
Characterizing and Accelerating End-to-End EdgeAI Inference
Systems for Object Detection Applications

Yujie Hui
hui.82@osu.edu

The Ohio State University
Columbus, Ohio, USA

Je!rey Lien
jlien@novumind.com

NovuMind Inc
Santa Clara, California, USA

Xiaoyi Lu
xiaoyi.lu@ucmerced.edu

University of California, Merced
Merced, California, USA

ABSTRACT
Modern EdgeAI inference systems still have many crucial limi-
tations. In this paper, we holistically consider implications and
optimizations of EdgeAI inference systems for object detection
applications in e"ciency and accuracy. We summarize three in-
trinsic limitations of current-generation EdgeAI inference systems
based on our observations (i.e., less compute capabilities, restric-
tions of operations, and accuracy loss due to numerical precision).
Then we propose three approaches to improve end-to-end perfor-
mance and prediction accuracy: 1) Utilizing parallel computing
designs and methods to solve computational bottlenecks; 2) Ap-
plying domain-speci#c optimizations to mostly eliminate accuracy
loss; 3) Using higher-quality input data to saturate the processors
and accelerators. We also provide #ve recommendations for end-
to-end EdgeAI solution deployments, which are usually neglected
by EdgeAI users. In particular, we deploy and optimize two real
object detection applications (2D and 3D) on two EdgeAI inference
systems (NovuTensor and Nvidia Xavier) with widely used datasets
(i.e., MS-COCO, PASCAL-VOC, and KITTI). The results show that
runtime performance can be accelerated by up to 2X on NovuTen-
sor and the mean average precision (mAP) can be increased by 46%
through applying our proposed methods.
ACM Reference Format:
Yujie Hui, Je!rey Lien, and Xiaoyi Lu. 2021. Characterizing and Accelerating
End-to-End EdgeAI Inference Systems for Object Detection Applications.
In The Sixth ACM/IEEE Symposium on Edge Computing (SEC ’21), December
14–17, 2021, San Jose, CA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3453142.3491294

1 INTRODUCTION
In recent years, we see many datacenter-based Arti#cial Intelli-
gence (AI) systems are taking advantage of various technologies
(e.g., multi-core CPUs, accelerators, and high-speed interconnects)
to accelerate the Deep Learning training process [20, 33]. Di!erent
from the requirement of training, Deep Learning inference tasks
need much less computing resources and energy, which is because
the input data for inference is only processed once in the forward
path of a trained network and it does not need to go through the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro#t or commercial advantage and that copies bear this notice and the full citation
on the #rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci#c permission and/or a
fee. Request permissions from permissions@acm.org.
SEC ’21, December 14–17, 2021, San Jose, CA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8390-5/21/12. . . $15.00
https://doi.org/10.1145/3453142.3491294

time-consuming and resource-hungry forward-backward computa-
tion processes iteratively. Hence, deploying Deep Learning infer-
ence systems on edge computing platforms has become a promising
approach.

EdgeAI systems utilize popular AI solutions like neural networks
to process real-time data. Many EdgeAI processors or accelerators
are designed by di!erent vendors for inference systems and man-
ufactured on various platforms. For instance, Nvidia Xavier [5]
is equipped with ARM CPU, Volta GPU, and a customized Deep
Learning accelerator. EdgeAI inference systems can bene#t from the
heterogeneous computing of various processors. Compared with
the well-studied datacenter-based AI training systems [20, 24, 33],
the insu"ciency of understanding and optimization of EdgeAI in-
ference systems may cause problems of under-utilizing EdgeAI
hardware platforms, leading to low performance and accuracy for
AI inference applications. In particular, this paper summarizes that
there are at least three intrinsic limitations of current-generation
EdgeAI inference systems, which are:
(1) Less compute capabilities due to low power consumption.
Current-generation processors and accelerators designed for EdgeAI
inference systems usually consume very low power (10 Watt ∼ 50
Watt) compared with that of GPGPUs. Delivering real time perfor-
mance with limited energy and compute capabilities is challenging.
(2) Restrictions of supported AI inference operations. Many
EdgeAI accelerators are designed to only support a #xed set of AI
inference operations due to technology and market trade-o!s. As a
result, some deep neural networks with complex operations cannot
be deployed on these EdgeAI platforms. This leads to a critical
dilemma: should we choose to deploy complex AI models on high-
end but expensive EdgeAI platforms? Or should we choose a!ordable
approaches but can still maintain similar performance and accuracy
as running on the high-end EdgeAI platforms?
(3) Accuracy loss due to lower numerical precision. Reducing
numerical precision via quantization, is a common method to speed
up Deep Learning inference [42]. However, accuracy will su!er
because of potential information loss during quantization.

Due to these limitations, this paper #rst quantitatively charac-
terizes EdgeAI inference systems from performance and accuracy
angles. Our analysis in Section 3 demonstrates the harmful e!ects
of these limitations. Based on our observations, we propose several
approaches to accelerate the runtime performance and increase the
prediction accuracy of EdgeAI systems.

In terms of end-to-end runtime performance, we apply parallel
computing designs to optimize the object detection applications on
EdgeAI inference systems. We also exploit the parallelism of EdgeAI
inference hardware features. Concerning prediction accuracy, this

���

�����"$.�*&&&��UI�4ZNQPTJVN�PO�&EHF�$PNQVUJOH�	4&$

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

paper proposes a hybrid calibration method for quantization, which
mostly eliminates accuracy loss.

More interestingly, we analyze the relations between the resolu-
tions of input images and prediction accuracy. We wondrously #nd
that running simple neural networks with higher resolution input
images may get higher or similar accuracy than using complex
neural networks with regular resolution images for some object de-
tection scenarios. This implies that we can avoid deploying complex
neural networks on expensive EdgeAI hardware platforms. Alterna-
tively, we can choose a!ordable AI hardware with simpler models
and feed higher resolution images. This approach essentially im-
plies that we need an e"cient EdgeAI system design, which is not
only optimizing the model computation but also data movement
(i.e., communication). In this case, more computing capabilities can
be used to optimize this work$ow, which essentially can solve the
dilemma discussed above. With our approaches, we can alleviate
the burden of designing complex neural networks. The details are
discussed in Section 5.2. Energy e"ciency is another crucial fac-
tor for EdgeAI systems. Section 6.1 discusses the e!ect on power
consumption of our proposed methods.

This paper makes the following contributions:

• We deploy the killer computer-vision application for edge
(2D&3D object detection) on two EdgeAI inference systems
(i.e., NovuTensor and Nvidia Xavier) based on real datasets
(e.g., MS-COCO, PASCAL-VOC, and KITTI). We argue that
the EdgeAI accelerators on these architectures have little
potential if they are not coupled with hardware and software
methods to reduce the computation and communication
overhead. (Section 3)

• We present a fresh view that leveraging parallel computing
designs and methods on EdgeAI inference systems is essen-
tial for the end-to-end performance based on our characteri-
zation. We demonstrate that exploiting the EdgeAI acceler-
ators is not straightforward but requires domain-speci#c
knowledge on software and hardware. Our methods for
EdgeAI canmake a real di!erence in end-to-end performance
(Section 4). Our methods can save up to 20% energy consump-
tion and maintain the power consumption on NovuTensor.
(Section 6.1)

• We propose a domain-speci#c hybrid calibration method,
which mostly eliminates the accuracy loss due to uniform
quantization. The proposedmethod is evaluated on an EdgeAI
inference system deployed with a LiDAR 3D object detection
application. The evaluation results show that our method
outperforms other conventional calibration methods, which
increases the mAP by 64% at most. (Section 5.1)

• We propose a methodology to improve the accuracy of ob-
ject detection on EdgeAI platforms, which converts the chal-
lenges of EdgeAI inference systems from AI algorithms to
computing capabilities. In particular, deploying simpler neu-
ral networks with higher resolution input images can deliver
higher or similar accurate results than deploying more com-
plicated neural networks that are unsupported by EdgeAI sys-
tems (Section 5.2). Our methodology is application speci#c
but it could be useful for many other important computer-
vision related applications.

In a nutshell, this paper provides an important guidance (sum-
marized as #ve recommendations highlighted in the paper), which
are usually neglected by EdgeAI users. Our recommendations aim
to improve object detection tasks on EdgeAI inference systems.

2 BACKGROUND
This section introduces some necessary background information.

2.1 Object Detection
Object detection is the most popular Deep Learning task in industry
for EdgeAI accelerators, which aims to classify and localize objects
of interest. Object detection tasks can be grouped into two genres:
2D object detection and 3D object detection. An object detection sys-
tem is able to predict several bounding boxes to localize the objects
in the 2D images or 3D point clouds. MS-COCO [27] and PASCAL-
VOC [14] are two widely used datasets for 2D object detection tasks.
In the past decade, CNN based object detection systems have been
emerging since deep convolutional neural networks are able to
learn robust features from input data [25].

3D object detection usually needs more information to predict 3D
bounding boxes. LiDAR sensors provide accurate 3D point clouds
from surrounding environments. Most works on 3D object detection
rely on LiDAR point clouds [34, 35, 48]. CNNs are capable of pro-
cessing the images encoded from LiDAR point clouds. KITTI [17]
is a popular dataset, which provides LiDAR point clouds as well as
their corresponding 2D images.

2.2 EdgeAI Processors
GPGPU plays an important role in Deep Learning training due to
its powerful compute capability. However, Deep Learning inference
tasks might not need GPGPUs, since the cost and power consump-
tion of GPUs are too high. Hence, custom EdgeAI processors have
emerged recently, which are able to perform Deep Learning infer-
ence tasks in an energy e"cient way. Many EdgeAI processors with
specialized designs target CNN processing due to the recent pop-
ularity of CNNs [43]. In addition, co-designs of CNN models and
hardware help to further increase throughput and reduce power
consumption. The co-design methods include reducing numerical
precision and reducing the number of operations. In this paper, we
conduct our experiments on two EdgeAI inference systems that aim
to accelerate CNN operations (i.e., Nvidia Xavier and NovuTensor)
as shown in Table 1.

Nvidia Xavier is an embedded system on a module, contain-
ing a 512-core Volta GPU, two Deep Learning Accelerators (DLA),
a Carmel ARM CPU, and 16GB memory [15]. Nvidia Xavier in-
tegrated high-end GPGPUs with CUDA cores and Tensor cores.
Xavier also provides low-end DLAs with a power consumption of
only 0.5 - 1.5 Watt that target processing CNN inference. Nvidia
Xavier is supported by TensorRT [8], an inference library that of-
fers model optimization and runtime inference acceleration. Nvidia
Xavier supports multiple numerical precisions (i.e., FP32, FP16, and
INT8). Users can con#gure power modes at 10W, 15W, and 30W.
The processing steps of inference are conducted by the processors
and accelerators equipped within the platform. Table 1 shows the
combined CPU and accelerator power consumption speci#cation.

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

NovuMind’s NovuTensor is an ASIC that focuses on accelerating
various CNN inference applications, while it has an order of mag-
nitude less cost than the Xavier module. NovuTensor is equipped
with two neural processing unit (NPU) cores. The main advantage
of NovuTensor is its native tensor processing [29], in which the
3D convolutional operations can be processed without the typical
General Matrix Multiply (GEMM) method of unfolding the 3D ten-
sors to 2D. Without this unfolding and folding overhead, signi#cant
improvements in Silicon Area utilization and thus power e"ciency,
can be achieved. Additionally, since neural network computation is
deterministic and predictable, simpli#cations in data $ow and mem-
ory hierarchy can further improve key metrics desirable by edge
devices. This domain-speci#c design enables NovuTensor to deliver
up to 15 Tera Operations Per Second (TOPS) of CNN based compute
with a power consumption of 15W. NovuTensor is manufactured
with a PCIe interface with 2GB device memory to connect to a host
CPU. Note that NovuTensor is a PCIe-based card, which needs the
co-processing of the host. To conduct the end-to-end evaluation,
the host CPU will be involved in the pre-/post-processing. Then it
is necessary to consider the power consumption of host CPU for
PCIe-based AI accelerators. The thermal design power (TDP) of the
host CPU used in our experiments is 91W [1]. Nevertheless, the ac-
tual power consumption may not achieve the reported TDP during
the inference. The detailed evaluations about power consumption
will be discussed in Section 6.1. To achieve optimal performance,
EdgeAI inference systems typically only process one input data at
a time. NovuTensor can process data in batch of two without any
performance sacri#ce due to its native batch-based design.

Table 1: Speci!cations of EdgeAI Platforms

Speci!cations NovuTensor Nvidia Xavier
Precisions INT8 FP32/FP16/INT8
of NPU Cores 2 512-Core GPU
TOPS (up to) 15 32
Memory 2 GB 32 GB (shared)
Peak Power (Watt) 15 30/15/10Peak Host Power (Watt) 91

2.3 Deployment Flow for EdgeAI Platforms
To perform Deep Learning inference tasks on an edge computing
platform, several steps are required to deploy the trained neural net-
work on the EdgeAI system. The overview of a deployment process
is illustrated in Figure 1. We summarize three steps to generate a
deployable runtime engine for EdgeAI systems. First, since the neu-
ral network model can be trained by a variety of frameworks such
as TensorFlow [9] and Ca!e [22], developers need to convert the
format of the model to the platform desired format. Therefore users
need to convert the model format prior to feeding it into the hard-
ware. The SDKs may help to parse the undesired model format. For
example, NovuTensor requires Ca!e [22] model as the input while
TensorRT provides a parser function to parse Ca!e model to the
desired format. Second, the trained model may need to be quantized
to a lower numerical precision. Numerical precision is a trade-o!
between prediction accuracy and computing speed that developers
should be aware of. Third, using SDK of the EdgeAI platform com-
piles the quantized model into a deployable runtime engine. The

runtime engine can be deployed on the hardware. Runtime libraries
from SDKs provide APIs for user applications to launch computing
and prediction.

Trained Neural
Network

Model
Compilation

Precision
Calibration

Format
Transformation

Deployable
Runtime Engine

Frameworks or
SDK Support

Figure 1: Deep Learning InferenceApplicationsDeployment
Flow for EdgeAI Platforms

3 CHARACTERIZATION AND MOTIVATION
This section introduces the characteristics of EdgeAI systems for
Deep Learning inference tasks and presents the motivation of fur-
ther optimizations.

3.1 Limitations of EdgeAI Platforms
EdgeAI platforms with Deep Learning accelerators aim to accel-
erate computationally intensive tasks. However, some intrinsic
limitations exist and can a!ect the performance of Deep Learning
applications. Based on our experience, this section presents three
major intrinsic limitations of current-generation EdgeAI platforms.
Power Consumption vs. Computing. EdgeAI inference systems
are usually designed to consume very low power. However, they
may not be suitable for computationally intensive tasks. In addition,
pre-processing large input data on the CPUs of edge platforms can
be a non-negligible overhead. To achieve an acceptable inference
latency with limited power, co-designs of hardware and software
for EdgeAI systems are important and challenging.
Restrictions of supported AI inference operations. Current-
generation EdgeAI platforms are limited to several Deep Learning
operations due to their hardware designs. Considering those limi-
tations, some complex neural networks cannot be deployed on the
EdgeAI platforms or need to be adjusted. For instance, the Reorg
and Route layers in YOLOv2 [38], which reshape and concatenate
the tensors, are not supported by NovuTensor and Nvidia Xavier’s
DLA. Hence, a hardware friendly model that replaces those unsup-
ported layers is needed. Nvidia Xavier can use GPU if a layer is
not supported by the DLA. Modifying and retraining a hardware
friendly model can be time consuming for developers, which raises
the barrier for deploying neural networks on EdgeAI platforms.
Accuracy loss due to lower numerical precision. Reducing pre-
cision, via quantizing $oating point numbers (FP32) to #xed point
numbers (INT8) for computation, is a method to speed up Deep
Learning computation by reducing energy and silicon area costs,
and thus allowing for more computational units. Deep Learning
inference can bene#t from quantization in two aspects: 1) reduc-
ing the parameter storage size of neural networks and 2) speeding
up the computation and reducing power consumption by taking
advantage of integer computation [45]. Nevertheless, due to lower

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

numerical precision representations, the accuracy of inference ap-
plications might drop. Many existing research studies propose dif-
ferent quantization algorithms, which are reasonably e!ective for
Deep Learning inference workloads [40, 42].

However, the accuracy loss is still not negligible, though previous
work shows that the accuracy loss can be controlled within 1% [45].
According to our experimental results, the accuracy can su!er
without any #ne tuning. The details are discussed in Section 3.3.

3.2 Performance Characterization
Deep Learning inference applications at the edge are latency critical.
Users need to get the prediction results from the edge-side as soon
as possible. Hence, achieving real-time performance is one of the
most essential design targets for EdgeAI inference systems. To
obtain human understandable prediction results, an end-to-end AI
application generally needs three steps, including pre-processing,
inference, and post-processing:

• Pre-processing: parses and manipulates the raw input data,
which will be fed into the Deep Learning networks.

• Inference: forwards the input data through di!erent Deep
Learning network topologies (i.e., CNNs and RNNs) and
performs the computation on the input data.

• Post-processing: extracts the output from Deep Learning
networks and generates the #nal human understandable
prediction results.

The computation of Deep Learning has been improved signif-
icantly with the help of AI accelerators (i.e., GPGPUs and TPUs)
over the decades. But pre-processing could be a new bottleneck of
AI applications due to the diversity of the raw data. For example,
pre-processing raw LiDAR data for 3D object detection could be
a computationally intensive task. Table 2 compares the runtime
performance of some related work [31] (measured on an NVIDIA
1080Ti GPU). To get a better sense of the numbers in Table 2, we
need to be aware of the acceptable latency for autonomous cars to
detect potential hazards. A common perception of real-time is the
ability to process 30 frames per second, which is similar to human
eyes [10]. In other words, it would be acceptable for an end-to-end
inference application if it can process an image in 33ms.

Table 2: Runtime Performance Comparison for 3D Object
Detection Tasks on KITTI [31]

Methods Inference (ms) Pre/Post
Process (ms) Total (ms)

LaserNet[31] 12 18 30
PIXOR[46] 35 27 62
VoxelNet[48] 190 35 225
MV3D[11] - 360
AVOD[26] 80 20 100

Raw LiDAR data is a set of 3D points captured by 3D scanners
in the surrounding environment. Each point is stored in (x, y, z)
coordinates with an additional axis (i.e., re$ectant value and color).
One way to process raw LiDAR data is encoding and discretizing
the point clouds into some #xed grids [13]. Complex-Yolo [41]
encodes the raw point cloud data into a single birds-eye-view(BEV)

RGB-map. The encoded RGB input feature map has three channels
(i.e., density, height, and intensity channel).

An experiment is conducted on Nvidia Xavier, which is set to
15W mode, to demonstrate that pre-processing is a bottleneck of
LiDAR processing AI applications. Pre-processing, inference, and
post-processing latencies are collected separately in our exper-
iments and the experimental results are illustrated and broken
down in Figure 2. Performance increases from the reduction of
numerical precision due to the lesser computation costs. But the
pre-processing accounts for 68% of the end-to-end processing la-
tency when computes in INT8 precision. Hence, the pre-processing
becomes the bottleneck of this AI application.

FP32 FP16 INT8

Precisions

0

10

20

30

40

50

60

R
u
nt
im

e
P
er
fo
rm

an
ce

(m
s)

Pre-process Inference Post-process

0%

10%

20%

30%

40%

50%

60%

70%

80%
Percentage of Pre-process

Figure 2: End-to-end Latency Breakdown of LiDAR Process-
ing on Nvidia Xavier with Varied Precisions

Another problem that could impact the application performance
on EdgeAI platforms is the overhead of transferring data from/to
host memory to/from device memory. The data transfer latency
and the computation latency on device make up the whole infer-
ence latency in Figure 2. We conduct experiments on di!erent AI
platforms (i.e., NovuTensor, Nvidia Xavier, and Nvidia 1080Ti) to
demonstrate the necessity to optimize the data transfer. A model
of YOLOv2 is deployed and the resolution of input feature map is
3×608×608. The experimental results are listed in Table 3. Since the
memory of Nvidia Xavier is shared between the ARM processors
and GPU, the data transfer speed of the GPU is not limited by the
PCIe bus like the case of using a traditional GPU. On the other
hand, data will be transferred between host and device memory
through the PCIe bus for NovuTensor and Nvidia 1080Ti. Since
NovuTensor’s PCIe interface has fewer lanes than Nvidia 1080Ti, it
takes more time to transfer the input data to NovuTensor. Hence, it
is necessary to optimize the data transfer overhead for PCIe based
EdgeAI inference systems such as NovuTensor.

Table 3: Breakdown of Data Transfer and Execution

Devices Data
Transfer (ms)

Execution
(ms)

Percentage of
Data Transfer

Xavier DLA 1 21 4.5%
NovuTensor 23 12.9 64%
Nvidia 1080Ti 0.35 6.8 5%

3.3 Accuracy Characterization
One of the most important targets of EdgeAI platforms is predict-
ing accurate and reliable results based on real-world input data.

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

However, computing in lower numerical precision (e.g., INT8) can
sometimes deliver poor prediction results which are unreliable. This
section introduces a general quantization procedure for di!erent
EdgeAI platforms and exempli#es the negative e!ect on accuracy
from quantization based on our experimental results.

The quantization procedure ultimately delivers a mapping rela-
tion between 32-bit $oating point numbers and 8-bit integers with
the pre-de#ned scale factors. The mapping function can be de#ned
as follows [40]:

! (") = #$%(") · Δ ·&'%(# |" |
Δ

+ 0.5$, (− 1
2) = Δ ·) (1)

where the #$%(·) is the sign function, Δ is the scale factor, (is
the level of representations," is the $oating-point weights or ac-
tivations, and) is the represented integer. For instance, if the nu-
merical precision is INT8, the range of) is from -128 to 127. The
weights or activations can be represented by −128Δ,−127Δ, ... −
Δ, 0,Δ, ..., 127Δ.

Appropriate scale factors should be determined before deploy-
ment to deliver optimal prediction accuracy. Calibration is a process
to determine optimal scale factors. EdgeAI platforms may apply
di!erent standards to select scale factors. For example, NovuTen-
sor selects the scale factors that minimize the Mean Squared Error
(MSE) between the original values and the quantized values. Equa-
tion 2 is applied to determine the MSE after quantization where *
is the number of weights or activations of each layer and"! is the
weights or activations.

+ =
1
*

"∑
!=1

(! ("!) −"!)2 (2)

The SDK of NovuTensor and TensorRT [8] for Nvidia Xavier
both provide quantization tools to generate the scale factors auto-
matically. A small set of training data (calibration data) are used to
perform calibration. A histogram of each layer’s activations and
weights is collected based on the calibration data. More calibration
methods will be discussed in Section 5.1.

We #nd that computing in lower numerical precision can incur
a large accuracy drop in some cases. In our experiments, a 3D
object detection application based on KITTI [17] is deployed on
NovuTensor and Nvidia Xavier and mean average precision (mAP)
is chosen as the metric to evaluate accuracy. An identical model
is deployed on NovuTensor, Nvidia Xavier, and an Nvidia 1080 Ti
GPU. According to the experimental results, the mAP drops 88%
and 46% on Nvidia Xavier and NovuTensor, respectively, when the
activations and weights are quantized to 8-bit integers by using
their default SDKs. Though INT8 quantization has been widely
deployed, huge accuracy degradation can still occur. We suspect
when training with batch-normalization, the channel-to-channel
dynamic range di!erence is large. Then the layer-wise quantization
may struggle.

3.4 Motivation
Deploying Deep Learning inference applications on EdgeAI plat-
forms can bring several unexpected problems based on our empir-
ical experience. Firstly, the end-to-end runtime performance can
su!er from the computational overhead of pre-/post-processing.

Secondly, data transferring between device memory and host mem-
ory is a non-negligible overhead. Thirdly, the reliability of the in-
ference applications can be a!ected by numerical precision. These
observations are easily neglected by EdgeAI users, who usually
choose to rely on using the default SDKs with default con#gura-
tions to achieve agile but not e"cient development.

In this paper, we propose methods to optimize the runtime per-
formance and increase the prediction accuracy of AI inference
applications deployed on EdgeAI platforms. Our proposed methods
can guide designs and deployment for EdgeAI inference systems.
Though some of our optimizations might be well-known, if users do
not use them they will lose performance. This paper demonstrates
that the end-to-end deployment and optimization processes with
#ner granularities are needed even if EdgeAI SDKs are available for
di!erent platforms.

4 PERFORMANCE ACCELERATION
We aim to improve the runtime e"ciency of EgdeAI systems at
#rst. This section introduces the designs and techniques proposed
in this paper to accelerate the runtime performance of end-to-end
EdgeAI applications in two aspects. Results from our experiments
show that the proposed methods are able to e!ectively optimize
runtime performance. Our methods are also general and helpful for
di!erent EdgeAI platforms as well as di!erent Deep Learning tasks.

4.1 Pre-processing Optimization
To accelerate the pre-processing of raw LiDAR data, the encoding
process is analyzed and pro#led in our experiments. As we discuss
in Section 3.2, encoding the LiDAR point clouds is computation-
ally intensive and each pixel is operated upon independently. It is
very intuitive to apply parallel computing designs to the encoding
process. Particularly, we put OpenMP [6] and Intel MKL [4] into
practice to parallelize the encoding. We apply compiler directives
provided by OpenMP to create parallel blocks for accelerating en-
coding. We use vector mathematics functions provided by Intel
MKL in our implementation, which optimize the computation of
each of the vector elements. In particular, ,#-.. , ,#/%, and ,#0',
are utilized.

Our evaluation results show that applying our approaches to
Deep Learning applications is promising to optimize the runtime
performance. We refer to an implementation of encoding raw Li-
DAR data into BEV images [11] as the baseline. We optimize the
memory allocation and usage at the beginning. Then, OpenMP and
MKL are applied to optimize the pre-processing individually. The
experiments are conducted on NovuTensor and Nvidia Xavier. The
speci#cations of the environments are listed in Table 4.

The evaluation results are shown in Figure 3. Note that the 1 axis
in each sub#gure denotes the resolution of the encoded images. For
example, if the value of 1 is 480, the resolution of encoded image
is 3 × 480 × 480. In general, the performance of pre-processing on
NovuTensor performs better than that on Nvidia Xavier, due to the
more powerful CPU with higher frequency. Three optimizations
applied to the encoding process for encoding raw LiDAR data are
compared: 1)mem: The LiDAR pre-processing implementation [11]
is ine"cient on the memory allocation and usage. Bu!ers will be
re-allocated and re-initialized every time for incoming raw LiDAR
data. We avoid this overhead by designing and using a page-size

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

aligned circular bu!er pool instead of the original design. In speci#c,
page-size aligned bu!ers are allocated from the circular bu!er pool
and can be reused. 2) mem + omp: memory optimization together
with OpenMP, and 3) mem + mkl: memory optimization together
with MKL. The experimental results are shown in Figure 3. Overall,
utilizing OpenMP and MKL on the encoding process has huge
bene#ts. Particularly, the performance for pre-processing improves
up to 81% by utilizing MKL, while up to 74% improvement is gained
by using OpenMP on Nvidia Xavier. On NovuTensor, the latency
of processing raw LiDAR data into BEV image with resolution of
480 × 480 is only 0.89&# in the best-case scenario. The evaluation
results indicate that our proposed designs and employed techniques
are able to e!ectively improve the performance of pre-processing
during runtime on di!erent EdgeAI platforms. The designs and
techniques for optimizing the pre-processing can also be applied to
other EdgeAI inference systems.

Table 4: Speci!cations of experimental environments

Speci!cation NovuTensor Nvidia Xavier
Processor Intel Core i7-7700K Carmel ARMv8
of Cores 4 8
Frequency 4.2GHZ 1.2GHZ
RAM (DDR) 32 GB 32 GB (shared)
OS Ubuntu 16.04 Ubuntu 18.04

480 544 608 800 1024
Resolution

0

5

10

15

20

25

30

P
re
-p
ro
ce
ss
in
g
L
at
en
cy

(m
s) baseline

mem

mem+omp

(a) Nvidia Xavier

480 544 608 800 1024
Resolution

0

2

4

6

8

P
re
-p
ro
ce
ss
in
g
L
at
en
cy

(m
s) baseline

mem

mem+omp

mem+mkl

(b) NovuTensor

Figure 3: Performance Comparisons for Encoding Raw Li-
DAR data with varied environments, input resolutions, and
optimization methods

Recommendation #1: The combination of EdgeAI infer-
ence systems with parallel computing designs is promising
for end-to-end inference tasks. Even leveraging simple de-
signs and libraries can boost the end-to-end performance
signi#cantly.

4.2 Pipelining Design
The overhead of transferring data between host and device is non-
negligible for some EdgeAI systems as mentioned in Section 3.2.
Performing neural network computations on AI accelerators gener-
ally follows an execution sequence: copy data from host to device
→ compute on the device→ copy computed data from device to
host. Copying data between host and device memory could be a
huge overhead with respect to the volume of input and output data
of the neural networks. For example, hundreds of MBs of data per
second will be transferred between host and device when the input
is a high de#nition (HD) image. We characterize the latency, as
listed in Table 3, the transferring of an input feature map with the
dimension of 3 × 608 × 608 from host DRAM to device memory
via DMA (23&#) is much slower than the computation performed
by the process engines on the device (12.9&#) for NovuTesnor. In
order to accelerate the runtime performance, a design is required
to resolve the bottleneck of data transfer.

An intuitive optimization method is incorporating the concur-
rent execution approach, which overlaps the data transfer and the
neural network computation. The execution pipeline design of
NovuTensor is illustrated in Figure 4. NovuTensor communicates
with the CPU via the PCIe interface. A DMA will be issued to
transfer the input/output data between host memory and device
memory when the data is ready. The optimal system parameters
such as the number of threads and bu!er size need to be tuned due
to the bottleneck of PCIe-based data movement on the NovuTensor
system (fewer lanes). To achieve the best overlapping e"ciency,
we use four threads to do the pre-processing, data transfer, NPU
execution, and post-processing separately. Pipelining the CPU tasks
(pre-/post-processing), data transfer, and NPU tasks can boost the
runtime throughput of Deep Learning inference applications. Our
proposed pipeline design speeds up the runtime performance by
29% compared with the sequential execution mode. The pipeline
design can also be adopted to Nvidia Xavier. TensorRT provides an
asynchronous API called enqueue cooperated with asynchronous
CUDA memory copy API to perform inference. Two threads can
be launched to pipeline the procedure. The thread will be blocked
when the input queue is full or cudaStreamSynchronize is invoked.

Recommendation #2: It is important to consider impli-
cations and optimizations on the end-to-end EdgeAI in-
ference applications during deployment. Overlapping data
movements and computation can make a real di!erence
in the end-to-end performance of inferences and data pro-
cessing in particular.

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

CPU

System Memory

CPU CPU
NovuTensor NPU
Memory Hierarchy

PE PE PE

PE PE PE

PCIe Lanes

preInput0 transfer in NPU transfer out post
Input1
Input2

pre transfer in NPU transfer out post
pre transfer in NPU transfer out post

Figure 4: Pipeline Design for NovuTenosr’s Architecture

4.3 Hardware & Software Co-design
4.3.1 Batch Size. NovuTensor and Nvidia Xavier are designed to
support various batch sizes for Deep Learning inference workloads.
Even though increasing the batch size can improve the throughput
of applications, Deep Learning inference is a latency critical task
that is di!erent from Deep Learning training. To obtain the optimal
performance on both latency and throughput, experiments are con-
ducted on NovuTensor and Xavier with various batch size from 1 to
32. Input feature maps with dimension of 3×608×608 are fed into a
YOLOv2 network. To fairly compare performance, we only evaluate
the performance of Xavier in INT8 precision. Figure 5 illustrates
the experimental results. The latencies of batch 16 and 32 of Xavier
are not shown because they are too slow for inference tasks in the
autonomous driving domain. We hypothesize that the throughput
decreasing of batch 8 results from imperfect optimization of Ten-
sorRT. Nvidia Xavier’s accelerators are able to process 196 encoded
images per second at most in the max power con#guration with
batch 4 and 8. Since NovuTensor is designed to support batch-2
natively, the latency will not su!er when computing in the batch-2
mode compared with computing in the batch-1 mode. Note that
NovuTensor only supports batch-1 and batch-2 modes. While these
platforms can deliver better throughput while processing more
images at one time, it is more crucial to complete the tasks with low
latency. Hence, we con#gure the NovuTensor to batch-2 mode and
Nvidia Xavier to batch-1 mode for all the subsequent experiments
in order to obtain the lowest latency and good throughput.

100

150

200

Batch 1
Batch 2

Batch 4

Batch 8
Batch 1

Batch 2
Batch 4

Batch 8

20 40 60

100

150

200

Batch 1

Batch 2

Batch 4 Batch 8

20 40 60
Batch 1

Batch 2

Xavier-15W

Xavier-30W

Xavier-MAX

NovuTensor

T
h
ro
u
gh

p
u
t
(i
m
gs
/s
)

Latency (ms)

Figure 5: Throughput and Latency for NovuTensor and
Xavier with Increased Batch Size from 1 to 8

4.3.2 Hardware Configuration. Users are allowed to select the pre-
cisions (i.e., FP32, FP16, and INT8) on which Nvidia Xavier performs

the computations. In addition, users can con#gure the platform to
execute on di!erent power modes (e.g., max power, 30W, and 15W),
where all the computing units will compute at di!erent clock fre-
quencies. Reducing the numerical precision and con#guring the
power modes can deliver better runtime performance as shown in
Figure 6. In the best case, the runtime performance reaches 20&# by
applying our proposed designs and optimizations when the device
computes in the max power mode and INT8 precision.

FP32 FP16 INT8
Precision

0

10

20

30

40

R
u
nt
im

e
P
er
fo
rm

an
ce

(m
s)

Pre-process Inference Post-process

Max 30W 15W

Figure 6: End-to-end Runtime Performance Comparison for
BEV object detection with Di"erent Precisions and Power
Modes on Nvidia Xavier

Recommendation #3: Domain-speci#c knowledge on
both hardware and software are required to fully exploit
the capabilities of EgdeAI inference accelerators.

4.4 Overall Improvement
Real time performance is crucial for Deep Learning inference appli-
cations because users need to get the prediction results from the
EdgeAI platforms as soon as possible to make optimal decisions in
time. Two optimization methods have been discussed in Section 4.1
and Section 4.2. We apply the methods to 3D object detection ap-
plication on NvouTesnor and Nvidia Xavier. The backbone of the
application is YOLOv2 [38] neural network trained with KITTI
dataset [17]. 6000 #les of cloud points are used as the training set
and 1481 #les are used for inference. Table 5 shows the comparison
of runtime latency and throughput between the baseline and the
results taken by combining our proposed methods. Nvidia Xavier is
con#gured to batch-1 mode and NovuTensor is con#gured to batch-
2 mode to make sure that they can deliver the optimal performance.
Column Baseline shows the runtime results without any optimiza-
tions as Column Proposed shows the performance optimized by the
combined methods discussed in the previous sections. Our meth-
ods decrease the runtime latency for Nvidia Xavier by 50.1% at
most. For NovuTensor, our proposed methods achieve 37.5% im-
provement. NovuTensor is able to process 66 images per second
by applying our proposed methods, which outperforms Xavier due
to its native batch-2 design. Table 5 demonstrates the overall im-
provement by applying all proposed optimizations in this paper
(i.e., pre-processing optimization and pipelining). The independent
bene#ts of pre-processing optimization can be referred in Figure 3.

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

Table 5: Overall Improvement on Latency and Through-
put under Di"erent Con!gurations for 3D Object Detection
Tasks by Combining Proposed Methods

Devices Device
Power Precision Latency (ms) Throughput (imgs/s)

Baseline Proposed Baseline Proposed

Xavier

15W
INT8 49.5 26.3 20.2 38.0
FP16 57.4 31.4 17.4 31.8
FP32 73 41.7 13.7 23.9

30W
INT8 49 25 20.4 40
FP16 56 29.2 17.9 34.2
FP32 70 34.9 14.3 28.7

Max
INT8 31 20 32.3 50
FP16 38.2 23.2 26.2 43.1
FP32 54 27.2 18.5 36.8

NovuTensor 15W INT8 48 30 41.6 66

5 ACCURACY IMPROVEMENT
This section introduces the accuracy optimizations of Deep Learn-
ing inference applications on EdgeAI platforms. Since the accuracy
may su!er from quantizing the model weights and activations to
lower numerical precisions, as discussed in Section 3.3, it is neces-
sary to eliminate or reduce the accuracy loss caused by the quanti-
zation. In this paper, we propose two optimization methodologies
to get higher accuracy prediction results.

5.1 Hybrid Calibration
Quantization for INT8 precision demands calibration, introduced in
Section 3.3, to determine a mapping function from real numbers to
8-bit integers. In our evaluations, we randomly picked 100 data out
of the training set as the calibration data. The calibration process
collects the output of each layer by feeding the calibration data into
neural network. The scale factors will be determined by the calibra-
tion policy. To avoid severe accuracy loss, optimal scale factors are
needed to minimize the information loss after quantization, which
can be de#ned as Equation 2. Four calibration methods commonly
considered for quantization [45] are listed below:

• Max: Select the maximum value as the threshold for each
layer during calibration [44].

• Entropy: Minimize the loss of information by measuring the
amount of information loss based on Kullback-Leiber (KL)
divergence [32].

• Percentile: Determine a percentile of histogram during cali-
bration and select the value at the percentile as the mapping
threshold [30]. For instance, if the percentile is 99%, then 1%
largest values will be clipped.

• Sampling-Brute-Force (SBF): Determine the optimal threshold
by brute-force searching a sampled search space. For exam-
ple, 100 thresholds within a search space can be selected and
the one that causes minimum information loss during cali-
bration will be selected as the threshold. The search space
can be 99.9% to 100% with step size of 1 × 10−5.

Determining the optimal mapping thresholds of each layer in the
neural network needs to collect the histogram of activation values
for all the calibration data. A threshold will be determined for each
layer to be mapped to 127, the max value represented by an 8-bit
integer, based on di!erent calibration methods. Max-based and
Percentile-based methods can generate the scale factors in constant
time but may not be able to deliver the optimal one.

NovuTensor’s SDK calculates the thresholds by the Percentile-
based method and provides a quantization tool that uses SBF to
search an optimal percentile. TensorRT [8] for Nvidia Xavier pro-
vides an Entropy Calibrator for calibration. However, employing
the calibrator directly could cause severe accuracy loss as discussed
in Section 3.3. The mAP decreases 46% and 88%, when reducing the
numerical precisions from FP32 to INT8, for 3D object detection
tasks on NovuTensor and Nvidia Xavier, respectively.

In order to minimize the accuracy loss from quantization, we
attempt to use SBF method to determine the thresholds in the begin-
ning. The mAP is increased by 20% after brute-force searching the
thresholds. But the major drawback of SBF policy is that searching a
range for each layer is extremely time consuming. Then, we analyze
the histograms of activations from each layer in Yolov2 network.
It is unexpected that the absolute values of activations from all
the layers except the last layer (Layer 1 to Layer 22) are smaller
than 127. Hence, we attempt the Max-based policy, mapping the
maximum absolute value in activations to 127, for determining the
thresholds of all the layers. The mAP increases 22% compared with
that using Percentile-based calibration method. Our experiments
in Figure 7 precisely demonstrate the comparison of SBF policy
and Max-based policy. They are able to deliver similar accuracy
results because the search space of SBF policy includes the maxi-
mum absolute value in activations of the network. Meanwhile, SBF
policy may not select the best thresholds for some layers due to
the interference of previous layers. Then the mAP of using SBF is
slightly lower than of using Max-based policy.

To further analyze the Max-based method, we evaluate the cu-
mulative accuracy loss from each layer. For instance, to measure the
cumulative accuracy loss caused by Layer 1 to Layer 12, the Layer
12’s output activations which are calculated in INT8 precision are
collected. Then, the collected activations are forwarded into Layer
13 as input, but are calculated in FP32 precision. We observe that the
mAP only drops heavily after Layer 21, 22, and 23. Therefore, we
propose a hybrid calibration method, which combines Max-based
method and Percentile-based method. Algorithm 1 shows our pro-
posed hybrid calibration procedure. Line 1 obtains the histograms
of activations from each convolutional layer and sorts them by
ascending order. Assume a neural network has * convolutional
layers and the maximum absolute number that can be represented
by the numerical precision is 2 . If the maximum absolute value
during calibration is larger than 2 , an optimal scale factor will be
searched as show in Line 6. On the other hand, the scale factor will
be set to the maximum absolute value if it is smaller than2 . But the
program will search the optimal scale factor if the information loss
is higher than a prede#ned threshold + after evaluation (Line 8-13).
The search space includes the percentiles from 99.9% to 100% with
a step of 1 × 10−5. Hence, 100 percentiles are in the search space in
total, and the quantization loss can be calculated as Equation 2.

Our hybrid calibration policy increases the mAP by 64% com-
pared with the baseline and only has a loss of 0.08 mAP compared
with that computed in the FP32 precision (i.e., no quantization and
best case). The accuracy evaluation in this paper is illustrated in
Figure 7. Our calibration policy is robust for any randomly selected
calibration data from training set, and is not sensitive to the se-
lection of calibration data, as long as there are enough samples
to accurately represent the distribution of the data. The inference

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Hybrid Calibration Policy
Result: Determine the optimal scale factor Δ! for each

convolutional layer 34%,! .
// Get the histogram of each convolutional layer

1 Initialize array: 5 [0],5 [1],5 [2], ...5 [* − 1] and sort
67# (5 [']) by ascending order;

2 for ' ← 0 < * do
3 max_value←&61 (67# (5 [']));
4 if max_value > T then
5 for 8 in Search Space do
6 Δ! ← 8 that minimizes the quantization error;
7 end
8 else if max_value ≤ T then
9 Δ! ← max_value;

10 Evaluate the accuracy loss 9! ;
11 if 9! > + then
12 Go back to line 5;
13 end
14 end
15 end
16 return Δ0,Δ1, ...Δ"−1;

process will not use the calibration data. Fine tuning the scale fac-
tors is a time-consuming process, given that the model is tuned
layer by layer. The optimization for Nvidia Xavier is not included in
this paper due to space constraints. Also note that TensorRT does
not provide the hybrid calibration method. However, our proposed
optimization methodology for calibration process can be used for
other EdgeAI platforms as well.

Percentile SBF Max Hybrid
(Proposed)

FP32
0%

20%

40%

60%

80%

100%

A
cc
u
ra
cy

(m
A
P
)

Average

Pedestrian

Cyclist

Car

Figure 7: Accuracy Comparison for BEV Object Detection
with Di"erent Calibration Methods

Recommendation #4: Eliminating the accuracy loss from
quantization and calibration needs careful designs. Analyz-
ing each layer’s histograms of a neural network can help
to determine the optimal scale factors as achieved by our
proposed hybrid calibration policy.

5.2 Higher Input Resolution
The input data for object detection could be images or points clouds
captured by di!erent devices such as cameras, LiDAR, etc. The
qualities of the input data will in$uence the accuracy of prediction
results. For example, it would be easier to detect small objects in a
high resolution image rather than in a low resolution image. Hence,
increasing the resolution of input image should be helpful for im-
proving the prediction accuracy. On the other hand, forwarding
larger input data through the neural network requires more com-
puting resources and consumes more energy. In this case, EdgeAI
platforms can take advantage of their application speci#c proces-
sors to process the large input data in an energy e"cient way.

Experiments are conducted with varied neural networks and
resolutions of input images, to understand the correspondence be-
tween accuracy and resolutions. YOLOv2 [38] and YOLOv3 [39] are
chosen because they are widely used for 2D object detection tasks
and Yolov2 can be deployed on most EdgeAI platforms. YOLOv3,
an improved version of YOLOv2 which uses three di!erent scales
to predict the bounding boxes, performs better on detecting small
objects than YOLOv2 [23]. The evaluation results are shown in
Figure 8a. The mAPs for small, medium, and large objects increase
when the resolutions of input images are increasing. The small
objects can be detected more easily by increasing the size of objects.
However, the mAP of medium and large objects starts to decrease
after reaching the peak because the model does not trained with im-
ages out of the training range. Darknet [37], the training framework
used for our experiments, will randomly resize the input images to
di!erent resolutions within a range (320 × 320 to 608 × 608) during
training, in order to make the model compatible with input images
with various size objects.

Since the accuracy of medium and large objects are restricted by
the default training range, we enlarge the training range to 736×736
to 1024 × 1024 and retrain models with the same hyper-parameters.
The evaluation results with the retrained models are illustrated in
Figure 8b. Bene#ts are gained for detecting medium objects with
retraining the models because those resized objects are #tted during
training. And huge bene#ts for small objects can be obtained by
increasing the resolutions of input images. Large objects detection
accuracy, however, tends to decrease with the increase in input
image sizes despite re-training. This is likely attributed to the #xed
receptive #eld for each of the network topologies. The receptive
#eld of the neural network describes the size of the input image
region which is non-linearly transformed to a given output value.
Here, while we are increasing the input image size for each of the
networks, we are keeping the topologies #xed and thus the recep-
tive #elds #xed. The networks with large input resolutions thus
will have a reduced context from which to make object detection
decisions. It is expected that methods to increase the receptive #eld
of these networks, would further improve large object accuracy for
large input resolutions.

We also train models on another popular dataset for object de-
tection, PASCAL-VOC [14]. PASCAL-VOC dataset is simpler than
MSCOCO with respect to the image size and the number of objects,
especially the small objects in a single picture [47]. On average,
there exist 7.4 objects to be detected in an image of MSCOCO com-
pared with 2.4 objects of PASCAL-VOC. The evaluation results are

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

32
0
41
6
48
0
54
4
60
8
76
8
83
2
89
6
96
0
10
24

0.0%

10.0%

20.0%

30.0%

32
0
41
6
48
0
54
4
60
8
76
8
83
2
89
6
96
0
10
24

Small Medium Large
A
cc
u
ra
cy

(m
A
P
)

Resolution
YOLOv2 YOLOv3

(a) w/o-retraining

32
0
41
6
48
0
54
4
60
8
76
8
83
2
89
6
96
0
10
24

0.0%

10.0%

20.0%

30.0%

40.0%

32
0
41
6
48
0
54
4
60
8
76
8
83
2
89
6
96
0
10
24

Small Medium Large

A
cc
u
ra
cy

(m
A
P
)

Resolution
YOLOv2 YOLOv3

(b) w-retraining

Figure 8: Accuracy Comparison on MSCOCO

illustrated in Figure 9. Note that 608-models are trained with the
default training range, 1024-models are trained with the enlarged
range. More bene#ts are gained for MSCOCO, which has images
that are more complex and contain more objects, compared with
PASCAL-VOC, when increasing the input image resolution. Regard-
ing the neural network structures, signi#cant improvements are
seen for YOLOv2 with MSCOCO when increasing the resolution of
input images. Furthermore, the 1024-model performs on par with
608-model for both YOLOv2 and YOLOv3 on PSACAL-VOC due to
its simplicity.

40%

60%

PASCAL-VOC MSCOCO

Y
O
L
O
v2

Y
O
L
O
v3

32
0
41
6
48
0
54
4
60
8
76
8
83
2
89
6
96
0
10
24

40%

60%

32
0
41
6
48
0
54
4
60
8
76
8
83
2
89
6
96
0
10
24

1024-model 608-model

A
cc
u
ra
cy

(m
A
P
)

Resolution

Figure 9: Accuracy Comparison for with Varied Input Reso-
lutions, Neural Network Structures, and Datasets

A surprising observation is that the combination of high resolu-
tion input and YOLOv2 network can achieve similar or even better
mAP than the combination of low resolution input and YOLOv3
network. For instance, we compare the mAP between YOLOv2 and
YOLOv3 with various input sizes as shown in Table 6. To fairly
compare, we choose the combinations that have similar number
of computing operations. Using YOLOv2 with 1024 × 1024 input
images achieves better mAP than using YOLOv3 at the lower resolu-
tion. Hence, deploying simple neural networks on EdgeAI inference
systems can also achieve the desired accuracy, with a sacri#ce of
increased computational complexity.
Table 6: Two Combinations of Various Networks and Input
Sizes

Networks Input Resolution GFLOPs mAP
YOLOv2 1024x1024 178.53 0.48
YOLOv3 608x608 140.69 0.46

In conclusion, increasing the resolution of input images is a
convincing method to improve the accuracy of object detection
tasks according to our experimental results. Nevertheless, there still
exist some restrictions as follows: (1) Retraining may be required
because the accuracy will su!er if the resolutions of input feature
maps are out of the training range. (2) Additional bene#ts can be
obtained by using the model trained in higher resolution images if
the dataset contains more complex and small objects. Though these
restrictions exist, increasing the resolution of input images, which
augments the information of input data, can help Deep Learning
accelerators to predict more accurate results for users.

Recommendation #5: Data quality matters a lot for
EdgeAI inference applications, which is usually overlooked.
In our experiment, increasing the resolutions of input fea-
ture maps can improve the accuracy for object detection
tasks. This implies that with high-quality data, simpler
neural networks can achieve higher or similar accuracy
compared with complex neural networks that might not
be supported by some low-cost EdgeAI platforms.

6 DISCUSSION
This section discusses power consumption of end-to-end EdgeAI
inference systems evaluated in this paper (NovuTensor and Nvidia
Xavier). We demonstrate the e!ect of our proposed methods on the
power consumption. The feasibility of extending our methods to
other EdgeAI systems will be discussed in Section 6.2.

6.1 Power Consumption
Energy e"ciency is another important factor for EdgeAI systems
excluding runtime performance and accuracy discussed previously.
Inference tasks usually consumemuch less energy than Deep Learn-
ing training tasks because Deep Learning training requires high-end
GPUs from datacenters like Tesla V100, which consumes 300 Watts
per GPU at peak. We evaluate two types of EdgeAI systems in terms
of their connection approaches with the host machine. NovuTensor
is a PCIe-based system equipped with Deep Learning accelerators.
Therefore, to perform end-to-end inference tasks, the host machine

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

mainly includes CPU and DRAM needs to participate. Nvidia Xavier
is an embedded system on a module, which contains GPU, DL accel-
erators, CPU, and memory. It performs inference tasks individually
without involvement of the host machine.

Due to the di!erent organizations of NovuTensor and Xavier,
we need to analyze their power consumptions in di!erent ways.
Figure 10 demonstrates the breakdown of power consumption on
NovuTensor running 3D object detection application. To monitor
the energy usage on the host machine, we use CPU EnergyMeter [2]
for Intel CPUs, which is able to monitor power consumption of
CPU socket and memory during application runtime. CPU Energy
Meter will report the duration of program in second (#) and the
whole energy usage in joule (:). Then we follow equation; = #

$ to
obtain the actual power consumption in Watt (;) of host machine.
As shown in Figure 10, the host machine consumes 5.6 Watt on
idle time. Since NovuTensor does not provide a tool to monitor the
actual power consumption, we report 15 Watt from its speci#cation.
The end-to-end inference application on NovuTensor consumes∼40
Watt in total. To analyze the e!ect of our proposed methods on the
power consumption, we conduct experiments w/wo our proposed
methods with various input resolutions. The experiments show that
our proposed design can save up to 20% energy while have slightly
higher power consumption. This is mainly because our design can
use CPU cores e"ciently with higher parallelism as discussed in
Section 4. We also #nd that processing higher resolution images is
more power e"cient. For Nvidia Xavier, although users are allowed
to con#gure power mode, we cannot monitor the actual power
consumption of each component. So we consider 30/15/10 Watt as
the actual power consumption.

id
le

48
0

54
4

60
8

80
0

10
24

Baseline

0

10

20

30

40

id
le

48
0

54
4

60
8

80
0

10
24

Proposed Methdos

0

1000

2000

3000

4000

5000

6000

Accelerator

CPU

DRAM

Energy(J)

P
ow

er
C
on

su
m
p
ti
on

(W
at
t)

E
n
er
gy

U
sa
ge

(J
ou

le
)

Resolutions

Figure 10: Power and Energy Consumption Comparison of
NovuTensor for 3D Object Detection with Di"erent Input
Resolutions
6.2 Extend to other EdgeAI Systems
To extend our proposed methods to other EdgeAI systems, two
factors should be considered for deployment: 1) Since EdgeAI plat-
forms require various frameworks and provide di!erent SDKs to
developers, the programsmay need to be rewritten. For example, Ed-
geTPU uses TensorFlow-Lite [7]. Though programming languages
and frameworks are di!erent, runtime performance can still bene#t
from our proposed methods. 2) The determined scale factors from
our proposed calibration method can be reused for other EdgeAI
systems if user de#ned scale factors are allowed by the framework.

Otherwise, Algorithm 1 needs to be applied to determine the opti-
mal scale factors.

7 RELATEDWORK
ObjectDetection onEdgeAI Systems.Deep Learning basedmeth-
ods for 2D Object Detection can be grouped into two categories:
two-stage detection and one-stage detection. Two-stage detection
systems such as RCNN [19], and Fast RCNN [18], separate the
localization and classi#cation processes. One-stage detection sys-
tem only needs one step to classify and locate the objects, which
improves the inference runtime performance [28, 38, 39]. The per-
formance of EdgeAI inference systems for 2D object detection work-
loads is discussed in this paper [21]. To predict 3D bounding boxes,
most existing works use LiDAR point clouds as the input of the
detector. LiDAR point clouds provide more information of the sur-
rounding environment than 2D images. There are mainly two ways
to process LiDAR cloud points. The #rst method is to directly pro-
cess the point clouds in 3D [34]. The other way to process LiDAR
point clouds is to encode and discretize the point clouds into some
#xed grids [13, 31, 41, 46].
Accelerations for AI Inference. In the past decade, researchers
and engineers have put much e!ort into boosting AI performance.
The innovations of machine learning and advances in hardware
architecture have been discussed by Reagen et al. [36]. A comput-
ing platform with powerful GPUs can accelerate the AI training
and data processing [20, 24]. The demanding use of computing
resources for AI workloads forces the convergence of AI and high-
end computing. More research work focus on the Deep Learning
inference due to the demanding of edge-side AI applications. Gao
et al. study the performance of mobile GPUs for inference [16].
Many processors and accelerators that provide high-performance
computation capabilities for Deep Learning inference have been
proposed in recent years [3, 12]. Our work is di!erent than these
studies, since we focus on proposing guidance for developers to
improve the performance of object detection tasks on EdgeAI infer-
ence systems.

8 CONCLUSION
In this paper, we identify three limitations of EdgeAI inference sys-
tems for object detection applications, which are: 1) less compute
capabilities due to low power consumption, 2) restrictions of sup-
ported AI inference operations, and 3) accuracy loss due to lower
numerical precision. These limitations lead to two sub-optimal
problems of EdgeAI inference systems according to our charac-
terizations, which are the bottlenecks of pre-/post-processing and
accuracy loss. Motivated by these observations, we propose #ve dif-
ferent optimization guides for EdgeAI inference systems to achieve
better runtime performance and accuracy while maintaining low
energy consumption. Utilizing technologies under our guidance
can signi#cantly improve the performance of EdgeAI inference
systems. In the meantime, we also #nd that, in order to achieve
higher accuracy, we do not necessarily need more complex neural
networks, which often require more expensive systems. Instead,
feeding higher resolution images to simpler neural networks could
achieve desired accuracy. We believe our recommendations can
bene#t current- and next-generation EdgeAI inference systems for
object detection applications as well as other applications.

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS
We want to thank the anonymous reviewers for their insightful
comments and suggestions. This work was supported in part by
the NSF research grant CCF #1822987 and CCF #2132049.

REFERENCES
[1] 2021. https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-

i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
[2] 2021. CPU Energy Meter. https://github.com/sosy-lab/cpu-energy-meter
[3] 2021. Edge TPU. https://cloud.google.com/edge-tpu
[4] 2021. Intel Math Kernel Library. https://software.intel.com/content/www/us/

en/develop/tools/math-kernel-library.html
[5] 2021. NVIDIA Jetson AGX Xavier. https://developer.nvidia.com/embedded/

jetson-agx-xavier-developer-kit
[6] 2021. OpenMP. https://www.openmp.org/
[7] 2021. TensorFlow-Lite. https://www.tensor$ow.org/lite
[8] 2021. TensorRT. https://developer.nvidia.com/tensorrt
[9] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Je!rey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geo!rey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensor$ow.org/ Software available from tensor$ow.org.

[10] Amer Al-Rahayfeh and Miad Faezipour. 2013. Enhanced frame rate for real-time
eye tracking using circular hough transform. In 2013 IEEE Long Island Systems,
Applications and Technology Conference (LISAT). IEEE, 1–6.

[11] bostondiditeam. 2021. MV3D Implementation. https://github.com/
bostondiditeam/MV3D

[12] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2016.
DianNao Family: Energy-E"cient Hardware Accelerators for Machine Learning.
Communications of the ACM 59, 11 (2016), 105–112.

[13] Chen, Xiaozhi and Ma, Huimin and Wan, Ji and Li, Bo and Xia, Tian. 2017. Multi-
view 3d object detection network for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 1907–1915.

[14] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision 88, 2 (2010), 303–338.

[15] Dustin Franklin. 2021. NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New
Era of AI in Robotics. https://developer.nvidia.com/blog/nvidia-jetson-agx-
xavier-32-teraops-ai-robotics/

[16] Gao, Cao and Gutierrez, Anthony and Rajan, Madhav and Dreslinski, Ronald
G and Mudge, Trevor and Wu, Carole-Jean. 2015. A study of mobile device
utilization. In 2015 ieee international symposium on performance analysis of systems
and software (ispass). IEEE, 225–234.

[17] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 3354–3361.

[18] Ross Girshick. 2015. Fast R-cnn. In Proceedings of the IEEE International Conference
on Computer Vision. 1440–1448.

[19] Ross Girshick, Je! Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
580–587.

[20] Hazelwood, Kim and Bird, Sarah and Brooks, David and Chintala, Soumith and
Diril, Utku and Dzhulgakov, Dmytro and Fawzy, Mohamed and Jia, Bill and
Jia, Yangqing and Kalro, Aditya and others. 2018. Applied machine learning
at facebook: A datacenter infrastructure perspective. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 620–629.

[21] Hui, Yujie and Lien, Je!rey and Lu, Xiaoyi. 2019. Early Experience in Bench-
marking Edge AI Processors with Object Detection Workloads. In International
Symposium on Benchmarking, Measuring and Optimization. Springer, 32–48.

[22] Jia, Yangqing and Shelhamer, Evan and Donahue, Je! and Karayev, Sergey and
Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor.
2014. Ca!e: Convolutional Architecture for Fast Feature Embedding. In Proceed-
ings of the 22nd ACM International Conference on Multimedia (Orlando, Florida,
USA) (MM ’14). Association for Computing Machinery, New York, NY, USA,
675–678. https://doi.org/10.1145/2647868.2654889

[23] Jiao, Licheng and Zhang, Fan and Liu, Fang and Yang, Shuyuan and Li, Lingling
and Feng, Zhixi and Qu, Rong. 2019. A survey of deep learning-based object
detection. IEEE Access 7 (2019), 128837–128868.

[24] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. 2015. Federated op-
timization: Distributed optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575 (2015).

[25] Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geo!rey E. 2017. Imagenet
classi#cation with deep convolutional neural networks. Commun. ACM 60, 6
(2017), 84–90.

[26] Ku, Jason and Mozi#an, Melissa and Lee, Jungwook and Harakeh, Ali andWaslan-
der, Steven L. 2018. Joint 3d proposal generation and object detection from view
aggregation. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 1–8.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In European Conference on Computer Vision. Springer, 740–
755.

[28] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single Shot Multibox Detector.
In European Conference on Computer Vision. Springer, 21–37.

[29] Chien-Ping Lu and Yu-Shuen Tang. [n.d.]. Native Tensor Processor, and Parti-
tioning of Tensor Contractions. https://patentscope.wipo.int/search/en/detail.
jsf?docId=US225521272&tab=NATIONALBIBLIO.

[30] McKinstry, Je!rey L and Esser, Steven K and Appuswamy, Rathinakumar and
Bablani, Deepika and Arthur, John V and Yildiz, Izzet B and Modha, Dharmendra
S. 2018. Discovering low-precision networks close to full-precision networks for
e"cient embedded inference. arXiv preprint arXiv:1809.04191 (2018).

[31] Meyer, Gregory P and Laddha, Ankit and Kee, Eric and Vallespi-Gonzalez, Carlos
andWellington, Carl K. 2019. Lasernet: An e"cient probabilistic 3d object detector
for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 12677–12686.

[32] Szymon Migacz. 2021. 8-bit Inference with TensorRT.
[33] Ovtcharov, Kalin and Ruwase, Olatunji and Kim, Joo-Young and Fowers, Jeremy

and Strauss, Karin and Chung, Eric S. 2015. Toward accelerating deep learning
at scale using specialized hardware in the datacenter. In 2015 IEEE Hot Chips 27
Symposium (HCS). IEEE Computer Society, 1–38.

[34] Qi, Charles R and Su, Hao andMo, Kaichun and Guibas, Leonidas J. 2017. Pointnet:
Deep learning on point sets for 3d classi#cation and segmentation. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 652–660.

[35] Qi, Charles Ruizhongtai and Yi, Li and Su, Hao and Guibas, Leonidas J. 2017.
Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In
Advances in neural information processing systems. 5099–5108.

[36] Reagen, Brandon and Adolf, Robert and Whatmough, Paul and Wei, Gu-Yeon and
Brooks, David. 2017. Deep learning for computer architects. Synthesis Lectures
on Computer Architecture 12, 4 (2017), 1–123.

[37] Joseph Redmon. 2021. Darknet. https://github.com/pjreddie/darknet
[38] Redmon, Joseph and Farhadi, Ali. 2017. YOLO9000: better, faster, stronger. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
7263–7271.

[39] Redmon, Joseph and Farhadi, Ali. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[40] Shin, Sungho and Hwang, Kyuyeon and Sung, Wonyong. 2016. Fixed-point
performance analysis of recurrent neural networks. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 976–980.

[41] Simony, Martin and Milzy, Stefan and Amendey, Karl and Gross, Horst-Michael.
2018. Complex-yolo: An euler-region-proposal for real-time 3d object detection
on point clouds. In Proceedings of the European Conference on Computer Vision
(ECCV). 0–0.

[42] Sung, Wonyong and Shin, Sungho and Hwang, Kyuyeon. 2015. Resiliency of deep
neural networks under quantization. arXiv preprint arXiv:1511.06488 (2015).

[43] Sze, Vivienne and Chen, Yu-Hsin and Yang, Tien-Ju and Emer, Joel S. 2017.
E"cient processing of deep neural networks: A tutorial and survey. Proc. IEEE
105, 12 (2017), 2295–2329.

[44] Vanhoucke, Vincent and Senior, Andrew and Mao, Mark Z. 2011. Improving the
speed of neural networks on CPUs. (2011).

[45] Wu, Hao and Judd, Patrick and Zhang, Xiaojie and Isaev, Mikhail andMicikevicius,
Paulius. 2020. Integer Quantization for Deep Learning Inference: Principles and
Empirical Evaluation. arXiv preprint arXiv:2004.09602 (2020).

[46] Yang, Bin and Luo, Wenjie and Urtasun, Raquel. 2018. Pixor: Real-time 3d object
detection from point clouds. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 7652–7660.

[47] Yang, Yang and Deng, Hongmin. 2020. GC-YOLOv3: You Only Look Once with
Global Context Block. Electronics 9, 8 (2020), 1235.

[48] Zhou, Yin and Tuzel, Oncel. 2018. Voxelnet: End-to-end learning for point cloud
based 3d object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4490–4499.

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 17,2022 at 23:58:13 UTC from IEEE Xplore. Restrictions apply.

