed
Deep Learning Systems. In 2017 IEEE 19th International Conference on High
Performance Computing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 231–238.

[51] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas Neumann. 2015.
High-Speed Query Processing over High-Speed Networks. Proc. VLDB Endow. 9,
4 (2015), 228–239. https://doi.org/10.14778/2856318.2856319

SC ’21, November 14–19, 2021, St. Louis, MO, USA Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu

[52] Microsoft SQL Server. 2021. Hints (Transact-SQL). https://docs.microsoft.com/en-
us/sql/t-sql/queries/hints-transact-sql?view=sql-server-ver15.

[53] Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Dongarra, Craig Lee,
and Henri Casanova. 2002. Overview of GridRPC: A Remote Procedure Call
API for Grid Computing. In International Workshop on Grid Computing. Springer,
274–278.

[54] Dipti Shankar, Xiaoyi Lu, Nusrat Islam, MdWasi-Ur-Rahman, and Dhabaleswar K
Panda. 2016. High-Performance Hybrid Key-Value Store on Modern Clusters
with RDMA Interconnects and SSDs: Non-Blocking Extensions, Designs, and
Bene#ts. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 393–402.

[55] Haiyang Shi and Xiaoyi Lu. 2019. TriEC: Tripartite Graph Based Erasure Coding
NICO%oad. In The 32nd International Conference for High Performance Computing,
Networking, Storage and Analysis (SC).

[56] Haiyang Shi and Xiaoyi Lu. 2020. INEC: Fast and Coherent In-Network Era-
sure Coding. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’20). IEEE Press.

[57] Haiyang Shi, Xiaoyi Lu, Dipti Shankar, and Dhabaleswar K Panda. 2019. UMR-
EC: A Uni#ed and Multi-Rail Erasure Coding Library for High-Performance
Distributed Storage Systems. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing. ACM, 219–230.

[58] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. 2007. Thrift: Scalable Cross-
Language Services Implementation. Facebook White Paper 5, 8 (2007).

[59] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei Wu. 2017.
RFP: When RPC is Faster than Server-Bypass with RDMA. In Proceedings of the
Twelfth European Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia,
April 23-26, 2017, Gustavo Alonso, Ricardo Bianchini, and Marko Vukolic (Eds.).
ACM, 1–15. https://doi.org/10.1145/3064176.3064189

[60] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K. Panda. 2006. RDMA
Read Based Rendezvous Protocol for MPI over In#niBand: Design Alternatives

and Bene#ts. In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2006, New York, New York, USA, March
29-31, 2006, Josep Torrellas and Siddhartha Chatterjee (Eds.). ACM, 32–39. https:
//doi.org/10.1145/1122971.1122978

[61] Transaction Processing Performance Council. 2019. TPC-H Benchmark. http:
//www.tpc.org/tpch/.

[62] The Ohio State University. 2021. MVAPICH. http://mvapich.cse.ohio-state.edu/.
[63] VanMSFT. 2021. Hints (Transact-SQL) - SQL Server | Microsoft

Docs. https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-
sql?view=sql-server-ver15.

[64] Rangaswamy Vasudevan and Caveh Jalali. 1999. Remote Procedure Call System
and Method for RPC Mechanism Independent Client and Server Interfaces Inter-
operable with Any of a Plurality of Remote Procedure Call Backends. US Patent
5,887,172.

[65] YandongWang, XiaoqiaoMeng, Li Zhang, and Jian Tan. 2014. C-hint: An E!ective
and Reliable Cache Management for RDMA-Accelerated Key-Value Stores. In
Proceedings of the ACM Symposium on Cloud Computing. ACM, 1–13.

[66] Yandong Wang, Xiaoqiao Meng, Li Zhang, and Jian Tan. 2014. C-Hint: An
E!ective and Reliable Cache Management for RDMA-Accelerated Key-Value
Stores. In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA,
USA) (SOCC ’14). Association for Computing Machinery, New York, NY, USA,
1–13. https://doi.org/10.1145/2670979.2671002

[67] Md Wasi-ur Rahman, Nusrat Sharmin Islam, Xiaoyi Lu, Dipti Shankar, and Dha-
baleswar K DK Panda. 2018. MR-Advisor: A Comprehensive Tuning, Pro#ling,
and Prediction Tool for MapReduce Execution Frameworks on HPC Clusters. J.
Parallel and Distrib. Comput. 120 (2018), 237–250.

[68] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of
a Myth: Distributed Transactions can Scale. Proceedings of the VLDB Endowment
10, 6 (2017), 685–696.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
HatRPC

Introduction This is the README of the HatRPC (Hint-
Accelerated Thrift RPC over RDMA). HatRPC exploits hints for
users to de#ne the behavior of RPC communication in a convenient
and easy way. For details, please check out the paper: HatRPC:
Hint-Accelerated Thrift RPC over RDMA

This repository includes the necessary components to reproduce
the results in the paper. lib contains libraries of HatRPC with its
dependencies. bin contains the executables for the experiments and
evaluations. cluster_a_env.out describes the hardware and environ-
ment information of the cluster in the evaluation setup section in
the paper. example includes two example HatRPC IDL (Interface
Description Language) #les for generating templates for atb and
ycsb experiments.

Dependencies All dependencies and the pre-compiled libraries
are included in lib. HatRPC library is dependent on G$ags (v2.2.1),
Glog (v0.3.5), Hwloc(v2.0), TBB(2019_U2) and our RDMA commu-
nication library Marlin. ATB and YCSB benchmark executables
are dependent on Boost (v1.58.0) YCSB experiments are backed by
LMDB (v0.9.29). LMDB libraries are not included because of #le
size limit.

Build All executables are pre-built and included in bin direc-
tory. The bin/hatrpc_gen is the HatRPC generator which takes
HatRPC idl #les as input and output generated templates with
corresponding hints. For instance, to generate templates from
atb_example.thrift in direcotry gen, one can use hatrpc_gen -out
gen –gen cpp ar_grpc.thrift

Run For Figure 11 14, we use ATB benchmark suites. The cor-
responding executables are named as bin/atb_*. For Figure 15 16,
we use YCSB benchmark suites. The executables are named as
bin/ycsb_*.

General Usage: ATB Latency:
bin/atb_lat_server –port <port_no> bin/atb_lat_client –ip

<server_ip> –port <port_no> –iter <n_iterations> –min <min pay-
load size> –max <max payload size>

ATB Throughput:
bin/atb_thr_server –port <port_no> –clients <n_clients>

bin/atb_thr_client –ip <server_ip> –port <port_no> –iter
<n_iterations> –size <payload size> –threads <n_threads>

ATB Mix Comm:
bin/atb_thr_server –port <port_no> –clients <n_clients>

bin/atb_thr_client –ip <server_ip> –port <port_no> –iter
<n_iterations> –l_req_sz <latency request size> –l_res_sz
<latency response size> –t_req_sz <throughput request size>
–t_res_sz <throughput response size> –threads <n_threads>
–latency_percent <percentage of latency functions>

YCSB:
ycsb_hatrpc_server –port <port_no> –clients <n_clients>

ycsb_hatrpc_client -db hatrpc -threads <n_threads> -host
<server_ip> -port <port_no> -P <workload_#le>

Experiments: We use the following commands and parameters
for our experiments. Note numa is not used for over-subscription.

ATB Latency:
THRIFT_RDMA_ROUNDROBIN_ENABLED=0

THRIFT_RDMA_LIMIT=20480 GLOG=-1 numactl –
membind=1 –cpunodebind=1 otb_lat_server –port
9090 THRIFT_RDMA_ROUNDROBIN_ENABLED=0
THRIFT_RDMA_LIMIT=20480 GLOG=-1 numactl –membind=1
–cpunodebind=1 otb_lat_client –ip ${server_ip} –port 9090 –iter
10000 –max 1048576

ATB Throughput (Note that the sum of all client processes thread
count must equal thread count for server):

THRIFT_RDMA_ROUNDROBIN_ENABLED=0
THRIFT_RDMA_LIMIT=20480 GLOG=-1 numactl –membind=1
–cpunodebind=1 otb_thr_server –port 9090 –port 9090 –clients
<n_threads: 1 512> THRIFT_RDMA_ROUNDROBIN_ENABLED=0
THRIFT_RDMA_LIMIT=20480 GLOG=-1 numactl –membind=1
–cpunodebind=1 otb_thr_client –ip ${server_ip} –port 9090 –size
<payload size: 512 or 131072> –threads <threads_per_process>

YCSB
THRIFT_RDMA_ROUNDROBIN_ENABLED=0

THRIFT_RDMA_LIMIT=20480 GLOG=-1 MULTI-
READ_BATCH=10 MULTIUPDATE_BATCH=10
ycsb_hatrpc_server –port 9090 –clients 128
THRIFT_RDMA_ROUNDROBIN_ENABLED=0
THRIFT_RDMA_LIMIT=20480 GLOG=-1 MULTI-
READ_BATCH=10 MULTIUPDATE_BATCH=10
ycsb_hatrpc_client -db hatrpc -threads 128 -host <server_ip> -port
9090 -P workloady.spec

Author-Created or Modi!ed Artifacts:

Persistent ID: https://github.com/FlyingHObb1t/HatRP %

C-Artifact.git↩→

Artifact name: HatRPC-Artifact

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: MLNX_OFED_LINUX_4.7

Operating systems and versions: Linux kernel 3.10.0

Compilers and versions: g++ 4.8.5

