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ABSTRACT: To develop predictive models for the reactivity of organic
contaminants toward four oxidantsSO4

•−, HClO, O3, and ClO2all with
small sample sizes, we proposed two approaches: combining small data sets and
transferring knowledge between them. We first merged these data sets and
developed a unified model using machine learning (ML), which showed better
predictive performance than the individual models for HClO (RMSEtest: 2.1 to
2.04), O3 (2.06 to 1.94), ClO2 (1.77 to 1.49), and SO4

•− (0.75 to 0.70) because
the model “corrected” the wrongly learned effects of several atom groups. We
further developed knowledge transfer models for three pairs of the data sets and
observed different predictive performances: improved for O3 (RMSEtest: 2.06 to
2.01)/HClO (2.10 to 1.98), mixed for O3 (2.06 to 2.01)/ClO2 (1.77 to 1.95),
and unchanged for ClO2 (1.77 to 1.77)/HClO (2.1 to 2.1). The effectiveness of the latter approach depended on whether there was
consistent knowledge shared between the data sets and on the performance of the individual models. We also compared our
approaches with multitask learning and image-based transfer learning and found that our approaches consistently improved the
predictive performance for all data sets while the other two did not. This study demonstrated the effectiveness of combining small,
similar data sets and transferring knowledge between them to improve ML model performance.
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1. INTRODUCTION

Oxidative processes play a vital role in removing organic
contaminants during water and wastewater treatment.1 Various
oxidants, from •OH, SO4

•−,2−4 and ClO2 to ozone,5,6 can be
applied for different organic contaminants, such as personal
care products, endocrine-disrupting chemicals, pesticides, and
industrial chemicals. The oxidation rate constant of contam-
inants is an important parameter for optimizing the treatment
process by helping to, for example, estimate the removal
efficiency of contaminants or determine the dosage of oxidants
or the treatment retention time. Experimentally measuring
reaction rate constants is time-consuming and labor-intensive.
In comparison, developing quantitative structure−activity
relationship (QSAR) models is an effective approach to
estimating the rate constants for numerous contaminants, thus
receiving increasing attention.7−15 Built upon previous
experimental results, QSAR models can correlate chemical
structures with various chemical activities and be further
applied to new query compounds to estimate their
corresponding activity.
Many QSAR models have been successfully developed to

predict the rate constants of various contaminants toward
different oxidants, such as •OH, SO4

•−, and O3.
9,11,16−23 To

develop such QSAR models, different chemical representa-
tions, such as molecular descriptors (MDs, physicochemical

and structural properties),16 molecular fingerprints (MFs,
binary vectors),13 or molecular images,14 can be combined
with different modeling methods, including multiple linear
regression (MLR)19,20 and machine learning (ML).14,15 With
more and more contaminants involved, traditional MLR has
limited applicability because complex, nonlinear relationships
may exist between the contaminant representations (e.g.,
MDs) and the reaction rate constants. To handle nonlinear
relationships and increasingly diverse contaminants, ML has
received increasing attention because of its powerful modeling
ability. For example, Huang et al. reported a better perform-
ance of a support vector machine-based model in predicting
the rate constants of contaminants toward O3 than MLR-based
QSAR models.20 Our recent study showed that ML-based
models can achieve satisfactory predictive performance for a
large data set of •OH reactivity.15
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However, ML algorithms, especially deep neural networks
(DNNs), often need a massive amount of data,24 whereas data
scarcity is a common issue in chemistry data,25 such as when
developing QSAR models for rate constants toward different
oxidants, for example, only 85 samples in a data set of SO4

•−

radicals21 or 136 samples in an O3 data set.20 Note that the
data scarcity (or small data sets) is in comparison to big data,
and the involved sample size may be large in reference to
classical QSARs. Yet, it is impractical to experimentally
measure rate constants (log k) for a large number of
contaminants toward different oxidants to increase the sample
size. To still take advantage of ML algorithms when developing
predictive models26 for small data sets of contaminant
oxidative reactivity toward common oxidants, we here propose
a simple and effective approachcombining small data sets for
different oxidants to form a larger data set. This combined data
set contains samples for five common oxidants, including •OH,
SO4

•−, O3, ClO2, and HClO. Previous studies treated these
small data sets independently and developed separate QSAR
models for each of them.7,16 However, all the involved
reactions are oxidation reactions, so they should share some
common science. For example, for all the oxidants, we know
that electron-donating or -withdrawing groups can increase or
decrease the rate constant (k) for oxidation reactions, which
was indeed correctly learned by our recent QSAR models for
•OH radicals.15 Ye et al. found that for SO4

•− electron-
donating groups (except for −N<) exhibit a positive coefficient
for k, while electron-withdrawing groups (except for −S−)
exhibit a negative coefficient for k.19 Lee et al.’s study
demonstrated decreasing k values with increasing Hammett
constants for both ClO2 and HClO,7 which might be
attributed to higher bond dissociation energies when
electron-withdrawing substituents are present.27 Huang et al.
reported that the energy of the highest occupied molecular
orbital (EHOMO) was one of the most important descriptors in
their QSAR model for O3 because, as a measure of the
electron-donating ability of a molecule, EHOMO can be used to

characterize the affinity of the molecule toward an electro-
phile.20,28 Compounds with higher EHOMO are oxidized by O3
with faster rates due to their stronger electron-donating ability.
Furthermore, oxidants oxidize contaminants primarily using
three mechanisms: (1) hydrogen abstraction, (2) electron
transfer, and (3) addition or substitution reactions. For each
oxidant, at least one mechanism is applicable. For example,
both SO4

•− and •OH radicals follow all three mechanisms for
different contaminants,13,29,30 while at least two of them
(hydrogen abstraction and electron transfer) are involved in
the oxidation by ClO2 or O3.

6,31 Because the shared science
may be transferred from one data set to another, combining
small data sets to form a larger data set may improve the
predictive performance of the obtained model for all the
oxidants. To the best of our knowledge, this approach
developing a unified QSAR model on this large, unified data
sethas never been investigated before in developing QSAR
models for contaminant reactivity.
Transfer learning, widely used in computer vision, is another

popular approach to addressing the data scarcity issue.32

Transfer learning refers to pretraining a model on a large data
set and then fine-tuning this pretrained model on a smaller but
similar data set. We previously employed this concept when
developing QSAR models for predicting rate constants for
•OH radicals and found that, when employing molecular
images to represent contaminants and pretraining a convolu-
tional NN (CNN) model on the ImageNet data set, it can
considerably increase the generalization ability of the QSAR
models.14 The ImageNet data set is, however, quite different
from the contaminant image data set.33 This transfer learning
approach (referred to as image-based transfer learning) is also
only limited to CNN algorithms. Recently, Goh et al.
developed a ChemNet which was pretrained on images of
∼1 million chemicals. ChemNet also involved a CNN and
image data but changed the pretrained data set from the
ImageNet to a chemical-based data set.25 However, the
ChemNet was only trained on chemical images, so it cannot

Figure 1. Workflow of this study. (A) Single and unified model development based on MFs or MDs. (B) Illustration of how KT is achieved by an
example of transferring knowledge from the ClO2 data set to the O3 data set. Briefly, we used the individual model trained on the ClO2 data set
(ClO2-model) to predict the reactivity of the chemicals in the O3 data set toward ClO2 (predictions-ClO2), added these predictions to the O3 data
set as a new feature, and developed a KT-based model on this modified O3 data set. More details are in Section 2.4. Additional comparison between
the proposed KT and the image-based transfer learning approaches is shown in Text S1 in the Supporting Information.
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be directly applied to data sets that contain other information
such as reaction conditions.
For the data sets of •OH, SO4

•−, HClO, O3, and ClO2, they
are similar to each other in terms of contaminant species and
certain reaction mechanisms, as examples discussed above. To
address the data scarcity issue when developing ML models for
each individual data set, it would be interesting and beneficial
to investigate whether the shared knowledge between any two
similar, smaller data sets is transferable or not. Moreover,
tabular data are common in the environmental field but rarely
handled by CNN.26 Hence, how to effectively transfer
knowledge without using CNN algorithms and image data is
still challenging. We here proposed a knowledge transfer (KT)
approach for non-CNN algorithms (e.g., tree-based algo-
rithms) and non-image data (e.g., tabular data) (Figure 1B).
In this study, we compiled the largest four data sets for four

common oxidants, namely SO4
•−, HClO, O3, and ClO2, by

including the reaction conditions, that is, pH and/or
temperature (T). The reaction conditions were seldom
considered in previous studies, but including them can
significantly increase the sample size. For example, we can
collect several samples of phenol under different pH
conditions, but we only have one sample of phenol if we fix
the pH. Two chemical representations, that is, MDs and MFs,
were used to combine with different ML algorithms to develop
QSAR models. We first developed single QSAR models for
each oxidant. We then combined all of these data sets to form a
large data set and developed a unified QSAR model. The effect
of this operation on the predictive performance of each data
set was investigated. We next used the KT approach to develop
KT-based models (Figure 1B, more details in Section 2.4) and
compared their predictive performances with that of the
respective single model. We also compared the model
performance between the two proposed approaches and the
widely used multitask learning and transfer learning
approaches. The overall workflow of this study is summarized
in Figure 1.

2. MATERIALS AND METHODS

2.1. Data Sets. The kinetic data for the four oxidants were
collected from the published literature, which were mined
through Google Scholar (https://scholar.google.com/) by
using the keywords: “sulfate radical”, “HClO”, “O3”, or
“ClO2” + “kinetics”. As many as possible samples were
collected and the attributes included contaminants, their
corresponding rate constants (k), and reaction conditions
(i.e., pH and/or T). The number of studies we collected is
listed in Table 1, in which if there were QSAR studies they
were considered but the original sources were not. All these
studies, including the original sources for the QSAR studies,
are listed in the excel file “data.xlsx” in the Supporting
Information. Reaction conditions were often not included in
previous studies. We here included the reaction conditions

because reaction rate constants are condition dependent. For
example, pH can affect the dissociation of some contaminants,
while differently charged contaminant species react with these
oxidants at different rates.6 Text S2 shows in detail how the pH
effects on the log k of ionizable compounds were modeled.
Moreover, we can increase the sample size by including the
reaction conditions. This approach allows more data to be
collected than the traditional approach, where only data under
certain conditions can be collected. There are no strict criteria
for what data should be collected. Rather, all articles that
reported contaminant reactivity toward any of these four
oxidants were included. All the k values were log-transformed
(log k) to reduce the range of values. If multiple log k values
were reported for a contaminant for the same conditions, an
average log k value was taken to smooth noise in the samples.
The outliers, that is, abnormal reactivity, were detected by
seven outlier detection algorithms (Table S1) and removed. A
summary of these four data sets is listed in Table 1 and the
details of the data sets are listed in “data.xlsx” in the
Supporting Information.

2.2. Molecular Descriptors and Molecular Finger-
prints. The simplified molecular-input line-entry system
(SMILES) of organic contaminants was obtained using the
ChemDraw program. The PaDEL program34 and the RDKit
package in Python were employed to convert SMILES to MDs
and MFs, respectively. The MDs of one contaminant include
1444 physicochemical properties and are represented by a
vector with a length of 1444. Each property is one feature or an
independent variable. Hence, for the MD representation, the
total number of features was 1445 (with pH) or 1446 (with
pH and T). The MF used here is the Morgan Fingerprint,
which is a binary vector that encodes chemical structures into
0s and 1s. The MF was obtained using the RDKit package in
P y t h o n w i t h t h e c o m m a n d
“AllChem.GetMorganFingerprintAsBitVect()”. Readers are re-
ferred to our recent papers for more details on how MFs
represent chemicals.15,35 Both MD and MF are one-dimen-
sional (1D) vectors of a certain length. The conditions, such as
pH and T, can be directly attached to the end of the vector to
form a longer 1D vector.

2.3. Model Development and Interpretation. Briefly,
ML model development is to use ML algorithms to link the
MDs or MFs of organic contaminantsthe inputswith their
corresponding reactivitythe output. The obtained models
can then make predictions for the reactivity of organic
contaminants based on their MDs or MFs. Before model
development, we conducted data preprocessing, including
missing value imputation, feature scaling, feature selection,
outlier treatment, and ML algorithm screening. The details of
these procedures can be found in Text S3. The number of
MDs and their names are listed in Texts S4 and S5 in the
Supporting Information. For each data set and each
representation, after obtaining the optimum ML algorithm,
we tuned their hyperparameters using the Bayesian optimiza-
tion algorithm, which can efficiently explore a large search
space. It will determine the next selection based on the last
selection. We have previously used this approach to optimize
the hyperparameters of a DNN and XGBoost.15 The working
mechanism of this approach has been well documented.36,37 A
10-fold cross-validation was also applied to the training data set
(not the entire data set) and the optimum hyperparameters
were the ones that achieved the best validation performance
(average performance on the 10 validation sets). The root

Table 1. Summary of the Four Data Sets Used in This Study

oxidant
# of data
points

# of
compounds

reaction
conditions

# of
studies

HClO 195 188 pH 29
ClO2 191 143 pH 32
O3 759 484 pH 142
SO4

•− 557 342 pH, T 33
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mean squared error (RMSE) and R2 values were used as the
evaluation metrics for the predictive performance. Lower
RMSE and higher R2 values mean better predictive perform-
ance. After obtaining the optimum hyperparameters (Table
S2), the ML algorithms were retrained on the whole training
data set (not cross-validation anymore) to obtain the final
model (hence, we only have one RMSE or one R2 value for
each training set). The generalization ability of the final model
was evaluated on the test data set, which was never used during
the model development (we also only have one RMSE or R2

value for each test set).
After the models had been well trained to show satisfactory

predictive performance, we used the SHAP method to
interpret the models to check if predictions made by the
models are based on a correct understanding of the feature
importance. We previously used this method to interpret
QSAR models for •OH radicals.15 The effects of pH, T, and
atom groups or MDs on the reactivity (log k) were investigated
based on the SHAP interpretation results. Text S6 shows how
the atom groups from the MFs were extracted.
2.4. Unified Model and KT-based Model Develop-

ment. To combine the four data sets to form a large data set,
we added a new feature called “Oxidant” to indicate the type of
oxidant for a given entry. For these four data sets, their
“Oxidant” feature was labeled as “SO4

•−”, “HClO”, “O3”, or
“ClO2”. As this new categorical feature should be encoded as a
numeric feature, we screened eight encoding methods to select
the best one rather than arbitrarily selecting one (Table S1).
We then followed the same procedure as described above
(Figure 1A) to develop a unified model (both MF-based and
MD-based) on this large data set. It should be noted that we
chose not to combine the entire four data sets first and then re-
split them. Instead, we combined all the initial training data
sets used in developing the single QSAR models to form a
combined training data set. We did the same thing for the
individual test data sets to form a combined test data set, so we
could ensure that the generalization ability of the unified
model was tested on the same test chemicals as those in the

respective single data set. Hence, any enhancements would be
meaningful because the same test chemicals were used. For
comparison, in a typical Kaggle competition (https://www.
kaggle.com/), even subtle enhancement in the prediction
accuracy of a model is desirable and meaningful, which
determines if one wins the competition or not because they are
all required to predict the same test data set.
Figure 1B shows our proposed KT approach to developing

KT-based models. Taking the ClO2 and O3 data sets as an
example, we first used the single model developed on the ClO2
data set to predict the reactivity of the contaminants in the O3
data set toward ClO2. We then added these predictions as a
new input feature to the original O3 data set. This modified O3
data set thus likely contains some structure-reactivity
information from the ClO2 model. We then developed another
model for this new O3 data setreferred to as a “KT-based
model”and compared its performance with that of the single
model developed on the original O3 data set. As described
above, the test chemicals remained unchanged when evaluating
the performance of the KT-based models. Following this
approach, we developed a total of six KT models for three sets
of (O3, ClO2), (ClO2, HClO), and (O3, HClO). The

•OH and
SO4

•− data sets were not used here because the •OH data set
did not contain reaction conditions while the SO4

•− data set
contains T as a reaction condition.

2.5. Applicability Domain (AD) Analysis. Because there
are reaction conditions in the input, the reported fingerprint-
based similarity method cannot be directly applied here.15 We
thus chose a combination of fingerprint-based similarity and
range-based methods to determine the AD. First, any query
chemicals with the reaction conditions (pH and/or T) outside
the ranges of pH and/or T of the training data set were seen as
outside of the AD and were not further investigated. For query
chemicals whose reaction conditions are within the ranges of
pH and/or T of the training data set, we calculated the
similarity between their MFs and those of the contaminants in
the training data set based on the Tanimoto index.15,38 Please
refer to our recent paper about how to calculate the Tanimoto

Table 2. Final Models Used for Different Data Sets and Their Performancea

models data sets RMSEtrain Rtrain
2 RMSEtest Rtest

2 ML algorithm scaler encoder

MF-based SO4
•− 0.52 0.81 0.75 0.62 CatBoost

HClO 0.73 0.93 2.10 0.43 CatBoost
O3 1.29 0.76 2.06 0.46 Ridge
ClO2 1.12 0.88 1.77 0.49 Ridge

MD-based SO4
•− 0.42 0.88 0.64 0.72 RF MAS

HClO 0.62 0.94 1.74 0.60 ET MAS
O3 0.97 0.87 2.09 0.45 CatBoost MMS
ClO2 0.58 0.97 1.80 0.47 CatBoost RS

MF-UN-1 combined data setsb 1.03 0.90 1.62 0.76 XGBoost BDE
MD-UN combined data setsb 0.73 0.95 1.67 0.75 CatBoost MAS HE
MF-UN-2 combined data setsc 0.41 0.82 0.58 0.68 CatBoost OH
MF-UN-3 combined data setsd 0.70 0.95 1.48 0.82 RF SE
KT-1 O3/HClO RMSEtest: O3 2.01, HClO 1.98 Ridge/CatBoost

R2: O3 0.49, HClO 0.49
KT-2 O3/ClO2 RMSEtest: O3 2.01, ClO2 1.95 CatBoost/Ridge

R2: O3 0.49, ClO2 0.38
KT-3 ClO2/HClO RMSEtest: ClO2 1.77, HClO 2.1 Ridge/CatBoost

R2: ClO2 0.49, HClO 0.42
aThe bolded rows are for the final individual QSAR models for that data set. bCombining the data sets of SO4

•−/O3/ClO2/HClO.
cCombining the

data sets of •OH/SO4
•−. dCombining the data sets of •OH/SO4

•−/O3/ClO2/HClO. RF: random forest; ET: extra trees; MAS: MinAbsScaler;
MMS: MinMaxScaler RS: RobustScaler; BDE: BackwardDifferenceEncoder; HE: HelmerEncoder; OH: OneHotEncoder; SE: SumEncoder.
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index.15 To determine the optimal similarity threshold, we set
the chemicals in the test data set as the query chemicals. Any
chemicals that were outside the AD (i.e., the similarity values
below the threshold) were removed from the test data set and
the RMSEtest was recalculated. The optimal threshold is the
one that achieved the lowest RMSEtest.

3. RESULTS AND DISCUSSION
The detailed results of the ML algorithm screening, feature
selection, and hyperparameter tuning are shown in Text S4.
Briefly, different optimum ML algorithms were selected for
different data sets, indicating that the optimum ML algorithm
is data set-dependent. There is also overfitting in all the ML
models with their default hyperparameters, which was
alleviated by feature selection and/or hyperparameter tuning.
For convenience, we summarized all the models used in this
work in Table 2, which were all developed following a similar
procedure, such as ML screening, feature selection, and/or
hyperparameter tuning.
3.1. MF versus MD Representation and the Final

Individual QSAR Models. The statistical comparison
between the performances of the two representations are
plotted in Figure 2. For all these four oxidants, the training

performance for the MD representation is always better than
that for the MF-based models. However, that is not always the
case regarding the generalization ability on the test data set.
For the data sets of SO4

•− and HClO, better predictive
performance was achieved on both the training and test data
sets for the MD-based models. Hence, the MD-based models
were selected as the QSAR models for SO4

•− and HClO. For
the data sets of O3 and ClO2, the MD-based models showed
better predictive performance on the training data sets but
worse predictive performance on the test data sets than the
MF-based models. This means that overfitting was more
serious in the MD-based models. Hence, the final QSAR
models for O3 and ClO2 were the MF-based models. This
result indicated that the optimum chemical representation is
data set-dependent. One possible reason is that the types of
MDs calculated by the PaDEL program are fixed for all

contaminants. These MD-represented properties might
correlate more with the contaminant reactivity toward SO4

•−

and HClO than with those toward O3 and ClO2. Therefore, it
is recommended to screen the optimum chemical representa-
tion in future modeling rather than arbitrarily selecting one.

3.2. Interpretation of the Single QSAR Models. We
interpreted all the single QSAR models (Table 2) to verify (1)
if they made predictions based on the correct science and (2) if
there were common features extracted among these models.
The latter information may be useful to validate the KT
strategy. Figure 3 shows the SHAP interpretation of the MF-
based single QSAR models (Table 2) with the top 10 features
shown (nine atom groups + pH). The interpretations of the
pH effects and the pattern distribution are illustrated in Text
S8. The results suggest that all the pH effects were correctly
learned, and that different pattern distributions resulted from
the different ML algorithms employed. Figure 4 shows the
effect of the top nine atom groups identified in Figure 3 on the
log k. As shown, the four models share several common atom
groups. For example, the fourth atom group (aromatic carbon)
in the SO4

•− model is the same as the eighth atom group in the
HClO model. The number of shared atom groups among these
four oxidants is summarized in Table S3. Surprisingly, the
learned contributions of some of these atom groups toward log
k differ significantly among the four data sets. For example,
aromatic carbons in the SO4

•− model (fourth) contributed
positively to the log k while those in the HClO (eighth), O3
(third), or ClO2 (fifth) model contributed negatively. The
−NH2 group increased the log k in the O3 model (seventh)
but decreased the log k in the ClO2 model (third). However,
both aromatic carbons and −NH2 are known electron-
donating groups whose presence should lead to higher log k
values. Therefore, only the SO4

•− model seemed to “correctly”
learn these relationships (thus showing better predictive
performance), whereas the HClO, O3, and ClO2 models
seemed to “incorrectly” learn some of them (thus showing
worse predictive performance).
For the −NH2 group in the ClO2 data set, its negative effect

on the log k resulted from its overlap with the electron-
withdrawing carbonyl group in the MFs, that is, the position of
689 in the MFs (Figure 3D) is assigned to two atom groups
(−NH2 and carbonyl), while carbonyl is a strong electron-
withdrawing group that decreases the log k. To understand the
reason for the observed negative effect of aromatic carbons, we
plotted the distribution of experimental log k values for the
compounds with or without aromatic carbons. Figure S1 shows
that the average log k value for the compounds containing
aromatic carbons in the SO4

•− data set is greater than that for
the compounds not containing aromatic carbons in the same
data set, whereas this trend is reversed in the data sets of
HClO, O3, and ClO2. This explains why the developed models
learned different effects of aromatic carbons on the log k. This
finding suggests that the average effect of a specific atom group
on the chemical reactivity is data set-dependent, which is
expected. For example, when ClO2 reacts with aliphatic
amines, the log k value decreases in the following order:
tertiary amine > secondary amine > primary amine.6 If an ML-
based QSAR model is developed based on this data set, a
primary amine will be “learned” to be an atom group that
decreases log k because the average experimental log k for
primary amines is smaller than that for all amines in the data
set, although −NH2 is a well-known electron-donating group.
In other words, the types of chemicals involved in a data set

Figure 2. Comparison of the two representations in terms of the
predictive performance (RMSEtest) on the training and the test data
sets for the four oxidants. The corresponding R2 values are listed in
Table 2 and showed similar patterns. Comparison of the performance
of the single ML models with previously published ones is shown in
Text S7.
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affects the model-derived positive or negative contribution of
an atom group to log k. To illustrate the above mentioned idea
for our data sets, we took the ClO2 data set as an example,
which has 36 chemicals containing aromatic carbons (fifth
atom group for ClO2 in Figure 4). Among these 36 chemicals,
28 of them (77%) contain electron-donating groups, such as
−O−, −NH2, or −OH (Table S4), that are stronger in their
electron-donating effects than aromatic carbons. As a result,
aromatic carbons in the ClO2 data set were “learned” to have
negative effects on log k. The same explanation can be applied
to the HClO and O3 data sets. We believe that if a data set is
large enough and contains a diverse range of chemical
structures, the corresponding ML model should be able to
learn the correct effects of various atom groups that match the
known chemistry. In other words, the quality of a data set
determines the quality of the corresponding ML model, which
is similar to that of traditional QSAR models.
Figure S2 shows the SHAP interpretation of the MD-based

single QSAR models (Table 2). Detailed explanation for them
is provided in Text S5. Compared with the MF-based models,
fewer MDs (only 1−2) were shared among these four models.
It is not easy to examine how some of these MDs affected the

log k because their physicochemical meanings are not readily
interpretable.

3.3. Unified Models Based on the MFs or MDs. To
improve the model performance, we combined the four data
sets to form a large unified data set and developed a MF-based
unified model (refer to as “MF-UN-1”), following the same
procedure as for the single MF-based models. Figure 5A shows
better predictive performance of MF-UN-1 on the test data set
(Rtest

2 = 0.76) than all the single models (Table 2) (the RMSE
values depended on the ranges of the log k values, so they were
not used for comparison), indicating the effectiveness of the
unified approach. We then examined its predictive perform-
ance on the four single data sets, as shown in Figure 5B. Except
for the SO4

•− data set, the performance of MF-UN-1 is better
than that of the respective single models for the other three
data sets. Figure 5C plots the distribution of the log k values in
the four data sets, demonstrating the range of log k values for
the SO4

•− data set deviating substantially from that for the
other three data sets. This may be the reason that the
performance of MF-UN-1 on the SO4

•− data set was worse.
Figure 5D shows the SHAP interpretation of this unified

model and the identified top six atom groups (among the top

Figure 3. SHAP interpretation of the MF-based single QSAR models for the four oxidants. The x-axes are the SHAP values and the y-axes are the
identified top 10 most influential features. The numbered features, such as 508, 1702, and 1666, represent the feature positions in the MFs, with
each position representing a certain atom group (see below). MFs are vectors of 1s and 0s; the red color represents 1s in those positionsthe
presence of an atom groupwhile blue means 0sno atom groups in those positions. pH values are continuous values from the minimum to the
maximum for different data sets, so they are colored from blue to red. A feature with a positive SHAP value means that it can increase the log k
value, whereas a feature with a negative SHAP value means that it can decrease the log k value. The pattern for each feature is composed of the
SHAP values for all the chemicals in the data set that contain that feature. All other SHAP plots in this work follow the same interpretation.
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10 features in Figure 5D, only 6 of them are atom groups).
Table S5 shows these atom groups and their effects on the log
k, in which all of these effects were correctly learned. Although
aromatic carbons were not among the top six atom groups, we
still examined them here because their effects in the HClO,

ClO2, and O3 data sets, and the effect of the −NH2 group in
the ClO2 data set, were previously learned to decrease the log
k. For MF-UN-1, interestingly, the effect of −NH2 was
“learned” to be increasing the log k, although the aromatic
carbons still decreased the log k in this unified data set. For the

Figure 4. Effect of the top nine atom groups shown in Figure 3 on the log k values, in which the up and down arrows mean increasing and
decreasing the log k values, respectively. The same atom groups in different data sets are marked by squares and connected by dotted lines. The
−NH2 and carbonyl groups are overlapped at the third position for the ClO2 data set. Note that the length of the MFs has been optimized using the
Bayesian algorithm to achieve the best predictive performance, but the overlap still happened, indicating the intrinsic limitation associated with the
MFs. The blue dots represent the center atoms; the black solid lines represent the bonds in the feature; the gray lines represent the neighboring
bonds not in the feature; the dotted lines represent conjugated structures, for example, aromatic; and the yellow color represents an aromatic atom
in the feature. All heavy atoms except for C, such as O and Cl, are shown.

Figure 5. Predictive performance of the unified model on the training and test data sets for the unified data set (A) and the single data sets (B);
(C) ranges of log k values for the single data sets; and (D) SHAP interpretation of the unified model, in which the x-axis is the SHAP value and the
y-axis is the features. The features of “Oxidant_1”, “Oxidant_2”, and “Oxidant_3” are the encoded features for these four oxidants and they can
only take values of 0 or 1. Their different combinations [i.e., (“Oxidant_1”, “Oxidant_2”, and “Oxidant_3”)] represent different oxidants, such as
[0, 0, 1] for HClO or [0, 1, 0] for O3. Other features represent atom groups and are listed in Table S5.
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SO4
•− data set, the effect of aromatic carbons changed from

increasing the log k in the individual model to decreasing the
log k in MF-UN-1, which should be the reason for the worse
predictive performance of the unified model on the SO4

•− data
set. In contrast, the effect of the −NH2 group in the ClO2 data
set changed from decreasing the log k in the individual model
to increasing the log k in MF-UN-1, so the predictive
performance improved (Figure 5B). The effects of these two
groups on the log k are the same for HClO and O3 data sets
before and after combining the data sets, but the predictive
performance became better, which may be due to some
unknown synergetic effects or similar “correction” effects of
atom groups that are not among the top nine.
Figure S3 shows the performance of the unified model based

on the MD representation. This unified model was developed
following the same procedure as for the single MD-based
models. The RMSEtest (1.67, Figure S3A) is slightly higher
than that of MF-UN-1 (1.62); the accuray of the predictions
made by the MD-based unified model marginally improved for
O3 and ClO2, but marginally decreased for SO4

•− and HClO
(Figure S3B). This improvement was less than by MF-UN-1
(Figure 3B) and the overfitting trend was more obvious, as
suggested by the larger difference in the RMSE values between
the training and test data sets (Figure S3C). The SHAP
patterns in Figure S5D are similar to those of the single MDs-
based models (Figure S2). Overall, the MD representation did
not outperform the MF representation when developing the
unified model, so we only focus on the MF representation
below.
As mentioned above, the range of the log k values for SO4

•−

is quite different from those of the other three data sets (Figure
3C), which may be one reason that the predictive performance
of MF-UN-1 did not improve for SO4

•−. To test this idea, we
combined the SO4

•− data set with a reported OH• data set to
form a large data set because their log k values fall in the same
range (Figure S4C). The OH• data set contains 1086
chemicals and was previously used successfully to develop
ML-based QSAR models.14,15 We then developed another MF-
based unified model (refers to as “MF-UN-2”) on this data set
and Figure S4A shows the Rtest

2 = 0.68. Figure S4B suggests
that the predictive performance of MF-UN-2 for SO4

•−

became much better than the single model while that for
OH• became worse. As the SHAP interpretation of MF-UN-2
shown in Figure S4D, the effect of the identified top eight
atom groups on the log k were all correctly learned (only 8 of
the top 10 features are atom groups) (Table S6). This worse
performance for •OH was probably because the additional
fixed T (25 °C) and pH (7) conditions were added into the
•OH data set to combine with the SO4

•− data set, which might
have introduced noise information to the model, although
future work is needed to understand the exact reason. For
prediction purposes, MF-UN-2 can be used for SO4

•− while
the reported MF-based single model is still recommended for
•OH.
Finally, we combined all of these five data sets to form the

largest data set to develop another MF-based unified model
(refers to as “MF-UN-3”). Figure S5A shows that the Rtest

2

reached 0.82. Although the predictions for SO4
•−, HClO, and

ClO2 became better, those for •OH and O3 became slightly
worse (Figure S5B). Table S7 shows the effects of the
identified top eight atom groups (only 8 of the top 10 features
are atom groups) based on the SHAP plot of Figure S5C, and
all of them were correctly learned. The marginally worse

predictive performance for the •OH data set is explained
above, but the marginally worse predictive performance than
MF-UN-1 for the O3 data set is unexpected. We do not have a
good explanation for this yet. These results suggested that it is
not always better to combine data sets to achieve better
predictive performance.

3.4. KT Models. Figure 6 shows the predictive performance
of different KT models that were developed based on our

proposed approach shown in Figure 1B. The SO4
•− data set

was not used because it contains not only pH but also T, while
the other three data sets only contain pH. The models
developed based on these three data sets cannot make
predictions for the reactivity of contaminants under different T.
There are three distinct scenarios for these KT models. For

O3/HClO, both of the KT models show better predictive
performance than the original models before the transfer.
There is one shared atom group (carbonyl) among the top
nine atom groups between O3 and HClO (Figure 4) and the
effect of this atom group was consistent (i.e., decreasing the log
k) between the two data sets. Moreover, the predictive
performance of the single models for O3 and HClO was similar
(RMSEtest 2.06 for O3 and 2.10 for HClO). Both of these two
factors should have contributed to the effectiveness of the KT.
For O3/ClO2, the KT model for O3 became better after
receiving knowledge from the ClO2 model, while the KT
model for ClO2 became worse. There are three atom groups
shared between O3 and ClO2, but the effects of −NH2 in these
two data sets are opposite (Figure 4). Moreover, the predictive
performance of the single model for ClO2 (RMSEtest 1.77) is
better than that for O3 (RMSEtest 2.06), so the information
transferred from O3 to ClO2 has more uncertainties, which
should have led to the worse performance. For ClO2/HClO,
no change in the predictive performance was observed for both
oxidants. This is expected because there are no shared atom
groups between these two data sets (Figure 4). These results
indicated that the effectiveness of our KT approach depends
on if there is consistent knowledge shared between the single
models and on their respective predictive performance.
Although the KT models only showed some improvements
in the predictive performance, the abovementioned informa-
tion about when the KT approach will work is important for
extending this approach to other data sets.

3.5. Comparison of the Two Proposed Approaches
with Multitask Learning and Image-Based Transfer
Learning. Because the model performance was not drastically

Figure 6. Predictive performance of different ML models before and
after KT.
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improved by the two proposed approaches, we further
examined whether there were other approaches that could
improve the model performance for these data sets. To this
end, we applied single-task and multitask learning on the
HClO, O3, and ClO2 data sets. An introduction to multitask
learning and how we trained single-task and multitask learning
models are in Text S9 in the Supporting Information. Figure
7A shows the comparison of the predictive performance of the
single-task and multitask DNN models. First, for the single-
task DNN models, most of their predictive performance was
worse than the individual non-DNN based models (Table S8).
For example, the RMSEtest values for the HClO, O3, and ClO2
data sets were 2.23, 2.16, and 1.72 for the single-task DNN
models, while those for the respective individual non-DNN
based models were 1.74, 2.06, and 1.77. This may be because
the sample sizes are too small for DNN (DNN is a data-
demanding algorithm). After applying multitask learning, all of
the multitask DNN models showed better predictive perform-
ance (i.e., generalization ability) on the test sets, indicating the
effectiveness of multitask learning. However, these multitask
DNN models still underperformed the combined data set-
based model, although they outperformed some of the KT-
based models (Table 2). We also conducted three-task or four-
task learning but did not observe any improvements in the
predictive performance (Table S8).

We next applied the image-based transfer learning approach
to these four data sets. We previously used this approach on a
•OH data set and observed good predictive performance.14

The details of how we applied this approach have been shown
in our previous study.14 Figure 7B showed that for the SO4

•−

data set, only the combined-data set approach was effective at
decreasing the RMSEtest while the image-based transfer
learning and multitask learning increased it. For the ClO2
data set, the combined-data set approach showed the best
predictive performance. However, for the HClO data set, the
image-based transfer learning outperformed both the KT
model and the multitask learning model in terms of RMSEtest.
Hence, the effectiveness of these approaches is also data set-
dependent. For the O3 data set, the performance of the
combined-data set approach was similar to that of transfer
learning and better than that of multitask learning. Overall, our
approaches showed consistently good predictive performance
for all these four data sets, while the image-based transfer
learning and multitask learning approaches failed in some
cases, such as for the SO4

•− and O3 data sets.
3.6. Final QSAR Models and Their AD Determination.

For the four oxidants, we ranked all the developed models in
terms of the predictive performance and finally obtained the
optimal QSAR models, as shown in Table 3. Both the unified
models and transfer learning models outperformed all the

Figure 7. (A) Comparison of the predictive performance between the single-task and multitask (two-task) learning models; (B) comparison of the
predictive performance among our approaches (i.e., combined-data set and KT approaches), multitask learning and image-based transfer learning.
Only the model that achieved better performance (between combined-data set and KT approaches) for that data set was shown in (B) and referred
to as “Our approaches”.

Table 3. Final Selected MF-Based Models for Each Data Set and Their AD Determinationa

data set best model best RMSEtest threshold value # of contaminants outside AD recalculated RMSEtest

SO4
•− MF-UN-2 0.703 0.50 0 0.703

0.60 1 0.699
0.70 2 0.700

HClO KT model (O3−HClO) 1.982 0.28 0 1.982
0.30 1 1.955
0.42 2 1.895
0.43 3 1.906

O3 MF-UN-1 1.942 0.50 0 1.942
0.55 1 1.909
0.56 3 1.906
0.62 4 1.912

ClO2 MF-UN-3 1.465 0.66 0 1.465
0.67 1 1.468
0.83 2 1.486

aThe ADs of our models were not compared with previous published ones because previous studies used MDs to represent contaminants while we
used MFs.
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individual models and were selected as the final models,
validating the effectiveness of our proposed two approaches.
We next determined their ADs, as shown in Table 3. For each
model, with an increasing threshold value, more contaminants
were identified as outside the AD, and the recalculated
RMSEtest first decreased and then increased. The optimal
threshold values for these four data sets are bolded in Table 3.
For a query compound, if its similarity to the contaminants in
the training data set is above the threshold value, the models
can provide a reliable prediction for its reactivity toward one of
these four oxidants.

4. ENVIRONMENTAL SIGNIFICANCE
In this study, we investigated ML-assisted QSAR models for
data sets that are different but share similarities (i.e., oxidation
reactions). Previous studies viewed these data sets independ-
ently, whereas we tried to utilize the shared knowledge among
them to enhance the predictive performance of the models by
four approachescombining individual data sets to form a
large, unified data set; transferring knowledge between
individual data sets; applying multitask learning; and employ-
ing image-based transfer learning. When developing single ML
models using these single data sets, we found that (1) the
optimal ML algorithm is data set-dependent. Screening ML
algorithms from several candidate algorithms is recommended
and simpler ML algorithms are preferred if they show similar
predictive performance as complex ones and (2) the optimal
representation for contaminants is also data set-dependent
because some representations may not capture the key features
of the data set.
Combining similar data sets to form a large data set and

developing a unified model can generally improve the
predictive performance on the individual data sets because
some “wrongly” learned knowledge based on a smaller data set
(e.g., bias of the data set) may be corrected this way. In other
words, data bias can be mitigated by increasing the sample size.
KT is effective when there is consistent knowledge shared
between the two data sets and when the single models
themselves have good predictive performance. These two
approaches can also help us understand the involved reaction
mechanisms. For example, if the KT models have better
predictive performance than the respective single models, it is
likely that the two data sets share common reaction
mechanisms, and if we already understand one of them, the
other one can be more easily understood. We can also test if
two data sets share similar reaction mechanisms by checking if
the KT approach works. Furthermore, if some knowledge is
not correctly learned by a model, there may exist data bias in
the data setfor example, having too many highly reactive
chemicals. This indicates that we need more data. Combining
similar data sets is an effective approach to addressing this
issue. In addition, multitask learning deserves some attention
in the case of DNN algorithms and when the data sets are
related. Better generalization ability was observed for multitask
models when compared to the single-task models. Image-based
transfer learning may also improve the model performance, as
demonstrated here and in our recent work.14

Here, we introduced a new perspective on handling different
small data sets, that is, some data sets may be intercon-
nectedsharing informationeven if they are all small. The
traditional perspective of each data set as a separate and
individual data set cannot capture this interaction information.
This new perspective on data sets can be applied to many

other scientific problems, particularly regarding small data sets
sharing common knowledge. In fact, because it is much easier
to find small data sets with similar ground truth than it is to
find a large, similar data set for the transfer learning approach
to be used, both approaches can help address the common
data scarcity issue. In addition, many researchers tend to rely
on more advanced ML algorithms to develop better models,
and there indeed are many better ML algorithms developed
every year. Instead, our work may inspire researchers to also
focus on the data sets themselves because transferring the
shared knowledge from one data set to another may yield
better models than simply using advanced ML algorithms.
Overall, this study provided new insights into developing

ML-based QSAR models for small data sets. The synergistic
effects among similar data sets can be leveraged to boost the
predictive performance of QSAR models. These findings can
also be extended to other fields when small data sets are
involved.
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The instruction for using the models can be found on the
GitHub: https://github.com/nogoodnameye/SO4-HClO-O3-
ClO2.
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