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AssTrRACT. We consider a 2D stochastic wave equation driven by a Gaussian noise,
which is temporally white and spatially colored described by the Riesz kernel. Our first
main result is the functional central limit theorem for the spatial average of the solution.
And we also establish a quantitative central limit theorem for the marginal and the rate
of convergence is described by the total-variation distance. A fundamental ingredient in
our proofs is the pointwise LP-estimate of Malliavin derivative, which is of independent
interest.
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1. Introduction

We consider the 2D stochastic wave equation
0%u .
— = Au+o(u)W, 1.1
- (u) (1)
on R, x R?, where A is Laplacian in the space variables and W is a Gaussian centered noise
with covariance given by

E[W (t,2)W (s,y)] = 0ot — s)]J& —y||~* (1.2)

for any given 8 € (0,2). In other words, the driving noise W is white in time and it has
an homogeneous spatial covariance described by the Riesz kernel. Here W is a distribution-
valued field and is a notation for where the noise W will be formally introduced
later.

Throughout this article, we also fix the boundary conditions

*w
6t61~1 6582 ?

u(0,2) =1, %u(o,x) =0 (1.3)

and assume o is a Lipschitz function with Lipschitz constant L € (0,00) and o(1) # 0. It
is well-known (see e.g. [6]) that equation has a unique mild solution, which is adapted
to the filtration generated by W, such that sup {E[|u(t,z)[?] : (¢t,z) € [0,T] x R*} < oo for
any finite T and

u(t,w) =1+ / [ sl =)ol )W (ds.dy). (1.4)
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where the above stochastic integral is defined in the sense of Dalang-Walsh (see |5l 22]) and
Gi_s(xz — y) denotes the fundamental solution to the corresponding deterministic 2D wave
equation, i.e.

1

Gi(x) = ml{umn<t}~

Because of the choice of boundary conditions (1.3), {u(t,z) : @ € R?} is strictly stationary
for any fixed ¢t > 0, meaning that the finite-dimensional distributions of {u(t,z+y) : x € R?}
do not depend on y; see e.g. [7, Footnote 1|. Then it is natural to view the solution u(t, z)
as a functional over the homogeneous Gaussian random field W. Such Gaussian functional
has been a recurrent topic in probability theory, for example, the celebrated Breuer-Major
theorem (see e.g. [1} 2} [19]) provides the Gaussian fluctuation for the average of a functional
subordinated to a stationary Gaussian random field. Therefore, one may wonder whether
or not the spatial average of u(t, x) admits Gaussian fluctuation, that is, as R — +o0

does / (u(t,z) — 1) dz converges to N'(0,1), after proper normalization?
{llzll<R}

Here t > 0 is fixed, u(t, =) is the solution to and N (0, 1) denotes the standard normal
distribution.

Recently, the above question has been investigated for stochastic heat equations (see
[4, @, 10}, 20]) and for the 1D stochastic wave equation (see [7]). Our work can be seen as an
extension of the work [7] to the two-dimensional case. In Theorem below we provide an
affirmative answer to the above question.

Let us first fix some notation that will be used throughout this article.

Notation. (1) The expression a < b means a < Kb for some immaterial constant K that
may vary from line to line.

(2) || - || denotes the Euclidean norm on R? and we write B = {z : ||z| < R}. We define
for each t € Ry := [0, 00),

Fr(t) = /B (u(t,z) — 1) dz. (1.5)

(3) We fix 8 € (0,2) throughout this article and there are two relevant constantsﬂ g, kg
defined by

T -9 )
o=~y 0= [ IR (16)

where Jq(+) is the Bessel function of first kind with order 1, given by (see, for instance, [13]
(5.10.4)])

Ji(z) = E/ sin? 6 cos(z cos 0)df. (1.7)

T Jo
Note that 4m%cgrpg = [go |y — 2| Pdydz; see Remark (3 below.
1
(5) We write || X]||,, for the L?(2)-norm of a random variable X.

Now we are in a position to state our main result.

INote that the quantity kg is finite, since Ji(p) is uniformly bounded on R4 and equivalent to
constant times p as p | 0; see e.g. [20, Lemma 2.1].
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Theorem 1.1. Recall Fr(t) defined in (1.5)). As R — oo, the process {Rg_QFR(t) (teRy}
converges in law to a centered Gaussian process G in the space C’(R_,_;R)H of continuous
functions, where

t1 Ats
]E[gtlgt2] = 47T2Cg/€g/ (t1 — s)(ta — 3)52(s)d5,
0

with &(s) = Elo(u(s,0))] and ca, kg being the two constants given in (L.6). For any fized
t>0,

drv (Fr(t)/or, 2) S R™P2, (1.8)
where Z ~ N(0,1) and o := y/Var(Fg(t)) > 0 for every R > 0.

Remark 1. (1) The limiting process G has the following stochastic integral representation:

G :ter,) Y {QW\/CﬁTIg/O (t— $)E(s)dY, : t € R+},

where {Y; : t € R;} is a standard Brownian motion.
(2) We point out that og > 0 is part of our main result. Indeed, it is a consequence of
our standing assumption (1) # 0. In fact, we have the following equivalences:

or =0, YR>04 3R >0, s.t.op =0 o(l) =0 lim oLRPT = 0.
—00

The verification of these equivalences can be done similarly as in [, Lemma 3.4] and by
using Proposition [3:1] We omit the details here.

(3) The total-variation distance drv induces a much stronger topology than that induced
by the Fortet-Mourier distance dgy, where the latter is equivalent to that of convergence in
law. For real random variables X,Y,

dry(X,Y) := sgp |P(X € A) —P(Y € A)|, dru(X,Y):= s%p |E[R(X) — h(Y)]],

where the first supremum runs over all Borel subsets of R and the second supremum runs
overs all bounded Lipschitz functions h with [|h|« + [|A'[[c < 1. Our quantitative CLT
is obtained by the Malliavin-Stein approach that combines Stein’s method of normal
approximation with Malliavin’s differential calculus on a Gaussian space; see the monograph
[15] for a comprehensive treatment. One can also obtain the rate of convergence in other
frequently used distances, such as the Wassertein distance and Kolmogorov distance, and

the corresponding bounds are of the same order as in (1.8).

Now let us sketch a few paragraphs to briefly illustrate our methodology in proving
Theorem [I.I] The main ingredient is the following fundamental estimate on the p-norm of
the Malliavin derivative of the solution denoted by Du(t, z). It is well-known (see e.g. [14])
that Du(t,z) € LP(§; ) for any p € [1,00), where § is the Hilbert space associated to the
noise W, defined as the completion of C2°(R, x R?) under the inner product

(adoi= [ Floa(s.2)ly— =] dydzds (19)
—or [ FHOF o5~ s, (1.10)
R4 xR

2The space C'(R4+;R) is equipped with the topology of uniform convergence on compact sets.
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where cg is given in and .F = fpa € f (s, x)da
Theorem 1.2. The Malliavin derivative Du(t, z) is a random function denoted by (s,y) —

D, yu(t,x) and for any p € [2,00) and any t > 0, the following estimates hold for almost all
(s,y) € 10,1 x R?:

Gis(x —y)llo(usy)llp < HDs,yu(tvx)Hp < Cppot,0hiptGis(® — y), (1.11)
where the constants Cg p+ 1 and Ky are given in ({4.6) and (4.4), respectively.

Remark 2. Theorem echoes the comment after [I0, Lemma 2.1] and generalizes [7,
Lemma 2.2] to the solution of a 2D stochastic wave equation. Although the expression
in looks the same as in [7, Lemma 2.2], 4.e. LP-norm of the Malliavin derivative
is bounded by the fundamental solution to the corresponding deterministic wave equation,
we would like to emphasize that the proof in the 2D setting is much more involved and
requires new techniques in dealing with the singularity of G;_s(z — y) while in the 1D
case the fundamental solution is the bounded function 1,y <;—s1. Modulo sophisticated
integral estimates, our proof of Theorem [I.2]is treated through a harmonious combination
of tools from Gaussian analysis (Clark-Ocone formula, Burkholder inequality) and Sobolev
embeddings (Hardy-Littlewood-Sobolev’s lemma).

We will first sketch the main steps for the proof of Theorem [I.I and then we will present
the key steps in proving .

The typical proof of the functional CLT consists in three steps:
(S1) We establish the limiting covariance structure, this is the content of Section
In particular, the variance of the spatial average Fr(t) is of order R*™% as R — oc.
As one will see shortly, the important part of this step is the proof of the limit :
Cov[o(u(s,y)),o(u(s, z))] — 0as [|y—z|| — co. This limit is straightforward when o (u) = u
and in the general case, we will apply the Clark-Ocone formula (see Lemma to first rep-
resent o(u(s,y)) as a stochastic integral and then apply the It6’s isometry in order to break
the nonlinearity for further estimations.

(S2) From (S1), we have the covariance structure of the limiting Gaussian process G. Then
we will prove the convergence of {RQ_QFR(IS) :t € Ryf to {G, : t € Ry} in finite-
dimensional distributions. This is made possible by the following multivariate Malliavin-
Stein bound that we borrow from [9, Proposition 2.3] (see also [I5, Theorem 6.1.2]). We
denote by D the Malliavin derivative and by § the adjoint operator of D that is characterized
by the integration-by-parts formula . Moreover, D2 is the Sobolev space of Malliavin
differentiable random variables X € L*(Q2) with E[[[DX|3] < oo and Doms is the domain
of &; see Section [2] for more details.

Proposition 1.3. Let F = (F, ..., F("™) be a random vector such that F) = §(v®) for
v € Domd and F) € DV2, i =1,...,m. Let Z be an m-dimensional centered Gaussian
vector with covariance matriz ( )1<1 j<m-. For any C? function h : R™ — R with bounded
second partial derivatives, we h(we

[ER(F)] - ERZ))| < S0, | D E[(Ciy = (DFO,00)5)°] . (112)

ij=1

2 ..
where ||h"]| s := sup{|#axjh(x)| czeR™, i, j=1,...,m}.
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In view of (L.4), we write u(t,z) — 1 = §(Gi—e(z — *)o(u(e,*))) so that Fg(t) can be
represented as

Fr(t) = /B 5(Groala — ¥)o(u(s, x))de = 5(pp(e, )o(ule, %)) (L13)

by Fubini’s theorem, with

oir(ry) = Gi—r(x — y)dx; (1.14)
Br

see Section Putting Vi r(s,y) = ¢.r(s,y)o(u(s,y)), and applying the fundamental
estimate ([1.11]), we will establish that, for any t1,%2 € (0, 00),

R¥*=8Var((DFg(t1), Viy,r)s) S R7P for R >t + t. (1.15)

Then, we will show that Proposition together with the estimate imply the con-
vergence in law of the finite-dimensional distributions.

The bound for t; = to = t together with the following 1D Malliavin-Stein bound
(see, e.g. [9, 17, 21]) will lead to the quantitative result (L.8).

Proposition 1.4. Let F = §(v) for some $H-valued random variable v € Dom . Assume
F eDY? and E[F?) =1 and let Z ~ N(0,1). Then we have

drv(F,Z) < 2y/Var[(DF,v)s] . (1.16)

(S3) The last step is to show tightness. By the well-known criterion of Kolmogorov-Chentsov
(see e.g. [12]), it is enough to show that for any finite 7" and for any p € [2, 00),

|Fr(t) = Fr(s)|, S B>~ 3|t — s|"/? for s,t € [0,7], (1.17)

where the implicit constant does not depend on ¢, s or R. This will end the proof of Theorem
Imi!

Finally let us pave the plan of proving the fundamental estimate ((1.11)). The story begins
with the usual Picard iteration: We define ug(t,z) = 1 and for n > 0,

wr(t) =1+ [ Gislo =)o {un(s.9) Wids.dy). (L.18)

It is a classic result that u,(t,z) converges in LP(Q) to u(t,z) uniformly in € R? for any
p > 2; see e.g. [6, Theorem 4.3]. Now it has become clear that if we assume o(1) = 0, we
will end up in the trivial case where u(¢,z) = 1, in view of the above iteration.

For each n > 0, u,41(t, z) is clearly Malliavin differentiable. Our strategy is to first obtain
the uniform estimate of sup {||Ds,yu, (¢, )|, : n > 0} and then one can hope to transfer this
estimate to || D yu(t, z)||,. As mentioned before, Du(t, x) lives in the space $) that contains
generalized functions. To overcome this, we will carefully apply the following inequality of
Hardy-Littlewood-Sobolev to show Du(t,z) is a random variable in LT (R4 x R?).

Lemma 1.5 (Hardy-Littlewood-Sobolev). If 1 < p < py < oo with pgl =p !l —an’!

then there is some constant C that only depends on p, o and n, such that

7

11°9l| Lro (rn) < CllgllLern),
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for any locally integrable function g : R? — R, where with o € (0,n),
(%) @) = [ lle=sI""al)ds.

For our purpose, withn =2, a =2—- 8, p =29 =4/(4— ) and py = 4/, we have, using
Holder’s inequality,

soi= [ I@atu)le — vl Pdady (119)
< ||=/:||L2f1(1R2)||I2 Pgll s re)
< Cpll fllz2are) gl L2a®2) (1.20)

for any f,g € L?1(R?); see e.g. [23, page 119-120].

Once we obtain the uniform estimate of sup {|| D yun(t, z)||, : n > 0} and prove Du(t, z) €

L‘liliﬁ(RJr x R?), that is, (s,y) — Ds,u(t,z) is indeed a random function, we proceed
to the proof of (L1I). In view of the Clark-Ocone formula (see Lemma [2.4), we have
E[Ds yut o Fs| = Gi—s(x — y)o(u(s,y)) almost surely, where {.Z, : s € R} is the filtration
generated by the noise; see Section[2.2] Then, the lower bound in follows immediately
from the conditional Jensen inequality. The upper bound follows from the uniform estimates
of || Ds yun(t, )|, by a standard argument.

Before we end this introduction, let us point out another technical difficulty in this paper.
After the application of Lemma |5 during the process of estimating || Dy yun (t, 2)|», we will
encounter integrals of the form

t 1/q
/(/ qur(x—z)qus(z)dz) dr and // G2 (x— 2)G* (2)dzdr, (1.21)
s R2

where ¢ € (1/2,1) and 0 < p < ¢. In the case of stochastic heat equation, the estimation
of the above integrals is straightforward due to the semi-group property. However, for the
wave equation the kernel G; does not satisfy the semi-group property and the estimation
of the above integrals is quite involved. For the case of the 1D stochastic wave equation,
as one can see from the paper [7], the computations take advantage of the simple form of
the fundamental solution (i.e. 1fj;_yj<i—s}). For our 2D case, the singularity within the
fundamental solution G;_s(z — y) puts the technicality to another level and we have to
estimate the convolution G79, * G2% _ by exact computations. A basic technical tool used in
this problem is the following lemma.

Lemma 1.6. For 0 <s <t < oo, with ||z]| =w >0 and ¢ € (1/2,1), we have
Gtzq * G2(2) < 1iwes} [t2 —(s— w)ﬂ + [t2 —(s+ w)2]1_2q1{t>s+w}
—q+1 —q+1

+ 1{|S,w|<t<s+w} [(W + 8)2 — t2] T [tz — (S — W)Q] 4 2 (1.22)

where the implicit constant only depends on q.

1-2q

The rest of this article is organized as follows: Section 2 collects some preliminary facts
for our proofs, Section 3 contains the proof of Theorem [I.I] and Section 4 is devoted to
proving the fundamental estimate ((1.11)).
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2. Preliminaries

This section provides some preliminary results that are required for further sections. It
consists of two subsections: Section [2.1] contains several important facts on the function
Gi—s(x —y) and Section is devoted to a minimal set of results from stochastic analysis,
notably the tools from Malliavin calculus.

2.1. Basic facts on the fundamental solution. Let us fix some more notation here.

Notation. For p € R, we write (v)} = v” if v > 0 and (v), = 0 if v < 0. Then, we can
write

1 ~1/2
Gula) = 5 (1 — [|=) "%,
Recall the function ¢y g(r,y) introduced in (1.14)):

©i.r(5,Y) :/ Gir(x —y)dz.
Br

In what follows, we put together several useful facts on the function G(z2).

Lemma 2.1. (1) For any p € (0,1) and ¢t > 0.

1-2p
/R ) G?P(2)dz = %t%?p. (2.1)

(2) Fort > s, we have ¢t r(s,y) < (t — 8)1qy|<r+ey and /R? or.r(s,y)dy = (t — s)mTR?.

The proof of Lemma [2.1] is omitted, as it follows from simple and exact computations.
As a consequence of Lemma [2.1}(2), we have

/ 01.r(8,2+ &) pr.r(s,2)dz < 7(t — 5)*R2. (2.2)
R2
The following lemma is also a consequence of Lemma [2.1]

Lemma 2.2. For ty,ty € (0,00), we put

Walts t2i)i= B [ ou (o,0)on (s, 2y = 2| Pdyd
R

Then

(1) Wr(ti,te;s) is uniformly bounded over s € (0,12 At1] and R > 0;
(ii) For any s € [0,ta At1], Vg(t1,ta;8) converges to 4m?cgrip(ti —s)(t2 —s), as R — oo.
Here the quantities cg and kg are given in (1.6]).

Proof. By using Fourier transform as in ([1.10]), we can write

Up(ty, ty;s) = RP™4 dxdx’/ Gi,—s(x —9)Gry_s(x' — 2)|ly — 2| Pdydz
B2, R4

S <Sin((t1—8)lf)sin((tz—8)fl)) s
"" /B v / e Tel Tel I¢l

L [ e itearre sin((t — IR sin((ts — IR s s
CB/B; v / e i AL
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where in the last equality we made the change of variables ¢ — ¢R™1.

The Fourier transform of z € R? — 1y <1y is & € R? — 2x[|€]| " J1(||€])) (see, for
instance, Lemma 2.1 in [20]), where J; is the Bessel function of first kind with order 1
introduced in . Then, we can rewrite Ug(t1,to; s) as

es [, entei=ta]” (T SIE ) Sl SIE D eyo-zqe

Since sin((t — s)||¢|R™Y)/([|€|R™1) is uniformly bounded over s € (0,¢] and converges to
t —s as R — oo, then the statement (i) holds true and

Ur(ty,te;s) EimioN dmieprp(ty — s)(t2 — 5).
by the dominated convergence theorem with the dominance condition kg < oco. O

Remark 3. By inverting the Fourier transform, we have

ooy = s [ CrPRUENIEN 2N 2d = [ w21y
1

2.2. Basic stochastic analysis. Let $ be defined (see (1.9) and (1.10))) as the completion

of C2°(R; x R?) under the inner product

(f. g5 = /  Ss9)als, )y = 2| Pdydzds for .g € O (R x ).
+ XR4

Consider an isonormal Gaussian process associated to the Hilbert space ), denoted by
W = {W(¢) RS 5'3}. That is, W is a centered Gaussian family of random variables such
that E[W(¢)W(1/))] = (¢, V) g for any ¢, € ). As the noise is white in time, a martingale
structure naturally appears. First we define .%; to be the o-algebra generated by P-null sets
and {W(¢) : ¢ € C°°(R; x R?) has compact support contained in [0,¢] x R?}, so we have
a filtration F = {# : t € R.}. If {®(s,y) : (s,y) € Ry x R?} is an F-adapted random field
such that E[||®[|3] < +o0, then

My = / (I)(S,y)W(dS,dy),
[0,t] xR?

interpreted as the Dalang-Walsh integral ([, 22]), is a square-integrable F-martingale with
quadratic variation given by

_ 2
(M), = /[ g BV 2y =l Pdyzds = [0, g [
0,t] x R4

Let us record a suitable version of Burkholder-Davis-Gundy inequality (BDG for short); see
e.g. [I1, Theorem B.1].

Lemma 2.3 (BDG). If {®(s,y) : (s,y) € Ry xR?} is an adapted random field with respect
to F such that ||®||s € LP(Q) for some p > 2, then

2

<dp (2.3)

/ B(s,y)W (ds, dy) / B(s, 2)B(s,y)|ly — 2I| P dydzds
[0,¢] X R2 [0,¢] x R4

p p/2
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We refer interested readers to the book [I1I] for a nice introduction to Dalang-Walsh’s
theory. For our purpose, we will often apply BDG as follows. If & is F-adapted and
|Gi—o(z — *)®(o,%)||5 € LP(2) for some p > 2, then BDG implies

‘ 2

by viewing f[o fxR? Gi_s(x —y)D(s,y)W(ds,dy) as the martingale

/ Gr_a(z — y)B(s, y)W (ds, dy)
[0,t] X R2

P

<4p

@)
p/2

/ Gl — 2)Gy ol — )(s,9)®(s, )|y — 2|~ dsdzdy
[0,t] x R4

{/ Gi_s(x —y)®(s,y)W(ds,dy) : r € [O,t]} evaluated at at time t.
[0,7] xR2

Now let us recall some basic facts on the Malliavin calculus associated with W. For any
unexplained notation and result, we refer to the book [16]. We denote by C;°(R™) the space
of smooth functions with all their partial derivatives having at most polynomial growth at
infinity. Let S be the space of simple functionals of the form F = f(W(hy),...,W(hy)) for
fe C’;"(R”) and h; € $, 1 < i < n. Then, the Malliavin derivative DF is the $-valued
random variable given by

DF = zn: gj_ (W(hy),...,W(hn))hi .

The derivative operator D is closable from LP(f) into LP(Q; $)) for any p > 1 and we define
DP to be the completion of S under the norm

IF ]l p = (E[|FIP] +]E[||DF||%])1/Z> '

The chain rule for D asserts that if Fy, F» € DY? and hy,hy : R — R are Lipschitz, then
hl(Fl)hQ(FQ) S Dl’l and hl(Fl) € D1’2 with

D(hy(F)ha(F»)) = ho(Fa)YiDFy + hy(F1)YaDF, (2.5)

where Y; is some o{F; }-measurable random variable bounded by the Lipschitz constant of h;
for i = 1,2; ; when the h; are differentiable, we have Y; = h(F;), i = 1,2 (see, for instance,
[16, Proposition 1.2.4]).

We denote by ¢ the adjoint of D given by the duality formula

E[5(u)F] = E[(u, DF)s)] (2.6)

for any F € DY? and v € Domé C L2(Q;$), the domain of §. The operator J is also
called the Skorohod integral and in the case of the Brownian motion, it coincides with an
extension of the Ito integral introduced by Skorohod (see e.g. [8, [18]). In our context, the
Dalang-Walsh integral coincides with the Skorohod integral: Any adapted random field ®
that satisfies E[||®[|3] < oo belongs to the domain of § and

@) = [ [ eepwids.a)
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The proof of this result is analogous to the case of integrals with respect to the Brownian
motion see [I6, Proposition 1.3.11]), by just replacing real valued processes by $p-valued
processes, where $)g is defined in . As a consequence, the mild formulation equation
(1.4) can be written as

u(t,z) =14 6(Gi—o(x — *)o(u(e, *))).
The operators D and § satisfy the commutation relation
[D,d8]V := (Dé —6D)(V) =V. (2.7)

By Fubini’s theorem and the duality formula (2.6)), we can interchange the Skorohod
integral and Lebesgue integral: Suppose f, € Domd is adapted for each x in some finite
measure space (E, i) such that [, f.u(dz) also belongs to Domé and E [, || f. |5 p(dz) < oo,
then

) </E fm,u(dx)) = /Eé(fm),u(d:c) almost surely. (2.8)

Indeed, for any F € S,
E [Fa ( / fzu(dx)ﬂ ~E(DF. [ fan(dn)), = [ E(DP. £:) gl
= [ Blrs()ntn) =& |F [ s(rutao)].

which gives us . In particular, the equalities in are valid.

With the help of the derivative operator, we can represent F € D2 as a stochastic
integral. This is the content of the following two-parameter Clark-Ocone formula, see e.g.
[3, Proposition 6.3] for a proof.

Lemma 2.4 (Clark-Ocone formula). Given F € DY2, we have almost surely

F=E[F]+ / ]E[DsnyL?S]W(ds, dy).
R+ xR2
We end this section with the following useful fact: If {®, : s € R, } is a jointly measurable
and integrable process satisfying fR+ (Var(@s))l/2ds < 00, then

Var (/R <I>Sds> g/R /Var(®,)ds. (2.9)

3. Gaussian fluctuation of the spatial averages

We follow the three steps described in our introduction.
3.1. Limiting covariance structure.
Proposition 3.1. Suppose ty,t2 € (0,00). We have, with &(s) = E[o(u(s,0))],

E [FR(tl)FR(tQ)] R—o0
=

47r205n5/0 1 2(t1 —8)(ta — 5)&%(s)ds (3.1
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with kg = [go d€||E|IP~4T1(|1€]))? € (0,00). In particular, for any t >0,
Var(FR(t))Rﬁ*4 EimiccN dmlcprp /Ot(t — 5)%€%(s)ds.
Proof. Recall that Fg(t) = fot Jzz et.r(s,y)o(u(s, y))W (ds, dy). Then, by Itd’s isometry,

BFat)Fatte)] = [ [ ennls. e (s 2l — = Blo(uls. n)o(u(s, ) dydzds.

We claim that, as R — oo,

t1Ato
Rﬁ_‘l/ /R 0, RS, Y)p.r(8,2)||ly — ZH_’BCOV[O'(U(S, y)), o(u(s, z))}dydzds — 0,
0 4
(3.2)

Assuming (3.2]), we can deduce from Lemma the stationarity of the process {u(t,z) :
z € R?} and dominated convergence that

E[Fr(t1)Fr(t t1Ats
i EFROVER(R)] / €2(5)Up(ty, ta; s)ds = RHS of (3.1),
0

R—o0 RA-5 R=o00
where £(s) = E[o(u(s,0))] is uniformly bounded over s € [0,t1 A t3].
We need to prove now and it is enough to show for any s € (0,¢; A to]
lim  Cov|o(u(s,y)),o(u(s, z))] = 0. (3.3)

ly—z|l—o0
Indeed, if (3.3) holds for any given s € (0,t; A t3], then for arbitrarily small £ > 0, there is
some K = K(e,s) such that Cov|o(u(s,y)),o(u(s,z))] <e, for |y — z|| > K. By Lemma
2:2] we deduce

RB“‘/ 0ir(5,9)en,r(s, 2)[ly — 2| P Cov[o(u(s, y)), o (u(s,, 2))]dydz
ly—zlI>K

< eVpg(ti,ta;s) Se,

~

while using the uniform L2-boundedness of u(t, ), we get

RO /” P, el 2y =1 Cov [otuts, ), otus )] dyd
y—z||<
< RF- / (5, 9)0nr (s 2) |y — 2| P dydz
[ly—z|| <K

=t [ el ( / ¢t7R<s7z+5>¢t,R<s,z>dz)53/3—2 [ aelel= vy €3
[[E<K R2 lEll<K

< pf-2 B2
That is, we just proved for any s € (0,¢; A t2],

R—o0

R84 /]R4 ot,r(8,9)pe,Rr(S, 2)|ly — z|| 7P Cov [O’(U(S, y)), o (u(s, z))}dydz 222000,

where the LHS is uniformly bounded in R > 0 and s € (0,%; A t2] in view of Lemma
Then the claim (3.2)) follows from the dominated convergence.



12 R. BOLANOS GUERRERO, D. NUALART, AND G. ZHENG

It remains to verify (3.3). By Theorem for any 0 < s < t,
[1Dsyult, z)llp S Ge—s(z — y).
By Lemma [2.4]

o(us.9) = Elotus. )] + [ [ B[Do (otuts.n)|# ] widr.an.
As a consequence,
E[o(u(s, y))o(u(s, 2))] = €*(s) + T(s,y, 2),
where
T(s,y,z) = /0 /R E(E[Dys (0(uls, y)IFJE Dy (o(uls, 2) 7] ) Iy =o'y dr.
By the chain-rule for the derivative operator,

D, (U(u(s7 y))) =Yy Dy u(s,y)

with X, , an adapted random field uniformly bounded by L, where we recall that L is the
Lipschitz constant of o. This implies,

’E(E[DTW(U(U(& y)))‘fr}]E[Dr,'y’ (J(“(Sa Z)))U:TD‘ S HDr,'yU(s»y)HQHDT,’y/U(Sa Z)Hg
SGs (v — y)GS*T('V/ —2).
Thus,
IT(s,y,2)| < /O /W Goer(y = 9)Gser (v = 2) |7y = A | Py dr
Suppose ||y — z|| > 2s, then

Goer(Y=9)Gsr(V = )1V = Y77 < Goer (v = ) Gsr (v = 2) (Il — 2]l — 25)

from which we get

O o I A R
0 JR

This implies (3.3]) and hence concludes our proof. O

B

3.2. Convergence of finite-dimensional distributions. As it was explained in the in-
troduction, a basic ingredient in the proof of the convergence of finite-dimensional distribu-
tions is the following estimate

R*=8Var((DFg(t1), Vis,r)5) S R7P for R >t + to, (3.4)
where we recall that Vi, r(s,y) = ¢, r(s,y)o(u(s,y)).

Note that the Malliavin-Stein bound (1.16) and the above bound (3.4)) with ¢t; = to = ¢
lead to the quantitative CLT in (1.8]). In fact, from (3.4)) and (1.16]), we have for any fixed
t>0,

2 2
dry (Fr(t)for. Z) £ —/Var((DFa(t). Vir)s) < - R %, R > 2t
ORr OR
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by Proposition 0% RP~* converges to some explicit positive constant, see (3.1)). So we
can write, for all R > R;

drv(Fr(t)/or,Z) < CR™P/2,
where R, is some constant that does not depend on R. As the total variation distance is
aways bounded by 1, we can write for R < Ry,
drv(Fr(t)/or, Z) <1< (Ry)P*R7P12 VYR < R,.
Therefore, the bound (1.8 follows.
Let us prove that (3.4]) together with Proposition imply the convergence in law of
the finite dimensional distributions. Choose m > 1 points t1,...,t, € (0,00). Consider

the random vector @ = (Fg(t1),..., Fr(tm)) and let G = (G1,...,Gy,) denote a centered
Gaussian random vector with covariance matrix (C; j))1<i, j<m given by

C;j = 4m’cprp / (t; — s)(t; — 5)&%(s)ds.

tiNt;

Recall from (1.13) that Fr(t;) = §(V4, r) for all i =1,...,m. Then, by (1.12) we can write

[B((RE20R) ~E(H(G)] < TN loe\| D B (|Ciy = RFHDFu(t:)  Viy.r)s ) (35)

ij=1

for every h € C?(R™) with bounded second partial derivatives. Thus, in view of (3.5)), in

order to show the convergence in law of R32p r to G, it suffices to show that for any
,j=1,...,m,
lim E (|ci,j — RO DFg(t) ,v;j,R>ﬁ|2) = 0. (3.6)
R—o0

Notice that, by the duality relation (2.6)) and the convergence (3.1)), we have

RPE((DFR(t), Vi, n)s ) = RPE(Fr(t)8(Vi, )
R—o0

= R*UE (Fr(t;)Fr(t;)) —> Ci;. (3.7)

Therefore, the convergence (3.6 follows immediately from (3.7) and (3.4)). Hence the finite-
dimensional distributions of {Rgsz r(t) : t € Ry} converge to those of G as R — co.

The rest of this subsection is then devoted to the proof of (3.4).

Proof of (3.4). Recall from (1.13)) that
Fr(t) =/ (u(t,z) — 1)dw = 6(Vy,p) with Vi r(s,y) = ¢u,r(s,y)o(u(s,y)).
Br

The commutation relation implies for s < t,
D, yFr(t) = Ds 46(Vi.r) = Vi r(s,y) + 6(Ds 4y Vi R)- (3.8)
By the chain rule for the derivative operator (see ([2.5)))
Dsy[Vi.r(r; 2)] = @1.r(r, 2) Do (u(r, 2))] = @r.r(r, 2)r.. Ds yu(r, 2), (3.9)
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where 3, . is an adapted random field bounded by the Lipschitz constant of o. Substituting

(4.11) into (3.8)), yields, for s < t,
t
D Fr(t) = ¢r.r(s,y)o(u(s,y)) —|—/ /2 eur(r, 2)2,  Ds yu(r, )W (dr, dz).
s R

Then, for ¢1,t3 € (0,00), we can write <DFR(7§1)7 ‘/,f27R>5 = Ay + As, with

t1Atg
A= Vi Vg = [ [ ol 0)gun(s, o (als, )o (s, )y — 2| Pdyazas
0 R4

and
t1 Aty 11
Ay :/ / (/ / i, r(r,2) 5 2 Ds yu(r, z)W(dr, dz))
0 R4 \Js JRr2

X |ly = /||~ Vi, (s, ¢/ )dsdydy'.

(i) Estimation of Var(Ay). From (2.9)), we deduce that Var(A;) is bounded by

( [ (e [ st dotuts. hotuts, Dl - = Pz " ds> i

(3.10)
Note that the variance term in (3.10) is equal to
/Rg i, 7 (8, 9) P2, R (85 2)¢0, 1 (8,4 )i, r (8, 2" )ly — 2| P lly" = 2|7
x Cov [U(u(s,y))o(u(& ), o(uls, y'))o (uls, z'))} dydzdy'd2. (3.11)

To estimate the covariance term, we apply the Clark-Ocone formula (see Lemma [2.4) to
write

s,y))o(u(s, 2)) — E[o(u(s, y))o(u(s, 2))]

_ / | / E{ D (o(u(s, 1) (u(s, 2))) |7 } W (dr,d).
0 Jr?

Then we apply It6’s isometry to obtain

Cov [O’(U(S, y))o(u(s,2)),o(u(s,y"))o(u(s, z’))} (3.12)

U(u( )

- AS /R‘l E [E{DTaV (U(u(s,y))a(u(& Z)))LQ}}E{DTWI (a(u(s,y’))a(u(& ZI)))|<9Z\T}‘|

X |y = |~ Pdray/dr,
where, by the chain rule ([2.5)),
D, (a(u(s, y))o(u(s, z))) = o(u(s,y))Zs, 2 Dryu(s, 2) + o(u(s, 2))Zs,y Dr yu(s, y).

Then by Cauchy-Schwarz inequality and Theorem [1.2] we can see that the above covariance

term is bounded by
[ [ |peatotutsiotuts, ) | | Dro etutssDatuts 20 |l =+ IParear
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S [ ar [ a1 (1Duls, 2l + 1D uls. )l
0 4
% (IDrruls. 2l + |1 Dryruls. )]l

S [ar [ Iy =17 (G =)+ Gy = 1) (G = 7) 4 Gy = 7).
0 R4

Now we can plug the last estimate into (3.11]) for further computations:
Var (| onnls ) (s, atulshotuts, Dl - 2| dyas)

/ dr / tr, 18, 9) Pt 1 (5 )0ty 1 (5,8 )oea m(5, )y — 2Pl — 212y — 47

X (Goer(z =) + Goer(y = 7)) (Gs—r(z' =) + Gs—r(y — 7)) dydr/ dydzdy'd=’.
(3.13)

In order to obtain Var(A;) < R737, it is enough to show sup,<;, 1y, Ts S R¥F with

S
= [ [ o nCs g nto 2o s, e s,y = =y =
x|l = v’ll‘ﬁGs—r(z = NGser (2 =7 )dydy dydzdy'd’

as other terms from can be estimated in the same way with the same bound.
For s € (0,t; A t2] we wrlte using ,

7= [ ar Ly Jo Gormstr = 9Gus(at =) Grses(a = )Gl = )Grl =)
X GorlZ =)y =A™y — 217y = /|| Pdydy dydzdy' dz' dcy o) doday.
Making the change of variables
(’yv ’)/a Y, z, y/u Zlv 1, xlh T2, 1'/2) - R(’% ’7I7 Y, 2, y,v ZI7 T, xllv Za, x/Z)
and using G¢(Rz) = R71G,z-1(z) for every t, R > 0 yields
S
RMHSBT. = / dr/ Go—s (21 —y)Gu—s (2] — V)G s (¥2 — 2)Gry—s (x5 — 2')
0 B4 ]R12 R R R R
X Gomr (2= )G oz (2" =)y =17 ly = 2l Plly’ = 2| dydy dydzdy' d2' dee da dicaday.
Using the fact (2.1, we can integrate out x1, ), z2, 25 to bound R™M+38T, by
S
~10+3 2 2
Rt — 5)*(t> — ) /0 dr /R Lely vl VIRV 2 IV IV S0 (o +2) R
X Gar(z =G e (2 =)y =7 177Ny = 21PNy — /| P drdy/ dydzdy'd'. (3.14)
Suppose R > t1 + to and notice that

_ _ 27 _
o [yl Py < [y = 5 < o
2€B> J B, By 2-p

Therefore, integrating out y, 4" in (3.14), we obtain

S
Ts 5310_35/0 dr /RS Liaviz vivivig 12y G emr (2 = V)G e (2 = 7)1y = VTP dydy'dzdz".
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We further integrate out z, 2" and use (2.1)) again to write

s Ty SR /]R Lipviy <2y iy =+ Pdydy' S B3

s<tiAta

So we obtain Var(A4;) < R8738 for R > t; +t,, where the implicit constant does not depend
on R.

Next we estimate the variance of A,.
(ii) Estimate of Var(As). Using again (2.9)), we write

t1 A\t ty
Var(As) < </ {Var/ (/ / 0ty (1, 2)Er 2 Ds yu(r, z) W (dr, dz)) lly — y’H_'B
0 Rt \Js JR2

12 2 A 9
X oty R(S, y’)a(u(s,y’))dydy’} ds) =: (/ \/Usds)
0

As before, we will show sup,<;, ¢, Us S R87365,
First note that

/:l /11&2 i, r(1, 2)Er 2 Dg yu(r, 2)W(dr,dz) = M, (t1),
where {9, ,(7) : 7 € [s,11]} is the square-integrable martingale given by

My (1) = /T /2 01, mR(1, 2) 5, 2Dy yu(r, )W (dr, dz).
Then we deduce from the mart;‘ngaﬂfe property that

Elo(u(s,y')Msy(t1)] = Elo(uls, y))EM (1) F)] =0,

that is, M (¢1) and o(us,,) are uncorrelated. Moreover, by It6’s formula,

11 t1
ms,y(tl)ms)g(tl) = / msvy (T)dgﬁs’g(T) + / ms’g(T)df)ﬁs,y(T) +<9ﬁs7y, gﬁs,§>t17

martingale—part

where the bracket (M, M, 5)¢, between both martingales is equal to

ty1
/ / o r(r 2), (Ds,yu(r, z))gotl,R(r, Z)Er7g(Ds7gu(r, 5}) |z — Z||~Pdzdzdr.
s R4
So, using the estimate 7 we obtain
B[, (1), () (u(s, 3 ) (u(s, )] = BB (DN, (1), 5(02)|.74) o (uls, ) or(u(s, 7)) |

ty
S e e B I - N e O [ A e T e e

t1
< / / tr (7, 2)Cr—s(y — 2)pes (1 3)Cr—s(§ — D)z — 3| ~Pdzdzdr.
s R4

As a consequence, the variance-term U is indeed a second moment and

U = / dydy'dydy' lly — ' | 2115 — v || P 0, r (5,9 ) ts.r (5,9
R
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X [0, (1) M,y (1) (u(s, )5, 7))
t1 _ _
< [ ar [ dedzaydyagaily =/ |07 =2

X 01y, 1(5,Y )Pta, (5, ¥) 011 R (1, 2) 01y R (1, D) Gr—s(y — 2)Grs (F — 2),

which has the same kind of expression as T;. The same arguments that led to the uniform
estimate of T, yields

sup Uy S R,
s<t1Ata

for R > t; + to, thus we obtain Var(A4s) < R838 for R > t; +to. Hence, for R > t1 + to,
R*8Var((DFg(t1), Viy,r)s) S R*P78[Var(4s) + Var(4;)] S R,
This completes the proof of (3.4]). O

3.3. Tightness. Set ¢ = ﬁ € (1/2,1). By the Kolmogorov-Chentsov criterion for tight-
ness, it is enough to prove that for any 77> 0, p > 2 and for any 0 < s <t < T < R, the
inequality (1.17]) holds, that is,

1FR(t) = Fr(s)], S RY*VE=s, (3.15)

where the implicit constant does not depend on ¢, s or R.

Proof of (3.15). Recall that Fgr(t) = fg Jgz t,r(s,y)o(u(s,y))W (ds,dy). Then by BDG
inequality (2.3) and (1.20) we have, with the convention that ¢, r(r,y) = 01if r > s,

|Fr(t) = Fr(s)[|” <

/ (01 (1 ) — o n(r, ) o (ulr, 1) (2R (r 2) — ga (1, 2))
[0,t] xR*

x o(u(r,2))|ly — z||*ﬁdydzdr

AV

Applying Minkowski’s inequality yields

p/2

2q 1/q
< (et,r(r,y) — 0s.r(r,y))o(ulr, y))’ dy)

~

p/2

t 1/q
1700~ Fa(o) S [ ar ([ onntra) = ot lotutrl2ian)

t 1/q
2
< [Lar ([ lountrn) = eontraay) (3.16)
0 R
Note that

’@t,R(T, y) — 0s,r(7 y)‘ =14>4 /B Gi—r(z —y)dx
R

+1{r<s) /B Ljao—yl<s—r} [Gs—r(z —y) = Gror(w — y)]dz
R
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+1p<s / Vjla—ylzs—r} Gir(z — y)dz
Br
=: 51+ 55+ S;5.

The first summand Sl is bounded by 1{T23}(t — T)I{HyIISRH} < (t — 3)1{I|yl|§R+t}a in view

of Lemma [2.1}(2). For the second summand, we can write

Sz < 1{r<s}1{uyn§R+s}/ L{jal<s—r} [Gs—r(2) = Gep(@)]da

Br

< 1{7‘<s}1{\|y|\§R+S}/

=1y 1yl <res)VE— s(\/t +5—2r —\t— 3) by explicit computation
S V= sy <Rr+s)s

In the same way, the third summand can be bounded as follows
93 = Lrsy Lyl <rny /R Ls—r<fioli<t—ry Go—r(2)dz S L{jy|<riny VT = 5.

Therefore, we can continue with (3.16]) to write

t 1/q
|Fr(t) - Fa(s)| 5/0 dr (/RQ(tS)quyISR—i-t}dy) S (= s)(R+ 1)1

This implies (3.15).

4. Fundamental estimate on the Malliavin derivative

1 1
( 2 2 2 2> dz
{lall<s—ry \ 27/ (s —=7)2 —[[z[|2  27\/(t —7)2 — ||z

This section is devoted to the proof of Theorem After a useful lemma, we study the
convergence and moment estimates for the Picard approximation in Section The main
body of the proof of Theorem [I.2]is given in Section [£:2)and we leave proofs of two technical

lemmas to Section [4.3

Lemma 4.1. Given any random field {®(r, 2) : (r,2) € Ry x R%}, we have for any x € R?,

0<s<t<ooandp?>2,

t
dr | dydzGer(z —y)Gip(x — 2)®(r, 2)@(r,y)|ly — ||~

R4
(2— QQ)
< Kpt /dr/ dz G ( (z — 2)||®(r, 2)|
R2

where q = ﬁ and the constant Kg only depends on (3.

p/2
2
p

)

Proof. By (1.20)), there exists some constant Cp that only depends on 5 such that

/ dydz Gi—r(x — y)Gi—r(x — 2)@(r, 2)D(r, ) ||y — zH*ﬁ
R4

1/q
<, ( [ Gt y>|%)
RQ
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11

T 1-2q q
<0 ((2)@ " ) [ Gt o - it

—yle(r,y)?

where we have used the fact that G?qr( )dy, with 2¢ < 2, is a finite measure on R? with

—2q . 1_
total mass Wl (t —r)?724 in view of (2.I) and we have put Kz = C@(@le: ) '
Therefore, a further application of Minkowski’s inequality yields the bound in (4.1)). O

4.1. Moment estimates for the Picard approximation. Recall the Picard iteration
introduced in (1.18)), that means, ug(¢t,z) = 1, and for n > 0,

t
Uny1(t,x) =14 / Gt,s(x - y)a(un(s,y))W(ds, dy). (4.2)

0
Using the estimates and ., we can write with 2¢ = == € (1,2), p> 2 and n > 1,

MM@@M<2+&7

x /[ 2 Gl = G )5, ) (v, )y = Pddzy
0,t]| x R4

p/2
<24 spi st /d/ G2 (2 — y)llo(wni(s, ) | 2dy.

Then, using (2.1, we can write

(= ) (20(0)% + 2L un 1 (5, 9) |2 dy
R2

<924 16pK5(271’)172q t<2;2‘1q)2 1+3-2¢
(2-29)(3— 2Q)

+16pK gt

o(0)?

/ s / G2 (& = 9) un1(s,9) |24y,

where L is the Lipschitz constant of o. This leads to

Hy(t) <ec1 + 02/0 dsH,_1(s), (4.3)

where H,,(t) = sup,cpe ||un(t,33)||12)7

pK*O' 0 2 2-29)2 o e—29?%
c1 ::2-1-36_;;75 2 3720 and e = pK;L*t 2 T2

1

1-2 —
where K5 = % = 16C3 ((ZQIQ:Q) * is a constant depending only on . Therefore,

by iterating the inequality (4.3) and taking into account that Hy(t) = 1, yields
H,(t) < ¢y exp(eat).

In what follows, we will denote by C'; a generic constant that only depends on 3 and may
be different from line to line. In this way, we obtain

lun(t,2) |, < (V24 VBC5t T |0(0)]) exp (pC3t> 7 L?).



20 R. BOLANOS GUERRERO, D. NUALART, AND G. ZHENG

As a consequence,
\[ %,328 *,2—B 712\ _.
o (wn (t, 2)|lp < |o(0)| + L(V2 + VpCit 2 lo(0)]) exp (pCBt L?) =t kpy. (4.4)
4.2. Proof of Theorem The proof will be done in several steps.

Step 1. In this step, we will establish the following estimate for the p-norm of the Malliavin
derivative of the Picard iteration.

Proposition 4.2. For any n > 3 and any p > 2

HDs,y“nJrl(tax)Hp < Cppot.nhiptGis( —y), (4.5)
where kp ¢ is defined in (4.4) and the constant Cg p+ 1, is given by
(pc*LZ)k/Q

K(1-1)

1 .
Vi(k—=2)!

Nl=

Cppr =1+ /PLOGT ™% 4+ pCsL2 1 4 Z (4.6)

with C§ a constant only depending on [3.

Proof. Fix (t,r) € R, x R? and p > 2. Suppose that u,(t,7) € D'?. Then taking the
Malliavin derivative in both sides of equality (4.1) and using the commutation relationship
(2.7) and the chain rule (2.5, we obtain that wu,1(t,z) € D'? and for almost all (s,y) €
[0,¢] x R,

D; yuny1(t,x) = Gi—s(x — y)o (un (s y / / Gi_r(x — 2) Z(")D s,yln (1, 2)W(dr,dz),

where {Zgny) : (s,y) € Ry x R?} is an adapted random field that is uniformly bounded by
L, for each n. We recall that the constant L is the Lipschitz constant of the function o
appearing in . Moreover, D yun41(t, ) =0 if s > .

Now finite iterations yield (with ro = ¢, 20 = x)

Dy yun+1 t «Tf) Gy s(':E - y)a(u”(s’ y))

/ / Grori(@ — 21) 2D, Cry—o(21 — 1) (tnr (11, 21)) W (dry, dza)

+k§_:2/ T B B S aes)

R2k

X HGTJ vy (21 = 2) SN (dry, dzy) = ZT(") (4.7)
j=1

where T,i ™) denotes the kth item in the sum. For example, T0 = Gi—s(z —y)o(un(s,y))
and

t
Tl(n) - / Gt—m (1‘ - 21)27("1).21 GT'I_S(Zl - y)U(un—1(T17 21))W(d’f'1, le)
s JR2

We are going to estimate the p-norm of each of term T,i") for k=0,...,n.
Case k = 0: It is clear that

1Ty < paGirs(a — y), (4.8)
where k) is the constant defined in (4.4)).
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Case k = 1: Applying (2.4]), Minkowski’s inequality and (|1.20), we can write

t
1T < g [ [ Gionile = 2)Gir (o = )G a1 = 0)Gr (5 )
s JR4

« ||Zl _ Zi||_ﬂ2£7f,)zlEf«?,)zga(“”*l(rl’ zl))o’(un,l(rl, zi))dzldzidrl

p/2
t
< 4pL2“;21,t/ /R4 Giri (2 = 21)Giry (7 = 21)Gr—s (21 — Y)Gry—s(21 — )

X ||z1 — 24| 7P dz1d2) dr

t 1/q
< 4PL2"€;2;¢CB/ (/]R? Gfﬂﬁ (x — 21)G3f78(21 - y)dzl> dry,

with ¢ = 2/(4 — B). Here we encounter the first technical difficulty mentioned in the
introduction. To estimate the above term, we will make use of the following result, which is
a consequence of the technical Lemma [T.6] It will be proved in Section [L.3]

Lemma 4.3. For g€ (1/2,1), 6 € [1,1/q] and s < t, we have
t
Kou(2) = / dr[GH, « G2 (2)]° S (t — s)! 9GP (), (4.9)

where the implicit constant only depends on q.

We can deduce immediately from Lemma with 6 = 1/q, that

1
1T 2 < pE22, C3ti ' Grl (@ ), (4.10)
for some generic constant C3, which only depends on . Taking into account that
1 1
Gl (w—y) < [2m(t = )] "G (e — ). (4.11)
we obtain .
17\ llp < V/PL#p it 2 G — ). (4.12)

Case k = 2: We can write

t
T — / W (dry, d20)Gor, (2 = )50, Ny
s R
with N, ., defined to be
T1
Ny ooy = / / Gryes(22 = 9)0 (Un—2(r2, 22)) Gy —ry (21 — 22) S0 VW (drra, d2zo),
s R2

which is clearly .%#, -measurable. Applying again (2.4]), Minkowski’s inequality and (1.20),

we can write

t
I 2 < 4p / / G (& — )G (@ — 24)Crs—s(21 — 9)Crs—s(Zh — 1)
s R4

x |z = 41720, 2, Ny 2N,

71,21 1

dz1dzydry

’
1,27

p/2
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t
<apl? [ [ G = 2)Gin (o= #)Gria(a — 9)Grialet — 1)
s JR4

X AINy 2y ol Ve ot llpll 22 = 2111 P dzrdzq iy

t 1/q
< 4pL*Cy / < / G, (x— 1) Npy 2 ||§,qdzl> dry. (4.13)
The same arguments used to obtain the bound (4.12)) for ||T1(")||p yield
[Ny 2 llp < \/ﬁLﬂp,tCEt57§GT1—S(Z1 —y). (4.14)

Substituting (4.14) into (4.13) and applying Lemma with § = 1/¢q we obtain

t 1/q
75712 < 4pLCa (L, Cith 42 | ( RN 9<1y>dzl) dr,
s R

2
274 2 e, B2 277
ép L K:p,tcﬁtq Gt—sq ({E _y)a

which implies

n [P 1_%
TS|, < L2y Ot 3 Gy 2 (2 — ). (4.15)
In view of (4.11)), we obtain
n w2
TS |l < pL?kp Chta Gy — ). (4.16)

Case 3 < k < n: The strategy to handle these cases will be slightly different. We need to

get rid of the power % in order to iterate the integrals in the time variables and obtain a

summable series. We can write
t
= / W(dry,dz1)Ge—p, (x — zl)ES??Zlthzl
RQ

with N, ., defined to be

Nyppzy = / / Gry—s(zr — y)U(Unfk(TmZk))
ST < <rg<r; JR2k—2

x [1Gryiry (i1 = 2) S0 W (dry, dzy),

j=2
which is ., -measurable. Then, by (2.4]) and (4.1)) we obtain

t
n) 12 n ~ n ~
|2 < 4p / dry /R Gror, (@ = 20)50, Ny, 2, Gy (2= )50 N,

X |21 — z1||_ﬁdzldz1

. _
< 4pK L2 / dr, / 421 G2 ﬁx—z1>||Nn,le§.

Now we can iterate the above process to obtain

-2
)R 1/ dh/ drg - / diA/ dz1 -+ dzp 1
R2k—2

st n>y| (ApL2K 5t
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2 2 2 ~ 2
X Gtzrl (.’L‘ - Zl)Grgfrz (21 - ZQ) T GrZ,zfrk,l(Zk—2 - Zk_l)HNTk—lxzk—l ’ p’ (417)

where N,, , ., , is given by

Nrk,l,zk,l = / W(drkadzk)o—(un—k(rkv Zk))Grk,l—rk (Zk—l - Zk)
[S,’I‘kfl]XRQ

X E(n+17k)Grk—s(zk - y)

TkyZk

Therefore, the same arguments for estimating ||T1(")||123 (see (4.10)), lead to

~ _1
1N |2 < P2 L2376 (50e1 — ), (4.18)

with CF being a generic constant that only depends on 5. On the other hand, applying
Lemma [£.3] with § = 1, we can write

Tk—3
2q 2q
/ drk_z/ dz—2Gyl o (k-3 — 2k—2)GY) . (2k—2 — 2k-1)
T R2

k—1

<Gt (2k-3 — 2K-1), (4.19)

Tk—3—"Tk—1

with the convention zy = z and o = ¢t. Plugging the estimates (4.18) and (4.19)) into (4.17)),
yields

2(1-q)2

HT]’ER)HESK?)J(Z)LQCEt TR UNCEICESY

t 1 Thk—3
X / d?”l / d?”2 s / di_l / le s de_gde_l
s s s R2k—4

2 2
X Gtﬁn (JJ - 2’1) s GrZ,‘;—rk,g (Zk_4 — Zk_g)

2q—1 2—3
xGom . (zhes — 2e-1)Gr (2e1 — )
By Cauchy-Schwartz inequality and (2.1),
21

GHl L (zhe3 — 26-1)Gyy " o (2h-1 — y)dzi1
R2

L, 1/2
< Gl (2)dz G (z)dz}

— |: Tk—3—Tk—1 Tk—1—S
R2 R2
< CyPtmte
In this way, we obtain

2(1-q)?2

N2 . _
TN < 62 (L2t 7 MO0 D1y (4.20)

t 1 Thk—3
X / d’l“l / d’l“g s / drk_l / le s dzk_g
s s s R2k—6

2 2
X Gtirl (.13 — 21) s GT274—W73 (Zk_4 — Zk-_3)

The indicator function 1,y <¢—s} appears in (4.20]), because

Lz —vl<ri—1—s,lzn_s—2k 1| <rh_s—rk 1, |lz—21 | <t—r1} < L{z—y|l<t—s}-
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Now, we can perform the integration with respect to dzx_s,...,dz; one by one to get

/]RZk—G dzy -~ dzk,ngﬁn (m — Zl)Giffrz (2;1 — 22) ... Giz_rr,c_g. (Zk74 _ Zlc73)

- (& x H (rj—1 —Tj)2 "< @m) = 32 ;
2 —2q ot 2—-2q

in view of the equality (2.1). Together with the integration on the simplex {t > r; > --- >
Tp—3 > Tk—1 > S}, we get

T < PGBE 5wy
2 <

—2
(e —2) "t Lo —yll<t—s}-

Thus, taking into account that

2
Lijamyl<t—s} < [27(t —9)] G} (x —y),

we obtain for k € {3,...,n},

C* L2 k/2
7], < e L
k—2)!

Hence, we deduce from (4.8]), (4.12) and (4.21) that for any n > 3,

(%_%)ths(x_y)v (421)

||Ds,yun+1(t7x)”p S Z HTIETL)HP S Cﬁ,p,t,L”p,th—s(x - y),
k=0

where the constant Cg p, + 1 is defined in (4.6)). This proves Proposition d

Step 2. We are going to show that D, u(t,z) is a real-valued random variable. As a

consequence of (1.20)), (4.5) and (2.1, we have for any p > 2 and with ¢ = 2/(4 — )

2/p
E[IDun 1 (t,2) 3] =H | s,
+

1/q
/ ds (/ |Ds.ytn41(t, x)|2qdy>
Ry & p/2

1/q
< / ds (/ ||Dsyyun+1(t, x)Hiqdy) by applying Minkowski twice
R, R2

1/q t _—
< / ds ( G (x — y)dy) < / (t—s) @ ds< 1.
Ry R? 0

One can first read from the above estimates that { Duy,1 (¢, ), n > 1} is uniformly bounded
in LP (Q;Y)), which together with the LP-convergence of u,(t,x) to u(t,x) implies the con-
vergence of Duy,41(t, ) to Du(t, x) in the weak topology on LP (Q; .V)) up to a subsequence;
this fact is well-known in the literature, see for instance [14]. One can deduce from the same

p/2

<

~
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arguments that {Du,41(¢, ), n > 1} is uniformly bounded in LP(Q; L??(Ry x R?)):
P
2q

HDun_H(t, T

P — 2q
)HLP(Q;LZq(R+><]R2)) = /]1§+><R2 |Ds,yUn+1(t,$)| dyds

D
2q

brt
<( [ IDamnaads) S ([ 6e-wds) <1
R xR2 P Ry xR2

So up to a subsequence, Du,(t,x) also converges to Du(t,z) in the weak topology on
LP(€; L2(Ry4 x R?)). In particular, we have (2¢ < 2 < p < 00)

N

sup < 400 (4.22)

(t,x)€[0,T]|xR2

/ |Ds yu(t, z)|*?dyds
R4 xR2? .
2q
and D, ,u(t, x) is a real function in (s,y).

Step 3. Let us prove the lower bound. By Lemma [2.4] we can write

u(t,z) — 1= /0 /RZ E[Ds yu(t,z)|Z|W (ds, dy),

so that a comparison with (1.4) yields E[D; u(t,z)|%] = Gi—s(z — y)o(u(s,y)) almost
everywhere in Q x Ry x R2. Tt follows that

[E[Ds yu(t, 2)| 7|, = Gi—s(x = y)[|o(usy)]]

p7
thus by conditional Jensen, we have

||Ds,yu(ta I)Hp > Gt—s(x - y)||0(us,y>||pv
which is exactly the lower bound in (1.11)).

Step 4. We are finally in a position to prove the upper bound in . Put p* =p/(p—1),
which is the conjugate exponent for p. Let us pick a nonnegative function M € C.(R; x R?)
and random variable Z € LP" (Q) with ||Z|,» < 1. Since Du,(t,z) converges to Du(t,z)
in the weak topology on LP (Q; L?(Ry x ]Rz)) along some subsequence (say Duy, (t,x)), we

have, in view of (4.5)

/ M(s,y)E[ZD; yu(t, z)|dsdy = lim M (s,y)E[ZDs yun, (t,z)]dsdy
R4 xR2

k—o0 ]R+ xR2

< Chpairipys / M(s,9)Grs(a — y)dsdy,
R+ XR2

This implies that for almost all (s,y) € [0, x R,

E[ZD; yult, )] < Cppt, 0k, Grs(x = y)
Taking the supremum with respect to Z yields

| Dsyult, )llp < Cppt,LbiptGi-s(z —y),

which finishes the proof.
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4.3. Proof of technical lemmas. For convenience, let us recall Lemma [T.6] below.

Lemma [1.6] For ¢ > s, with ||z =w > 0 and ¢ € (1/2,1)

G2 5 G2(2) S Lygeny [12 — (s — w)?] 72

1-2
[ = s+ W)’ iy

+ 1(jswit<stw) [(W+8)7 = 2] — (s - w)?] TR, (r22)
where the implicit constant depends only on q.

Proof of Lemma[I.6, We are interested in estimating

—q —q
I= /R2 (t* — ch||2)Jr (s = [lz — z||2)+ dx,

where (v) (Y = v~ for v > 0 and (v);? = 0 for v < 0. Because the convolution of two radial
functions is radial, the quantity I depends only on s, ¢ and ||z||. Hence, we can assume
additionally that z = (w,0), where w > 0. Note that the integral I vanishes if t + s<w and
we can write, putting = = (£, 1),

I:/ (t2—52—772):1(82—(f—W)2—ﬂ2);qdfdn.
]RQ
Making the change of variables (z,y) = (§2 4+ n%, (w — §)? + n?) yields

1= / (2 —2)(s* =) [(Va+w)? —y] Py - (Ve - w)?| T Pdedy,  (4.23)
D
D:{(x,y)€R2:O<z<t2,0<y<52,(\f7w)2<y<(\/5+w)2}.

To derive the expression (4.23) for I, we have used the fact that the Jacobian of the change
of variables is

J(x, 1/2 1/2
)| _ gwg) = 2[(vE +w)? — 9] V2 [y - (5 - w)?] 2.
(& m)
Then, integrating first in the variable y yields
I - -
I= 5/ dx(t2 —x)—q/( )dy (SZ—Q)_q[(\/E—i-W)Z —y} 1/2[y (\/5 w)2] 1/2
0 D(z
1

where
D<$):{ZUER5($7ZJ)ED}={yeR:y<32’(\f_W)2<y< (ﬁ+w)2}

and
Sie)= [y (- o) VE w2 -] - WE- w2
D(x)

Let us first deal with S, () for every = € (0,¢?). There are two possible cases, depending
on the value of z:
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(A) When (vz —w)? < s < (Vo +w)?,

2

Sq() = /(S (> =) [(Va+w)? —y] Py - (VE - w2y

VT —w)?
< Beta(1/2,1 - ) (V& +w)? = 5] V2 — (Vi - w)?)
S [V +w =) s - (Va - wy) T (4.25)

Throughout this section, Beta(a, b) denotes the usual beta function:

Beta(a,b) = /1 11— z)"Ydz, a,b € (0,00).
0
(B) When (y/z — w)? < (Vo +w)? < s,

(Vz+w)? ) _ 9 —1/2 91—1/2

Sq<x>=/ (2 — ) [(VE+ w) — 3] 2y — (VE— w)?] 2y
(VE-w)?2

(Va+w)?

< (s = (Vr+w)?)? /(f ; [(\/E+ w)? — y} -1/ [y - (Vz — W)z]fl/Zdy

= Beta(1/2,1/2)[s — (Vz + W) " S [ — (Vo +w)?] %

Note that three positive numbers a, b, ¢ can form sides of a triangle if and only if the sum
of any two of them is strictly bigger than the third one, which is equivalent to saying that
la —b| < ¢ < a+b. It follows that

(Vr —w)? < s* < (Vr+w)? & /x,w,s can be the sides of a triangle
s-wP<z<(s+w)i
Furthermore, it is trivial that (/z —w)? < (Vz +w)? < s> &z < (s —w)? and s > w.

2
Now we decompose the integral 21 = fot (t? — 2)798,(z)dx into two parts corresponding
to the cases (A) and (B):
2 =1Ia + IBa

where

t2A(s+w)? (s—w)2At?
Ia= / (t* —2)71S,(z)dr and Ig = / (t? — 2)71S,(z)dx.
( 0

s—w)?2

Estimation of I. We first write, using (4.25)),

t2A(s+w)?2 .
Ia 5/( ’ (t2 — x)*q[(\/g+w)2 B 52)]*1/2 [32 . (ffw)z]ﬂﬁidaz

s—w)?2

152/\(.s-|-w)2 L o -
= /( (#2 = 2) " [(w+5)? — 2] [z~ (w—5)?] T [(Va +w)? —s?]" da

s—w)?
Recall in this case /T +w > s, which implies (/z+w)? —s% > 2 — (s —w)? > 0. Therefore,

—1/2

t2A(s+w)? il
Ia §/ # —2) 1 (w+s)?—z] Tz —(w—1s)?] ' da.
(

s—w)?



28 R. BOLANOS GUERRERO, D. NUALART, AND G. ZHENG

Now we consider the following two sub-cases:
(A1) If s +w < t, then for (s — w)? <z < (s + w)? < t, we have, with y =2 — ¢~ 1,

(tz_x) q<[ s+w2] qw[s—l—w x]—q-i-q'y
= - s+w2]1 2q[s—|—w x}qil.
Thus,
2 21129 (atw)” 2 —-1/2 21—1/2
In S [ = (s+w)?] /(sw)2 [(w+s)” — ] [z — (w—5)?] dz

= Beta(1/2,1/2)[1> — (s + w)?] .

(A2) If (s —w)? < t? < (s +w)? (i.e. 5,w,t form triangle sides), then

Ia 5/( (t* — )" [(w+5)? —x}_q+%[3§— (W—s)2]_1/2da:

s—w)?
<|(w 52—t27q+% : 2 —2) Uz — W—5271/2d$
<lovaf = [ e ]
Slw + 5)% — t2] AE [t2 —(s— W)z] —itz

because ff(b — )79z — a)"Y2dz = Beta(1/2,1 — q)(b— a)"9"2 for any 0 < a <
b < oo and for any ¢q < 1.
Combining (A1) and (A2), we have obtained

Ia 5 [t2 B (s er)z] 172q1{t>s+w} + 1{\s—w\<t<s+w} [(w + 5)2 . t2] o [t2 . (s o w)z](q)-
4.26

Estimation of Ig. In this case, v/ < s — w and w < s, then
s - (Vzt+w)?>(s—w)?—z>0.

Therefore, Sy(z) < [(s — w)? — 2] ~% and the quantity Ig can be bounded as follows

(s—w)? (s—w)? 4
Ig = /0 (t* —x)7iS(x)dr < /0 t*—z)7 (s —w)* —z| "da
ol G CR v L (4.27)

because for any 0 < a < b < oo and any p,q € (1/2,1)

a
b—a

¢ — 2V P(a — ) 9dx = ¢ —a —-p,,—4q — (h—q)l—P4 —q -p
[ o= ra—ayro= [(oarn)ry iy = o=t [Ty vy

< (b—a)i s / Y1 y) Ty S (b a) P
0

Our proof is done by combining the estimates and - ) to get (1.22] - O

Now let us apply Lemma [I.6] to prove Lemma @
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Proof of Lemma[.3 Put p=({t—r)A(r—s)andv=(t —r)V (r —s) and assume pu # v.
We apply Lemma [T.6] to write

(GP2, * G?fis(Z))E S (1{w<u} (V2 = (u—w)?] 7 4 [ = (it w)?] 172ql{u>u+w}
_g4l _gtl\ 0
Lol [V 4 17 = 2] 2 = (u w277

5(1—2q) 5(1—2q)
S 1{w<u} [V2 - (M - W)Q] (124 + [V2 - (M + W)Q] (124 1{u>u+W}

5(3—a) [V2 — W)zr(%*q)

+ Lju-wl<v<urw} [(W + 1)* = 7]
where w = ||z]| > 0 and 6(1 — 2¢) > % — 2> —1. Define

-

b

t
s(1-2
Kgl)(z) D= / drliwepy [V* = (0 —w)?] (=2

t
5(1—-2
— [ drt e+ n- W) - et w) 0

and note that t —r > r — s if and only if r < HTS Then, by exact computations and
decomposing the integral in the intervals [s, (t + s)/2] and [(t + s)/2, ], yields

&) (t+s)/2 S(1_2 -
Ks,t(z)zl{wd;}/ (t—s5—w)P02D (¢ 45 4 w — 27)0(1-20) gy

s+w

t—w
+1{w<t;5}/ (t—s—w)020(2r 4y w—t —5)001 720 gy
20 J(t+s) /2
1

2(6(1 —2q) +1)
% {(t ~ s — w2041 _ w6(1—2q)+1}
_ \6(1—2¢)+1
LU,
5(1—2¢)+1 tw<=}
S(t—s)020F (= g)20 20

S(1—
:2x1{w<t775}(t—3—w) (1=2q)

(t — s —w)2 (1720

2
1

_ 3(5—q)
S (=) 20T (2 — 5)% — 121772 Vg0 <omsy- (4.28)

By the same arguments, we can get

t
2 6(1-2
Ks()t)(z) s = / dr [1/2 —(n+ w)2] q)l{u>#+w}
S

(1

t
2
:/ dT[(V+/L+W)(V7/L*W)] q)l{y>u+w}

(t+s—w)/2 9
=1lpy—sswi(t—s+ W)_Q’Y/ (t+s—2r—w) Tdr

t
F 1oy (t — s+ w)o720) / (2r —s—t—w)
(t+s+w)/2
1

2(5(1 —2q) + 1)

6(172q)dr

= 1{t—s>w}(t s+ W)6(1—2q) (t—s— w)6(1—2q)+1 % 92
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1

_ d(5—q)
S (t—s)P 20T (£ — 5)2 — [|2]1*]° 2 TV 1 <omsy- (4.29)

~

Similarly, we first write

K8 () : = /t Arl i wicy<piwy [(W+ p1)? — V2]6(§—q) V2 — (u— W)Q}(S(E—q)
- / by pewenen (04 ) = w2 (= )Py )i
= [(t - 5)? — Wz]é(%—Q) /t drlg,_pew<ptvt(W =+ p— V)é(%—q) (W+v— M)é(%—q).

Recall t —r > r — s if and only if rs< 45 Then

(t+s)/2 51 50
/ drl{l/fu<w<u+u}(w L V) (2-9) (W tv— :u) (2-9)
t+s

2
=1iwei—s} /t+wa dr(w—t—s+ 2r)6(%—q) (Wtts— 27’)5(%_‘1)
theow

b
= 1{w<tfs}26(1_2q) / (r— a)_é(%_q) (c— T)é(%_q)dra

t — t t
wherea:#<b: J;S <c:$. It is easy to show that

b—a

b
a 0

1
<(c— a)é(l—zqm/ PA-0 (1 _ ppG-0g
0

ﬁ(%*q) (1— t)é(%fq)dt

1 1
= Beta(5(§ —q)+1, 5(5 —q) +1))(c— a)’720FL,

Therefore,

(t+5)/2 . »
[ drtmucwenmn (w0 = )0
S YweapogyWOIT2OHE < (1 — )2 0m20 0

In the same manner, we can get

t
/ drl{u—u<w<#+y}(w +p— V)é(f—Q) (W+v— N)é(f_q)
(t+s)/2
H—S%

= liwet—s} /+ dr(w—1t—s+ 27“)5(%_‘1)(W +it+s— 27")5(%_’1)

2

= 1200720 /‘(C _ )30 (g _ q)ih=a) gy (4.30)
b

1 1
< Lwer 92020 (e = @)’ 020 Beta(3(5 — ) +1,6(; — ) + 1)

S e WOUT2OT < (¢ g)2 020
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t - t t
Wherea:u<b= ts <c:m. Thus, we obtain
2 2 2
3 _ 5(2—q)

K (2) < (8= )20 (- 5)% — 120271 cms)s (4.31)
with 6(g— 1) <1- Q—Iq € (0,3). Combining the estimates ([£.28), ([£.29) and (£.31)) allows us
to finish the proof. O
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