
NVMe-oAF: Towards Adaptive NVMe-oF for IO-Intensive
Workloads on HPC Cloud

Arjun Kashyap
akashyap5@ucmerced.edu

University of California, Merced
Merced, United States

Xiaoyi Lu
xiaoyi.lu@ucmerced.edu

University of California, Merced
Merced, United States

ABSTRACT
Applications running inside containers or virtual machines, tradi-
tionally use TCP/IP for communication in HPC clouds and data
centers. The TCP/IP path usually becomes a major performance
bottleneck for applications performing NVMe-over-Fabrics (NVMe-
oF) based I/O operations in disaggregated storage settings. We
propose an adaptive communication channel, called NVMe-over-
Adaptive-Fabric (NVMe-oAF), that applications could leverage to
eliminate the high-latency and low-bandwidth incurred by remote
I/O requests over TCP/IP. NVMe-oAF accelerates I/O intensive ap-
plications using locality awareness along with optimized shared
memory and TCP/IP paths. The adaptiveness of the fabric stems
from the ability to adaptively select shared memory or TCP chan-
nel and further applying optimizations for the chosen channel. To
evaluate NVMe-oAF, we co-design Intel’s SPDK library with our
designs and show up to 7.1x bandwidth improvement and up to 4.2x
latency reduction for various workloads over commodity TCP/IP-
based Ethernet networks (e.g., 10Gbps, 25Gbps, and 100Gbps). We
achieve similar (or sometimes better) performance when compared
to NVMe-over-RDMA by avoiding the cumbersome management
of RDMA in HPC cloud environments. Finally, we also co-design
NVMe-oAF with H5bench to showcase the bene�t it brings to HDF5
applications. Our evaluation indicates up to a 7x bandwidth im-
provement when compared with the network �le system (NFS).

CCS CONCEPTS
• Information systems ! Network attached storage; Cloud
based storage; Flash memory.

KEYWORDS
NVMe-over-Fabrics, Shared memory, SPDK, HPC Cloud
ACM Reference Format:
Arjun Kashyap and Xiaoyi Lu. 2022. NVMe-oAF: Towards Adaptive NVMe-
oF for IO-Intensive Workloads on HPC Cloud. In Proceedings of the 31st Int’l
Symposium on High-Performance Parallel and Distributed Computing (HPDC
’22), June 27-July 1, 2022, Minneapolis, MN, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3502181.3531476

1 INTRODUCTION
Motivation: Solid-State Drive (SSD) are becoming quite popu-
lar in high performance computing (HPC) and cloud computing

This work is licensed under a Creative Commons Attribution
International 4.0 License.

HPDC ’22, June 27-July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9199-3/22/06.
https://doi.org/10.1145/3502181.3531476

environments due to their low access latency when compared to
disks [50, 51, 79]. To maintain high utilization and lower costs for
SSDs, storage disaggregation is widely used [28, 45, 85]. NVMe-
SSDs already su�er from long tail [21, 30] and unpredictable I/O
latency [43], while separating compute and storage in disaggregated
settings makes matter worse due to the introduction of network
overheads [29]. In the past, Internet Small Computer Systems Inter-
face (iSCSI) [37, 40] was the de facto mechanism for accessing re-
mote hard disks but recently a new protocol, NVMe-over-Fabrics [9]
(NVMe-oF), for �ash disaggregation, is starting to gain traction in
HPC and cloud computing environments [17, 28, 61].

HPC is widespread for solving scienti�c research problems in
various domains like simulations, Big Data, and Arti�cal Intelli-
gence (AI). With the emergence of cloud computing, researchers
rushed to analyze the bene�ts of running HPC applications on
cloud architecture, giving rise to a new and exciting research space,
HPC cloud [16, 23, 25–27, 54]. As storage disaggregation and virtu-
alization is common in data centers, most I/O requests issued by an
HPC application running in a cloud get transformed into remote
I/Os. Hence, network and remote I/O performance characteristics
play a crucial role in the optimization of HPC applications running
in the cloud [27]. This motivates us to �nd a solution that alleviate
network transport overhead for remote storage access and achieves
optimal I/O performance. Our goal is to improve data movement for
I/O-intensive workloads in HPC clouds equipped with NVMe-SSDs.

To this end, we transform NVMe-oF into an adaptive fabric (AF),
which eliminates network bottleneck for intra-node data move-
ment using shared memory and optimizes inter-node data move-
ment. We argue that this is crucial for four main reasons: a) prior
literature [53] indicates that good portion of application I/O are
completed by co-located storage services, b) intra-node storage
and communication optimization is critical for achieving exascale
computing goals [31, 80], c) existing NVMe/TCP has a scope for
further improvement, and d) a lower amount of network commu-
nication abides in better performance for HPC applications in the
cloud [20, 52, 55]. Therefore, we propose NVMe-over-Adaptive-
Fabrics (NVMe-oAF) which HPC applications can utilize to accel-
erate remote I/Os over our adaptive fabric. Figure 1 illustrates the
interaction of applications with storage services in the typical HPC
Cloud architecture. Applications run in containers or virtual ma-
chines (VMs) and could be connected to the storage services that ex-
pose the remote SSDs over di�erent network transports like TCP/IP
over Ethernet and/or Remote Direct Memory Access (RDMA) with
In�niBand or RDMA over Converged Ethernet (RoCE).
Limitation of state-of-art approaches: The iSCSI protocol has
known to be a bottleneck for remote I/O [44, 45]. Distributed �le
systems like GFS and HDFS are �ne-tuned for large I/O sizes on
storage devices but not for smaller sized read/write I/Os [24, 63].

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

56

https://doi.org/10.1145/3502181.3531476
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3502181.3531476

NVMe-oF
Target

PCIe Gen 4

SSD

SSD

Storage
Service VM

NVMe-oF
Target

SSD

SSD

Storage
Service VM

Application 1

Application 2

Application 3

Host 1

Host 2

100Gbps
Ethernet

100Gbps RoCE

25G Ethernet

56/100/200Gbps
InfiniBand

VM

VM

PCIe Gen 4

PCIe Gen 3

PCIe Gen 3

Figure 1: An example of HPC Cloud architecture considered
in this study. Applications and storage service could either
run in VMs/containers.

Other remote storage stacks like ReFlex [45] and i10 [33] that allow
block-level remote access to SSDs are not deployed universally
unlike the standardized NVMe-oF. Though NVMe-oF allows appli-
cations to take advantage of the NVMe [8] protocol, there is still a
huge scope to improve the performance of accessing remote SSDs.
The major drawbacks of NVMe-oF protocols that limit their perfor-
mance and widespread adoption in HPC cloud are as follows. First,
the networking fabric is slow [26, 54]. For example vanilla TCP/IP,
and as stated before could adversely impact performance of HPC
cloud applications. Second, using faster networks like In�niBand
could alleviate the slow network problem but they are di�cult to
manage in virtualized environments. Existing RDMA virtualization
solutions [11, 49, 56, 67] are not mature enough [41] yet due to
di�culty in orchestration, lack of migration support, high memory
registration overheads, and so on [32].
Key insights and contributions: This paper proposes a novel
concept, NVMe-oAF, which is inspired by HPC runtimes like MPI to
accelerate the I/O data path for an application using shared memory
while using the already existing TCP connection in the control path.
Currently, NVMe-oF protocol lacks support for a shared memory
channel and enabling it creates room for further optimization. A
key insight for achieving high performance is NVMe-oAF acceler-
ates I/O intensive applications using locality awareness along with
optimized shared memory and TCP/IP paths. The adaptiveness of
the fabric stems from the ability to adaptively select shared memory
or TCP channel and further applying optimizations for the chosen
channel.

For container-based applications, our proposed NVMe-oAF de-
sign can support Inter-Container Shared Memory [76] (ICSHMEM)
channel, which is similar to host-level shared memory. For VM-
based applications, our proposed design can leverage inter-VM
shared memory channel, like IVSHMEM [6]. These two channels
can be enabled and adaptively selected in our NVMe-oAF design
once they are properly set up for containers and VMs. Note that
our proposed designs can signi�cantly improve the performance
of NVMe-oF protocols while conforming to NVMe standards. To
the best of our knowledge, this is the �rst work to enable shared
memory and adaptive fabric schemes for NVMe-oF in the HPC
cloud architecture.

We summarize the key contributions of our work as follows:

• Characterization of existing NVMe-oF network transports
like TCP/IP and RDMA in HPC cloud environments.

• Enabling shared memory fabric in NVMe-oF for intra-node
data movement and applying important optimizations like
lock-free double bu�er scheme, shared memory based �ow
control, and zero-copy transport.

• Improving the performance of NVMe/TCP in Intel Stor-
age Performance Development Kit [72] (SPDK) for inter-
node data movement with adaptive busy poll sockets and
application-level chunk size detection.

• Using locality awareness to guide I/Os adaptively in selecting
optimized shared memory or TCP/IP channels.

• Co-designing SPDK and Hierarchical Data Format Version 5
(HDF5) [1] storage runtimes to use our proposed adaptive
fabric for communication, bu�er allocation andmanagement,
which allows applications to take advantage of NVMe-oAF.

• Extensively evaluating NVMe-oAF with SPDK microbench-
marks and HDF5 application-level benchmarks show that
our design can signi�cantly improve the performance of
NVMe-oF protocols in terms of latency, tail latency, through-
put, and concurrency.

Experimental methodology: To evaluate our proposed NVMe-
oAF designs, we run Intel SPDK based various workloads over
virtual machines. The NVMe-oF target runs in one VM and acts
as the storage service exposing NVMe-SSD over the network for
applications. We use the SPDK’s standard benchmark tool, perf [12],
for running microbenchmarks instead of FIO [15] as it has higher
overhead when compared to SPDK perf [34]. We also evaluate
NVMe-oAF with h5bench [47] I/O kernels to gauge the perfor-
mance improvement it brings to real-world HPC workloads in
cloud environments.

Regarding fabrics, we choose to evaluate with di�erent gener-
ations of high-speed Ethernets (10/25/100 Gbps) and RDMA net-
works (56Gbps In�niBand and 100Gbps RoCE). Note that according
to the latest Top500 [3] list, 10/25Gbps Ethernet networks are still
the most popular interconnect technology (28.4%) being used in
high-end machines and we believe that many machines will con-
tinue to use 10/25Gbps Ethernet for years. Thus, evaluation of
NVMe/TCP over 10/25Gbps is still extremely crucial.

Note that our extensive evaluations show that our proposed
NVMe-oAF design can achieve up to 7.1x bandwidth and up to
4.2x latency improvements for various workloads over commodity
TCP/IP based 10Gbps and 25Gbps networks. We are also able to
achieve comparable (and sometimes better) performance to NVMe-
over-RDMA by avoiding the cumbersome management of RDMA
in HPC cloud environments. Lastly, to view the bene�ts of our
design over real applications in supercomputing systems, we co-
design NVMe-oAF with h5bench as it contains representative HDF5
benchmarks for popular applications. Our results demonstrate that
h5bench’s write/read kernel achieves up to 7x bandwidth improve-
ment while using NVMe-oAF in comparison to NFS [62].
Limitations of the proposed approach: We assume a standard
security model where the physical node cannot be comprised. Each
application and NVMe-oF target have a separate shared memory
channel to avoid any malicious application snooping on shared

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

57

memory fabric. Further discussion on security is provided in Sec-
tion 6.

2 BACKGROUND
In this section, we present some necessary background information
for this paper.

2.1 NVMe-over-Fabrics
NVMe-over-Fabrics [9] (NVMe-oF) is a protocol speci�cation that
allows clients to speak to remote NVMe-SSDs over some kinds of
fabrics. NVMe-oF lets client use Non-Volatile Memory Express [8]
(NVMe) protocol, like in the case of local SSD, to transfer data be-
tween disaggregated storage. NVMe-oF has a one-to-one mapping
between I/O submission queues and I/O completion queues and
builds on the NVM subsystem architecture that presents a collection
of controllers which are used to access namespaces [2]. Current
transports supported by it are Fibre Channel, Ethernet, In�niBand,
and RDMA. To the best of our knowledge, a shared memory based
channel is missing in NVMe-oF which we introduce and discuss
in detail in Section 4. NVMe-oF speci�cation names the node that
is attached to SSD via PCIe and exposes the SSD as block device
over the network as NVMe-oF target while the node initiating I/O
as NVMe-oF client/initiator.

2.2 Intel SPDK
Intel’s SPDK library consists of tools and drivers that allow applica-
tions to achieve high I/O performance. It operates in userspace to
avoid expensive syscalls and in lockless mode by pinning its connec-
tions to cores. SPDK lowers latency by polling for I/O completions
rather than event-based at the expense of high CPU utilization.
The high performance of SPDK can be attributed to userspace and
asynchronous NVMe driver written as a C library that provides
highly parallel access directly to an SSD from a userspace appli-
cation [13]. It also consists of a userspace application, NVMe-oF
target, which exposes block devices over the network. There are
two major drawbacks in Intel SPDK’s NVMe/TCP implementation.
One is that the NVMe/TCP uses interrupts which con�icts with the
polling-based design of SPDK. Second is that the NVMe/TCP stack
in SPDK is not optimized for intra-node communication. Thus, the
stock NVMe/TCP in SPDK has sub-optimal performance which we
characterize further in the following Section 3.

2.3 SR-IOV, IVSHMEM, and ICSHMEM
Single Root I/O Virtualization [11] (SR-IOV) interface allows sep-
aration of resources for PCIe adapters and gives the impression
of availability of multiple PCIe devices. It consists of physical and
virtual functions (VFs) where VFs are allowed to be pass-throughed
to the VMs. Thus, the bene�t of SR-IOV is its ability to e�ciently
virtualize interconnect resources among VMs. Inter-VM Shared
Memory [6] (IVSHMEM) allows the host’s shared memory region
to be available in VMs as a virtualized PCI device. Hence, co-located
VMs can communicate with each other over shared memory. Inter-
Container SharedMemory (ICSHMEM) can be achieved by enabling
sharing of Inter-Process Communication (IPC) namespace among
containers or with the host [76]. The bene�ts of IVSHMEM and

ICSHMEM is that they can provide better communication perfor-
mance when compared to TCP/IP stack.

3 PERFORMANCE CHARACTERIZATION
In this section, we present our performance analysis of existing
NVMe-oF schemes, which will further demonstrate the motivation
of this paper.

3.1 Performance of Existing NVMe-oF Schemes
To compare the bandwidth and latency characteristics of existing
NVMe-oF protocols over Ethernet (10 Gbps, 25 Gbps, and 100Gbps)
and RDMA-over-In�niBand (IB FDR, 56 Gbps) with SR-IOV sup-
port [11], we mimic the common architecture where multiple appli-
cations use the persistent storage exposed via storage services. The
storage service runs on the NVMe-oF target device whose backend
is commonly a collection of SSDs. Thus, in our characterization
a single NVMe-oF target device is attached to up to four NVMe-
SSDs and each SSD is exposed via a storage service, which leads to
increased storage bandwidth when compared to the network.

In this experiment, we ask four applications to issue sequen-
tial read and write commands to four NVMe-SSDs over the same
TCP/IP and RDMA channels on a single physical host. Each appli-
cation sends I/O requests to one NVMe-SSD following a one-to-one
mapping between the client and target SSD, which can avoid the
possible resource contention and provide better performance. More
details about our experiment setup can be found in Section 5.1.
Then, we measure the aggregate bandwidth and average latency
for TCP-over-10Gbps, TCP-over-25Gbps, TCP-over-100Gbps, and
RDMA-IB-FDR transports for 4KB and 128KB I/O size as shown in
Figure 2. We omit the results for other I/O sizes due to brevity.

For 10Gbps Ethernet, we can see that network bottleneck does
not allow the clients to utilize the available storage bandwidth for
any workload. Also, the network bandwidth is not fully utilized for
any of the workloads over 25Gbps/100Gbps Ethernet. On the other
hand, NVMe/RDMA has larger network bandwidth for both read
and write workloads. From this characterization we observe major
performance bottleneck in the existing NVMe-oF protocols in the
presence of multiple applications. There is a steep performance
gap between NVMe/TCP and NVMe/RDMA. The bandwidth gaps
between NVMe/TCP-100Gbps and NVMe/RDMA for four NVMe-
SSDs are 1.85x and 1.46x in terms of peak write and read bandwidth,
respectively, while the average latency follows the general trend of
RDMA being faster than TCP with latency increasing with higher
I/O size. These interesting performance characteristics of existing
NVMe-oF protocols motivate us to perform further performance
analysis in the following section.

3.2 Analysis of Existing NVMe-oF Schemes
Here we try to discover which components consume the majority
of the time for the end-to-end journey of a remote I/O request
as observed by the client/application. For this analysis, we break
down the average latency observed by the application into three
parts. The �rst part is the time remote SSD takes to execute an I/O
request submitted by NVMe-oF target, called “I/O time”. Second is
the “communication time (comm. time)” that indicates the time the
I/O request spent in transit or in the network. We call remainder of

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

58

0
5
10
15
20
25
30
35
40

0

10

20

30

40

La
te

nc
y

(m
s)

Ag
gr

eg
at

e
Ba

nd
w

id
th

(G
b/

s)

4KB 128KB

4KB lat 128KB lat

(a) Sequential Read

0
10
20
30
40
50
60
70
80

0

10

20

30

40

La
te

nc
y

(m
s)

Ag
gr

eg
at

e
Ba

nd
w

id
th

(G
b/

s)

4KB 128KB

4KB lat 128KB lat

(b) Sequential Write

Figure 2: Performance evaluation for existing NVMe-oF transports

4.B
5eDG

128.B 4.B
WrLWe

128.B0
100
200
300
400
500
600
700
800

Av
er

Dg
e

/D
We

nc
y

(u
s)

7C3-10Gbps
7C3-25Gbps
7C3-100Gbps
5D0A-56Gbps

I/2 7LPe
CRPP. 7LPe
2WKer

Figure 3: Sequential Read/Write latency break-
down over di�erent NVMe-oF protocols

the time as “other” which might go into preparing and processing
of the NVMe-oF I/O request by client and target.

The latency breakdown for 4KB and 128KB I/O sizes is shown in
Figure 3 and the setup is similar to the one in Section 3.1. Clearly,
high communication time is the major culprit for the stark di�er-
ence between the aggregate bandwidth of NVMe/TCP when com-
pared to NVMe/RDMA. Another important observation from these
�gures is that write operations for higher I/O sizes in NVMe/TCP
spend signi�cant time in the “other” portion of the request when
compared to read operations. This is because for write operations,
the application needs to �rst �ll and then copy out the bu�er con-
taining payload (considered as processing/preparation time at the
client) which is then transported to the target. Whereas for read
operations, the client only needs to have the bu�er space available
to hold/read the payload sent by target. This behavior is not seen in
NVMe/RDMA as the target directly has access to the client’s bu�er.
We use this key insight for our NVMe-oAF design during bu�er cre-
ation/allocation in shared memory (explained further in Section 4.4)
to reduce the request processing/preparation overheads for write
I/O. NVMe-oAF further reduces the number of bu�er copies when
compared to NVMe/TCP with bu�ers as discussed in Section 4.4.3.

At small I/O sizes (4KB), the “I/O time” is the major bottleneck for
NVMe/RDMA read commands but this soon changes. When four
clients perform 128KB reads from four SSDs over NVMe/RDMA the
ratio of communication time to I/O time is 1 : 1.11. This explains the
aggregate read bandwidth degradation for multiple streams/SSDs
as seen in Figure 2(a). Later, we will see that unlike NVMe/RDMA,
NVMe-oAF is able to achieve higher read aggregate bandwidth as
network is no longer a bottleneck (Figure 11(a)).

3.3 Summary of Characterization
Thus, there are twomajor problems in the existingNVMe-oF schemes
for I/O-intensive applications. One is the huge performance gap be-
tween NVMe/TCP and NVMe/RDMA schemes. This issue is further
exacerbated by the diverse workloads supported by applications
that consist of varying I/O sizes and concurrencies. The second
problem is the complexity [48] and inconvenience to manage [32]
RDMA in HPC cloud environments which hinders users from utiliz-
ing NVMe/RMDA. Even though we are not focusing on the RDMA
design path, we still report its performance.

Prior research [20, 52, 55] shows that lowering network com-
munication helps improve performance of HPC applications run-
ning in the cloud. Hence, these studies along with our �ndings
in the above discussions lead to an interesting and useful ques-
tion: Is there a fabric that can provide high bandwidth and low la-
tency like NVMe/RDMA, reduce network communication, and at the
same time be easy to manage in HPC cloud environments? The leads
us to the creation of a new NVMe-oF fabric and runtime for co-
located applications that should be application oblivious, easy to
manage, and provide high-performance. In this context, this paper
proposes NVMe-oAF that further optimizes NVMe/TCP using a
shared-memory channel, adaptive busy poll sockets, and chunk
size selection in a cost-e�ective way. Our evaluations show that op-
timization of the shared memory channel is non-trivial and allows
applications to achieve signi�cant performance improvement over
NVMe/TCP and o�ers comparable performance to NVMe/RDMA.

4 DESIGN
This section presents our designs of NVMe-oAF, a combination of
TCP/IP and shared memory, which can be used to accelerate I/O
operations for HPC applications. These applications generally use
TCP/IP as the mode of communication. Thus, applications running
I/O intensive workloads experience high latency and low band-
width due to NVMe/TCP. Figure 4 showcases our design on turning
NVMe-oF into an adaptive fabric. Adaptive Fabric (AF) consists
of three major components and two kinds of optimized channels -
shared memory and TCP/IP. First is the Connection Manager, which
is responsible for establishing an adaptive fabric channel between
NVMe-oF client and target and reclaiming resources at the end. The
second component, Bu�er Manager, allocates bu�er either in shared
memory or Data Plane Development Kit (DPDK) [4] memory pool
based on the fabric and re-uses it when possible. The third compo-
nent is the Locality Awareness which determines whether NVMe-oF
client and target are located on the same node and performs shared
memory mapping.

NVMe-oAF enhances NVMe/TCP performance for inter-node
communication by tuning the application-level chunk size for I/O
requests and using busy polling to reduce network latency. To fur-
ther speed up the I/O performance for intra-node communication
we need another fabric, shared memory in this case. The key idea of
AF is that the data path uses fast fabric/transport, shared memory,
and the control operations travel through TCP/IP. This signi�cantly

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

59

NVMe-oF
Client

NVMe-oF
Target

Shared Memory (intra-node)

Optimized TCP (inter-node)

Lock Free Double Buffer Scheme

Shared Memory based Flow Control

Zero-Copy Transport

Connection
Manager

Locality
AwarenessBuffer Manager

Figure 4: Overview of NVMe-oAF architecture. Additional
components are added on top of NVMe-oF by adaptive fabric.

increases the bandwidth and lowers the latency of I/O operations as
the I/O payload is transferred over the shared memory rather than
TCP/IP. A naive solution would be to enable a shared memory chan-
nel between the application and storage service for the data path.
This does increase the bandwidth when compared to NVMe/TCP
but is not the optimal solution because the �ow control needed for
TCP/IP does not apply to the shared memory channel. We show in
later sections how a shared memory aware �ow control, zero-copy
transport, and a lock-free double bu�er design achieve higher band-
width and lower latency compared to a naive NVMe-over-Shared
Memory approach. Other advantages of using AF for I/O operations
are uniform interface for NVMe applications and exploiting HPC
technologies. The remainder of this section discusses each of the
above components in detail.

4.1 Connection Establishment and Bu�er
Management

The connection establishment between the target and client hap-
pens out-of-band over NVMe/TCP connection using Protocol Data
Units (PDUs) as described in NVMe-oF speci�cation [9] with the
aid of Connection Manager (CM). As seen in Figure 5, the client
�rst establishes a TCP connection using TCP 3-way handshake
and initializes AF. The CM creates the AF endpoint object on the
client and exchanges connection con�guration parameters through
Initialize Connection Request (ICReq). On the target side, CM also
initializes adaptive fabric, creates and connects its AF endpoint
object. Then the target responds back with Initialize Connection
Response (ICResp) PDUs which allows the client to connect its own
AF endpoint object as well. Once the AF endpoint object of both
client and target are connected, data can be exchanged between
them.

Bu�er Manager allocates bu�er either in shared memory or
DPDK memory pool based on the locality discussed in Section 4.2
during connection establishment. Its responsibilities during the
entire I/O process include bu�er creation, alignment, formatting,
reuse and reclamation. The Bu�er Manager further implements a
lock-free double bu�er scheme and provides APIs for zero-copy
transports for the shared memory region discussed in Sections 4.4.1
and 4.4.3, respectively.

Client Target
TCP SYN

TCP SYN-ACK
ICReq PDU

ICResp PDU

AF init

AF endpoint obj
created and
connected

AF endpoint obj
created

AF endpoint obj
connected

AF init

Figure 5: Connection Establishment between NVMe-oAF
client and target.

Client Target
Write

R2T

H2C PDU
(contains msg_size)

Request
complete

Executing Write
request

AF write

AF read

Figure 6: Out of band message noti�cations for a single write
command over TCP/IP. Read is similar to write.

Figure 6 highlights the out-of-band message noti�cations and
data transfers over AF for a single write I/O command issued by
the client. The message noti�cations (indicated via arrows) occur
out-of-band over TCP/IP while the actual data is transported over
shared memory.

4.2 Locality Awareness
As it is possible that multiple client applications could talk to the
same storage service, we assign each client a di�erent shared mem-
ory region keeping security in mind. Since clients and targets could
be located on di�erent nodes, locality detection is vital to determine
the availability of a shared memory channel between them. When-
ever a new client application wishes to interact with the storage
service on the same host, we hotplug the shared memory region
to both the client and storage service and will later exchange the
relevant information about it over existing TCP channel. This hot-
plug mechanism is implemented in an out-of-band fashion, which
means we need some proxy or helper process running on the host
to enable it. In practice, this helper process can be the HPC/cloud
resource manager, such as Kubernetes or OpenStack or SLURM.

Once the helper process attaches an IVSHMEM or ICSHMEM
region to the virtual machine or container, NVMe-oAF enabled
client and target will be noti�ed by the helper process through
a pre-reserved shared memory region. The Connection Manager
monitors the �ag in a pre-reserved shared memory region periodi-
cally in both NVMe-oAF client and target processes. The detected
�ag will be used for locality checking during the connection es-
tablishment process, which has been discussed in Section 4.1. The
locality detection process can be easily simpli�ed in real HPC/cloud
deployments since the locality information can be attained from
the resource managers.

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

60

Now selecting the appropriate channel adaptively for each I/O
request is imperative to allow applications to fully exploit the high
bandwidth and low latency characteristics of adaptive fabric. Based
on the locality of both client and target, whether present on the
same physical node or not, they agree to use shared memory chan-
nel along with TCP/IP. The initialization requests between client
and target always go through TCP/IP. Before writing to or reading
from the AF, AF endpoint object is checked to learn about the com-
pletion of the AF initialization phase and shared memory mapping.
In the presence of a shared memory channel, for the workload
requests, the adaptive fabric’s channel selection kicks in by cleverly
decoupling the payload from the requests. By removing the payload
from the I/O request, the request consists of only the control mes-
sage which is transmitted out-of-band over TCP/IP. Meanwhile, the
large sized I/O payloads are transported over the shared memory.

4.3 NVMe-oSHM: NVMe-over-Shared-Memory
NVMe-over-Shared-Memory uses our newly proposed shared mem-
ory fabric for the data path and TCP/IP for control path between
the client and the target. In case the client and target do not re-
side on the same node (no shared memory channel), our adaptive
fabric scheme automatically picks up NVMe/TCP as described in
Section 4.2.

Figure 7 shows the journey of a write I/O command over the
adaptive fabric scheme utilizing both TCP and shared memory
channel. Here, connection establishment between the client and the
target occurs out-of-band over TCP/IP (as explained in Section 4.1)
and not shown in the Figure 7. From the Figure 7, in step 1�, client
application issues a 16KB write I/O request to the storage service
or target. The target allocates a DPDK bu�er to receive the payload
and responds back with a Ready to Transfer (R2T) PDU in step
2�. Upon receiving the R2T PDU, the client copies the payload
of the write request (16384 bytes in this case), along the the I/O
vector (16 bytes) pointing to this payload to the shared memory
region via AF write as step 3�. After the payload is written to
shared memory, client sends the location and size of payload as
a Host-to-Controller (H2C) noti�cation to the target in step 4�.
In step 5�, target copies the data into the DPDK bu�er based on
the metadata received from the out-of-band H2C PDU. Now, the
request is ready to be submitted to the NVMe-SSD in step 6�. When
the write request is executed on the NVMe-SSD, step 7�, a request
completion noti�cation is delivered to the client in step 8�. The
bu�ers can be re-used/reclaimed before the next I/O command.

4.4 Optimized Designs for NVMe-oSHM
4.4.1 Lock-free double bu�er scheme. As the application would
perform both read and write operations, the shared memory chan-
nel should be able to support bi-directional communication or data
transfer. We achieve this by treating the shared memory region as a
double bu�er and ensuring all reads from/writes to shared memory
occurs in a lock-free way. This eliminates the need to acquire a
lock on shared memory each time we need to read/write from/to
it. First, we logically partition the entire shared memory region
into two bu�ers, one for client and another for the target. Second,
to permit high concurrency for I/O operations we ensure that the
payload/data is written to/read from an appropriate o�set in shared

Storage service

Buffer DPDK Buffer
TargetApp

NVMe SSDShared
Memory

payloadstruct
iovec

16 bytes 16384 bytes

Data path
Control path

Client

Figure 7: Overview of NVMe-over-Adaptive-Fabirc (NVMe-
oSHM channel) for a single write request. The control path
is over TCP/IP and the data path is over shared memory.

memory, i.e., both the client and target bu�er are logically divided
into slots. Each logical slot is equal to the I/O size and the total num-
ber of slots are the same as the queue depth. The o�set/slot in client
and target bu�er is chosen in a round-robin fashion with respect to
the application I/O depth. A slot/o�set is computed before each I/O
request copies data to shared memory. When the payload/data is
copied to a particular o�set in shared memory region, this o�set is
sent over to client/target as an out-of-band noti�cation based on the
I/O type. Thus, our scheme ensures both the client and the target
write to/read from separate portions of shared memory channel
during pure or mixed workloads in a lock-free manner.

4.4.2 Shared memory based flow control. Presently, NVMe/TCP
has two types of �ow control for write operations based on the I/O
sizes. Small I/O sizes (<8KB) follow the in-capsule data �owwherein
the payload is transferred along with the write I/O command. This
�ow assumes that the NVMe-oF target would have su�cient bu�er
capacity to capture the I/O request along with the payload. With I/O
sizes >8KB, a more conservative �ow control method is employed,
where the write request and the payload are exchanged within
multiple requests between the client and target, which is similar to
the �ow as shown in Figure 7. Hence, the main di�erence between
the two �ow control approaches is the number of control messages.
In in-capsule data �ow, just one message is enough for the target to
receive the request and submit the I/O to the NVMe-SSD. But in the
conservative �ow control method, three messages are exchanged
before the write I/O could be submitted to the SSD.

When using shared memory for transferring the payload, the
data could reside in the shared memory until the the target is ready
to read and process the payload unlike TCP/IP channel. Hence, the
�ow control mechanism can adaptively be changed from a conser-
vative one to the in-capsule based when shared memory channel is
available. This optimization reduces the out-of-band control mes-
sages exchanged for every single write I/O command irrespective
of the I/O size. For example, in Figure 7, our shared memory based
�ow control eliminates two control messages among the four con-
trol messages exchanged for each I/O operation. Particularly, our
shared memory based �ow control would eliminate steps 2� and 4�

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

61

0
10
20
30
40
50
60
70

0
5

10
15
20
25
30
35
40
45

Ta
il

La
te

nc
y

(m
s)

Ba
nd

w
id

th
 (G

b/
s)

Bandwidth p99.99 latency

Figure 8: Bandwidth evaluation of vari-
ous NVMe-oAF design optimizations for
sequential read workload with I/O size
512KB.

0

2

4

6

8

10

64K 128K 256K 512K 1M 2M

Ba
nd

w
id

th
 (G

b/
s)

Chunk Size

512KB I/Os 1MB I/Os
2MB I/Os 4MB I/Os
8MB I/Os

Figure 9: Finding optimal chunk size for
NVMe/TCP (over 25Gbps) for random
read I/Os. We observed similar results
for TCP-100Gbps.

1500

1600

1700

1800

1900

2000

Th
ro

ug
hp

ut
 (I

O
PS

) NVMe/TCP AF-TCP-poll-25us

AF-TCP-poll-50us AF-TCP-poll-100us

Figure 10: Throughput comparison of
NVMe/TCP (over 10Gbps) andAF (in TCP
onlymode) for various busy polling rates
for 128KB I/O.

and interchange steps 1� and 3� keeping the rest of the I/O �ow
the same.

4.4.3 Zero-copy transport. Naively, using shared memory mech-
anism to transfer data/payload does not allow the application to
reach peak performance. Consider a naive sharedmemory approach
for write I/O over shared memory. When the client is ready to
transfer the payload, it copies the data from its bu�er to the shared
memory and sends an out-of-band noti�cation to the target. As
the target receives this noti�cation, it copies the payload from the
shared memory to its own bu�er and starts to process the I/O com-
mand. Thus, the entire process involves one copy of payload/data
from the client’s bu�er to shared memory. This naive design limits
the NVMe-oSHM to achieve maximum throughput and low latency.
An important thing to remember here is that the copy from shared
memory to the target’s bu�er cannot be avoided as this bu�er in
SPDK is managed by DPDK to allow direct memory access for
NVMe devices from userspace [5].

Hence, to realize the full potential of shared memory in terms of
performance, we implement a zero-copy approach by eliminating
the one copy from client’s bu�er to shared memory transport. By
co-designing the application or upper-layer runtime with NVMe-
oAF, our Bu�er Manager component creates application bu�ers
directly on shared memory. When the client’s bu�er reside on
shared memory, we can save the extra copy overhead as the target
could directly read from/write to client’s bu�er developing a zero-
copy shared memory transport.

4.4.4 Analysis of design optimizations. Here we would like to quan-
tify the bene�ts of the successive design optimizations on the per-
formance of NVMe-oSHMas shown in Figure 8. The “SHM-baseline”
represents a naive shared memory design to transfer payload be-
tween client and target rather than using TCP sockets. It uses locks
as a way to access the shared memory region. Despite having locks
for accessing a shared resource, its bandwidth is 1.83x better than
NVMe/TCP-25Gbps. The “SHM-lock-free” design removes the use
of locks to access shared memory by using the lock-free double-
bu�er design discussed in Section 4.4.1. Though this design does
not improve the bandwidth, it drastically reduces the tail latency
(p99.99) by 38% which is extremely important for latency-critical

applications. Next, by removing extra control messages and op-
timizing the �ow control we are able to increase the bandwidth
by 1.85x. Finally, in our “SHM-0-copy” scheme we eliminate the
extra copy from client’s bu�er and lower tail latency by 22%. As
“SHM-0-copy” contains all the optimizations and shows the best
performance, we choose this design in our experimental evaluation.

4.5 TCP-channel Optimization
We propose two optimizations to NVMe/TCP in our AF design to
further improve the performance of TCP channel. First, NVMe/TCP
statically sets the application-level chunk size to 128KB. Based
on the chunk size, I/O requests are internally broken down tol

�/$B8I4
2⌘D=:�B8I4

m
requests and increase the number of I/O requests for

large-sized I/O. Chunk size also is used to creatememory bu�ers/pools
on NVMe-oF target. As seen in Figure 9, we vary the chunk size and
measure the bandwidth of various sized I/O streams. If the chunk
size is large (say 2M), small-sized I/Os lead to under-utilization of
memory but choosing a very low chunk size hurts bandwidth. We
�nd that the 512KB chunk size is ideal for 25Gbps Ethernet as it
provides close to the highest bandwidth and at the same time keep
the memory utilization to a minimum for all the I/O streams. Hence,
optimal chunk size can be adaptively chosen based on underlying
hardware architecture.

Second, we use busy polling to reduce the network latency by
continuously polling the network queues. The amount of time ker-
nel spends in polling is an important factor in determining the
application performance as seen in Figure 10. We observe that stat-
ically allocating busy polling time is not an optimal solution due to
workload variability. For example, sequential write workloads when
polled for shorter duration (25us) lead to a decrease in the through-
put, even in comparison to purely interrupt-based NVMe/TCP. This
happens due to the latency of write operations being high and
the short busy poll time adds extra overhead reducing the total
throughput. Whereas, for a high busy poll time (100us), the pure
write workloads have the highest throughput when compared to
smaller busy poll times. On the other hand, read workloads achieve
peak throughput when busy polling time is set between 25-50us.
This is because read operations, in general, are faster than writes
and high busy poll times degrades their performance. Thus, our

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

62

design carefully selects the busy polling rate based on the type of
workload to allow the client in attaining maximum throughput.

4.6 Adaptive Fabric based SPDK
In this section we discuss how SPDK utilizes adaptive fabric to ben-
e�t from di�erent underlying fabrics like TCP and shared memory
based on locality of the application and transport availability. First,
we integrate our Connection Manager with SPDK using which
the client establishes a TCP connection with the target. The CM
creates the AF endpoint object that stores whether the adaptive
fabric channel is initialized between the client and target as well as
other information like availability of shared memory. Next, SPDK
uses our Bu�er Manager to allocate bu�er either in shared mem-
ory or DRAM based on the AF endpoint context object with the
requested size. Once the handshake and initialization are complete,
SPDK writes to AF to send I/O to the client. The AF write distin-
guishes the control and data path during the runtime and sends the
data over shared memory whereas the control messages over TCP,
unbeknownst to the application. Similarly, the NVMe-oF target is
modi�ed to use the AF read to process both the out-of-band control
noti�cations and payload transfers.

5 PERFORMANCE EVALUATION
5.1 Experimental Setup
We run our experiments on upto four nodes in ChameleonCloud [39]
and CloudLab [22]. Then on each node we create two virtual ma-
chines (VMs) using QEMU [10] emulator v2.0.0, one to run NVMe-
oF client and other for SPDK NVMe-oF target. NVMe-oF target
VM acts as a storage serivce while the NVMe-oF client VM could
be considered to be any application talking to remote NVMe-SSD.
Detailed information about the nodes and VMs is present in Table 1.
The Chameleon Cloud node is equipped with Broadcomm 10Gbps
NetXtreme II Ethernet interface and Mellanox 56Gbps FDR In�ni-
Band interface while the CloudLab node is equipped with Mellanox
ConnectX-5 25 Gbps and Mellanox ConnectX-5 Ex 100 Gbps NIC.
The VMs have access to In�niBand and Ethernet interfaces via
SR-IOV [11] so all communication tra�c across VMs goes over real
NIC through SR-IOV.

We also use QEMU [10] to emulate up to four NVMe-SSDs and
attach them to NVMe-oF target VM and plain Inter-VM Shared
Memory (IVSHMEM [6]) to create shared memory region between
the client and target.We present NVMe-oF performance evaluations
over TCP (TCP-10Gbps, TCP-25Gbps, and TCP-100Gbps) and adap-
tive fabric (TCP with shared memory, i.e., SHM-0-copy). “SHM-0-
copy” incorporates all our design decisions mentioned in Section 4.4.
We introduce results of NMVe/RDMA over In�niBand and RoCE
to indicate that our adaptive fabric design achieves comparable
performance and at the same time avoids the tedious management
of RDMA in HPC cloud environments. We could not compare AF
performance with 100Gbps In�niBand due to device unavailability
on CloudLab and Chameleon Cloud currently. We ran into some
issues to run SPDK with RoCE on the VMs. Thus, RoCE numbers
were taken by running SPDK on two CloudLab physical nodes
(con�guration same as that in Table 1) directly connected by Mel-
lanox ConnectX-5 Ex 100 Gbps NIC and accessing a real NVMe-SSD.
Hence, NVMe/RoCE represents the upper bound of performance

Physical Node Client VM Target VM

Processor CC- Intel Xeon CPU E5-2670 v3 @ 2.30GHz
CL- AMD EPYC 7402P @ 2.80GHz

CPU(s) 48 14 14
NUMA (s) 2 1 1
DRAM 128GB 16GB
Kernel 3.10.0-957.27.2.el7 3.10.0-1127.19.1.el7
OS CentOS Linux 7.7

OFED MLNX_OFED 5.0-1.0.0.0
Scale Upto 4 nodes

Table 1: Experiment con�guration (CC - Chameleon Cloud
and CL - CloudLab)

an application could achieve as there is no virtualization layer
overheads. As there was only one real NVMe-SSD on CloudLab
machine, we were unable to collect results when four SSDs are
communicating with four clients in case of NVMe/RoCE.

We simulate TCP-25Gbps by using IPoIB and throttle it down
for TCP-10Gbps. Intel SPDK v20.07 is used to run NVMe-oF target
and its perf tool is used as NVMe-oF client for the performance
tests. SPDK has been modi�ed to use the adaptive fabric for com-
munication and bu�er allocation as discussed in Section 4.6. The
zero-copy design of NVMe-oAF is co-designed with applications,
in this case with perf and h5bench, to display the full potential of
adpative fabric for HPC applications.

For all the experiments, the queue or I/O depth is set to 128, the
running time is 20 seconds, and one client/application communi-
cates to one target device unless otherwise stated.With experiments
involving multiple clients and remote SSDs, each NVMe-oF client
and target are pinned to separate cores to avoid CPU being the
bottleneck. For our evaluations with HDF5 benchmarks we use
h5bench v1.0 and hdf5 v1.12.1. Each experiment is repeated �ve
times and the average value is reported.

5.2 Overall Bene�ts
First, we present the performance bene�ts, Figure 11, of NVMe-oAF
as compared to NVMe/TCP for four applications/streams communi-
cating to four NVMe-SSDs (one-to-one mapping). In terms of peak
read bandwidth, NVMe-oAF outperforms NVMe/TCP-10Gbps by
7.1x. The average latency of NVMe-oAF is also lower than that of
NVMe/TCP. At 128KB I/O size, read latency of NVMe/TCP-10Gbps
is 4.2x higher than that of NVMe-oAF while the write latency of
NVMe/TCP-25Gbps is 2.97x higher than NVMe-oAF. When com-
pared to NVMe/RDMA, NVMe-oAF outperforms NVMe/RDMA by
1.78x when performing 128KB reads from four SSDs.

Data center have variety of networking operating at di�erent
capacities. So, NVMe/TCP performance under various network
speeds is equally important to understand their implications on ap-
plications. Besides, NVMe/TCP is the alternate mechanism of adap-
tive fabric when applications do not reside on the same host/node.
From Figure 11(a) one can observe that the bandwidth attained
by NVMe/TCP-25Gbps is similar to NVMe/TCP-10Gbps for 4KB
workloads and only marginally better for 128KB sized workloads.

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

63

0
5
10
15
20
25
30
35
40

0
10
20
30
40
50
60
70

La
te

nc
y

(m
s)

Ag
gr

eg
at

e
Ba

nd
w

id
th

(G
b/

s)

4KB 128KB
4KB lat 128KB lat

(a) Sequential Read

0
10
20
30
40
50
60
70
80

0

10

20

30

40

La
te

nc
y

(m
s)

Ag
gr

eg
at

e
Ba

nd
w

id
th

(G
b/

s)

4KB 128KB

4KB lat 128KB lat

(b) Sequential Write

Figure 11: Performance evaluation of NVMe-oAF when four applications
talk to four SSDs

4.B
5HDG

128.B 4.B
WrLWH

128.B0
100
200
300
400
500
600
700
800

Av
Hr

Dg
H

/D
WH

nc
y

(u
s)

7C3-10GbSs
7C3-25GbSs
7C3-100GbSs
5D0A-56GbSs

6H0-0-cRSy
I/2 7LPH
CRPP. 7LPH
2WKHr

Figure 12: Sequential Read/Write latency break-
down of NVMe-oAF for four SSDs

At higher network speeds (TCP-100Gbps), the read and write band-
width is 1.26x and 1.48x when compared to NVMe/TCP-25Gbps,
respectively. Likewise, the TCP-10Gbps, TCP-25Gbps, and TCP-
100Gbps have similar average latencies for 4KB I/O sizes.

5.3 Bene�ts Analysis
In Figure 12 we compare the latency breakdown for read and write
commands with NVMe-oAF with four streams. A clear bene�t of
the zero-copy design and shared memory based �ow control of
NVMe-oAF is the reduction in communication time for 128KB I/O.
The decrease in latency for I/O operations can be attributed to
the elimination of an extra copy from the client’s bu�er to shared
memory (zero-copy design) and cutting down on the number of
control messages exchanged (shared memory based �ow control)
by NVMe-oAF. For read workloads with four applications/streams,
NVMe-oAF is able to reduce average latency by 50%, 43%, and 33%
when compared to NVMe/TCP-10Gbps, NVMe/TCP-25Gbps, and
NVMe/TCP-100Gbps, respectively. Lastly, NVMe-oAF is also able
to bring down the “other” component of average latency, which
constitutes the client preparation time, for write I/O as the bu�er
resides on the shared memory saving bu�er preparation/processing
overheads as explained in Section 3.2.

5.4 Tail-latency Studies
In Figure 13 we investigate the tail latency characteristics for a
mixed read-write (70:30) 128KB workload with di�erent fabrics.
The tail latency of NVMe/TCP-100Gbps is slightly lower than
NVMe/TCP-25Gbps and NVMe/TCP-10Gbps but the tail latency
of NVMe-oAF is 3x smaller than that of NVMe/TCP-100Gbps and
NVMe/RDMA. Even though the average latency of NVMe/RDMA
and NVMe/RoCE is lower than that of NVMe-oAF, its tail latency
is quite high due to memory registration overheads incurred by
RDMA. To understand this phenomenon we conduct the same ex-
periment with a running time being 3-4 times higher than our initial
experiment. As expected, we found the tail latency of NVMe/RDMA
to be lower than that of NVMe-oAF. This con�rms that memory
registration overheads incurred by RDMA could impact the tail
latency of short-running or latency-sensitive applications.

5.5 Concurrency
Next, we examine the e�ect of fabric upon the ability to exploit the
inherent parallelism available in NVMe-SSDs to scale performance.
In this experiment, we use a single NVMe I/O queue pair as the I/O
submission path to NVMe-SSD with varying queue depth between
1 to 128. From Figure 14, we �rst observe that network speed does
not help much in exploiting the concurrency of a single SSD. After
queue depth of 8, bandwidth for NVMe/TCP and NVMe/RoCE
remains almost constant indicating that higher queue depth has
minimal impact on improving the bandwidth.

On the other hand, the lock-free double bu�er design in “SHM-
0-copy" allows NVMe-oAF to not hinder the linear scaling of band-
width with increasing queue depths. At queue depth of 1, NVMe-
oAF is not able to achieve signi�cant performance due to the over-
head in the control plane. This is also seen in Figure 12 where the
communication time of AF is comparable to TCP due to control
messages being predominant for small (4KB) I/O. At higher I/O size
(128KB) and multiple streams, the communication time of NVMe-
oAF and NVMe/RDMA are quite similar highlighting that control
messages overhead decreases. Our AF scheme shows that control
plane overheads are not negligible and opens a future research
direction to reduce control plane latency by further optimizing it
or by utilizing faster protocols like RDMA or user-level TCP/IP in
the control path.

5.6 Di�erent Workloads
Till now all our results only considered sequential workloads. It
is equally important to understand the performance implications
introduced by random workloads as di�erent applications would
produce a di�erent mix of workloads over time. We choose three
random workloads with varying proportions of read to write oper-
ations in order to simulate a read-heavy (95:5), equal (50:50), and
write-heavy (5:95) nature of I/O. The throughput for all the fabrics
with a single stream/SSD is shown in Figure 15. Again, the speed of
TCP network has slight impact on the throughput for all the three
workloads. In contrast, NVMe-oAF is able to achieve 2.33x improve-
ment in throughput on average when compared to NVMe/TCP-
100Gbps at 512KB I/O size. Also, NVMe-oAF has a modest decrease,
5-13.5%, in throughput when compared to NVMe/RDMA-56Gbps

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

64

50

60

70

80

90

100

0 4 8 12 16 20 24 28

Cu
m

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

Latency (ms)

TCP-10Gbps TCP-25Gbps
TCP-100Gbps RDMA-56Gbps
RoCE-100Gbps SHM-0-copy

Figure 13: Tail latency for seq 128KB
read-write (70:30) workload (Lower bet-
ter).

0
5

10
15
20
25
30
35
40
45

1 8 32 128

Ba
nd

w
id

th
 (G

b/
s)

Queue Depth

TCP-10Gbps

TCP-25Gbps

TCP-100Gbps

RoCE-100Gbps

SHM-0-copy

RDMA-56Gbps

Figure 14: Concurrency estimation for
sequential read workload at an I/O size
of 128KB.

0
1
2
3
4
5
6
7
8
9

10

R:W(5:95) R:W(50:50) R:W(95:5)

Th
ro

ug
hp

ut
 (K

 IO
PS

)

TCP-10Gbps TCP-25Gbps

TCP-100Gbps RoCE-100Gbps

SHM-0-copy RDMA-56Gbps

Figure 15: Throughput analysis for ran-
dom workloads of mixed nature for
512KB I/Os.

for these workloads. So far, NVMe/RDMA-56Gbps has better per-
formance than NVMe/RoCE-100Gbps for various workloads and
I/O sizes.

5.7 Application-level Evaluation with HDF5
5.7.1 h5bench. HDF5 I/O library is heavily used in a range of sci-
enti�c applications in high performance computing environments.
It is among the top �ve libraries loaded by applications at the Na-
tional Energy Research Scienti�c Computing Center (NERSC) and
the Oak Ridge Leadership Computing Facility (OLCF) [18]. Now we
demonstrate the performance improvement AF delivers to HDF5 ap-
plications over NFS by co-designing h5bench (a popular benchmark
that contains representative HDF5 I/O kernels) with NVMe-oAF.
Using HDF5 Virtual Object Layer (VOL), we are able to intercept
HDF5 APIs and utilize NVMe-oAF’s Connection Manager, Locality
Awareness, and Bu�er Manager components for data storage in the
NVMe-SSD.

To evaluate the performance of our adaptive fabric, we run
h5bench’s read and write I/O kernels from the client. We con�g-
ure the write kernel to write a 1-dimensional (1D) array of basic
datatypes that follows a contiguous pattern both in memory and
�le layout. We perform write operations with two di�erent con�g-
urations to extensively evaluate our design when applications store
di�erent number of datasets. The �rst con�guration, called con�g-1,
writes 16*1024*1024 (16M) particles for one 1D array stored as one
HDF5 dataset. While, the second con�guration, con�g-2, writes
8*1024*1024 (8M) particles for 8 1D arrays stored as 8 HDF5 datasets.
The h5bench reads are similarly con�gured to perform a full read
of the datasets written previously by the write kernel.

When only one dataset is written to/read from the remote SSD,
NVMe-oAF is able to achieve 5.95x higher write bandwidth and
5.68x higher read bandwidth when compared to NFS. The high
bandwidth achieved by NVMe-oAF can be atrributed to the low
latency of AF as seen in Figures 16. On the contrary, when 8 datasets
are written to/read from remote SSD, NVMe-oAF (SHM-0-copy) is
0.53x lower in write bandwidth and 0.41x lower in read bandwidth
when compared to NFS. NFS can perform better here due to two
reasons. The �rst reason is the bu�ering of I/O operations due to the
async mount type of NFS and the second one is due to the queuing

delay incurred by large-sized I/Os on the SSD. Hence, to extract
maximum performance out of NVMe-oAF, we further optimize it
to coalesce the I/Os in an application agnostic manner. We then
observe that zero-copy along with I/O coalescing helps NVMe-oAF
achieve up to 6x and 7x bandwidth improvement for h5bench’s
write and read operations, respectively, as shown in Figure 17.

5.7.2 Scale-out workloads. Next we evaluate an important use-case
where application I/O pattern shifts from remote I/Os to partially
remote I/Os (intra-node), which is closer to real-world scenarios.
Here, remote I/O occurs over TCP/IP whereas partially remote I/O
occurs over shared memory channel. We measure this performance
in two di�erent cases - case-1, where four clients in one node talk
to four remote SSDs located in di�erent physical nodes running
inside VMs, and case-2, where four clients talk to four remote SSDs
located in the same node inside a VM similar to Section 3.1 and later
scaled to four nodes. In both these settings h5bench I/O kernels act
as clients and each I/O kernel is con�gured similar to con�g-1 in
Section 5.7.1 to store 16M particles in one HDF5 dataset. Here the
legend ‘SHM (25%)’ indicates that one client out of four uses the
shared memory channel whereas the remaining clients use TCP-
25Gbps for communication. In Figure 18 we can see that for case-1,
SHM (75%) is able to improve the aggregate bandwidth by 1.81x
for h5bench write and by 2.98x for h5bench read when compared
to SHM (0%). For case-1, we do not report SHM (100%) as it is
equivalent to its counterpart in the case-2 setting.

Figure 19 also demonstrates the overall bene�t in I/O perfor-
mance as the ratio of remote to partially remote I/O changes in
case-2. With only 25% of the I/O kernels using the shared memory
design (the remaining using TCP-25Gbps), the aggregate bandwidth
improves by 37% and 66% for h5bench write and read kernels, re-
spectively.Whereas, when all the applications issue partially remote
I/Os (SHM 100%), the performance improves by 2.34x and 4.55x
for h5bench write and read kernels, respectively, when compared
to the TCP-25Gbps. This shows us the advantage and the impact
adaptive fabric would have when numerous applications with dif-
ferent communication patterns issue partially remote storage I/O
requests.

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

65

0
50
100
150
200
250
300
350

0

5

10

15

20

La
te

nc
y

(m
s)

Ba
nd

w
ith

 (G
b/

s)
Write Write Latency

(a) Write

0

10

20

30

40

Ba
nd

w
ith

 (G
b/

s)

Read Read Latency

(b) Read

Figure 16: Performance of h5bench I/O kernels for one dataset containing 16 M particles in one timestep.

0
1
2
3
4
5
6
7

0

5

10

15

20

25

La
te

nc
y

(s
)

Ba
nd

w
id

th
 (G

b/
s) Write Write Latency

(a) Write

0
1
2
3
4
5
6

0

10

20

30

40

La
te

nc
y

(s
)

Ba
nd

w
id

th
 (G

b/
s) Read Read Latency

(b) Read

Figure 17: Performance of h5bench I/O kernels for 8 datasets containing 8 M particles in one timestep.

6 DISCUSSION ON SECURITY
Security is a big aspect in data center scale computing environ-
ments because users want a guarantee from platform provider that
their data does not get leaked either during communication or
application run time. All HPC cloud providers like Amazon Web
Services, Microsoft Azure, and Google Cloud allow users to run
their applications in VMs. As multiple VMs might share the same
physical host/machine, how to protect against malicious applica-
tions/VM is an extensive research topic on its own [14, 58, 59, 68].
Co-location with other tenants increases the attack vector due to
the presence of covert and side channels [69] and placement vulner-
abilities [66] as the malicious entity could break the logical isolation
enforced by the virtualization layer [70, 73, 83], deteriorate perfor-
mance [65, 84], or even worse steal private keys and sensitive data
from the application [82].

In our HPC cloud setting, we assume that the physical node/host
and the hypervisor/virtualization layer cannot be malicious in na-
ture, i.e., the platform provider would never try to launch an attack
on the users applications housed in VMs. The hypervisor is also
responsible for initializing and allocating an isolated shared mem-
ory channel between the client/user VM and the storage service
VM, i.e., hypervisor guarantees that two clients/tenants will never
map to the same shared memory. The storage service VM will have
multiple shared memory channels assigned to it based on the num-
ber of the user VMs on that physical host that need remote storage
access. As storage service is managed by the cloud provider, we also
assume that the storage service VMs would never try to sni� on the
shared memory channels allocated to other clients. Furthermore,
we presume that a malicious VM cannot forge a client’s identify
and pretend as a legitimate application to the storage service in
order to gain access of the previously stored data in the SSDs.

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

66

0
10
20
30
40
50
60
70

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (G
bp

s)
h5bench_write
h5bench_read

Figure 18: Aggr. bandwidth for h5bench I/O in case-1 (4 nodes).

0
50

100
150
200
250
300
350

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (G
bp

s)

h5bench_write
h5bench_read

Figure 19: Aggr. bandwidth for h5bench I/O in case-2 (4 nodes).

As our current security model relies on the trustworthiness of the
platform and storage service o�ered, we can beef up the security of
shared memory channels by encrypting it with client’s private key.
This ensures that if a malicious entity does get access to the shared
memory channel between the client and the storage service VMs,
they would be unsuccessful in tampering and stealing any data. We
can further improve security for applications running inHPC clouds
by deploying techniques like [60, 77, 81], which detect and hinder
any side channel attacks by co-resident malicious VMs. In our future
work, we wish to relax some assumptions of our security model
and implement techniques that allow HPC applications running on
VMs to defend against side-channel and performance degradation
attacks in the cloud.

7 RELATEDWORK
Some work exists to evaluate the performance of disaggregated
storage over NVMe-oF [28, 29, 36, 38]. Klimovic et al. [45, 46] devise
a remote �ash storage system on top of Ethernet and discuss storage
disaggregation architecture in [44]. Kashyap et al. [38] conduct a
performance characterization of di�erent NVMe-oF networking
protocols and Jia et al. [36] study the performance implications
of NVMe-oF on ARM SoCs and Xu et al. [71] evaluate local and
remote I/O performance for applications running in containers. Guz
et al. [28, 29] compare kernel space NVMe-oF target with iSCSI
protocol. NVMe-over-RPMsg [78] emulates remote storage system
as local NVMe device for multi-core SoCs to eliminate the long I/O
latency of existing NVMe-SSD emulators. The authors use remote
processor messaging between guest and remote OS for delivery of
read/write commands. NVMe-oAF di�ers from these works as it
focuses on applications directly accessing SSDs using userspace
NVMe-oF protocol and proposes a new adaptive fabric that is not
designed for a particular HPC workload or scenario.

Some literature aims at increasing the e�ciency of accessing
local NVMe drives and provides APIs for applications developers.
NVMeDirect [42] is a userspace framework that not only allows fast
access to NVMe-SSDs but also allows users to de�ne I/O policies
like scheduling and caching. KV SSD [7] provides a direct key-value
interface to a block device and contains drivers, software packages,
and APIs to allow users to benchmark and analyze multiple appli-
cations like RocksDB [19] and direct key-value stack’s on SSDs.

Inter-VM Shared Memory (IVSHMEM) [6] has been promising
in the HPC domain. Zhang et al. [75] present a comprehensive

performance evaluation about the bene�ts of using IVSHMEM for
MPI applications in intra-host inter-VM environment. Recently,
secure IVHSMEM [64] has been proposed which can be used to
further enhance the security between co-located applications using
shared memory. Ivanovic et al. [35] show the performance evalu-
ation of IVSHMEM for HPC by integrating their shared memory
design to MPICH MPI library. Pickartz et al. [57] investigate the
bene�ts of IVSHMEM during VM migrations and present its com-
prehensive performance evaluation for intra-host VMs. C-GDR [74]
propose locality-aware and container-aware designs to alleviate
communication bottlenecks on GPU-enabled clouds.

8 CONCLUSION
In this paper, we propose a novel concept, called Adaptive Fabric,
for accelerating NVMe-oF protocols. The key idea of our work is to
adaptively and transparently leverage and optimize both commonly
available I/O paths like TCP/IP and shared memory in the HPC
cloud architecture. Based on this, we propose designs and optimiza-
tions for NVMe-over-Adaptive-Fabric (i.e., NVMe-oAF) protocols.
We further co-design our proposed NVMe-oAF with Intel SPDK and
HDF5 storage runtimes. Extensive evaluations demonstrate that
our design is able to achieve up to 7.1x bandwidth increase and up
to 4.2x latency reduction for various workloads compared to con-
ventional NVMe-oF protocols over high-speed Ethernet networks
(e.g., 10/25/100 Gbps). For HDF5 workloads, NVMe-oAF attains up
to 7x bandwidth improvement over NFS. In the future, we will try to
make our designs support more communication optimizations with
RDMA or user-level TCP/IP, and make our designs open-source
available.

9 ACKNOWLEDGEMENT
We would like to sincerely thank Shashank Gugnani for initial
discussions and Yuke Li for help in conducting some of the experi-
ments. We would like to thank Suren Byna from Lawrence Berkeley
National Laboratory for his suggestions on benchmarking with
h5bench. We want to thank the anonymous reviewers for their
insightful comments and suggestions. For compute resources, we
would like to thank CloudLab and Chameleon Cloud. This work
was supported in part by the NSF research grant CCF #2132049 and
a COR grant from University of California, Merced.

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

67

REFERENCES
[1] 2006. The HDF Group. http://www.hdfgroup.org/solutions/hdf5/
[2] 2019. NVM ExpressTM over Fabrics Revision 1.1. https://nvmexpress.org/wp-

content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Rati�ed.pdf
[3] 2021. Top500. https://www.top500.org/statistics/list/
[4] 2022. Data Plane Development Kit. https://www.dpdk.org/
[5] 2022. Direct Memory Access (DMA) From User Space. https://spdk.io/doc/

memory.html
[6] 2022. Inter-VM Shared Memory Device. https://www.qemu.org/docs/master/

system/devices/ivshmem.html
[7] 2022. KV SSD. https://github.com/OpenMPDK/KVSSD
[8] 2022. NVM Express. https://nvmexpress.org/
[9] 2022. NVMe-over-Fabrics Speci�cation. https://nvmexpress.org/developers/

nvme-of-speci�cation/
[10] 2022. QEMU. https://www.qemu.org/
[11] 2022. Single Root I/O Virtualization. https://pcisig.com/
[12] 2022. SPDK NVMe perf Benchmark. https://github.com/spdk/spdk/tree/master/

examples/nvme/perf
[13] 2022. What is SPDK . https://spdk.io/doc/about.html
[14] Mazhar Ali, Samee U. Khan, and Athanasios V. Vasilakos. 2015. Security in Cloud

Computing: Opportunities and Challenges. Information Sciences 305 (2015), 357–
383. https://doi.org/10.1016/j.ins.2015.01.025

[15] Jens Axboe. 2022. Flexible IO Tester (FIO) ver 3.13. https://github.com/axboe/�o
[16] Shajulin Benedict. 2013. Performance Issues and Performance Analysis Tools for

HPC Cloud Applications: A Survey. Computing 95, 2 (2013), 89–108.
[17] Tim Bisson, Ke Chen, Changho Choi, Vijay Balakrishnan, and Yang-suk Kee. 2018.

Crail-KV: A High-Performance Distributed Key-Value Store Leveraging Native
KV-SSDs over NVMe-oF. In 2018 IEEE 37th International Performance Computing
and Communications Conference (IPCCC). 1–8. https://doi.org/10.1109/PCCC.
2018.8710776

[18] Suren Byna, M Scot Breitenfeld, Bin Dong, Quincey Koziol, Elena Pourmal, Dana
Robinson, Jerome Soumagne, Houjun Tang, Venkatram Vishwanath, and Richard
Warren. 2020. ExaHDF5: Delivering E�cient Parallel I/O on Exascale Computing
Systems. Journal of Computer Science and Technology 35, 1 (2020), 145–160.

[19] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Characteriz-
ing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook.
In 18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX
Association, Santa Clara, CA, 209–223. https://www.usenix.org/conference/
fast20/presentation/cao-zhichao

[20] Adam G. Carlyle, Stephen L. Harrell, and Preston M. Smith. 2010. Cost-E�ective
HPC: The Community or the Cloud?. In 2010 IEEE Second International Conference
on Cloud Computing Technology and Science. 169–176. https://doi.org/10.1109/
CloudCom.2010.115

[21] Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: A Content-
Aware Flash Translation Layer Enhancing the Lifespan of Flash Mem-
ory based Solid State Drives. In 9th USENIX Conference on File and
Storage Technologies (FAST 11). USENIX Association, San Jose, CA.
https://www.usenix.org/conference/fast11/caftl-content-aware-�ash-
translation-layer-enhancing-lifespan-�ash-memory-based

[22] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1–14. https://www.�ux.utah.edu/paper/duplyakin-atc19

[23] Roberto R. Expósito, Guillermo L. Taboada, Sabela Ramos, Juan Touriño, and
Ramón Doallo. 2013. Performance Analysis of HPC Applications in the Cloud.
Future Generation Computer Systems 29, 1 (2013), 218–229. https://doi.org/10.
1016/j.future.2012.06.009 Including Special section: AIRCC-NetCoM 2009 and
Special section: Clouds and Service-Oriented Architectures.

[24] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. 2003. The Google File
System. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (Bolton Landing, NY, USA) (SOSP ’03). Association for Computing
Machinery, New York, NY, USA, 29–43. https://doi.org/10.1145/945445.945450

[25] Abhishek Gupta, Paolo Faraboschi, Filippo Gioachin, Laxmikant V. Kale, Richard
Kaufmann, Bu-Sung Lee, Verdi March, Dejan Milojicic, and Chun Hui Suen. 2016.
Evaluating and Improving the Performance and Scheduling of HPC Applications
in Cloud. IEEE Transactions on Cloud Computing 4, 3 (2016), 307–321. https:
//doi.org/10.1109/TCC.2014.2339858

[26] Abhishek Gupta, Laxmikant V. Kale, Filippo Gioachin, Verdi March, Chun Hui
Suen, Bu-Sung Lee, Paolo Faraboschi, Richard Kaufmann, and Dejan Milojicic.
2013. The Who, What, Why, and How of High Performance Computing in the
Cloud. In 2013 IEEE 5th International Conference on Cloud Computing Technology
and Science, Vol. 1. 306–314. https://doi.org/10.1109/CloudCom.2013.47

[27] Abhishek Gupta and Dejan Milojicic. 2011. Evaluation of HPC Applications on
Cloud. In 2011 Sixth Open Cirrus Summit. 22–26. https://doi.org/10.1109/OCS.
2011.10

[28] Zvika Guz, Harry (Huan) Li, Anahita Shayesteh, and Vijay Balakrishnan. 2017.
NVMe-over-Fabrics Performance Characterization and the Path to Low-Overhead
Flash Disaggregation. In Proceedings of the 10th ACM International Systems and
Storage Conference (SYSTOR’17). Article 16, 9 pages.

[29] Zvika Guz, Harry (Huan) Li, Anahita Shayesteh, and Vijay Balakrishnan. 2018.
Performance Characterization of NVMe-over-Fabrics Storage Disaggregation.
ACM Trans. Storage 14, 4, Article 31 (Dec. 2018), 18 pages. https://doi.org/10.
1145/3239563

[30] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, An-
drew A. Chien, and Haryadi S. Gunawi. 2016. The Tail at Store: A Revelation from
Millions of Hours of Disk and SSDDeployments. In 14th USENIXConference on File
and Storage Technologies (FAST 16). USENIXAssociation, Santa Clara, CA, 263–276.
https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao

[31] Jahanzeb Maqbool Hashmi, Shulei Xu, Bharath Ramesh, Mohammadreza Bayat-
pour, Hari Subramoni, and Dhabaleswar K. DK Panda. 2020. Machine-agnostic
and Communication-aware Designs for MPI on Emerging Architectures. In 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 32–41.
https://doi.org/10.1109/IPDPS47924.2020.00014

[32] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan, Bei Hua, Zhi-Li Zhang,
and Kai Zheng. 2020. MasQ: RDMA for Virtual Private Cloud. In Proceedings of
the Annual Conference of the ACM Special Interest Group on Data Communica-
tion on the Applications, Technologies, Architectures, and Protocols for Computer
Communication (Virtual Event, USA) (SIGCOMM ’20). Association for Computing
Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3387514.3405849

[33] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP RDMA:
CPU-e�cient Remote Storage Access with i10 . In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). USENIX Association, Santa
Clara, CA, 127–140. https://www.usenix.org/conference/nsdi20/presentation/
hwang

[34] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. 2021.
Rearchitecting Linux Storage Stack for �s Latency and High Throughput. In
15th USENIX Symposium on Operating Systems Design and Implementation (OSDI
21). USENIX Association, 113–128. https://www.usenix.org/conference/osdi21/
presentation/hwang

[35] Pavle Ivanovic and Harald Richter. 2018. Performance Analysis of Ivshmem for
High-Performance Computing in Virtual Machines. Journal of Physics: Conference
Series 960 (jan 2018), 012015. https://doi.org/10.1088/1742-6596/960/1/012015

[36] Yichen Jia, Eric Anger, and Feng Chen. 2019. When NVMe over Fabrics Meets
Arm: Performance and Implications. In 2019 35th Symposium on Mass Storage
Systems and Technologies (MSST). 134–140.

[37] Abhijeet Joglekar, Michael E. Kounavis, and Frank L. Berry. 2005. A Scalable
and High Performance Software iSCSI Implementation. In Proceedings of the 4th
Conference on USENIX Conference on File and Storage Technologies - Volume 4
(FAST’05). USENIX Association, USA, 20.

[38] Arjun Kashyap, Shashank Gugnani, and Xiaoyi Lu. 2021. Impact of Commodity
Networks on Storage Disaggregation with NVMe-oF. In Benchmarking, Measur-
ing, and Optimizing, Felix Wolf and Wanling Gao (Eds.). Springer International
Publishing, Cham, 41–56.

[39] Kate Keahey, JasonAnderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons
Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association.

[40] H. M. Khosravi, Abhijeet Joglekar, and Ravi Iyer. 2005. Performance Charac-
terization of iSCSI Processing in a Server Platform. In PCCC 2005. 24th IEEE
International Performance, Computing, and Communications Conference, 2005.
99–107.

[41] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye,
Shachar Raindel, Chuanxiong Guo, Vyas Sekar, and Srinivasan Seshan. 2019.
FreeFlow: Software-based Virtual RDMA Networking for Containerized Clouds.
In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 113–126. https://www.usenix.org/
conference/nsdi19/presentation/kim

[42] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDirect: A User-
space I/O Framework for Application-speci�c Optimization on NVMe SSDs.
In 8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
16). USENIX Association, Denver, CO. https://www.usenix.org/conference/
hotstorage16/workshop-program/presentation/kim

[43] Jaeho Kim, Donghee Lee, and Sam H. Noh. 2015. Towards SLO Complying
SSDs Through OPS Isolation. In 13th USENIX Conference on File and Storage
Technologies (FAST 15). USENIX Association, Santa Clara, CA, 183–189. https://
www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho

[44] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar.
2016. Flash Storage Disaggregation. In Proceedings of the Eleventh European
Conference on Computer Systems (London, United Kingdom) (EuroSys ’16). As-
sociation for Computing Machinery, New York, NY, USA, Article 29, 15 pages.
https://doi.org/10.1145/2901318.2901337

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

68

http://www.hdfgroup.org/solutions/hdf5/
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://www.top500.org/statistics/list/
https://www.dpdk.org/
https://spdk.io/doc/memory.html
https://spdk.io/doc/memory.html
https://www.qemu.org/docs/master/system/devices/ivshmem.html
https://www.qemu.org/docs/master/system/devices/ivshmem.html
https://github.com/OpenMPDK/KVSSD
https://nvmexpress.org/
https://nvmexpress.org/developers/nvme-of-specification/
https://nvmexpress.org/developers/nvme-of-specification/
https://www.qemu.org/
https://pcisig.com/
https://github.com/spdk/spdk/tree/master/examples/nvme/perf
https://github.com/spdk/spdk/tree/master/examples/nvme/perf
https://spdk.io/doc/about.html
https://doi.org/10.1016/j.ins.2015.01.025
https://github.com/axboe/fio
https://doi.org/10.1109/PCCC.2018.8710776
https://doi.org/10.1109/PCCC.2018.8710776
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://doi.org/10.1109/CloudCom.2010.115
https://doi.org/10.1109/CloudCom.2010.115
https://www.usenix.org/conference/fast11/caftl-content-aware-flash-translation-layer-enhancing-lifespan-flash-memory-based
https://www.usenix.org/conference/fast11/caftl-content-aware-flash-translation-layer-enhancing-lifespan-flash-memory-based
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1016/j.future.2012.06.009
https://doi.org/10.1016/j.future.2012.06.009
https://doi.org/10.1145/945445.945450
https://doi.org/10.1109/TCC.2014.2339858
https://doi.org/10.1109/TCC.2014.2339858
https://doi.org/10.1109/CloudCom.2013.47
https://doi.org/10.1109/OCS.2011.10
https://doi.org/10.1109/OCS.2011.10
https://doi.org/10.1145/3239563
https://doi.org/10.1145/3239563
https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao
https://doi.org/10.1109/IPDPS47924.2020.00014
https://doi.org/10.1145/3387514.3405849
https://www.usenix.org/conference/nsdi20/presentation/hwang
https://www.usenix.org/conference/nsdi20/presentation/hwang
https://www.usenix.org/conference/osdi21/presentation/hwang
https://www.usenix.org/conference/osdi21/presentation/hwang
https://doi.org/10.1088/1742-6596/960/1/012015
https://www.usenix.org/conference/nsdi19/presentation/kim
https://www.usenix.org/conference/nsdi19/presentation/kim
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho
https://www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho
https://doi.org/10.1145/2901318.2901337

[45] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash
⇡ Local Flash. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’17). 345–359.

[46] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfe�erle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless
Analytics. In Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation (OSDI’18). USENIX Association, USA, 427–444.

[47] Tonglin Li, Suren Byna, Quincey Koziol, Houjun Tang, Jean Luca Bez, and Qiao
Kang. 2021. h5bench: HDF5 I/O Kernel Suite for Exercising HPC I/O Patterns. In
Proceedings of Cray User Group Meeting, CUG 2021.

[48] Tianxi Li, Haiyang Shi, and Xiaoyi Lu. 2021. HatRPC: Hint-Accelerated Thrift
RPC over RDMA. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (St. Louis, Missouri) (SC ’21).
Association for Computing Machinery, New York, NY, USA, Article 36, 14 pages.
https://doi.org/10.1145/3458817.3476191

[49] Liran Liss. 2017. The Linux SoftRoce Driver. In OpenFabrics Annual Workshop.
[50] Renping Liu, Xianzhang Chen, Yujuan Tan, Runyu Zhang, Liang Liang, and

Duo Liu. 2020. SSDKeeper: Self-Adapting Channel Allocation to Improve the
Performance of SSD Devices. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 966–975. https://doi.org/10.1109/IPDPS47924.
2020.00103

[51] Youyou Lu, Jiwu Shu, and Weimin Zheng. 2013. Extending the Lifetime of
Flash-based Storage through Reducing Write Ampli�cation from File Systems.
In 11th USENIX Conference on File and Storage Technologies (FAST 13). USENIX
Association, San Jose, CA, 257–270. https://www.usenix.org/conference/fast13/
technical-sessions/presentation/lu_youyou

[52] Aniruddha Marathe, Rachel Harris, David K. Lowenthal, Bronis R. de Supinski,
Barry Rountree, Martin Schulz, and Xin Yuan. 2013. A Comparative Study of High-
Performance Computing on the Cloud. In Proceedings of the 22nd International
Symposium on High-Performance Parallel and Distributed Computing (New York,
New York, USA) (HPDC ’13). Association for Computing Machinery, New York,
NY, USA, 239–250. https://doi.org/10.1145/2493123.2462919

[53] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei, In Hwan
Doh, and Arvind Krishnamurthy. 2021. Gimbal: Enabling Multi-Tenant Storage
Disaggregation on SmartNIC JBOFs. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (Virtual Event, USA) (SIGCOMM ’21). Association for Comput-
ing Machinery, New York, NY, USA, 106–122. https://doi.org/10.1145/3452296.
3472940

[54] Marco A. S. Netto, Rodrigo N. Calheiros, Eduardo R. Rodrigues, Renato L. F.
Cunha, and Rajkumar Buyya. 2018. HPC Cloud for Scienti�c and Business
Applications: Taxonomy, Vision, and Research Challenges. ACM Comput. Surv.
51, 1, Article 8 (Jan 2018), 29 pages. https://doi.org/10.1145/3150224

[55] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. 2010. A Performance Analysis of EC2 Cloud Comput-
ing Services for Scienti�c Computing. In Cloud Computing, Dimiter R. Avresky,
Michel Diaz, Arndt Bode, Bruno Ciciani, and Eliezer Dekel (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 115–131.

[56] Jonas Pfe�erle, Patrick Stuedi, Animesh Trivedi, BernardMetzler, Ionnis Koltsidas,
and Thomas R. Gross. 2015. A Hybrid I/O Virtualization Framework for RDMA-
Capable Network Interfaces. In Proceedings of the 11th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (Istanbul, Turkey)
(VEE ’15). Association for Computing Machinery, New York, NY, USA, 17–30.
https://doi.org/10.1145/2731186.2731200

[57] Simon Pickartz, Jonas Baude, Stefan Lankes, and Antonello Monti. 2017. A
Locality-Aware Communication Layer for Virtualized Clusters. In High Perfor-
mance Computing, Julian M. Kunkel, Rio Yokota, Michela Taufer, and John Shalf
(Eds.). Springer International Publishing, Cham, 605–616.

[58] Gururaj Ramachandra, Mohsin Iftikhar, and Farrukh Aslam Khan. 2017. A Com-
prehensive Survey on Security in Cloud Computing. Procedia Computer Science
110 (2017), 465–472. https://doi.org/10.1016/j.procs.2017.06.124 14th Interna-
tional Conference on Mobile Systems and Pervasive Computing (MobiSPC 2017)
/ 12th International Conference on Future Networks and Communications (FNC
2017) / A�liated Workshops.

[59] S Ramgovind, M M Elo�, and E Smith. 2010. The Management of Security in
Cloud Computing. In 2010 Information Security for South Africa. 1–7. https:
//doi.org/10.1109/ISSA.2010.5588290

[60] U.K. Muhammed Sadique and Divya James. 2016. A Novel Approach to Prevent
Cache-based Side-Channel Attack in the Cloud. Procedia Technology 25 (2016),
232–239. https://doi.org/10.1016/j.protcy.2016.08.102 1st Global Colloquium
on Recent Advancements and E�ectual Researches in Engineering, Science and
Technology - RAEREST 2016 on April 22nd 23rd April 2016.

[61] Deboleena Sakalley. 2017. Using FPGAs to accelerate NVMe-of based Storage
Networks. In Flash Memory Summit 2017. 8–11.

[62] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.
1985. Design and Implementation of the Sun Network Filesystem. In Proceedings
of the Summer USENIX Conference. 119–130.

[63] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST). 1–10. https://doi.org/10.1109/MSST.
2010.5496972

[64] Shesha Sreenivasamurthy and Ethan Miller. 2019. Sivshm: Secure Inter-VM
Shared Memory. arXiv preprint arXiv:1909.10377 (2019).

[65] Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley, Thomas Ris-
tenpart, and Michael M. Swift. 2012. Resource-Freeing Attacks: Improve Your
Cloud Performance (at Your Neighbor’s Expense). In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (Raleigh, North Carolina,
USA) (CCS ’12). Association for Computing Machinery, New York, NY, USA,
281–292. https://doi.org/10.1145/2382196.2382228

[66] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2015. A Placement Vulnerability Study in Multi-Tenant Public Clouds.
In 24th USENIX Security Symposium (USENIX Security 15). USENIX Asso-
ciation, Washington, D.C., 913–928. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/varadarajan

[67] Dongyang Wang, Binzhang Fu, Gang Lu, Kun Tan, and Bei Hua. 2019. VSocket:
Virtual Socket Interface for RDMA in Public Clouds. In Proceedings of the 15th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Providence, RI, USA) (VEE 2019). Association for Computing Machinery,
New York, NY, USA, 179–192. https://doi.org/10.1145/3313808.3313813

[68] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. 2011. Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud Computing. IEEE
Transactions on Parallel and Distributed Systems 22, 5 (2011), 847–859. https:
//doi.org/10.1109/TPDS.2010.183

[69] Zhenghong Wang and Ruby B. Lee. 2006. Covert and Side Channels Due to
Processor Architecture. In 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06). 473–482. https://doi.org/10.1109/ACSAC.2006.20

[70] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-
space: High-speed Covert Channel Attacks in the Cloud. In 21st USENIX Secu-
rity Symposium (USENIX Security 12). USENIX Association, Bellevue, WA, 159–
173. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/wu

[71] Qiumin Xu, Manu Awasthi, Krishna Malladi, Janki Bhimani, Jingpei Yang, Murali
Annavaram, and Ming Hsieh. 2017. Performance Analysis of Containerized
Applications on Local and Remote Storage. In International Conference on Massive
Storage Systems and Technology.

[72] Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp, Changpeng Liu,
Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma, and Luse E. Paul. 2017.
SPDK: A Development Kit to Build High Performance Storage Applications. In
2017 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). 154–161.

[73] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security
Symposium (USENIX Security 14). USENIX Association, San Diego, CA, 719–
732. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/yarom

[74] Jie Zhang, Xiaoyi Lu, Ching-Hsiang Chu, and Dhabaleswar K. Panda. 2019.
C-GDR: High-Performance Container-Aware GPUDirect MPI Communication
Schemes on RDMA Networks. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 242–251. https://doi.org/10.1109/IPDPS.2019.
00034

[75] Jie Zhang, Xiaoyi Lu, Jithin Jose, Rong Shi, and Dhabaleswar K. (DK) Panda. 2014.
Can Inter-VM Shmem Bene�t MPI Applications on SR-IOV Based Virtualized
In�niband Clusters?. In Euro-Par 2014 Parallel Processing, Fernando Silva, Inês
Dutra, and Vítor Santos Costa (Eds.). Springer International Publishing, Cham,
342–353.

[76] Jie Zhang, Xiaoyi Lu, and Dhabaleswar K. Panda. 2016. High Performance MPI
Library for Container-Based HPC Cloud on In�niBand Clusters. In 2016 45th
International Conference on Parallel Processing (ICPP). 268–277. https://doi.org/
10.1109/ICPP.2016.38

[77] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. 2016. CloudRadar: A Real-Time
Side-Channel Attack Detection System in Clouds. In Research in Attacks, Intru-
sions, and Defenses, Fabian Monrose, Marc Dacier, Gregory Blanc, and Joaquin
Garcia-Alfaro (Eds.). Springer International Publishing, Cham, 118–140.

[78] Xiaohao Zhang, Yunjie Li, and Gang Chen. 2020. NVMe-over-RPMsg: A Virtual
Storage Device Model Applied to Heterogeneous Multi-Core SoCs. In 2020 10th
Annual Computing and Communication Workshop and Conference (CCWC). 0821–
0826. https://doi.org/10.1109/CCWC47524.2020.9031144

[79] Xiaoyi Zhang, Feng Zhu, Shu Li, Kun Wang, Wei Xu, and Dengcai Xu. 2021.
Optimizing Performance for Open-Channel SSDs in Cloud Storage System. In
2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
902–911. https://doi.org/10.1109/IPDPS49936.2021.00099

[80] Xiaoyi Zhang, Feng Zhu, Shu Li, Kun Wang, Wei Xu, and Dengcai Xu. 2021.
Optimizing Performance for Open-Channel SSDs in Cloud Storage System. In
2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
902–911. https://doi.org/10.1109/IPDPS49936.2021.00099

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

69

https://doi.org/10.1145/3458817.3476191
https://doi.org/10.1109/IPDPS47924.2020.00103
https://doi.org/10.1109/IPDPS47924.2020.00103
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
https://doi.org/10.1145/2493123.2462919
https://doi.org/10.1145/3452296.3472940
https://doi.org/10.1145/3452296.3472940
https://doi.org/10.1145/3150224
https://doi.org/10.1145/2731186.2731200
https://doi.org/10.1016/j.procs.2017.06.124
https://doi.org/10.1109/ISSA.2010.5588290
https://doi.org/10.1109/ISSA.2010.5588290
https://doi.org/10.1016/j.protcy.2016.08.102
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/2382196.2382228
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/varadarajan
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/varadarajan
https://doi.org/10.1145/3313808.3313813
https://doi.org/10.1109/TPDS.2010.183
https://doi.org/10.1109/TPDS.2010.183
https://doi.org/10.1109/ACSAC.2006.20
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1109/IPDPS.2019.00034
https://doi.org/10.1109/IPDPS.2019.00034
https://doi.org/10.1109/ICPP.2016.38
https://doi.org/10.1109/ICPP.2016.38
https://doi.org/10.1109/CCWC47524.2020.9031144
https://doi.org/10.1109/IPDPS49936.2021.00099
https://doi.org/10.1109/IPDPS49936.2021.00099

[81] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. 2011. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Analysis. In 2011 IEEE
Symposium on Security and Privacy. 313–328. https://doi.org/10.1109/SP.2011.31

[82] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-
VM Side Channels and Their Use to Extract Private Keys. In Proceedings of the
2012 ACM Conference on Computer and Communications Security (Raleigh, North
Carolina, USA) (CCS ’12). Association for Computing Machinery, New York, NY,
USA, 305–316. https://doi.org/10.1145/2382196.2382230

[83] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security (Scottsdale, Ari-
zona, USA) (CCS ’14). Association for Computing Machinery, New York, NY, USA,
990–1003. https://doi.org/10.1145/2660267.2660356

[84] Fangfei Zhou, Manish Goel, Peter Desnoyers, and Ravi Sundaram. 2013. Sched-
uler Vulnerabilities and Coordinated Attacks in Cloud Computing. Journal of
Computer Security 21, 4 (2013), 533–559.

[85] Yue Zhu, Weikuan Yu, Bing Jiao, Kathryn Mohror, Adam Moody, and Fahim
Chowdhury. 2019. E�cient User-Level Storage Disaggregation for Deep Learning.
In 2019 IEEE International Conference on Cluster Computing (CLUSTER). 1–12.
https://doi.org/10.1109/CLUSTER.2019.8891023

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

70

https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2660267.2660356
https://doi.org/10.1109/CLUSTER.2019.8891023

	Abstract
	1 Introduction
	2 Background
	2.1 NVMe-over-Fabrics
	2.2 Intel SPDK
	2.3 SR-IOV, IVSHMEM, and ICSHMEM

	3 Performance Characterization
	3.1 Performance of Existing NVMe-oF Schemes
	3.2 Analysis of Existing NVMe-oF Schemes
	3.3 Summary of Characterization

	4 Design
	4.1 Connection Establishment and Buffer Management
	4.2 Locality Awareness
	4.3 NVMe-oSHM: NVMe-over-Shared-Memory
	4.4 Optimized Designs for NVMe-oSHM
	4.5 TCP-channel Optimization
	4.6 Adaptive Fabric based SPDK

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Overall Benefits
	5.3 Benefits Analysis
	5.4 Tail-latency Studies
	5.5 Concurrency
	5.6 Different Workloads
	5.7 Application-level Evaluation with HDF5

	6 Discussion on Security
	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

