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Abstract

We present long-duration numerical simulations of the tidal disruption of stars modeled with accurate stellar
structures and spanning a range of pericenter distances, corresponding to cases where the stars are partially and
completely disrupted. We substantiate the prediction that the late-time power-law index of the fallback rate
Noo ™~ —5/3 for full disruptions, while for partial disruptions—in which the central part of the star survives the tidal
encounter intact—we show that n., >~ —9/4. For the subset of simulations where the pericenter distance is close to
that which delineates full from partial disruption, we find that a stellar core can reform after the star has been
completely destroyed; for these events the energy of the zombie core is slightly positive, which results in late-time
evolution from n~ —9/4 to n ~ —5/3. We find that self-gravity can generate an n(r) that deviates from n., by a
small but significant amount for several years post-disruption. In one specific case with the stellar pericenter near
the critical value, we find that self-gravity also drives the recollapse of the central regions of the debris stream into
a collection of several cores while the rest of the stream remains relatively smooth. We also show that it is possible
for the surviving stellar core in a partial disruption to acquire a circumstellar disk that is shed from the rapidly
rotating core. Finally, we provide a novel analytical fitting function for the fallback rates that may also be useful in
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CrossMark

Partial, Zombie, and Full Tidal Disruption of Stars by Supermassive Black Holes

a range of contexts beyond tidal disruption events.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Black hole physics (159);
Hydrodynamical simulations (767); Supermassive black holes (1663); Tidal disruption (1696)

1. Introduction

The tidal disruption of one object by another is a recurring
theme in astrophysics. For example, comets can be tidally
disrupted by planets (e.g., Comet Shoemaker-Levy 9;
Chapman 1993) and asteroids can be tidally disrupted by white
dwarfs (Jura 2003); star clusters and small galaxies can be
disrupted by larger ones (e.g., Peflarrubia et al. 2009); and
neutron star mergers, in which each star tidally disrupts the
other, are some of the most luminous events in the universe (e.g.,
Faber & Rasio 2012). In this paper we focus on the tidal
disruption of stars by supermassive black holes, referred to as
tidal disruption events (TDEs; e.g., Rees 1988). These events
produce luminous, multiwavelength flares that form and evolve
on timescales of days to years, which allows one to explore (for
example) dormant black holes in galaxy centers, nuclear galactic
dynamics, stellar structure, accretion, and jet physics. Observa-
tions of TDEs across different wavelengths and at various
epochs have now been made (e.g., Bade et al. 1996; Komossa &
Greiner 1999; Esquej et al. 2007; Gezari et al. 2009, 2012;
Holoien et al. 2014; Miller et al. 2015; Vinké et al. 2015;
Alexander et al. 2016; Cenko et al. 2016; Holoien et al. 2016;
Jiang et al. 2016a, 2021; Kara et al. 2016; van Velzen et al.
2016; Alexander et al. 2017; Blanchard et al. 2017; Brown et al.
2017; Gezari et al. 2017; Hung et al. 2017; Saxton et al. 2017;
Brown et al. 2018; Pasham & van Velzen 2018; Blagorodnova
et al. 2019; Holoien et al. 2019; Hung et al. 2019; Leloudas et al.
2019; Nicholl et al. 2019; Pasham et al. 2019; Saxton et al. 2019;
Holoien et al. 2020; Jonker et al. 2020; Kajava et al. 2020; Li
et al. 2020; Hung et al. 2020, 2021; Hinkle et al. 2021; Payne
etal. 2021; van Velzen et al. 2021; see also the recent reviews by
Alexander et al. 2020; van Velzen et al. 2020; Gezari 2021).

The tidal radius R—the distance from the black hole at
which the star is expected to be destroyed by tides—is typically

estimated by equating the mean self-gravitational force of the
star to the gravitational tidal force from the supermassive black
hole; the result is

1/3
M.
R ~ (V) R,, (1

*

where M. is the mass of the black hole and M, and R, are the
stellar mass and radius, respectively. The impact parameter of the
stellar orbit around the black hole is defined as 3= R,/R,,, where
R, is the pericenter radius of the stellar orbit. Grazing encounters
with 3 < 1 typically result in partial disruptions, with some fraction
of the star surviving the tidal encounter intact, while deep
encounters with 5> 1 yield complete disruption of the star (see,
for example, the simulation results in Guillochon & Ramirez-
Ruiz 2013). The precise value of 3 at which the star is completely
disrupted depends on the stellar properties. For example,
Guillochon & Ramirez-Ruiz 2013 (see also Mainetti et al. 2017)
showed that when a solar-like (i.e., one with a solar mass and
radius) star is modeled as a polytrope, the critical impact parameter
for full disruption is . >~ 2(0.9) for v=4/3(5/3). In some cases
polytropes provide an excellent description of the density profile of
a star (see, e.g., Figure 5 of Golightly et al. 2019a), but in many
cases a polytrope cannot provide a good fit throughout the star.
Using accurate stellar structures derived from the MESA stellar
evolution code (Paxton et al. 2011, 2013, 2015, 2018, 2019),
Golightly et al. (2019a) show that only four out of nine simulated
stars were fully disrupted when (3= 3.

Due to the complexity of the disruption process and the
subsequent evolution of the debris stream, numerical simulations
are often used to make progress in understanding TDE dynamics.
In some cases these simulations have focused on the initial
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disruption and debris energy distribution (Lodato et al. 2009;
Guillochon & Ramirez-Ruiz 2013), the stream dynamics
(Coughlin & Nixon 2015; Coughlin et al. 2016a, 2016b), disk
formation from eccentric orbits (Hayasaki et al. 2013, 2016;
Shiokawa et al. 2015; Bonnerot et al. 2016), the impact of stellar
rotation (Golightly et al. 2019b; Sacchi & Lodato 2019), the
importance of stellar structure (Golightly et al. 2019a; Law-Smith
et al. 2019), and the impact of general relativity (Gafton et al.
2015; Sadowski et al. 2016; Tejeda et al. 2017; Gafton &
Rosswog 2019; Andalman et al. 2020; Curd 2021).3

One of the goals of TDE simulations is to determine the
fallback rate: the rate at which the disrupted stellar debris
returns to pericenter. This rate is a determining factor in the
production of accretion luminosity from the black hole.*
For matter to accrete on to the black hole, or be expelled in
winds/jets (e.g., Strubbe & Quataert 2009; Coughlin &
Begelman 2014; Metzger & Stone 2016), energy must be
extracted from the debris orbits, and some (perhaps most) of
this energy is released as radiation (for a discussion of energy
release in TDEs see Lu & Kumar 2018). The classical
prediction for TDEs is that the power-law index of the fallback
rate is —5/3. This was derived by Rees (1988, see
Phinney 1989) by assuming that the stellar debris follows
Keplerian orbits (with fixed orbital energy ¢€) around the black
hole and that for most of the debris the mass—energy
distribution (dM/de) would be flat (i.e., independent of e).
Subsequently, Lodato et al. (2009) showed that a more realistic
stellar density profile (i.e., one that is not constant) implies that
the power-law index of the fallback rate only reaches a value
close to —5/3 at late (but still observable) times and after a
significant amount of the bound debris has been accreted.
Similar results were found by, for example, Guillochon &
Ramirez-Ruiz (2013) and Golightly et al. (2019a), the latter
showing that for a solar-like star modeled as a polytrope
disrupted by a 10°M,, black hole the fallback rate power-law
index n(f) remains shallower than —5/3 with—1.6<n
(1) < — 1.4 for 0.25 <1/yr < 1.25.

More recently we have shown that the late-time fallback
rate power-law index (n.,) for a partial TDE—in which the
star is not fully disrupted and some of the star remains intact
—is ~—9/4, and not —5/3 (Coughlin & Nixon 2019). This
value is almost completely independent of the mass fraction
of the surviving core, u = M./M., where M, is the mass of the
surviving core and M., is the mass of the black hole (see
Equation (14) of Coughlin & Nixon 2019). This arises from
the fact that the debris that returns at late times originates
asymptotically close to the Hill radius—the region surround-
ing the core in which the core’s gravity dominates over that of
the black hole—of the surviving core, and thus is always
affected by the core’s gravity for any (non-zero) mass. In
Miles et al. (2020) we presented numerical simulations of

3 The role of magnetic fields in TDEs has also been explored (e.g., Bonnerot
et al. 2017; Guillochon & McCourt 2017). For the initial disruption and stream
evolution anomalously large field strengths must be used to generate even a
minor impact on the results. The role of magnetic fields in TDE disk formation,
evolution, and the production of jets has not yet been fully established (see, for
example, Sddowski et al. 2016).

4 If the returning debris accretes onto the black hole sufficiently rapidly, then
the bolometric luminosity is approximately given by M c?, where n ~ 0.1 is
the accretion efficiency and My, is the fallback rate. However, any significant
delays in the circularization of the returning debris stream or the subsequent
accretion of matter through the disk may invalidate this simple relation.
Mockler et al. (2019) find that any delays measured from observed TDEs are
small.
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partial TDEs employing polytropes to model the stars, and
recovered the oc r°/* power law for the simulations that left a
bound core, substantiating the predictions of Coughlin &
Nixon (2019).

In this paper we extend the work of Miles et al. (2020) by
simulating TDEs with several different stellar models with
accurate density profiles, and a larger range of impact
parameters (3 ERt/Rp) to explore the transition from —5/3
to —9/4. The numerical simulations are performed with stars
on parabolic orbits with respect to the central black hole. We
use some of the stellar models employed by Golightly et al.
(2019a), which were calculated with the MESA stellar
evolution code. With these simulations we are able to clearly
identify a dichotomy in the late-time power-law index of the
fallback rate, with each case producing indices that are either
close to —5/3 or —9/4 depending on whether the star is fully
or only partially disrupted. We find some cases where there is
a small offset from these values that persists for the duration
of the simulations, which we argue is caused by the effects of
self-gravity acting along the debris stream. We find that the
relationship between the properties of the fallback curves and
the stellar structure can be complex, with trends observed for
one star no longer present for another star. We examine the
fallback rates for full disruptions with 3 up to ~2., where [,
is the critical @ for full disruption, finding that self-gravity
maintains an important role in establishing the tidally
disrupted stream structure. We also find an example of a
partial disruption in which the surviving core acquires a
circumstellar disk of material, which may provide interesting
observable consequences.

The layout of the paper is as follows. In Section 2 we
describe the numerical simulations and the results. In Section 3
we present analytical fits to the fallback data from the
simulations. We present our conclusions in Section 4.

2. Simulations

As discussed above there is a wide range of TDE simulations
available in the literature. Historically TDEs have been
approached with Lagrangian methods, e.g., smoothed particle
hydrodynamics (SPH; Gingold & Monaghan 1977; Lucy 1977),
see for example Nolthenius & Katz (1982), Nolthenius & Katz
(1983), Bicknell & Gingold (1983), and Evans & Kochanek
(1989). This choice is presumably due to the inherent
Lagrangian nature of the problem. In recent years break-
throughs in understanding the dynamics of TDEs have been
made using both Eulerian (grid-based; e.g., Guillochon &
Ramirez-Ruiz 2013; Jiang et al. 2016b; Sddowski et al. 2016)
and Lagrangian (particle-based; Lodato et al. 2009; Coughlin &
Nixon 2015; Golightly et al. 2019a) methods.” In this work we
are primarily interested in the long-term evolution of the debris
stream, and thus we choose to use the SPH method, specifically
the publicly available SPH code PHANTOM (Price et al. 2018),
which we have used for previous TDE investigations (see,
for example, Coughlin & Nixon 2015; Golightly et al.
2019a, 2019b; Miles et al. 2020).

For the numerical simulations here we set up the stars to
have a density profile taken from the outputs of the MESA
stellar evolution code. Specifically we use the 1 M, ZAMS,
I M., MAMS, and 03 M., MAMS models presented in

5 There is also still room for progress through traditional pen and paper
research (e.g., Coughlin & Nixon 2019).
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Golightly et al. (2019a).° We take the supermassive black hole
to have a mass of 10°M,, and model its gravitational field as
Newtonian’. We take each stellar orbit to be parabolic and
initiate its approach to the black hole at a distance of 5R, (at
which the tidal field from the black hole is a factor of ~125
weaker than at the tidal radius) and we vary the impact
parameter (. The critical impact parameters are 3.~ 1.6, 3.7,
and 1.5 for the 1M, ZAMS, 1 M, MAMS, and 0.3M,
MAMS stars, respectively. For each star we simulate a range of
impact parameters with B < B < Bmax, and we go from the
minimum to maximum values with a small increment. As this
results in a large set of simulations, we employ moderate
resolution with 10° particles for the star. For the range of
impact parameters we simulate this is sufficient to model the
disruption and stream dynamics. However, we note that for
very weak encounters (not simulated here) in which only a
small fraction of the star’s mass is tidally stripped there is
typically only a small number of particles in the resulting debris
stream and thus, when analyzing such simulations, a larger
number of particles in the initial star would be necessary.

As mentioned above, in a number of our simulations a stellar
core survives the tidal encounter (or reforms later; see below).
In these cases the hydrodynamical time step in the simulation is
vastly reduced compared to coreless simulations owing to the
relatively high central pressure and density of the core.
Therefore, to simulate the late-time evolution of the fallback
rate for partial disruptions, we follow the same procedure as in
Golightly et al. (2019a) and we replace the surviving core with
a sink particle at a time significantly after the pericenter is
reached. For simulations where there is a core that clearly
survives the entire encounter intact, this time is ~1.1 days post-
pericenter (for comparison, the sound-crossing time of our stars
is <1 hr). On the other hand, when 3~ 3. and a small amount
of mass remains in the core or the core reforms substantially
after pericenter is reached, the time at which the core
replacement occurs is significantly later (e.g., for the 1M,
ZAMS star with §= 1.6, we replace the core with a sink at a
time of ~134 days post-pericenter). As also noted in Golightly
et al. (2019a), we have checked that changing the time at which
the core is replaced does not alter the fallback rate in any
noticeable way.

Finally the equation of state is isentropic and given by
P=Kp", where p is the density, K scales with the entropy, and ~y
is the adiabatic index. We take v=15/3 and, following Golightly
et al. (2019a), the value of K is a conserved quantity for each
particle (as follows from the inviscid gas—energy equation) and is
determined by the requirement of hydrostatic equilibrium for the
density structure of the original star obtained from the MESA
outputs. We note that this means that the gas cools and heats
under adiabatic expansion and contraction, respectively, but no
other forms of heating or cooling are included. For the weak
encounters we present here shock heating of the gas is typically
not important, and we have confirmed this by performing
simulations in which shock heating is included and find no clear
differences in the results. Following Coughlin & Nixon (2015) we

© ZAMS refers to zero-age main sequence, and here MAMS refers to middle-

age main sequence, which Golightly et al. (2019a) define as being when the
stellar core’s hydrogen fraction drops below 0.2.

7 Forthe parameters we simulate here, the inclusion of general relativity (GR)
effects is not expected to have a strong effect on the disruption process (Gafton
et al. 2015). However, GR effects are, of course, necessary for an accurate
understanding of the subsequent disk formation and evolution that follows the
fallback of the debris stream.
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calculate the fallback rate by measuring the return rate of particles
to the vicinity of the black hole. This is implemented by, after the
initial disruption and the whole of the debris stream reaches a
large radius, placing a sink radius around the black hole of ~3-5
tidal radii in size with the value chosen such that it is sufficient to
ensure that all returning material is captured by the sink radius.

2.1. Results

Our main aim in this work is to explore the properties of the
fallback rates near the transition from full to partial disruption for
different stars. We therefore start by identifying, for each simulated
star, the largest 3 for which a stellar core remains intact (or reforms
as the debris recedes from the black hole) and the smallest 3 for
which the star is fully disrupted and remains so (i.e., there is no core
present for the duration of the simulations).® For the 1 M., ZAMS
star these are, respectively, =1.7 and 3=1.79 (ie., B=1.7
has a core while 5= 1.79 does not”), for the 1 M., MAMS star
these are 3=3.6 and 3= 3.7, and for the 0.3 M, MAMS star
these are 3= 1.5 and 3= 1.6. The exact value of 3 at which a
core survives /reforms in the stream shows a small dependence
on the numerical resolution with simulations performed with
10° particles. For example, we have simulated the initial
disruption in a small number of cases with 10’ particles and
found that the critical 3 values vary by less than 10%. Such
small changes do not affect our results as here we are interested
in the dynamical impact of the core on the stream dynamics;
Miles et al. (2020) show that 10° particles is sufficient for this
purpose (see their Figure 8, and also Figure 7 below).

In Figures | and 2 we present the fallback rates for a subset of
the simulations for the 1 M., ZAMS star (Figure 1), the 1M
MAMS star (Figure 2, top), and the 0.3 M. MAMS star
(Figure 2, bottom). Only a subset is displayed so that the figures
remain readable; the simulations not depicted show the same
qualitative behavior. In each figure the rate at which debris falls
back to the black hole, My, is plotted in units of M, yr~' while
time is measured in years. We compute the fallback rates
explicitly from the simulations by measuring the rate at which
particles return to the black hole'’. As the numerical method
discretizes the stellar debris into SPH particles, the fallback rate
is subject to numerical noise on sufficiently small timescales.
We therefore average the fallback rate in time following Miles
et al. (2020), in that we bin the fallback rate by time at early
times and by particle number at late times. We also employ an
additional technique to bin over clumps when the stream
fragments and produces physical (i.e., non-numerical) noise in
the fallback curve; see Figure 3 and the discussion thereof.

As one might expect, the accretion rates are generally lower
for less disruptive encounters (smaller 3) in which the mass of
the debris stream is a smaller fraction of the mass of the

8 In this respect we are referring to a single dominant core, and not the case
where the debris stream locally fragments into many similar mass objects; see
Coughlin & Nixon (2015) and our discussion below.

°  The critical value of B~ 1.79 for a 1 M., ZAMS star modeled with MESA
is consistent with the results of Law-Smith et al. (2020) and is approximately
10% smaller than the value found by Goicovic et al. (2019).

101 particular we do not use the common approach of predicting forward
from early times by using the assumption that the debris will continue on
Keplerian orbits under only the black hole’s gravity. For cases in which the
stream contains a bound core, the assumption of Keplerian orbits with each
fluid element possessing a conserved orbital energy is invalid (Coughlin &
Nixon 2019). Even when a core is not present there are times when this method
yields inaccurate results, for example when the debris stream energy
distribution is still evolving due to the effects of self-gravity (Coughlin et al.
2016a, 2016b).
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Figure 1. Fallback rates with time for the simulations with a 1 M., ZAMS star. The fallback rates are given in units of M., yr~' and time is in units of years. The line
colors correspond to the 3 values given in the legend. Lower values of 3 generally correspond to lower accretion rates, particularly when 3 < f3., and thus typically the
value of 3 increases from the bottom curve to the top. Overlaid as a guide are the lines corresponding to o/ (dashed) and /3 (dotted—dashed). For this star the
value of 3. at which we find the star is just full)f disrupted is 3. = 1.79. There is a clear dichotomy between the cases where 3 < [3., which result in partial disruptions
and a fallback rate that is consistent with r°/*, and the cases where 3> [3., which result in full disruptions and a fallback rate that is consistent with 373,

1Mo MAMS

10~*
1073
10°¢
0.05 0.10 050 1 5 10
t [yr]

Figure 2. Same as Figure 1, but for the 1 M, MAMS (top) and 0.3 M., MAMS (bottom) stars. For these stars 3. = 3.7 (top) and (3. = 1.6 (bottom).

4



THE ASTROPHYSICAL JOURNAL, 922:168 (16pp), 2021 December 1

0.100

70010

M [M@ yr

0.001
== Smoothed over fragments

1074

Not smoothed

0.05 0.10 050 1 5 10
tyr]
Figure 3. The fallback rate for the 3 = 3.0 disruption of the 0.3 M., MAMS
star. The red line depicts the smoothed fallback rate (as shown in the bottom
panel of Figure 2), while the blue line shows the unsmoothed fallback rate.
Similar to the fallback rate presented in Coughlin & Nixon (2015), we see that
there are spikes at times 0.5 yr, which are associated with the accretion of
clumps of gas that have formed within the debris stream. This indicates that the

stream is gravitationally unstable. In this case this has occurred for a stream
produced from a TDE with = 2/..

original star. For full disruptions we generally find that the time
at which the fallback begins and the time and magnitude of the
peak fallback are very similar over a factor of ~2 in impact
parameter, indicating that the width of the spread of orbits
occupied by the debris is not strongly dependent on 3 (see, e.g.,
Stone et al. 2013); this behavior was also found by Guillochon
& Ramirez-Ruiz (2013). For partial disruptions of the 1M
stars (both ZAMS and MAMS) we find a noticeable delay in
the onset of fallback, which occurs progressively later and with
a lower peak rate as the disruption is made weaker (decreasing
0). For the 0.3 M., MAMS star the time at which the fallback
rate peaks does not vary significantly across the entire [ range
we simulated. To substantiate these notions, the top, middle,
and bottom panels in Figure 4, respectively, show the peak in
the accretion rate Mmax, the time at which the peak occurs Tjy,x,
and the return time of the most-bound debris T, for all three
stellar progenitors over the range of (3 that we simulated for
each star. The feature of Figures 1 and 2 that we emphasize
most is that for all of the simulations the fallback rates
approach a clear power-law decay, and this power law is well
described by one of two modes: either n= —5/3 for full
disruptions or n ~ —9/4 for partial disruptions. To substantiate
this result further, we present fits to the fallback data and plots
of the power-law index with time, n(f), in Section 3.

In addition to this main result, we also find several other
interesting features of the simulations, the first being that self-
gravity can remain important in determining the structure of the
debris stream after a star has undergone a full disruption, and
that in some cases this can lead to widespread fragmentation of
the debris stream. This result was first presented by Coughlin &
Nixon (2015), who found that the debris stream could fragment
under its own self-gravity for a full disruption of a solar-like
star modeled as a y=15/3 polytrope on a parabolic orbit with
B=1. The subsequent dynamics of self-gravitating debris
streams has been explored by Coughlin et al. (2016a, 2016b),
and the gravitational instability of hydrostatic filaments that is
fundamentally responsible for the fragmentation is detailed in
Coughlin & Nixon (2020). More recently, Coughlin et al.
(2020b) presented a semi-analytical model for the evolution of
stellar debris orbits under the assumption that they evolve
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Figure 4. The peak in the accretion rate (top), the time at which the peak in the
accretion rate occurs (middle), and the return time of the most-bound debris
(bottom) for the 1M, ZAMS star (blue, solid), the 1 M., MAMS star (green,
dashed), and the 0.3 M MAMS star (red, dotted—dashed) as functions of (.

ballistically following the disruption of the star. Using this
model they showed that the debris evolves through an in-plane
caustic (discovered by Coughlin et al. 2016b), which is capable
of augmenting the density of the debris back above the tidal
density for any value of (3; the continued importance of self-
gravity—even for relatively high-3 disruptions—was also
found by Steinberg et al. (2019), who simulated the disruption
of y=4/3 and yv=5/3 polytropes up to 3=7. We show in
Figure 3 the fallback rate for the disruption of the 0.3 M,
MAMS star with 5 = 3.0, and therefore for which 3/5, ~ 2. As
described above, to make the fallback rates in Figures 1 and 2
we smoothed the data over the fallback of clumps that form out
of the fragmentation of the tidally disrupted debris stream. In
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Figure 5. The § = 1.5 disruption of the 0.3M, star in which a core reforms after the star is initially completely disrupted, where the left panel was performed with 10°
particles (the resolution we used for the results in this paper) and the right panel with 107 particles. The stream in the bottom left corner of each panel is at a time of
~0.29 days post-pericenter, while the stream in the middle of each panel (which has a reformed core, shown by the inset in the top right of each panel) is at a time of
~1.1 days post-disruption. We see excellent agreement between the two resolutions. (A higher-resolution version of this image can be obtained from the authors on

request.)

Figure 3 we show both the clump-smoothed and unsmoothed
fallback data. In the unsmoothed case the accretion of clumps
of gas within the debris stream are clearly visible at times
t 2 0.5 yr. This shows that the stream is self-gravitating and
vulnerable to fragmentation for moderate (3 values with
B=20..

Self-gravity also, and not surprisingly, plays a crucial role
in the determination of the final state of the debris stream
when (3~ (.. For disruptions that are just below [., we find
that the star is initially completely disrupted by the black
hole, with no core surviving the encounter intact by ~1.1
days post-disruption (i.e., the time at which the core would be
replaced by the sink to study the long-term behavior of the
fallback rate). At a time significantly later than this, however,
a zombie core reforms out of the disrupted debris; this
behavior was also seen in Guillochon & Ramirez-Ruiz
(2013). Figure 5 illustrates the §= 1.5 disruption of the
0.3 M. star, one such case in which this recollapse is
observed, where the simulation in the left panel was
performed with 10° particles—being our standard resolution
and the one used for the simulation results presented in this
paper—while the one in the right panel uses 107 particles.
The stream in the bottom left of each panel, which clearly
does not have a stellar core, is at a time of ~0.29 days post-
disruption. The stream in the center of each panel, which has
a core near its geometric center (as shown by the inset in the
top right of each panel), is at a time of ~1.1 days post-
disruption. In addition to providing a specific example of
a TDE in which this recollapse occurs, this figure also
demonstrates that our simulations at 10° particles accurately
capture the physics of the disruption and core reformation.

For disruptions at §. and slightly larger, a core tries to
reform, but instead the stream’s self-gravity causes it to
fragment on a smaller scale (see the discussion in Coughlin &
Nixon 2020 and Coughlin et al. 2020a about the wavenumber
at which the instability growth rate peaks in magnitude and
how this consideration applies to short gamma-ray bursts,
respectively). Interestingly, for the 0.3 M., MAMS star with
8= pB.=1.6, we find that instead of recollapsing to a single
core, the stream fragments into five massive cores that are all
localized near the maximum in the stream density. The left
panel of Figure 6 shows a density rendering of the stream
at ~1 month post-disruption, with brighter (darker) regions

indicating areas of larger (smaller) density. The right panel
shows the density (in g cm73) as a function of distance (in
astronomical units) from the supermassive black hole, where
here we averaged over the small solid angle subtended by the
stream to obtain a density purely as a function of r. Both of
these images serve to illustrate the impact of self-gravity
on the stream, and provide substantial evidence to suggest
that the same instability (see Coughlin & Nixon 2020) is
responsible for the recollapse of the stream into a single core
and the fragmentation of the debris stream into many, small-
scale knots.

We also find that the surviving core in some simulations can
be surrounded by and maintain a circumstellar disk of
material.'' Figure 7 shows one such disk from the 1M,
ZAMS, 3= 1.61 disruption, where the left (right) panel is the
projection of the density on to (out of) the orbital plane of the
original star; as for the left panel of Figure 6, denser regions in
this figure are more brightly colored. In this simulation the core
does not survive the initial encounter intact, and instead
reforms out of the stream at a time of roughly ~0.5 days post-
disruption. By following the temporal evolution of the core and
the disk, we find that most of the disk is composed of material
that was initially in the very outer layers of the reformed core,
though a smaller fraction of the disk mass is supplied by
material that continues to rain down on the core (from the
tidally shed debris stream) at later times. This finding
demonstrates that this disk of material is spun off the surviving
core. This finding is reminiscent of the disks formed around
rapidly rotating B-tyPe stars (Be stars; see the review by
Rivinius et al. 2013)."2

1 Previously Sacchi & Lodato (2019) have shown that a TDE involving an
initially rapidly rotating star whose rotation axis is retrograde to the orbital axis
around the black hole can result in the formation of a circumstellar disk. Here
we show that disk formation may be possible for initially nonrotating stars, and
thus may be a much more likely result from typical TDEs. In subsequent work,
we will explore the likelihood of disk formation and the implications for
observability for stars in our Galaxy.

12 Although we note that it is generally accepted that the disks in Be stars are
not formed in this way as the rotation rates are typically not high enough
(Rivinius et al. 2013). Be-star disks may instead form due to the input of mass
from small-scale magnetic flaring events on the stellar surface. These,
combined with the observed rapid rotation, can provide the mass and angular
momentum required to form and sustain a Keplerian Be-star disk (Nixon &
Pringle 2020).



THE ASTROPHYSICAL JOURNAL, 922:168 (16pp), 2021 December 1

Nixon, Coughlin, & Miles

0.001
1 076 o e ,_\‘w...,.wumn‘.‘,‘(‘M‘J‘W«M ""W"MMWH\.A‘
Té 0.001 “\‘
) 5.x10°
= \
Qg nxio \
10 ’ 5.x107 ‘ |
1.x10°8
5.x10°
l 07 12 1.x10°%
120 122 124 126 128
75 100 125 150 175 200 225
1 [AU]

Figure 6. Left: a rendering of the density of the stream formed out of the 0.3M.,, MAMS, 3 = 3. = 1.6 disruption, with brighter colors indicating regions of enhanced
density. This figure illustrates that, instead of recollapsing to a single core (which occurs for 3 = 1.4 and 3 = 1.5), the stream fragments into five cores that are highly
clustered near the maximum in the density of the original stream. Right: the density along the stream as a function of distance from the supermassive black hole (the
density is averaged over the small solid angle subtended by the stream), with the inset giving a close-up view of the five, highly localized maxima in the density that

correspond to the locations of the five cores that collapse out of the stream.

Figure 7. A rendering of the disk formed around the surviving stellar core of the 3 = 1.61 disruption of the 1 M, ZAMS star. The left image gives the projection of
the density onto the orbital plane of the original star, with brighter (darker) regions indicating areas of enhanced (reduced) density, while the image on the right gives

the projection out of the plane.

3. Analytical Fits to the Fallback Data and n(f) Curves

The main result presented above is that for stars modeled
with accurate density profiles and with a finely sampled
parameter there is a clear dichotomy between the late-time
power-law indices of the fallback rates, with those simulations
in which 3> . (i.e., full disruptions) exhibiting a ox /3
decay and those with 3 < . (i.e., partial disruptions) exhibiting
aocct /4 decay. To substantiate this further, we provide here
analytical fits to the fallback data, and the resulting evolution of
the power-law index with time, n(t) = d log(M)/d log(t).
With these fits we recover the dichotomy shown in Figures 1
and 2 and are able to confirm that the late-time power laws n
(t — 00) are generally consistent with either —5/3 or —9/4 as
predicted by Coughlin & Nixon (2019). There are a small

number of simulations in which there is a small, but significant,
offset from these power laws, and these cases—which occur
when 3~ g.—appear to be those in which self-gravity is still
acting to re-arrange the mass distribution along the debris
stream by the end of our simulations. Here we provide the
methodology used to fit the fallback rates and the resulting fits.

We fit the fallback curves to the following modified Padé
approximant:

rd Nmax—1 . 7i 7 Ninax
aim 14 YNl 4
dFm—ns 7 Ninax ’
1+ X 1 +7

Mg = @
Here 7 = t/tnax, Where ., is the time at which the fallback

rate reaches a peak, and Ny,x = 1 (when N, =1 there are
zero terms in the sum by definition). The motivation for this
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Figure 8. Comparison of the fallback rate M (left) and the instantaneous power-law index of the fallback rate d InM/d Int = n(t) (right) for different terms in the
series expansion of the fitting function (Equation (2)) for the 1 M. ZAMS star with 5= 1.34. The black points in the left panel show the fallback data for this

simulation, while the dashed line in the right panel shows n = —9/4.

functional form is the following: at times earlier than the peak in
the fallback rate we expect M to rise as a power law in time o< ¢,
while at times much greater than the peak it will fall off as a
power law oct”~. These considerations suggest that the early
(f < 1) and late-time (7 > 1) behavior can be well fit by the
function af™/(1 + a/b x ™ "~). In between the initial rise and
eventual decay the fallback rate peaks and shows additional
variation; these additional variations can be captured by the ratio
of polynomials in 7 in Equation (2), and increasing the number of
terms in the sum in the numerator (increasing N,,,x) leads to more
of these features being accurately reproduced by the function M;.
The ratio of polynomials is the Padé approximant.

The parameters a, m, b, ny, ci, ¢z, ..., CN,,—1 are fit by
minimizing the x> of the logarithm of the data, i.e., the parameters

minimize
M, M@ Y
i M, half max M, half max

In this sum M; is the numerically obtained fallback rate at the
time 7;. We emphasize the importance of minimizing the y* of
the log of the data as opposed to the data itself: the latter does
not accurately constrain the late-time falloff of the fallback rate
as M, < M, at these times. Therefore, the fitted function
could be anything &M at these late times and the
contribution to the y* of the nonlogged data would still be
small. By minimizing the x* of the logarithm of the data, on the
other hand, the late-time behavior retains its importance in
terms of its contribution to x2. We also normalize the fallback
rate by its half-max value (Myaifmax = Minax /2) so that both the
peak data and the late-time data are comparable in magnitude.

The left panel of Figure 8 shows the fallback rate from the
1 M., ZAMS, (= 1.34 simulation (points) and fits with varying
Npmax (curves; the legend gives Np,.x); here we zoomed in on the
near-peak behavior of the fallback as this is where there is the
most visible variation in the curves. As we increase the number of
terms in the expansion the fit to the data gets noticeably better, but
it is apparent that once Ny.x = 5 the degree to which the fit
follows the data does not increase appreciably. The latter
statement is quantified by the penultimate column of Table I,
which gives the \? of the log of the data; we see that in going

2

2= 3)

from zero to one term in the expansion (N,,x = 1 to 2), one to two
terms, and two to three terms, the relative decrease in X2 is
(respectively) Ax?/x> =~ —48.1%, —26.5%, and —821%.
Therefore, as we add more terms to the series expansion the x>
is reduced, but the degree to which it is reduced gradually lessens
as we increase Np,.x. The right panel of this figure shows the inst-
antaneous power-law index of the fallback rate dInM/
dInt = n(t). From this figure the difference in the solutions as
we increase the number of terms is more apparent, with more
nuanced behavior of the derivative of the fallback rate being better
captured by solutions with more terms.

By construction the asymptotic power-law index of the
fallback rate is given by n., in the fitting function in
Equation (2). The uncertainty of n., is defined as'?

“

This quantity represents the degree to which we have to change
n.—with all other parameters held fixed—to correspondingly
change the value of x> by a factor of 2, and thus is a measure of
the sensitivity of the goodness of our fit to the value of n.. The
last column of Table 1 gives the value of An,, for the 1 M,
ZAMS simulation with 3= 1.34. Because An., ~0.035 for
this specific simulation, we can only change n., by this amount
before we significantly worsen the fit of our function to the
data. The value of n,, that we measure by this method is
therefore a relatively robust quantity.

The parameters resulting from the fits to all of the fallback
curves (i.e., for all ) are presented for the 1 M., ZAMS, 1 M,
MAMS, and 0.3 M, MAMS in Tables 2, 3, and 4, respectively.
We note that the x~ that results from fitting the fallback curves
with N, = 1 (zero terms in the Padé approximant), 3, or 5 are
mostly of the order unity or below. Ordinarily this finding
would suggest that our model is overfitting the data. However,
we emphasize that the number of data points for each

'3 We also implemented a second technique in which we jackknifed the data—
we randomly sampled half of the data points from each simulation between the
first and last data point and fit the resulting data set (including the first and last
data point) a number of times—and measured from this data set a mean n,, and
a standard deviation o), about that mean. We found that o, ., was comparable
to the An,, given here and presented in the tables.
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Figure 9. The fallback rate from the 1M, ZAMS disruptions with fits for partial disruptions and those with a zombie core (top left) and full disruptions (bottom left)
and the instantaneous power-law index for partial/zombie-core disruptions (top right) and full disruptions (bottom right). The points in the left panel give the results

from the simulation, while the curves are from fits with Equation (2).

simulation (of the order hundreds to thousands) is much greater
than the number of parameters (4, 6, or 8) we are fitting to the
data. Therefore, the small value of x> implies that the data is
very well approximated by a function that rises as a power law,
decays as a power law, and peaks in between—as our function
given in Equation (2) does by construction. We also note that
there is, for the majority of the simulations, a large reduction in
X2 in going from zero terms in the Padé expansion (Np.x = 1)
to two terms (Npax = 3). This reduction in X2 occurs because
by including two additional terms in the expansion we can
exactly reconstruct the early and late-time rise and decay, and
the peak magnitude and the time of the peak. Further
improvements in the fits are possible, and do occur, as Nyax
increases for 3~ (3., as in these cases the evolution of the
fallback curve is more complex (see Figure 12 below and the
corresponding discussion). Finally, we emphasize that even
with no terms in the Padé apgroximant (Npax = 1) the fit to the
data is extremely good (X~ < Npointss Where Npgings is the
number of data points in the simulation).

From the fits to the fallback curves we calculate the
instantaneous power-law index of the fallback rate n(r) for
every simulation. The results for the 1 M., ZAMS star are
shown in Figure 9, 1 M., MAMS in Figure 10, and 0.3 M,
MAMS in Figure 11. In Figures 9 and 11 the top left plot
compares the data from the fallback rates (points) to the fits
(curves) for all of the simulations that left a bound core, while
the top right panel gives the instantaneous power-law index for

these same simulations. The bottom left and bottom right
panels are the same as the top left and top right but for the
simulations that resulted in the complete disruption of the star.
For Figure 10 we plot only simulations up to 3= 2.5 in the top
left and right panels even though partial disruptions continue
up until 3= 3.6; we do this to slightly ease the interpretation
and appearance of this figure.

From the combination of Figures 9, 10, and 11, it is apparent
that the late-time behavior of the power-law index of most of the
fallback rates with surviving/zombie cores is to asymptote to a
value that is close to —9/4, while the power-law indices of the
simulations without cores is to asymptote to a value that is near
—5/3. The first exceptions to this rule are the disruptions that
form a zombie core, and are just below the critical 3 for a
full disruption, which are 3.~ 1.79 for 1 M, ZAMS, G, = 3.7 for
I M., MAMS, and G.=1.6 for 0.3 M., MAMS. It is apparent
from Figures 9, 10, and 11 that these n(f) curves initially follow
n(f) >~ —5/3 for an appreciable amount of time (~years), then fall
back below —5/3, but never quite steepen to —9/4. This behavior
is reminiscent of that seen for the §=0.9 disruption of a 1 M,
star modeled as a y=15/3 polytrope investigated by Miles et al.
(2020); in their case, the energy of the surviving core was slightly
positive, which lessened the influence of the core on the fallback
rate. Therefore, at very late times, the fallback rate of this
simulation returned to n(f) >~ —5/3 (see their Figure 2).

We find that the behavior of the cores very near the
critical disruption threshold is similar to that found in Miles
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Figure 10. Same as for Figure 9 but with the 1 M., MAMS star, except that we only include up to 3= 2.5 in the top left and top right panels even though partial/

0.10

zombie-core disruptions continue up until 5 = 3.6; we do this to maintain slightly less clutter in the figures.

et al. (2020): the energy of the surviving core is slightly
positive and its influence on the fallback rate lessens over time,
resulting in a fallback rate that deviates from the
expected < o4 scaling at sufficiently late times. This is
shown explicitly in Figure 12, the left panel of which gives the
fallback rate from the §=1.61 (red points) and 1.70 (blue
points) disruptions of the 1M, star, respectively, alongside
their fits from the fitting function given in Equation (2)
(curves). The right panel shows the instantaneous power-law
index obtained from the fits to the fallback data, which
illustrates that the power-law index never quite steepens to —9/
4 for each of these simulations. This figure also shows that, at
timescales of ~hundreds of years, the power-law index
eventually starts to return back to —5/3.

The energy of the surviving core that we measure
from the S=1.61 and 1.70 simulations are, respectively,
€er61/Ae=3.68 x 107> and €. 70/Ae =621 x 10>, where
Ae = GM.R, /R? is the energy of the most unbound debris
under the frozen-in approximation (Lacy et al. 1982). We can
estimate the time at which we expect the positive energy of the
core to influence the fallback rate by noting that the equation of
motion of the core is

1 (dRc)2
—~ +
2\ dt

where £, and ¢, are the angular momentum and energy of the
core, respectively. To the leading order in Z. and €. the solution

122

2 R?

GM
R,

®)

= €

10

to this equation is

&zmmb+l (©)

€ B 22
sGM 0 26M )

where Ry(f) is the zero-energy, zero-angular-momentum orbit

that satisfies
3 2/3

The core will noticeably affect the fallback rate once
€-Ro(1)/(5GM) ~ 1, which, upon rearranging, shows that this
occurs at a time of

(N

7~ M ®)

3/2
60

Inserting the energy of the surviving core from each simulation
into this expression gives 7, ¢ =~ 190 yr and T, ;702287 yr.
These timescales are in rough agreement with the times at
which we start to see the power-law index of the fallback rate
from each of these simulations return to ~—5/3, as evidenced
by Figure 12.

We also note from Figures 9-11 that the power-law index for
disruptions that are at (3, and just above, and thus just barely
disrupt the entire star, have power-law indices that stay above
—5/3 at late times by a small but noticeable amount. This
increase above the expected value arises from the fact that
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Figure 12. The fallback rate from the 5= 1.61 (red) and G = 1.70 (blue) zombie disruptions of the 1 M., ZAMS star, where here we have ran the simulations out to
2100 years post-disruption. The left panel gives the fallback rate, while the right panel shows the instantaneous power-law index.

self-gravity in these simulations is trying to cause the disrupted
debris stream to recollapse into a core, which results in a
gradual increase (relative to the self-gravityless case) in the
amount of material near the marginally bound radius within the
stream (from which material rains back onto the black hole at
asymptotically late times).

4. Conclusions

In this paper we have presented numerical simulations of the
tidal disruption of stars by a supermassive black hole. In

11

particular we have used stars with accurate density profiles,
corresponding to the 1 M., ZAMS, 1 M., MAMS, and 0.3 M,
MAMS stars modeled by Golightly et al. (2019a), and
simulated TDEs with the stars on parabolic orbits with
pericenters that encompass partial and full disruptions. With
these simulations, and a new methodology for providing
analytical fits to the fallback rate data, we have established the
following results.

1. As predicted by Coughlin & Nixon (2019), there is a
dichotomy in the late-time power-law indices for the
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fallback rates in TDEs, with full disruptions yielding
Neo ™ —5/3 and partial disruptions yielding n., ~ —9/4.

. For orbits with § >~ (. it is possible for the central regions

of the fully disrupted debris stream to recollapse into a
single, dominant zombie core (also seen in the simula-
tions of Guillochon & Ramirez-Ruiz 2013; Golightly
et al. 2019a). For the cases presented here, the resulting
core has a small positive orbital energy with respect to the
black hole, resulting in the evolution of n(¢) from ~—9/4
to ~—5/3 on a timescale of ~100 years. This highlights
the need for long-duration simulations to capture the full
behavior of TDE debris streams (see Figure 12).

. For some cases with 3~ (. it is possible that the central

regions of the stream fragment into several zombie cores,
rather than a single one (see Figure 5).

. There is a complex relationship between the dependency

of features in the fallback rates (e.g., rise time, time of
peak, and peak rate) on the impact parameter 5 and the
stellar properties (see Figure 3). This is evidenced by the
variation in time of peak with (3 for the 1 M, stars, and
the relative constancy of the time of peak for the 0.3 M,
star.

. We have shown that for impact parameters up to at least

twice the critical value at which the star is fully disrupted,
the effects of self-gravity of the debris stream can
manifest in the fallback rate. This was particularly evident
in the 0.3 M, MAMS simulation with 3 =3, for which
B.~ 1.5 (shown in Figure 4).

. We have also found that it is possible for the surviving

stellar core in a partial TDE to acquire a circumstellar
disk of material (see Figure 6). This disk is primarily
formed from material that is ejected from the equator of
the core, which is initially rotating above the critical
rotation rate for equilibrium. The disk is also fed over
time from the portion of the debris stream that is bound to
the core. These cores, which exist on unbound orbits with
respect to the central black hole, may make their way into

Nixon, Coughlin, & Miles

the galaxy as rapidly rotating objects with potentially
observable circumstellar disk emission.

7. Finally, we have presented a simple analytical function
that can be used to fit TDE fallback rates with good fits
achieved with relatively few parameters. We expect that
this function (Equation (2)) may have wide application in
transient astrophysics where variations in a measured
quantity vary from one power law to another in time.
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Appendix A
Fitted Parameters

Here we present tabulated data from the simulations to
unclutter the main body of the text. Table 1 gives the fitting
parameters from the fitting function defined in Equation (2) for
the 3= 1.34 disruption of the 1M, ZAMS star for different
values of N,.. (where there are Ny,x — 1 coefficients in the
Padé approximant in Equation (2)). Tables 2, 3, and 4 give the
best-fit parameters that minimize x~ for the 1 M., ZAMS, 1 M..,
MAMS, and 0.3 M., MAMS stars, respectively, for all of the

Table 1
Fitting Parameters for the 1M, ZAMS star

Niax a m b N Cy [o) C3 Ca Cs Ce 7 cg Co Xz Ang,

1 10.0 587 0470 —2.32 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.71 0.0450
2 5.71 560 0693 223 1.16 N/A N/A N/A N/A N/A N/A N/A N/A 0.887 0.0324
3 5.04 533 0531 —2.29 0.932 —0.119 N/A N/A N/A N/A N/A N/A N/A 0.652 0.0279
4 2.77 518 0706 ~ —2.23 4.14 —3.69 1.76 N/A N/A N/A N/A N/A N/A 0.5985  0.0266
5 2.40 517  0.601 —2.26 5.94 —6.30 2.13 0.304 N/A N/A N/A N/A N/A 0.5983  0.0266
6 0.963 549 0764  —2.22 389 —69.3 48.2 —15.8 3.23 N/A N/A N/A N/A 0.584 0.0263
7 2884 797 0597 —2.26 1.78 —18.8 329 -21.0 5.41 0.0350 N/A N/A N/A 0.485 0.0240
8 8453 1.7 0.644 225 0.820 —8.60 18.6 —12.5 442 —1.52 1.00 N/A N/A 0.472 0.0236
9 431709 13.6  0.701 —2.23 —9.69 424 —103 144 —111 48.0 —-11.7 =226 N/A 0.464 0.0235
10 35133 993  0.634 225 —13.4 724 —202 314 —277 138 —36.4 3.83 0.707 0.462 0.0235

Note. For the 1M, ZAMS Star with 3= 1.35, the coefficients in the fitted function as we increase the number of terms in the Padé approximant (the ratio of
polynomials in Equation (2)). The quantities @ and m are the normalization and power-law index of the initial rise of the fallback rate, b and n., are the normalization
and power-law index of the decay of the fallback rate, and ¢y, c», ..., cg are the coefficients in the polynomial expansion of the Pad€ approximant. The Xz of the fit is
given by the penultimate column (here there are 346 data points from which x> was constructed), and An., is the change in 1., that would result in an increase of y>
by a factor of two.
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Table 2
The Parameters for Each Simulation for the 1 M., ZAMS Star

B oo, 1 Moo 3 Noo,s nio3 nio,s X7 Npoints) \3 X3 Ang Ang3 AV I
0.715 —2.77 —2.41 —2.16 —2.37 —2.24 4.45 (100) 0.810 0.506 0.313 0.133 0.105

0.803 —2.71 —2.48 —2.16 —245 —2.27 3.53 (82) 0.479 0.221 0.256 0.0943 0.0645
0.894 —2.67 —2.36 —1.96 —2.33 —2.16 6.92 (113) 0.707 0.327 0.267 0.0858 0.0588
0.983 —2.63 —2.34 —2.52 —2.33 —2.48 7.86 (148) 0.477 0.243 0.236 0.0581 0.0414
1.07 —2.55 —2.26 —2.26 —2.26 —2.27 8.51 (186) 0.643 0.488 0.182 0.0502 0.0438
1.16 —2.53 —2.29 —2.41 —2.29 —2.39 5.27 (215) 0.197 0.192 0.144 0.0280 0.0278
1.25 —2.41 —2.28 —2.27 —2.28 —2.27 4.15 (268) 0.503 0.503 0.0939 0.0327 0.0327
1.34 —2.33 —2.29 —2.26 -2.29 —2.27 1.71 (346) 0.652 0.598 0.0450 0.0279 0.0266
1.43 —2.25 -2.30 —2.27 -2.30 —2.27 2.52 (514) 2.15 2.08 0.0366 0.0338 0.0332
1.52 —2.14 —2.28 —2.31 —2.27 —2.29 8.52 (741) 2.76 2.75 0.0498 0.0282 0.0282
1.61 —1.97 —2.16 —2.28 —2.15 —2.24 27.7 (1230) 8.72 5.89 0.0621 0.0348 0.0286
1.70 —1.67 —-1.77 —1.89 -1.76 —1.85 4.48 (548) 1.74 1.04 0.0471 0.0294 0.0226
1.79 —1.53 —1.55 —1.58 —1.54 —1.56 18.2 (1030) 15.9 15.7 0.0641 0.0598 0.0595
1.88 —1.58 —1.61 —1.60 —1.60 —1.59 5.49 (502) 4.48 4.39 0.0482 0.0436 0.0431
1.97 —1.63 —1.64 —1.59 —1.63 —1.60 3.93 (484) 3.39 3.22 0.0429 0.0399 0.0387
2.06 —1.66 —1.67 —1.64 —1.67 —1.64 2.06 (476) 1.66 1.54 0.0318 0.0286 0.0276
2.14 —1.68 —1.68 —1.66 —1.67 —1.66 1.72 (486) 1.34 1.24 0.0286 0.0252 0.0243
2.23 —1.68 —1.67 —1.65 —1.67 —1.65 1.76 (508) 1.31 1.21 0.0281 0.0243 0.0233
2.32 —1.69 —1.67 —1.65 —1.67 —1.66 1.70 (496) 1.22 1.15 0.0280 0.0238 0.0231
2.41 -1.70 —1.67 —1.65 —1.67 —1.66 1.76 (504) 1.24 1.18 0.0284 0.0239 0.0232
2.50 -1.70 —1.66 —1.64 —1.66 —1.65 2.29 (530) 1.64 1.58 0.0317 0.0269 0.0263
2.59 —1.71 —1.68 —1.69 —1.68 —1.68 1.79 (496) 1.31 1.28 0.0290 0.0247 0.0246
2.68 —-1.71 —1.67 —1.66 —1.68 —1.66 2.26 (553) 1.70 1.67 0.0307 0.0266 0.0264
Note. The parameters in the table are as follows: the 3 of the encounter, 1., j, 1 3, and 7., s; the asymptotic power-law coefficient with Npax = 1, 3, and 5,

respectively; n19.3 and ny s are the instantaneous power-law indices of the fallback at 10 years with Ny.x = 3 and 5 respectively; Xlz, x% ,}(g, and the Xz with Nyax = 1,
3, and 5, respectively (Npoints are the number of data points in each fallback curve used to construct the xz); and Any 1, Any 3, and An, 5 the change in n,, required
to change the x2 by a factor of 2 with N,.x = 1, 3, and 5, respectively.

Table 3
The Parameters for Each Simulation for the 1 M., MAMS Star

B Moot N3 Neos nio3 ni0,5 X7 Npoinss) X3 X3 Ang AUNS AV
0.8 —2.94 —2.50 —2.29 —2.37 —2.36 19.9 (235) 5.38 4.24 0.414 0.216 0.195

0.9 —2.84 —2.44 -2.20 —2.45 —2.30 5.04 (103) 0.517 0.209 0.325 0.104 0.0686
1.0 —2.78 —2.29 —1.94 —2.33 —2.16 6.45 (131) 0.528 0.259 0.270 0.0772 0.0559
1.1 —2.78 —2.17 —2.26 —2.33 —2.25 7.43 (166) 0.407 0.300 0.221 0.0515 0.0443
1.2 —2.82 —2.02 —1.99 —2.26 —2.06 4.32 (180) 0.376 0.256 0.187 0.0552 0.0455
1.3 —2.66 —2.16 —2.07 —2.29 —2.14 6.81 (209) 0.449 0.439 0.173 0.0443 0.0438
1.4 —2.60 —2.24 —2.19 —2.28 —2.22 6.43 (236) 0.477 0.465 0.141 0.0383 0.0378
1.5 —2.58 —2.35 —2.42 —2.29 —2.41 5.09 (264) 0.852 0.802 0.111 0.0457 0.0444
1.6 —2.53 —-2.32 —2.30 —2.30 —2.31 4.50 (296) 0.766 0.654 0.0919 0.0379 0.0351
1.7 —2.48 —2.34 —2.22 -2.27 —2.25 5.46 (366) 1.72 1.49 0.0755 0.0423 0.0395
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Table 3
(Continued)
B N1 Moo 3 N, n103 n10,5 X7 Npoints) X3 X3 Ang,i Anee s Ango s
1.8 —2.46 —2.34 —2.28 —2.15 —2.29 3.80 (365) 0.953 0.739 0.0668 0.0335 0.0296
1.9 —243 —2.35 —2.29 —1.76 —2.30 3.54 (421) 1.50 1.24 0.0550 0.0358 0.0325
2.0 —2.40 —2.35 —2.30 —1.54 —2.31 3.13 (472) 1.95 1.66 0.0460 0.0362 0.0335
2.1 —2.38 —2.35 —2.28 —1.60 —2.29 4.70 (592) 4.11 3.75 0.0403 0.0437 0.0417
22 —2.35 —2.34 —2.30 —1.63 —2.31 4.09 (652) 4.00 3.69 0.0434 0.0399 0.0383
23 —2.32 —2.33 —2.30 —1.67 —2.31 5.87 (758) 5.70 5.40 0.0450 0.0429 0.0417
2.4 —2.28 —2.32 —2.30 —1.67 —2.30 7.15 (811) 6.31 6.09 0.0475 0.0423 0.0416
2.5 —2.24 —-2.29 —2.32 —1.67 —2.31 9.76 (932) 7.30 7.25 0.0501 0.0412 0.0410
2.6 —2.20 —2.26 —2.35 —1.67 —2.34 13.0 (1055) 7.49 7.49 0.0564 0.0379 0.0379
2.7 —2.15 —2.20 —2.37 —1.67 —2.35 19.6 (1203) 10.0 9.61 0.0578 0.0403 0.0395
2.8 —2.10 —1.66 —2.38 —1.66 —2.34 23.2 (1280) 9.78 8.52 0.0629 0.0376 0.0351
29 —2.05 —1.68 —2.41 —1.68 —2.36 33.5 (1468) 14.7 10.9 0.0684 0.0417 0.0361
3.0 —1.98 —1.67 —2.49 —1.68 —2.38 46.6 (1650) 23.6 15.8 0.0307 0.0488 0.0406
3.1 —-1.92 —1.94 —2.37 —2.06 —2.15 48.2 (1854) 28.1 20.7 0.0641 0.0489 0.0426
32 —1.80 —1.88 —2.28 —1.85 —2.00 3.55 (432) 1.58 1.01 0.0519 0.0346 0.0320
33 —1.76 —1.81 —1.95 —1.79 —1.87 4.41 (477) 2.42 2.12 0.0535 0.0396 0.0380
34 —1.68 —1.60 —1.58 —1.60 —1.59 12.1 (641) 7.39 7.29 0.0750 0.0587 0.0583
35 —1.70 —1.64 —1.62 —1.64 —1.62 8.69 (635) 5.44 5.37 0.0704 0.0557 0.0553
3.6 —1.64 —1.47 —1.40 —1.48 —1.43 25.2 (663) 18.2 17.9 0.112 0.0950 0.0943
3.7 —1.73 —1.65 —1.60 —1.65 —1.61 5.60 (576) 3.66 3.59 0.0675 0.0546 0.0540
3.8 —1.65 —1.56 —1.55 —1.56 —1.55 22.2 (668) 17.6 17.5 0.102 0.0905 0.0904
39 —1.64 —1.51 —1.47 —1.52 —1.49 25.2 (628) 19.9 19.7 0.109 0.0966 0.0963
4.0 —1.66 —1.60 —2.00 —1.60 —1.85 20.5 (604) 17.1 16.4 0.0986 0.0901 0.115
Note.
! Parameters are the same as those in Table 2.
Table 4
The Parameters for Each Simulation for the 0.3 M., MAMS Star
& Moo 1 Moo 3 Neos n103 nio,s X7 Npoints) X3 X3 Ange AUNS AV
0.8 —2.46 —2.28 —2.06 —2.28 —2.16 2.41 (142) 0.472 0.166 0.102 0.0451 0.0267
0.9 —2.42 —2.33 —2.12 —2.33 —2.20 2.17 (156) 0.795 0.197 0.0915 0.0553 0.0276
1.0 —2.37 —2.34 —2.16 —2.34 —2.23 2.12 (219) 1.10 0.319 0.0658 0.0474 0.0256
1.1 —2.30 —2.36 —2.20 —2.35 —2.25 2.14 (299) 1.49 0.390 0.0505 0.0421 0.0216
1.2 -2.19 —2.35 —2.38 —2.34 —2.36 4.30 (456) 2.10 0.767 0.0532 0.0372 0.0225
1.3 —2.02 —2.24 —2.38 —2.22 —2.32 2.46 (192) 0.238 0.213 0.107 0.0332 0.0321
1.4 —1.86 —2.03 —2.08 —2.00 —2.04 3.46 (219) 0.401 0.157 0.103 0.0349 0.0218
1.5 -1.71 —-1.72 —1.85 —1.70 —1.78 4.94 (273) 0.446 0.412 0.0914 0.0273 0.0272
1.6 —1.73 —1.55 —1.54 —1.54 —1.53 9.83 (392) 1.54 1.37 0.107 0.0424 0.0397
1.7 -1.76 —1.65 —1.66 —1.63 —1.64 5.59 (339) 0.995 0.805 0.0857 0.0362 0.0325
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Table 4
(Continued)
B Moo, 1 Moo 3 Nog 5 nio3 nio.s XF Npoints) i X3 Ange Ang 3 Ang s
1.8 —1.77 —1.69 —1.70 —1.67 —1.68 4.55 (358) 0.968 0.808 0.0771 0.0356 0.0325
1.9 —1.77 —1.68 —1.67 —1.67 —1.66 3.47 (356) 0.774 0.552 0.0693 0.0328 0.0277
2.0 —1.77 —1.71 —1.71 —1.70 —1.70 3.02 (357) 0.922 0.748 0.0642 0.0356 0.0320
2.1 —1.77 —1.73 —1.72 —1.72 —1.70 1.52 (222) 0.277 0.224 0.0711 0.0308 0.0273
2.2 —1.77 —1.76 —1.75 —1.74 —1.73 1.36 (227) 0.339 0.286 0.0669 0.0339 0.0307
2.3 —1.77 —1.76 —1.74 —1.74 —1.72 1.14 (228) 0.306 0.250 0.0624 0.0345 0.0291
24 —1.77 —1.76 —1.74 —1.74 —1.73 1.02 (231) 0.355 0.290 0.0577 0.0348 0.0307
2.5 —1.77 —1.74 —1.71 —-1.72 —1.70 1.01 (239) 0.356 0.299 0.0566 0.0345 0.0307
2.6 —-1.77 —1.74 —1.71 —-1.73 —1.70 0.955 (238) 0.416 0.352 0.0560 0.0379 0.0338
2.7 —1.77 —1.73 —1.70 —1.72 —1.70 0.851 (242) 0.430 0.351 0.0519 0.0378 0.0332
2.8 —1.75 —1.59 —1.52 —1.60 —1.56 1.36 (248) 0.716 0.602 0.0646 0.0465 0.0427
2.9 —1.75 —1.67 —1.63 —1.67 —1.64 0.922 (248) 0.512 0.420 0.0540 0.0413 0.0362
3.0 —1.75 —1.69 —1.65 —1.69 —1.66 1.14 (250) 0.875 0.768 0.0574 0.0516 0.0470

Note. The parameters are the same as those in Table 2.

simulations. The details of what each parameter means is given
in the caption of the table.
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