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ABSTRACT

When a star passes close to a supermassive black hole (BH), the BH’s tidal forces rip it apart into a thin stream, leading to a
tidal disruption event (TDE). In this work, we study the post-disruption phase of TDEs in general relativistic hydrodynamics
(GRHD) using our GPU-accelerated code H-AMR. We carry out the first grid-based simulation of a deep-penetration TDE (8 =
7) with realistic system parameters: a black hole-to-star mass ratio of 10°, a parabolic stellar trajectory, and a non-zero BH spin.
We also carry out a simulation of a tilted TDE whose stellar orbit is inclined relative to the BH midplane. We show that for
our aligned TDE, an accretion disc forms due to the dissipation of orbital energy with ~20 per cent of the infalling material
reaching the BH. The dissipation is initially dominated by violent self-intersections and later by stream—disc interactions near
the pericentre. The self-intersections completely disrupt the incoming stream, resulting in five distinct self-intersection events
separated by approximately 12 h and a flaring in the accretion rate. We also find that the disc is eccentric with mean eccentricity
e ~ (0.88. For our tilted TDE, we find only partial self-intersections due to nodal precession near pericentre. Although these
partial intersections eject gas out of the orbital plane, an accretion disc still forms with a similar accreted fraction of the material
to the aligned case. These results have important implications for disc formation in realistic tidal disruptions. For instance, the
periodicity in accretion rate induced by the complete stream disruption may explain the flaring events from Swift J16444-57.
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1 INTRODUCTION

In recent decades, several very bright flares in galactic nuclei have
been observed and interpreted as tidal disruption events (TDEs),
which occur when a star is scattered on to a nearly parabolic
orbit around a supermassive black hole (BH) with a pericentre
inside the tidal radius of the BH (Hills 1975; Frank & Rees 1976;
Rees 1988). While these flares are typically discovered from quasi-
thermal emission in the soft X-ray (Bade, Komossa & Dahlem 1996;
Komossa & Bade 1999; Saxton et al. 2012), UV (Gezari et al. 2006,
2008), or optical (van Velzen et al. 2011; Gezari et al. 2012; Arcavi
et al. 2014; Holoien et al. 2014) bands, they have been observed
to emit radiation across the electromagnetic spectrum, from radio
synchrotron (Zauderer et al. 2011; Alexander et al. 2017) to non-
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thermal hard X-rays and soft gamma rays (Bloom et al. 2011; Cenko
et al. 2012; Brown et al. 2015).

Our current theoretical understanding of the tidal disruption
process — the star’s first, terminal pericentre passage — is largely con-
verged (Lacy, Townes & Hollenbach 1982; Carter & Luminet 1983;
Guillochon & Ramirez-Ruiz 2013; Mainetti et al. 2017), at least
for polytropic stars in Newtonian gravity. More recent simulations
have explored how the immediate outcome of disruption depends on
stellar spin (Golightly, Coughlin & Nixon 2019a; Kagaya, Yoshida &
Tanikawa 2019), realistic models of the star’s internal structure
(Golightly, Nixon & Coughlin 2019b; Ryu et al. 2020a), and general
relativistic gravity (Gafton et al. 2015; Tejeda et al. 2017; Gafton &
Rosswog 2019; Ryu et al. 2020b). However, we do not yet have a
first principles understanding of how, or if, the stellar debris streams
are able to form a nearly axisymmetric, or quasi-circular, accretion
disc (for a recent review of this problem see Bonnerot & Stone
2020). Because the bound stellar debris has typical eccentricities
099 < e < 0999 (Stone, Sari & Loeb 2013), an enormous
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excess of orbital energy must be dissipated for circularization to
occur.

Early work conjectured that most of this energy dissipation arises
from relativistic apsidal precession (Rees 1988): as the most tightly
bound debris passes through pericentre, its apsidal angle measured
in radians precesses by an order-unity amount, causing a large-angle
collision with less tightly bound matter that has yet to return to
pericentre. The shocks that thermalize bulk kinetic energy at the point
of self-intersection offer a plausible mechanism for circularizing
returning stellar debris (Hayasaki, Stone & Loeb 2013; Bonnerot
et al. 2016). However, self-intersection shocks may be less efficient
at circularizing the debris for inclined orbits around spinning Kerr
BHs. In this regime, nodal precession, due to Lense—Thirring frame
dragging may delay the onset of self-intersection by many orbits
(Cannizzo, Lee & Goodman 1990; Kochanek 1994; Guillochon &
Ramirez-Ruiz 2015; Hayasaki, Stone & Loeb 2016). Additionally,
energy dissipation due to self-intersection shocks may be greatly
limited for less relativistic orbital pericentres, with small-angle
collisions occurring at self-intersection radii near the apocentre of the
most tightly bound debris (Dai, McKinney & Miller 2015; Shiokawa
et al. 2015).

An alternative dissipation site is at the stream pericentre itself,
where the recompression of the returning debris generates ‘pancake’
or ‘nozzle’ shocks (Kochanek 1994). Recently, Bonnerot & Lu
(2021) performed an in-depth study of the nozzle shock using a 2D
simulation of a vertical slice of the stream and found that dissipation
at the nozzle shock raises the entropy of the gas by two orders
of magnitude. Newtonian hydrodynamic simulations by Ramirez-
Ruiz & Rosswog (2009) have shown that this pericentre shock could
feasibly circularize the tidal debris. However, these simulations were
performed for a BH-to-star mass ratio of Q = 10 and analytic
estimates of Guillochon, Manukian & Ramirez-Ruiz (2014) suggest
that pericentre recompression shocks become less efficient at more
realistic mass ratios (e.g. Q = 10°). It is also possible that in many
TDEs, efficient dissipation is lacking altogether, and the formation
of an accretion disc is an inefficient process unfolding over many
fallback times (Piran, Sadowski & Tchekhovskoy 2015). We discuss
further in Section 4.1.

TDE debris circularization and disc formation is a complex phys-
ical problem involving a large dynamic range, general relativistic
orbital dynamics, the need for accurate treatment of hydrodynamic
shocks, and possibly even magnetohydrodynamic (MHD) effects
(Svirski, Piran & Krolik 2017). The many pieces of multiscale
and non-linear physics involved in TDE disc formation mean that,
for numerical reasons, almost all past simulations of this process
employed major simplifying assumptions that cast doubt on the
generality of their conclusions.

Ayal, Livio & Piran (2000) initiated the numerical study of TDE
circularization using a post-Newtonian (PN) potential to simulate the
lowest order level of apsidal precession in a finite-mass, smoothed
particle hydrodynamics (SPH) framework, albeit with low (N ~ 10%)
particle number. More recently, global circularization simulations
achieved much higher resolution by reducing the dynamic range
of the problem in one of two ways. The first is to consider an
unrealistically low mass ratio, typically Q ~ 10°. In simulations
of this type, general relativity is sometimes ignored completely
(Guillochon et al. 2014), but when it is included, it has a minimal
effect on the circularization process because the tidal radius around
an intermediate-mass BH is not very relativistic (Ramirez-Ruiz &
Rosswog 2009; Shiokawa et al. 2015).

The second option is to consider a realistic mass ratio (Q ~
10°) but an unrealistic pre-disruption stellar orbit. Tidally disrupted
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stars typically approach supermassive BHs on nearly parabolic
orbits (Magorrian & Tremaine 1999), with initial eccentricities 1
— ey ~ 107°. For computational convenience, one may choose
an unrealistic stellar eccentricity, ey < 0.95, to reduce the debris
stream apocentres. This approach was adopted by Hayasaki et al.
(2013), who mimicked apsidal precession effects with a pseudo-
Newtonian potential in a highly relativistic § = 5 TDE. They found
rapid circularization due to orbital energy dissipation at stream self-
intersections. Later simulations found that in less relativistic 8 =
1 TDEs, self-intersections are less efficient at energy dissipation
compared to this initial work (Bonnerot et al. 2016).

The results of Hayasaki et al. (2013) were later confirmed and
extended to different gas equations of state (Bonnerot et al. 2016;
Hayasaki et al. 2016), as well as higher (but still sub-parabolic)
eccentricities (Bonnerot et al. 2016; Sadowski et al. 2016). The low-
eo limit of tidal disruption has also been used with PN potentials
to include Lense-Thirring frame dragging, which was seen to
substantially delay circularization provided debris streams remain
thin (Hayasaki et al. 2016). More recently, Bonnerot & Lu (2020)
have performed a TDE disc formation simulation with realistic
astrophysical parameters using a different approximation: neglecting
the returning debris streams entirely, and injecting mass, momentum,
and energy (in the form of SPH particles) from the test-particle
self-intersection point. The validity of this approach depends on the
accuracy of the local injection scheme, and its independence from
global gas evolution around the BH. We discuss this approach further
and compare and contrast it to our results in Section 4.5.2.

In this paper, we use novel numerical techniques to capture the
disc formation process in general relativistic hydrodynamics without
sacrificing astrophysical realism in our choice of system parameters
(e.g. O, ep). We use two-level adaptive mesh refinement (AMR) to
resolve the relevant physics within our grid-based code. In Section 2,
we outline our numerical scheme. In Section 3, we describe the
general outcomes of our simulation, including the spatial properties
of the nascent accretion flow. In Section 4, we more carefully
analyse the specific physical mechanisms controlling the accretion
and circularization process and provide a detailed comparison to
the ZEro-BeRnoulli Accretion (ZEBRA) model of Coughlin &
Begelman (2014). We conclude in Section 5.

2 NUMERICAL METHOD AND SETUP

We simulate the initial tidal disruption using the SPH code PHANTOM
(Price & Monaghan 2007) and we simulate the post-disruption
evolution using our new GRMHD code H-AMR (Liska et al. 2019),
an approach analogous to those of Rosswog, Ramirez-Ruiz & Hix
(2009) and Sadowski et al. (2016). With this hybrid method, we can
account for the large range of spatial and temporal scales involved in
the disruption process and debris stream formation while accurately
capturing the essential shocks and general relativistic effects in the
post-disruption evolution.

2.1 Initial disruption in PHANTOM

The stellar disruption is initially followed by the smoothed-particle
hydrodynamics code PHANTOM (Price et al. 2018). The setup is
identical to that described in Coughlin & Nixon (2015): a star of
mass 1 Mg is modelled as a y = 5/3 polytrope, with the adiabatic
index equal to the polytropic index, by placing ~107 particles on
a close-packed sphere. The sphere is stretched to achieve roughly
the correct polytropic density profile. The star is subsequently
relaxed in isolation (i.e. without the external gravitational potential
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of the BH) for ten sound crossing times to smooth out numerical
perturbations in the density profile. Self-gravity is included through
the implementation of a tree algorithm alongside an opening angle
criterion to calculate short-range forces (Gafton & Rosswog 2011).
We also include the effects of shock heating in modifying the internal
energy of the gas.

The relaxed polytrope is placed at a distance of 5r, from the
supermassive BH of mass 10° Mg such that the centre of mass is
on a parabolic orbit. To maintain hydrostatic balance initially, every
particle comprising the star is given the velocity of the centre of mass.
In its current version, PHANTOM is a Newtonian code, and therefore
has no direct means of implementing general relativistic effects.
Instead, we mimic some of these effects with a pseudo-Newtonian
‘Einstein’ potential used by Nelson & Papaloizou (2000), Nealon,
Price & Nixon (2015), Xiang-Gruess, Ivanov & Papaloizou (2016).
The potential is given by

v = - (142, M)
r r

where R, = GMgy/c* is the gravitational radius and Mgy is the
mass of the BH. This potential accurately reproduces the general
relativistic apsidal precession angle at large radii relative to the
gravitational radius, with deviations from the true precession angle
becoming more pronounced as the radius r becomes comparable
to R,. However, for the large mass ratio considered here, the tidal
approximation is upheld to a high degree of accuracy, meaning
that the dominant effect of general relativity on the initial stellar
encounter will be to rotate the entire star through the same precession
angle.! Therefore, our usage of this potential, as opposed to a fully
general relativistic treatment, is sufficient for the purpose of creating a
realistic distribution of post-disruption debris. See Tejeda & Rosswog
(2013) for a detailed evaluation of a similar potential used by
Nowak & Wagoner (1991).

The initial, parabolic orbit of the star is established using the
above potential (equation 1) to calculate the angular momentum
necessary to achieve a pericentre distance of r, = 7R;. PHANTOM
uses an artificial viscosity prescription to mediate any strong shocks
that may be present during the large compression suffered by the
star and employs the standard switch proposed by Cullen & Dehnen
(2010) (i.e. the artificial viscosity parameter is small when the star
is far from pericentre and approaches values near unity as the star
is compressed at pericentre). A non-linear term is also included
to account for extremely strong shocks and prevent interparticle
penetration (Price & Federrath 2010). The large number of particles
(~107) was used to avoid the possibility of spurious numerical
heating at pericentre caused by under-resolving the compression,
predicted to be of the order of Hyn/R, ~ B~3 ~ 0.003 (Carter &
Luminet 1983), though the compression could be smaller if shock
heating halts the otherwise-adiabatic collapse (Bicknell & Gingold
1983), or due to 3D effects (Guillochon et al. 2009). Here 8 = ri/r;
is the penetration factor, r; is the tidal radius, and ry, is the pericentre
radius.

Fig. 1 shows the density distribution of the disrupted stellar debris
at 1.16 d after the disruption. At this time, we end the evolution
of the TDE in PHANTOM and use the distribution of debris as the

IThe tidal tensor implied by the Einstein potential produces a moderately
different tidal shear than the exact general relativistic value. However, the
general relativistic corrections to the Newtonian tidal shear (either exact or
from equation 1) are only O(5 per cent) at the tidal radius where the star is
disrupted, and ballistic motion sets in.
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Figure 1. Colour maps of the log of rest mass density and log « (proportional
to entropy, see equation 7), in the equatorial plane at the initial conditions
of the post-disruption phase of the simulation in H-AMR (1.16 d). The black
contour on the right-hand panel outlines the area excluded by the entropy
condition (¢ < 10) which we use throughout our analysis to distinguish the
material in the debris stream from the material in the accretion disc). The BH
is located at the origin. The dotted lines indicate the x- and y-axes.
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Figure 2. A histogram of the Bernoulli parameter distribution at the initial
conditions of the post-disruption phase of the simulation in H-AMR (1.16 d).
Each bin is weighted by solar masses and bin width. Unbound material and
total unbound mass are shown in red; bound material and total bound mass
are shown in blue. The mass-weighted average Bernoulli parameter is also
shown. On average, the material in the initial conditions of the post-disruption
phase is marginally bound (b = 0). The vertical lines represent the range of the
Bernoulli parameter estimated from the frozen-in approximation (equation
3), and contain 98.1 per cent of the debris mass. The floor material is ignored
using a density condition (p > 10~'1).

initial conditions for our post-disruption simulation in H-AMR. See
Section 2.2 for a detailed description of how we map data from SPH
to grid-based GRHD.

Fig. 2 depicts the Bernoulli parameter of the tidally disrupted
debris at this same time. The star approaches the BH on a parabolic
orbit. When the BH tidally disrupts the star, the bound stellar debris
falls back to the BH while the unbound debris continues on an
outward trajectory. The star’s mass is split almost evenly between
bound and unbound matter (Lacy et al. 1982; Evans & Kochanek
1989). We use the relativistic Bernoulli parameter to distinguish
between bound and unbound material.

_u(p +ugy)
pc?

where b is the Bernoulli parameter, u is the 4-velocity, and p and
u, are the mass and internal energy densities in the fluid frame. At

b= 1, )
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late times the pressure gradient within the disrupted debris becomes
small and the Bernoulli parameter is approximately a conserved
Lagrangian quantity. Even in a time-dependent system such as the
one analyzed here, b > 0 corresponds to unbound material while b
< 0 corresponds to bound material.

Fig. 2 shows that in the initial conditions, the majority of the
material is marginally bound with Bernoulli parameter inside the
range predicted by the frozen-in approximation of Stone et al. (2013).
This approximation assumes that (i) the tidal forces outside of the
tidal radius are negligible, so the star enters the tidal radius as an
unperturbed sphere, and (ii) once the star crosses the tidal sphere, its
fluid elements move ballistically, with a spread in orbital properties
given by the potential gradient across the star. In reality, internal
forces (e.g. self-gravity and hydrodynamics) are not totally negligible
inside the tidal sphere, but previous simulations of deeply penetrating
disruptions show that the frozen-in approximation reproduces the
actual energy spread of the debris to within ~20 percent for y =
5/3 polytropes (Steinberg et al. 2019). According to this impulsive
disruption approximation, the spread of specific orbital energy Ab
in Newtonian gravity is given by
GMBZHR* 7 3)

¢

Ab=k

where & is a constant of the order of unity related to stellar structure
and rotation prior to disruption. If we let k = 1, we find that Ab =
2.12 x 1074 Only 1.94 per cent of the mass in the initial conditions is
outside the range predicted by the frozen-in approximation, verifying
that the initial orbital energy distribution for the post-disruption phase
is largely consistent with standard estimates.

A small fraction of the material has Bernoulli parameters well
outside the range predicted by the frozen-in approximation. However,
even though the most tightly bound debris (with specific energy |e|
> Ab) constitutes a small fraction of the total mass, it is the first
matter to fall back, and therefore dominates the early stages of the
circularization process studied here. Due to runtime limitations, these
early stages are the primary focus of this paper. While these tails
could be a byproduct of intense shock heating as the star is highly
compressed near pericentre, we caution that they may also arise from
numerical inaccuracies associated with the same highly compressed,
and therefore difficult to resolve, configuration of gas.

Such broad-energy tails have been seen in high-8 TDEs simulated
with a range of codes and numerical algorithms. While a return time
of 1.16 d for the most tightly bound debris might appear extreme, it
is qualitatively consistent with these past simulations. For example,
Guillochon & Ramirez-Ruiz (2013) find that the most tightly bound
debris in Newtonian, grid-based, 8 = 4 simulations of n = 3 polytrope
disruptions can return to pericentre after ~3 d and that the time of
first pericentre return decreases with increasing §. Steinberg et al.
(2019) performed moving-mesh simulations of stellar disruptions
and found that the extent of the high energy tail is also a function
of B. For Newtonian disruptions of n = 3/2 polytropes, going from
B =5 to B =7 moves the time of first mass return from ~3 d to
~1 d (Steinberg, private communication). Gafton & Rosswog (2019)
used Newtonian and relativistic SPH simulations, with a code distinct
from PHANTOM, to disrupt a y = 5/3 polytrope over a range of 8 and
found that for large f the return time of the most bound debris was
significantly earlier than the frozen-in prediction, with initial return
times on the order of days.

These high-energy, low-mass debris tails have not been studied in
detail, but their ubiquity across SPH, conventional grid-based, and
moving mesh codes leads us to believe that they are likely physical.
If, however, the high-energy tail of debris were primarily the result
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of numerical artefacts, then it would bias the earliest stages of mass
return to (i) artificially early times and (ii) artificially low fallback
rates relative to the time of first mass return.

However, our results depend solely on the relative values of mass
fluxes rather than the absolute values, with the exception of the
internal energy and density floors (Section 2.3). Therefore, even if
the mass of the high-energy tail of debris in our initial conditions
is an overestimate, our results can be straightforwardly rescaled to
astrophysically realistic time and mass flux scales (i.e. our simulation
would have started at a later time with similar values of relative
mass flux). The qualitative features of the circularization process
are therefore robust and should apply generically to systems with
realistic physical parameters and g >~ 7.

2.2 Mapping from PHANTOM to H-AMR

Before we begin our simulations in H-AMR, we map SPH data from
PHANTOM to gridded data compatible with GRHD. First, smooth the
particle properties on to a continuous domain. Secondly, we construct
a grid on top of the smoothed particles.

For the first step, we use the SPH visualization tool SPLASH and
its built-in function ‘splash to grid,” which is described in detail in
Price (2007). The function smooths the density of each particle over
a finite region according to a weighting function, or kernel, that is
twice differentiable, maintains compact support, and decreases in
magnitude from the location of the particle. This approach mirrors
the standard procedure for SPH calculations. We use the default
kernel in SPLASH (and PHANTOM): a cubic spline which vanishes at
a distance of 2h from a given particle. The smoothing length £ is
spatially variables and set such that the mass inside the smoothing
sphere is constant. We refer the reader to section 2.4 of Price (2012)
for more details.

For the second step, the fluid variables of a given cell are
determined by adding the contribution of every particle with a
smoothing region that encompasses the cell itself. See fig. 7 of Price
(2007) for an illustration. This method ensures that cells in high-
density regions are sampled by a large number of particles and cells in
low-density regions are sampled by relatively few particles. Because
of their low density, sparsely sampled cells contribute minimally to
the dynamics of the fluid and do not affect the bulk properties of the
accretion flow simulated with H-AMR.

The error in the first step is of the order of O(h%) = O(p~%/3).
Therefore, in regions of extremely low density, the interpolation
from SPH may introduce artefacts in the density and velocity fields.
In particular, we find a region of enhanced density in the region
around the black hole (Fig. 1). The density of this region is several
orders of magnitude lower than the density of the most bound debris,
so the trajectory of the returning debris is not significantly altered.

2.3 H-AMR simulation parameters

As described in Section 1, our simulation parameters adhere to
astrophysically realistic values (Q = 10°, ¢y ~ 1). In PHANTOM
we insert a star on a parabolic trajectory with a pericentre distance of
TR, and a penetration factor of B = r/r, = 7. This high penetration
encounter guarantees that self-gravity is negligible in the post-
disruption evolution of the stream, although the influence of self-
gravity on the stream structure may be revived at much later times
than those simulated here due to the in-plane focusing of the debris;
Coughlin et al. 2016; Steinberg et al. 2019). The circularization of the
stellar debris likely occurs on a shorter time-scale for more relativistic
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Table 1. For each quantity, the number of cgs units per simulation unit is
tabulated. Note that 0 Ry/c corresponds to 1.16 d after the disruption, so
the relationship between simulation time and days since disruption is affine
linear.

Quantity cgs unit H-AMR unit cgs unit / H-AMR unit
Mass g Rec*G 2 % 10%°
Distance cm Ry 1.477 x 10"
Time S Ry/c 4.926
Density gem™3 ?/R3G 6.207 x 10°

Table 2. Simulation parameters for models TDETQ and TDET30, including
black hole mass Mg, stellar mass M, pericentre radius R, penetration factor
B, and inclination angle of the stellar orbit i.

Model Mgy (M) M, (M) R, (Rg) B i
TDETO 10° 1 7 7 0
TDET30 109 1 7 7 30

encounters (Bonnerot & Stone 2020), decreasing the simulation
duration required to study the circularization process.

H-AMR uses a naturalized unit system where G = ¢ = R, = 1.
The conversion factors from the simulation units to cgs units are
given in Table 1. From now on, we will work in this naturalized unit
system with the exception of time, which we will convert back to
physical units of days since disruption. We will also restore G and ¢
in equations to help keep track of units.

Although H-AMR does not explicitly include viscosity, it is
included implicitly through interactions at the cell level. Within the
turbulent flows of our simulation, adjacent fluid elements are unlikely
to move exactly parallel to one another and therefore will exchange
momenta. Previous work has shown that the effective viscosity in
early-time TDE accretion flows can be dominated by the Reynolds
stress (Sadowski et al. 2016). If this is correct, we should not be
significantly underestimating effective viscosity due to the absence
of magnetic fields, though this question needs closer examination in
future magnetohydrodynamic simulations.

We present two models, TDETO and TDET30, corresponding to
spin-orbit misalignment angles of zero and 30 deg, respectively
(Table 2; see the 3D renderings in the Supporting Information).
Because we begin the simulation in H-AMR 1.16 d post disruption,
the relationship between H-AMR simulation time and time since
disruption is affine linear.

tuamMr = (fgays — 1.16) x 24 x 3600/4.926 “)

In both models, we use a dimensionless BH spin of a = 0.9375
for the post-disruption evolution. Because the morphology and the
fallback rate of our stream are not strongly dependent on spin (Tejeda
et al. 2017), we rotate the initial data in H-AMR about the y-axis by
30 deg for model TDET30 rather than repeating the simulation in
PHANTOM. We take this approach, rather than tilting the metric, to
avoid the computational strain associated with a non-axisymmetric
metric.

‘We run models TDETO and TDET30 until 6.87 d (r = 105Rg/c in
H-AMR) and 5.01 d (= 6.7 x 104Rg/c in H-AMR) after the disruption,
respectively. We evolve the models in the Kerr geometry using Kerr-
Schild coordinates to avoid the coordinate singularity in the Boyer-
Lindquist coordinates.

In this work, H-AMR uses 2-level 3D adaptive mesh refinement
(AMR) with a refinement criterion based on a threshold density.
The total effective resolution is 2880 x 860 x 1200 in r x 6 X ¢.
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The cells are logarithmically spaced in the radial direction. The cell
dimensions in R, are given approximately as a function of position
around the black hole:

In(10°) s T ing 5

2880 ' 860 1200 ®
Our grid resolves the vertical extent of the stream (twice the stream
scale height) with ~12 cells near 500 R, and ~28 cells near
pericentre, where the stream scale height is computed via the same
method as the disc scale height discussed in Section 3.1. However,
near pericentre, this calculation is artificially inflated by the stream
structure’s complex ¢-dependence. This resolution is sufficient to
model the gas dynamics of the stream. However, we caution that we
may underresolve pressure gradients within the stream.

In addition to AMR, H-AMR uses local adaptive time stepping by
setting the time-step in each cell to the smallest light crossing time
in that cell. As a result, the time-steps decrease by a factor of A¢/A6
near the pole due to the time-step limitation in ¢. Therefore, we use
the cylindrification method described by Tchekhovskoy, Narayan &
McKinney (2011) to reduce the azimuthal extent of cells near the
pole.

As we ran the simulation, we noticed that the stream disintegrates
into the accretion disc after wrapping around the BH, a behaviour
which we discuss more in Section 3.1. To verify that this stream dis-
integration was not a numerical artefact, we adjusted the refinement
criterion for first-order refinement between 2.28 d (4 x 104Rg/c) and
4.56d (8 x 104Rg/c). Near the BH, we decreased the cutoft density
for first-order refinement to achieve the full effective resolution in
a greater fraction of cells. Due to memory restrictions, we also had
to increase the cutoff density at large radii, causing some parts of
the outer stream to become unrefined. We found that the stream
disintegration and other simulation properties were consistent across
adjustments to the refinement criterion, suggesting that the physics
converged for our resolution in H-AMR.

In the post-disruption phase, we set floors for internal energy
density and mass density at 2.27 x 1072 (3.75 x 10° ergs cm~3
and 4.167 x 10~ g cm™3 respectively). We assume an adiabatic
index y = 5/3 corresponding to the gas-pressure-dominated regime
present in the star before it undergoes shocks. Although any accretion
disc resulting from the TDE is expected to be radiation-pressure-
dominated with an adiabatic index closer to y =4/3, H-AMR currently
does not allow for a variable adiabatic index so we chose to stay
consistent with the initial simulation in PHANTOM. Many previous
works have also used an adiabatic index of y = 5/3 (Guillochon &
Ramirez-Ruiz 2015; Sadowski et al. 2016; Steinberg et al. 2019). In
future simulations, we will implement a variable adiabatic index to
more accurately model the thermodynamics.

Ar x A8 x A¢p =

3 RESULTS

3.1 Aligned disc formation and evolution

General relativistic apsidal precession near the BH causes the
argument of pericentre to advance by approximately 31°, setting
the incoming and outgoing streams on trajectories that intersect at
Rs1 = 142R,. The precession angle and self-intersection radius are
computed with the formalism in Appendix A4.

Shortly after the first pericentre passage, depicted in the first row of
Fig. 3, the debris stream expands significantly and its density drops.
The primary reason for this expansion is the different degrees of
apsidal precession experienced by the inner- and outer-most edges
of the stream. For instance, at + = 1.25d (top right-hand panel of
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Figure 3. Contour plots of the log of rest mass density in the equatorial plane in the TDETO simulation during the debris’ initial pericentre passage (first
row) and the first (second row) and third (third row) self-intersection events. In the initial pericentre passage, the stream falls back through near vacuum and
matter from the stream begins to accumulate near the BH. In the self-intersection events, the stream undergoes apsidal precession and self-intersects close to
the analytical self-intersection radius at 142R,. As a result, the inner parts of the stream are completely disrupted. These violent events are a key dissipation
mechanism in the early stages of the TDE evolution. Although powerful, we count only five such events. At late times in our simulation, dissipation occurs
primarily through interactions with the newly formed disc (Fig. 5). For a more complete picture of the disc evolution, see the movies and 3D renderings linked

in Section 6.

Fig. 3), the inner and outer edges of the stream at pericentre lie at r =
11R, and r = 21R, respectively, resulting in a difference of roughly
15° in their precession angle (Fig. 4). Bonnerot & Lu (2021) discuss
this effect as being potentially responsible for a small amount of
spreading of the debris following its first return to the initial point of
disruption. Here, because the pericentre distance of the star is much
more relativistic than the modest-8 case that they considered, the
differential precession is larger than they find and apparent by eye.

Over the course of the simulation, the self-intersection periodically
becomes powerful enough to fully intercept the incoming debris
stream. During these violent self-intersection events, the collision of
the incoming and outgoing streams and the associated shock heating
nearly destroys the stream interior to the self-intersection point and
ejects material into a wide range of orbits. Rows two and three of
Fig. 3 depict the time evolution of two such intersection/depletion
cycles.

We find five violent self-intersection events in our simulation.
They occur approximately 12 h apart (at 1.47, 2.01, 2.52, 2.92, and
3.68 d), and each lasts forroughly 2.74 h (2, 000R,/c). The periodicity
of the self-intersections is on the scale of the free-fall time from the
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self-intersection point,

R
= S Bs
2 /2G My

These violent, periodic self-intersections events may produce natural,
quasi-periodic variability in the inner disc accretion rate, possibly
explaining the flaring events observed in TDEs such as SWJ1644+57
(Burrows et al. 2011; Zauderer et al. 2011), AT2018fyk (Wevers
et al. 2019), and AT2019¢hz (van Velzen et al. 2020). We discuss
this hypothesis further in Section 4.3. The self-intersection events
also create the initial accretion disc.

However, once the accretion disc becomes sufficiently dense and
massive, no additional violent self-intersections occur because the
outgoing stream completely disintegrates before the self-intersection
point as in Fig. 5. At late times, the spread in angular momenta within
the incoming stream grows due to angular momentum exchange
with the accretion disc. As a result, the stream becomes thicker,
enhancing the effect of differential precession discussed earlier in
this section. The result is that the outgoing stream has a larger spread

~ 3.64 h. (©)
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Figure 4. A contour plot of the log of rest mass density in the equatorial plane
at 1.25 d (1725R,/c; same as the top right-hand panel of Fig. 3) with equatorial
geodesics of various pericentre radii. The geodesics diverge after pericentre,
demonstrating the strong effect of differential precession in expanding the
stream in the deeply penetrating (8 = 7) and high-spin (a = 0.9375) encounter
we consider.

in trajectories and a lower density than the incoming stream. At
even later times, the disc is sufficiently dense to absorb nearly all of
the momentum from the weakened outgoing stream through shocks
and hydrodynamic instabilities at the interface. In particular, the
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velocity difference between the outgoing stream and the disc leads to
a Kelvin—Helmholtz instability (see Bonnerot & Stone 2020, section
2.2.4), which seeds turbulence in the outgoing stream causing it to
break apart.

At early times, especially before substantial disc formation, the
pericentre radius undergoes fluctuations. From the movies linked
in Section 6, we see that the outward movements of the pericentre
coincide with the onset of a violent self-intersection. This suggests
that the pericentre movement results from the azimuthal momentum
added to the incoming stream by the outgoing stream during a
self-intersection. After the self-intersections cease, the pericentre
radius becomes more stable and takes on a value around 12R,
(corresponding to a self-intersection radius Rs; = 565R,). This may
be because the outgoing stream has a weaker, but more stable,
contribution to the azimuthal momentum of the incoming stream
at late times.

Instead of forming a standard, geometrically thin disc, the material
surrounding the black hole is inflated into a geometrically thick
structure that is both gas-pressure and centrifugally supported. We
perform a more in-depth analysis of the force balance in the disc and
the disc structure in relation to analytical models in Sections 4.4 and
4.5.

‘We use an entropy cutoff to distinguish between the matter in the
stream and the matter in the disc. Throughout the remainder of this
work, we use the quantity,

)

-400

-200 0 200 400
z/R,

Figure 5. Contour plots of the log of rest mass density density (left-hand panel) and « (right-hand panel) in the equatorial plane at 5.7 d. At late times in the
simulation, the debris stream undergoes shocks and instabilities near pericentre, causing it to disintegrate shortly after the pericentre passage. This is different
from the stream’s early time evolution (Fig. 3), possibly because an inner accretion disc has formed with density comparable to the incoming stream. The black
line depicts an equatorial geodesic (Appendix A2). Note that the self-intersection radius of the geodesic is much greater than the analytical self-intersection
radius of 142R, for a pericentre of 7R, because the geodesic has a larger pericentre radius of ~12R,.
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Figure 6. Time averages of radial profiles of mass density, pressure, and
@-velocity, their power-law fits, and an inset plot of time-averaged rest mass
density in the equatorial plane. Power-law fits (dashed lines) are calculated
using a least-squares method (see Table B1 for more details). Time averages
are over the simulation’s full duration. Mass density, pressure, and ¢-velocity
are averaged over spherical shells using equation (11). Pressure and ¢-velocity
are weighted by mass. The stream is ignored using the entropy condition.
Mass, density, and pressure are multiplied by 5 x 10° so that all three
variables are roughly the same order of magnitude for ease of comparison.
The vertical lines show the pericentre radius at 7R, and the analytical self-
intersection radius at 142R, (Appendix A4). The analytical self-intersection
radius is also shown on the inset plot. All three quantities follow power-law
fits within the radii of the disc. The sub-unity coefficient on the gp-velocity
indicates that the disc is sub-Keplerian. At radii less than the pericentre radius
or greater than 400 R, there is minimal disc material, so the data at these
radii does not reflect the large-scale properties of the disc. The origin of the
flat density and pressure regions at large radii (r 2 1000R,) is due to the
choice of the floors. The origin of the dips in all quantities at small radii is
due to the absence of disc material in the plunging region.

to track specific entropy, which is related to « by

S— Ink . 8)
y—1

The tidal compression of returning debris streams is approximately
areversible process, so entropy is nearly constant until the first shock.
For the purposes of analysis, we define the stream as material with «
< 10, a definition we refer to as the entropy condition. Fig. 1 depicts
an entropy profile of the stream at the initial conditions of the post-
disruption phase in the equatorial slice. The black contour outlines
the area covered by the entropy condition.

Fig. 6 shows the radial profiles of density, pressure, and ¢-velocity
within the disc. We compute the gas pressure p using the adiabatic
equation of state,

p=1u,(y — 1. )

‘We compute the physical g-velocity directly from the simulation as

¢
u
Vo = /809> (10)
where g is the metric tensor. For a given quantity O, we compute the
mass-weighted averages over two coordinates using

ut

J Qpu'dA,,
=T 11
Qavg f puldA, (1)
where
dA,, = /—gdudv. (12)
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108
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Figure 7. Mass density, pressure, and angular momentum squared in our
aligned TDETO model plotted with respect to 6, their fits to a power law of
sin 26, and an inset plot of rest mass density in the xz-plane at 5.7 d. Curve fits
are estimated by eye and shown in dashed lines. « represents the exponent
of a power law of sin 2. Angular momentum is normalized in radius with a
factor of r—!/2, Density, pressure, and angular momentum are averaged over
¢ and 10 < r < 100 using equation (11). Pressure and angular momentum
are weighted by mass. The stream is ignored using the entropy condition.
Density, pressure, and angular momentum squared are multiplied by 0.158,
316, and 108 respectively so that all three quantities are roughly the same
order for comparison purposes.

where g is the determinant of the metric tensor. Radial profiles have
dA,, o< dfd¢ and polar profiles have dA,, o drd¢. In calculations
involving radial averages, we restrict the region of integration radially
to avoid capturing high-density material from the half of the star
which escapes the black hole. The region of integration for a
given calculation is described in more detail in the caption of the
corresponding figure.

Fig. 6 shows that the radial profiles (i.e. averaged over angles) of
density and pressure closely follow power-law relationships between
the inner and outer boundaries of the disc (10200 R,), hinting at a
possible analytic description (see Section 4.5.1). The angle-averaged
p-velocity is fitted by v, >~ 0.76r~%3, which implies a sub-Keplerian
velocity distribution that may be due to thermal pressure support
against gravity (see Section 4.4).

The internal energy density and mass density are floored at
2.27 x 107!2 (see Section 2.3). These floors are responsible for
the flat density and pressure regions at large radii in Fig. 6. While
these floors would have a negligible effect on a TDE at peak
fallback rate, they become significant for the early times and low
fallback rates considered in our simulation. The floors may affect
our results by providing external pressure support to the outer disc,
artificially lowering its radial and vertical extent. We discuss this in
Section 4.5.1.

Fig. 7 shows the polar profiles of density, pressure, and squared
specific angular momentum within the disc. We calculate the pressure
as above (equation 9) and the specific angular momentum as [ = u,.
The polar profiles of all three quantities are fit to a power « of sin 26
near the equatorial plane. We analyse these relationships further and
compare them to model predictions in Section 4.5.1.

The vertical height of the accretion disc above the midplane is
proportional to the distance from the centre of the BH, where the
constant of proportionality is known as the scale height. We compute
the scale height in two ways (Fig. 8).
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Figure 8. The scale height of the disc plotted with respect to time in our
aligned TDETO model. Scale height is calculated by averaging the mass-
weighted angle from the equatorial plane over |0 — 7/2| < 0.3 and ¢ using
two methods described by equations (13) and (14). The stream is ignored
using the entropy condition. The generation of thermal energy due to stream—
disc interactions and self-intersection shocks causes the gas in the disc to
expand over time, increasing the scale height.

hsqrt _ [ —n/2y putdv (13)
ro [ putdv '

haps _ [ 10— 7/2lpu'av. (14
r [ putav

where

dV = J—gdrdode (15)

Both methods show that A/r increases over time, indicating that
the disc ‘puffs up’ from the midplane. Although it is possible that the
vertical expansion of the disc is artificially slowed by the pressure
and density floors, this effect should not significantly impact this
general trend. The increase in the angular extent of the material is due
to excess thermal energy generated in the disc by the dissipation of
orbital energy. The scale height reaches a plateau around the time that
the self-intersections stop (3.68 d), suggesting that the violent self-
intersections play a crucial role in the early heating of the disc. We
discuss the mechanisms of energy dissipation further in Section 4.1.

3.2 Tilted disc formation and evolution

The majority of TDE disc formation simulations use either Newto-
nian gravity or a general relativistic treatment (exact or approximate)
of a non-spinning Schwarzschild BH. However, tidally disrupted
stars approach the BH from a quasi-isotropic distribution of incli-
nations, highlighting the importance of more general disc formation
simulations that account not just for BH spin, but also for spin-
orbit misalignment. Various effects unique to tilted accretion discs,
such as global precession, Bardeen—Petterson alignment, and disc
tearing (Nixon & King 2012; Hawley & Krolkik 2019; Liska et al.
2021) may all manifest themselves in TDE accretion discs. Although
previous studies have considered tilted TDEs analytically (Stone &
Loeb 2012; Zanazzi & Lai 2019), only two numerical efforts have,
to date, simulated the formation of an accretion flow following
the disruption of a star on a misaligned orbit: the early work of
Hayasaki et al. (2016), and the more recent simulations of Liptai
et al. (2019). In both cases, the authors find that for adiabatic
gas equations of state, it is challenging for nodal precession to
cause significant delays in self-intersection. However, both of these
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Abave View

Below View

Figure 9. A 3D contour of density (p = 10~%) visualized at 3.7 d in our tilted
TDET30 model. We show the views from above and below the BH orbital
plane in the left-hand and right-hand panels, respectively. The outgoing and
incoming streams are misaligned at the self-intersection point due to the nodal
precession at the pericentre passage. As a result, material is ejected out of the
orbital plane of the star. The orbital plane of the BH is shown for reference.
To see this effect in the full context of disc formation, see the 3D renderings
linked in 6.
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Figure 10. Analogous to Fig. 6, but for the tilted TDE simulation, model
TDET30. The data are tilted using our tilting algorithm (Appendix C) such
that the star’s orbital plane coincides with 6" = /2. Coordinates in the tilted
frame are denoted with a prime. The inset plot shows the rest mass density
in the star’s orbital plane at 4.0 d. See Table B2 for more details about the
power-law fits (dashed lines). Mass density and pressure are multiplied by
5 x 10° so that all three variables are roughly the same order for comparison
purposes.

simulations employed unrealistically eccentric stellar trajectories for
computational convenience; the work presented in this section is the
first numerical simulation of tilted TDEs with realistic astrophysical
parameters.

The movie and 3D rendering (Section 6) of the tilted TDE
shows that, unlike in the aligned TDE, the returning stream is
never completely interrupted by self-intersections. The misalignment
between the orbital plane of the stream and the rotational plane of the
BH leads to strong nodal precession upon pericentre passage. The
outgoing stream exits the BH in a separate plane from the incoming
stream, so when the two streams collide, they are misaligned. Fig. 9
shows that this misalighment launches material from both streams
out of their original planes.

Fig. 10 shows that the radial profiles of the tilted disc follow similar
power-law relationships to those of the aligned disc, with the density
and pressure falling off slightly faster in the aligned disc. As a result,
the thermal pressure gradient forces in the tilted disc are larger than
in the aligned disc, so the velocity distribution is more sub-Keplerian.
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Figure 11. Analogous to Fig. 7, but for the tilted TDE simulation, model
TDET30. The data are tilted using our tilting algorithm (Appendix C) such
that the star’s orbital plane coincides with 6’ = m/2. Coordinates in the tilted
frame are denoted with a prime. Density and pressure are multiplied by 1073
and 10'%7 respectively so that all three quantities are roughly the same order
for comparison purposes. The tilt angle varies over radius and time (Fig. 23),
so the averages may not accurately reflect the thickness of the disc.

From a comparison of the polar density profiles of the aligned and
tilted TDE (Figs 7 and 11), the accretion disc appears significantly
thicker in the tilted simulation. However, there are two caveats to this
interpretation of the data. First, the launching of stream material into
different orbital planes as shown in Fig. 9 creates pockets of high
density material at large polar angles which artificially increases
our estimates of disc thickness. Secondly, the disc material may lie
in multiple orbital planes because debris which falls back at early
times has more time to undergo nodal precession than debris which
falls back at late times. Any dependence of the inclination angle on
r or ¢ would artificially increase our estimate of disc thickness.
Additionally, the angular momenta of the gas may not have enough
time to homogenize because the simulation was not run for multiple
viscous times of the disc.

4 DISCUSSION

4.1 Energy dissipation

The largest uncertainty in TDE evolution concerns the rate, location,
and physical mechanisms that dissipate the orbital energy of dy-
namically cold debris streams. Past analytic models and numerical
simulations examining early stages of a TDE generally focus on
shock dissipation at different locations. The most important shock
loci seen or proposed in past work are (i) compression shocks
produced by the vertical collapse of the returning debris stream,
located at the vertical caustics near pericentre (Guillochon et al. 2014;
Shiokawa et al. 2015), (ii) self-intersection shocks produced at larger
radii where an outgoing debris stream impacts an incoming one (Rees
1988; Hayasaki et al. 2013; Dai et al. 2015; Hayasaki et al. 2016),
and (iii) ‘secondary shocks’ seen in the simulations of Bonnerot &
Lu (2020), Bonnerot, Lu & Hopkins (2021) after the formation of an
extended accretion flow. Each of these categories of shock have been
seen to be the dominant energy dissipation mechanism at some times
in some past numerical simulations of tidal disruption; however,
the relative importance of these shocks is strongly affected by
system parameters (e.g. SMBH mass, stellar eccentricity). The lack
of published first principles TDE simulations with astrophysically
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realistic parameters renders the relative importance of these shocks
unclear in typical TDEs.

We analyse the energy dissipation of the system at both early and
late times by tracking entropy and the ratio of the thermal to total
energy flux along a streamline. The thermal and mass energy fluxes
are given by

Pihermal = —v—8ug + pInu; = —/—gugynu, (16)

DPmass = —+/ —gﬂcznun (17)

where n = /vivt = /g;jvivd is the magnitude of the 3-velocity (we
are adopting the convention where Latin indices range from 1-3).
We define the quantity

O
Pthermal + Pmass

to characterize the generation of thermal energy in the disc (solid
red lines in Figs 12 and 13). When thermal energy flux dominates,
Y approaches unity and when the mass energy flux dominates, y
approaches zero. Shocks convert orbital energy into thermal energy,
so ¥ increases across the self-intersection shocks. We compare the
entropy of the stream post-pericentre to the average entropy of the
disc, with the latter defined as

[ kpu'dv

kdisc = Tpudv (19)

Here « is defined by equation (7) and the region of integration is
defined using a stricter version of the entropy condition (k¢ > 100)
to ensure that none of the high-density, low-entropy stream material
contributes to the average.

Figs 12 and 13 show the early- and late-time dissipation profiles
along a streamline, respectively. Although heating and entropy
generation occur on similar levels at both times, the dissipation
mechanisms are distinct. At early times, there is comparable heating
as the stream passes through pericentre and as the outgoing stream
reaches the intersection point. However, significant entropy genera-
tion occurs only at the self-intersection, suggesting that the heating
at pericentre is nearly adiabatic while the heating at self-intersection
is irreversible and shock-induced. The nearly adiabatic heating at
pericentre implies that the nozzle shock is inefficient at dissipating
orbital energy.

This finding differs from other numerical work which finds that the
nozzle shock is associated with a large jump in entropy (Guillochon
et al. 2014; Bonnerot & Lu 2021). The strong nozzle shock seen
in these works requires a highly supersonic vertical collapse of the
debris stream. However, we find that the vertical collapse of the debris
stream at early times is subsonic, possibly due to the relatively short
return time of the debris or additional heating produced in the deeply
penetrating 8 = 7 encounter we consider. The average mass-weighted
vertical Mach number in the stream at early times (distinguished by
the entropy condition) is M, = 0.4. The vertical Mach number is
estimated as M, ~ v*/c;, where v° is the magnitude of the vertical
velocity and ¢; is the sound speed given by

a —_
c3“<l> =k 20)
' /s o

At late times, the bulk of the heating and the entropy generation
occurs at the pericentre. After the pericentre passage, entropy
increases to more than three quarters the entropy of the disc, with the
remainder of the entropy generation occurring between the pericentre
and self-intersection radii.
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Energy Dissipation at 1.4 days
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Figure 12. At early times in our aligned TDETO simulation, the stream heats up at the pericentre and the self-intersection. However, the majority of the
entropy generation occurs at the self-intersection, suggesting that the pericentre heating is nearly adiabatic. To see this, we plot the relative amount of heating
¥ (equation 18) and a proxy for entropy «x o< ¢*""°PY against the distance along a streamline sgm at an early time, 1.34 d. The streamline, depicted in the inset
plot, is integrated from the velocity field using a second-order Runge-Kutta method. The location of the pericentre and self-intersections along the streamline are
depicted by vertical dashed and dot-dashed lines, respectively. The thin grey line shows the distance between the streamline and the BH. The average entropy
of the disc is shown by the blue horizontal dotted line. The thin and thick red lines show an approximation for the relative amount of heating v for a thin (h/r =
0.082) and thick (h/r = 1) disc, respectively (equation 21). Note that the returning gas will not necessarily follow the path of the streamline, SO Sgym iS not a
perfect proxy for time. For instance, the entropy sometimes decreases mildly as sgm increases.

The greater value of ¢ along the streamline in Fig. 13 compared to
Fig. 12 indicates that more heating takes place along the streamline
at late times, possibly due to the stream—disc interactions discussed
in Section 4.1. However, this does not imply that more heating occurs
at late times in the disc as a whole. In particular, we find that the
average value of ¢ within the disc is greater at time of Fig. 12 than
at the time of Fig. 13, suggesting that more relative heating occurs
within the disc at early times.

As discussed in Section 3.1, the accretion disc becomes thicker
and more massive over time. Therefore, as time progresses, the disc
absorbs a greater proportion of the momentum of the outgoing
stream, reducing the impact of the self-intersections. When the
rotational momentum of the disc surpasses the momentum of the
outgoing stream, the outgoing stream disintegrates and the self-
intersections stop all together.

In Fig. 14, we plot the rotational mass flux of the disc and the mass
fallback rate. The mass fallback rate is a good approximation for the
mass flow rate in the outgoing stream; particularly at early times
when the incoming and outgoing stream mass flow rates are most
similar. At early times, the ratio of the rotational mass flux to the
mass fallback rate is less than unity (Fig. 14, top panel). This reflects
that the accretion disc mass is small relative to that of the outgoing
stream. The ratio of rotational mass flux to mass fallback rate only
exceeds unity shortly after the first self-intersection event at 1.5 d.
With each self-intersection, the disc grows more substantive until the
disc completely intercepts the outgoing stream and self-intersections
can no longer occur around 3.7 d in our simulation.

At early times, the incoming stream heats up before the pericentre
passage at the self-intersection point. This is reflected in Fig. 12 by
the dramatic increase in ¥ in the incoming stream at the intersection
point. At the late times, this intersection is too weak to appreciably
heat the incoming stream. Instead, the heating before the pericentre
passage is caused by the collision between the incoming stream and
the dense inner accretion disc. This is reflected in Fig. 13 by the
increase in i and entropy after the self-intersection point and before
the pericentre passage. Together, these results suggest that the self-
intersections play a larger role in the energy dissipation at early times
in the TDE evolution.

To provide more context for the meaning of the quantity vy, we
compute an approximation for v in a thick (h/r = 1) and thin disc,
where the thin disc approximation assumes a scale height equal to
the scale height of the disc (0.069 at 1.4 d and 0.132 at 5.7 d).

n\> n\*1
7%c§%<7> vfx<7> -, 1)
p h r r r

where c; is the sound speed in the disc. This approximation appears as
adotted line in Figs 12 and 13. Note that equation (21) is only a good
approximation for small values of . Contrary to the approximation,
we find that ¥ does not drop off with radius, especially at late times,
due to the heating that occurs as the stream disintegrates into the
disc.

The inclusion of a more realistic equation of state within the debris
stream is expected to yield an even higher rate of dissipation due to
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Energy Dissipation at 5.7 days
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Figure 13. Analogous to Fig. 12, but at a late time of 5.66 d. At late times in our aligned TDETO simulation, the bulk of the heating and entropy generation occurs
at the pericentre radius, suggesting that the pericentre is the most significant source of energy dissipation. The thin and thick red lines show an approximation
for the relative amount of heating ¥ for a thin (h/r = 0.132) and thick (h/r = 1) disc respectively (equation 21).
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Figure 14. The mass fallback rate and the rotational mass flux in the disc in
our aligned TDE simulation. The mass fallback rate is the mass flux in the
stream (distinguished by the entropy condition) through the tidal sphere. The
rotational mass flux is estimated by azimuthal mass flux of the disc through
the surface given by ¢ = 1.147, 10 < r < 500, and 7 /2 — hir < 6 < w/2+hir.
The ratio of rotational mass flux to fallback rate is shown in the top panel. As
the disc becomes denser and more massive over the course of the simulation,
the rotational mass flux of the disc surpasses the mass fallback rate. Around
3.7 d, the disc completely intercepts the momentum of the outgoing stream
and self-intersections can no longer occur.

hydrodynamical shocks (see Guillochon et al. 2014, section 3.3, para-
graph 6). Additionally, the inclusion of magnetic fields is expected
to yield extra dissipation through the action of magnetorotational
instability (MRI; Balbus & Hawley 1991) when the inner and outer
stream develop a strong shear in velocity near pericentre.

MNRAS 510, 1627-1648 (2022)

4.2 Circularization

In the standard TDE picture, the accretion disc circularizes effi-
ciently as shocks dissipate orbital energy, resulting in a nearly axis-
symmetric accretion disc with low eccentricity. However, not all TDE
discs circularize completely (Piran et al. 2015). Cao et al. (2018) find
that the optical emission lines of TDE ASASSN-14li are best mod-
elled by an accretion disc with eccentricity e = 0.97. Furthermore,
recent analytical work on TDEs has derived eccentric disc solutions
which can produce radiation consistent with the X-ray and optical
luminosities of many TDE candidates (Zanazzi & Ogilvie 2020).

In our simulation, the accretion disc tends towards circularization
but never fully circularizes according to the criterion suggested by
Bonnerot, Rossi & Lodato (2017): an average eccentricity lower than
1/3. Instead, our disc reaches an average eccentricity of (.88 at late
times, where eccentricity is given by

e J14 2 22)

G’ My
Here ¢ = —(u,+1) is the total orbital energy, [ = u, is the specific
angular momentum, and the average is taken from r = 10R, to r =
400R,. It is important to note that this formula only provides an upper
bound on the geometric eccentricity of particle trajectories because
it assumes that a given fluid element is acted on only by a Newtonian
gravitational force. For example, in the presence of internal pressure
support, equation (22) gives values greater than zero for circular
orbits. Despite this issue, test particle eccentricity is still a useful
metric for the extent of circularization.

Due to the short duration of our simulation, we cannot confirm
whether more complete circularization will occur at times after the
end of our simulation. One factor that may inhibit circularization
is the injection of high-eccentricity material into the disc by the
returning debris stream. However, this effect will become negligible
when the mass fallback declines to the point where energy and
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Figure 15. A time-averaged velocity streamline plot of the inner parts of the
disc in the equatorial plane coloured by time-averaged eccentricity. Velocity
and eccentricity are time-averaged over the simulation’s entire duration,
averaged over |0 — m/2| < 0.5, and weighted by rest mass density. The
stream is ignored using the entropy condition. The streamlines are integrated
using a second-order Runge-Kutta method. Ellipses of various eccentricities
are overlaid to provide context for the eccentricity data.
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Figure 16. Snapshots of mass-weighted eccentricity in the equatorial plane
at various times (see legend) averaged over 0 = /2 + 0.5. The stream is
ignored using the entropy condition. However, there still is an abundance
of high-eccentricity material around the stream, suggesting that the stream
constantly transfers its energy and angular momentum into the disc.

angular momentum input are negligible in analogy to the late-time
behaviour of the disc mass in Cannizzo et al. (1990).

Fig. 15 shows a time-averaged streamline plot of the inner part of
the disc coloured by eccentricity. The area immediately surrounding
the stream contains high-eccentricity material, indicating that the
stream continuously transfers its energy and angular momentum into
the disc. Away from the stream, disc material orbits at more moderate
eccentricities. Looking at snapshots throughout the duration of the
simulation, we see a similar distribution of eccentricities in the disc
(Fig. 16). Fig. 15 also shows that the eccentricity changes along each
streamline, suggesting a continuous transport of energy and angular
momentum within the disc itself.

Eccentricity is not evenly distributed across the different radii in
the disc (Fig. 17). In particular, the inner parts of the disc are more
circularized than the outer parts. This indicates that circularization
is more efficient at smaller radii, possibly because the velocity shear
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Figure 17. Radial profile of eccentricity at various times (see legend;
compare to Fig. 16). Eccentricity is mass-weighted and averaged over
spherical shells. The stream is ignored using the entropy condition. Unbound
material is ignored using the Bernoulli parameter. Only radii from 10R,/c to
500R,/c are shown. Eccentricity is unevenly distributed throughout the disc.
In particular, we see greater circularization at smaller radii in the disc.

between neighbouring radii is greater. Because eccentricity affects
mean @-velocity (Section 4.4), the uneven eccentricity distribution
may contribute to the drop in ¢-velocity near the outer edge of the
disc in Fig. 6.

In Fig. 17, there is a dip in the eccentricity at the self-intersection
radius at 1.6 d. This may be a result of the second major self-
intersection event, which occurs at 1.47 d, interrupting the incoming
stream. This is visible in Fig. 16, where we can see that the effect of
the stream on the disc eccentricity is much weaker than at any other
time slice shown.

4.3 Accretion and outflow

Some TDE accretion models predict a period of super-Eddington ac-
cretion, the magnitude and duration of which depend on the fallback
rate (Coughlin & Begelman 2014; Wu, Coughlin & Nixon 2018).
This prediction is supported by observations; for instance, TDE Swift
J16444-57 exhibits a super-Eddington luminosity (Burrows et al.
2011; Zauderer et al. 2011). We calculate the theoretical Eddington
accretion rate for our simulation below. Assuming that the accreting
material is mostly ionized hydrogen gas, the Eddington luminosity is

AnGMpggcm,

LEdd=——_ 23

where m,, is the mass of the proton and o7 is the Thomson cross-
section. From the Eddington luminosity, the Eddington accretion
rate is

LEdd
24
= (24)

MEgq4q =

where € is the gravitational potential energy that is radiated as
a fraction of the rest-mass energy. Combining the above two
expressions yields

. AnGMgym,
M, = ——== 2 25
Edd orec (25)
If we assume that € = 0.1, then we find MEdd ~0.022Mgyr .
Fig. 18 shows that the mass accretion rate at the BH reaches up
to twice the Eddington limit, and the mass fallback rate reaches
up to eight times the Eddington limit. This confirms that the TDE

in our simulation exhibits the predicted period of super-Eddington
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Figure 18. Mass fallback rate, mass accretion rate at the event horizon, mass
outflow rate, and the accretion efficiency plotted versus time in our aligned
TDETO simulation. The accretion efficiency settles to around 10 to 20 per cent
at r 2 4 d. Positive mass fluxes are directed towards the BH. The accretion
efficiency is calculated as a ratio of the mass flux at the event horizon to the
mass fallback rate. Mass fallback rate is computed within the stream (distin-
guished by the entropy condition) through the tidal sphere. Mass outflow rate
is computed as the unbound mass flux through the tidal radius. Bound matter is
ignored using the Bernoulli parameter. All three mass fluxes increase roughly
linearly with time, suggesting that the disc mass increases quadratically.
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Figure 19. Radial profiles of the mass flux in the disc in units of the
Eddington accretion rate. We distinguish between the bound and unbound
material at three different times, spread evenly across the duration of the
simulation. Positive mass fluxes are directed towards the BH. Bound and
unbound material is distinguished using the Bernoulli parameter. The mass
flux of bound material is shown in solid lines, and the mass flux of unbound
material is shown in dotted lines. The stream is ignored using the entropy con-
dition. The horizontal dotted lines show M = 0. Bound and unbound material
accrete on to the BH at increasingly higher rates as the simulation progresses.

accretion. We noted in Section 2.1 that the maximum fallback rates in
our simulation are about an order of magnitude lower than the peak
fallback rate due to the short duration of our simulation. Therefore,
at its peak the accretion rate would be even more super-Eddington
than seen in Fig. 18.

Fig. 19 shows that bound and unbound material accrete on to the
BH at increasingly higher rates as the simulation evolves. However,

MNRAS 510, 16271648 (2022)

outside of the innermost radii in the disc, more material flows away
from the BH than towards the BH. This outward mass flux drives
the radial expansion of the disc. The figure also shows that the radial
mass fluxes of bound and unbound material are similar throughout
the simulation, indicating that a significant fraction of the initially
bound material gets unbound. We can loosely estimate this fraction
by comparing the outflow rate to the mass flux fallback in Fig. 18.
Due to the short duration of our simulation, we compute outflow
rates as the mass flux of unbound disc material through the tidal
sphere. In a longer simulation, we could compute a more precise
outflow rate by computing the mass flux at larger radii and at later
times. Fig. 18 shows that the outflow rate is approximately 1/3 of the
fallback rate, suggesting that this same fraction of infalling material
becomes unbound. However, it is possible that the outflows may be
artificially suppressed by the density and pressure floors discussed
in Section 3.1, so this may be an underestimate for the fraction of
material which becomes unbound in a physical TDE.

The rate at which mass is added to the disc is given approximately
by subtracting the mass flux outflow and mass accretion rate from the
mass flux fallback. Because all three mass fluxes increase linearly
with time (Fig. 18), the mass of the disc increases quadratically over
the course of our simulation. We verify this by fitting the disc mass
to a quadratic time-dependence using the least-squares method. We
find that the disc mass in units of grams is given approximately by
Mgise/Mo = 4.85 x 10”13, with a coefficient of determination
R* =0.994.

We also quantify the accretion efficiency (Fig. 18) using the ratio
of the mass fallback rate to the mass accretion rate at the event
horizon, where the mass flux is computed as

M= —/,ou’dAM,. (26)

The accretion efficiency exhibits some periodicity due to the periodic
self-intersection of the stream (Section 4.3). However, after the initial
spike at two days into the disruption, it settles into a range of 10 to
20 per cent, suggesting that our TDE is reasonably efficient at getting
the gas from the debris stream to the black hole.

If all accreting material were fully circularized, the accretion
efficiency would place a lower limit on the extent of circularization.
Then, if no circularization occurred, then the mass accretion rate
at the event horizon would vanish, and if the disc circularized
completely, then part of the material that falls back would eventually
accrete (the rest would fly out as an outflow), giving the lower limit
to extent of circularization.

However, we find that a significant fraction of the stellar debris
accretes with moderate or high eccentricities, as shown in the
left-hand panel of Fig. 20. Here, we plot a time-averaged histogram
of the eccentricity of material inside the innermost stable circular
orbit, Risco = 2.04R, (for prograde orbits in the equatorial plane
and our black hole spin value of a = 0.9375; Bardeen, Press &
Teukolsky 1972).

Eccentric accretion has been found in several earlier works
(Shiokawa et al. 2015; Sadowski et al. 2016; Bonnerot & Lu 2020)
and may explain the low luminosity and temperature observed in TDE
candidates. A more extreme model was proposed by Svirski et al.
(2017) in which magnetic stresses transport the angular momentum
away from the black hole, driving eccentric accretion. However, this
model does not apply to our simulation, which does not include
magnetic fields.

There are two ways that material can accrete with moderate or high
eccentricities. Gas in the disc may lose angular momentum through,
e.g. turbulent viscosity, shocks, or spiral waves, until it plunges into
the black hole. This process is analogous to accretion in a quasi-
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Figure 20. The left-hand panel shows a time-averaged histogram of the eccentricity of material inside Rjsco, weighted by rest-mass. Each bin is normalized
by total accreting mass and bin width. The mean eccentricity, (e) ~ 0.73, is shown by the vertical dashed line. The right-hand panel shows a time averaged
colour map of the eccentricity of material inside Rjsco, weighted by rest mass. The overlaid grayscale contours outline regions containing 25 and 50 per cent of
the total mass flux. Floor material is ignored using an angular momentum condition (Jug| > 1075). The left-hand panel indicates that a significant fraction of
material accretes with moderate eccentricities, allowing for a high accretion efficiency without complete circularization. However, from the right-hand panel,
we see that highly eccentric material preferentially accretes at high latitudes, except for the material at azimuthal angles just beyond that of the pericentre (see
the text for discussion). Most of the low-latitude (disc) accretion occurs at moderate eccentricity.

circular accretion disc. Alternatively, gas at high latitudes may get
torqued and free fall directly into the black hole, an effect which
has been observed in previous works (see fig. 12 of Sadowski et al.
2016). We call the first type of accretion eccentric disc accretion and
the second type of accretion ballistic polar accretion.

‘We can differentiate between these two types of accretion by the
latitude at which matter enters the region r < Risco. We find that
highly eccentric material (e > 0.7) preferentially accretes at high
latitudes, suggesting that the dominant method of highly eccentric
accretion is ballistic polar accretion (Fig. 20). Material accreting at
low latitudes generally has more moderate eccentricities (0.4 < e <
0.7), and is thus likely driven by eccentric disc accretion. However,
there is a patch of high eccentricity material at low latitudes in the
region 27/3 < ¢ < 7, just past the pericentre at an azimuthal angle
of ¢ = /2. Accretion in this region may be due to coherent chunks
of the incoming stream that undergo turbulent exchange angular
momentum with the disc and accrete directly on to the black hole
(see also Fig. 16). The innermost (25 per cent) mass flux contour in
Fig. 20 indicates that the majority of accretion occurs in this region.

As we describe in Section 3.1, the debris stream in our aligned TDE
simulation collides with itself in five violent self-intersection events
that occur approximately 12 h apart and last for roughly 2000R,/c,
or 2.74 h. We apply these results to TDE Swift J1644+57, which
exhibits quasi-periodic flaring during the first few days of its initial
evolution. Other authors have proposed that this flaring is due to
a precessing jet (Stone & Loeb 2012; Tchekhovskoy et al. 2013).
However, our simulations show that even without precession, the
flaring due to violent self-intersections can explain both the number
of flares and their time-scale. Swift J1644+57 is a 10°-10° My, BH,
so 1 d corresponds to a time-scale of 5000-50000 R,/c, similar to
the time-scale of the self-intersections in our simulation.

It is unlikely that this flaring is a direct consequence of self-
intersection events because the material at the self-intersection point
is too optically thick to produce X-rays without adiabatic cooling

(Jiang, Guillochon & Loeb 2016). Instead, we propose that the
periodicity of the self-intersections leads to a periodicity in the
accretion that feeds the jets, an effect that we see in our aligned
TDE simulation.

As we discuss in Section 4.2, we can normalize the mass accretion
rate at the event horizon by the mass fallback rate for the aligned
and tilted simulations. We see quasi-periodic behaviour only in
the aligned case (Fig. 18) where violent, periodic self-intersections
occur. This behaviour does not perfectly correlate with the major
self-intersection events in the simulation, which may be due to the
similar time-scale of the self-intersections (~12 h apart lasting ~3
each) and the fallback time from the self-intersection point (~4 h).
However, the large fluctuations in accretion rate stop after the last
major self-intersection event at 3.7 d.

Sadowski et al. (2016) found a marginally bound torus after self-
intersection with some unbound material at high polar angles. They
also found periodic behaviour due to the interactions of the outgoing
stream with the incoming stream. However, this interaction was not
as violent as in our simulation, which may be due to the differences
in the orbital properties of the initial star.

4.4 Force balance

In Section 3.1, we show that the ¢-velocities in the accretion disc are
76 per cent of the expected ¢-velocities in a circularized Keplerian
accretion disc. There are two possible explanations for our findings.
First, the non-zero eccentricity of the disc decreases the average
p-velocity of the disc relative to a completely circularized disc.
Secondly, the disc is internally supported by non-gravitational forces.

As we discuss in Section 4.2, the average eccentricity of the disc
at late times is e = 0.88. To determine the effect of this eccentricity
on the velocity distribution, we set up artificial velocity fields with
constant eccentricities of 0 and 0.88 using a method described
in Appendix A3. For each velocity field, we compute the radial
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Figure 21. A time-averaged radial profile of the pressure gradient force
density normalized by the Keplerian force density. Within the disc, we see
that pressure gradient forces are a significant fraction of the Keplerian force,
accounting for the sub-Keplerian ¢-velocity distribution that we find in Fig. 6.
Pressure is averaged over spherical shells and mass-weighted. Time averages
are over the simulation’s full duration. The stream is ignored using the entropy
condition. We apply a smoothing function to the data to improve readability.
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Figure 22. Analogous to Fig. 18, but for the tilted TDE simulation, model
TDET30. The accretion efficiency is similar to that of the aligned run.

profile of ¢-velocity with equation (11), where the density weight
is determined as a function of radius by the power-law relationship
depicted in Fig. 6. On average, we find that the ¢-velocities in the
eccentric disc are 93.8 per cent of the p-velocities in the circularized
disc. Therefore, the g-velocities in our accretion disc are at most
76 per cent/0.938 = 81 per cent of the g-velocities in a Keplerian
accretion disc at the same eccentricity. Therefore, the disc must also
be externally supported by non-gravitational forces.

The only non-gravitational forces in our simulation are thermal
pressure-gradient forces. Because pressure drops off as the distance
from the BH increases (Fig. 6), these forces are directed away from
the BH in the equatorial plane, reducing the centripetal force on the
accretion disc. To analyse the force balance in the disc, we compute
the ratio of the pressure-gradient force density, Vp, to the centripetal
force density required to maintain Keplerian orbits (Fig. 21), where
the Keplerian centripetal force density is

v2 GM,
K = p2ZBH 27)
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As the ratio of force densities increases, the matter in the disc
forms stable orbits at increasingly sub-Keplerian velocities. We find
that the gradient force is a substantial fraction of the Keplerian
centripetal force at all radii in the disc allowing the disc material
into maintain sub-Keplerian velocities. In the inner parts of the
disc, the pressure-gradient force ranges from 25 to 40 percent of
the Keplerian centripetal force, which fully accounts for the sub-
Keplerian g-velocity distribution.

4.5 Comparison to disc models

4.5.1 Comparison to ZEBRA model

‘We compare the properties of the post-intersection accretion flow in
our simulation with those predicted by the ZEro-BeRnoulli Accretion
(ZEBRA) model proposed by Coughlin & Begelman (2014). The key
assumptions of the ZEBRA model are that

(i) the Bernoulli parameter b is zero everywhere,

(ii) the potential is Newtonian,

(iii) the magnetic energy density is not sufficient to destabilize the
disc with respect to the Hgiland criteria.

Coughlin & Begelman (2014) show that assumption (i) ensures
that the disc is gyrentropic; that is, surfaces of constant entropy,
angular momentum, and Bernoulli parameter coincide. From as-
sumption (ii), Newton’s law, and the Bernoulli equation, Blandford &
Begelman (2004) derive self-similar solutions for gyrentropic discs
with an arbitrary Bernoulli parameter. The ZEBRA solutions are a
special case when the Bernoulli parameter is zero everywhere.

Assumption (iii) trivially holds in our simulations due to the
absence of magnetic fields. We show that assumption (i) holds in
Fig. 2, which depicts a histogram of the Bernoulli parameter weighted
by mass in the initial conditions. We calculate that the average mass-
weighted Bernoulli parameter in the initial conditions is 3.6 x 10 — 5.
The Bernoulli parameter in the disc is larger than this initial parameter
because only the most bound debris reaches the black hole over the
duration of our simulation. However, even at late times, the Bernoulli
parameter is smaller than the gravitational binding energy within
the disc. At 5.7 d into the simulation, the average mass-weighted
Bernoulli parameter is approximately 1.5 x 1072, or 38 per cent of
the binding energy in the disc at a characteristic radius ry = 259R,
determined by the mass-weighted mean radial coordinate of the disc.

Assumption (ii) becomes less accurate as the radial coordinate
approaches the gravitational radius. However, we find that the power-
law relationships predicted by the ZEBRA model extend nearly to
the inner boundary of the disc as shown in Fig. 6. The ZEBRA model
self-similar solutions are

r\ ¢ ,
p(r,0) = po (—) (sin” 0)“, (28)
ro
—-q
(. 0) = p EMBHPO <i> (sin26)?, (29)
r ro
*(r,0) = aGMgyr sin’ 6. (30)

These solutions describe the accretion flow density, pressure, and
squared specific angular momentum, respectively, with the additional
definitions
1 - —1
oo L7y )’ G1)
y—1
p=— L] (32)
I+y —qly =1
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where r is some characteristic radius in the disc and p is the density
at that radius in the midplane. Of particular importance to our analysis
are the following relationships:

(33)

) pocr,
(i) pocrt—!,
(i) 12 < g < 3,
(iv) I o sin 20,

(V) p o (sin*6)%,
(vi) p o (sin?6)%,
(vii) Equation (31).

‘We compare the ZEBRA model predictions to the radial and polar
profiles of our simulated disc (Figs 6 and 7). (a) and (b) imply that
density and pressure depend on r as a power law and (e) and (f) imply
that density and pressure depend on @ as a power law of sin 2. These
predicted dependencies provide a reasonable fit for our data within
the boundaries of the disc (Tables B1 and B2). Our fitted power-law
exponents for the radial profiles density and pressure differ by 1.22,
which nearly matches the difference of 1.0 predicted by (a) and (b).
In the model of Coughlin & Begelman (2014), the power-law index ¢
can be constrained by the mass inflow rate and prescribed disc physics
(e.g. the fact that angular momentum is efficiently transported in the
disc), but in general it is expected to be on the order of ~1 — 2 (see
fig. 8 of Coughlin & Begelman 2014 and fig. 4 of Wu et al. 2018),
which is exactly what we see in our simulation.

However, the alpha parameter does not match its predicted value
from the ZEBRA model. The power-law exponent for density
indicates that ¢ ~ 1. Therefore, & ~ 0.5 by equation (31). Instead,
we find values for o of unity and 12 from pressure and density,
respectively. In addition, /% is proportional to (sin26)>? rather than
sin 2. These discrepancies indicate that the disc must be thinner than
predicted by the ZEBRA model.

The ZEBRA model predicts that the specific angular momentum
of the disc must be at least 76 percent of the Keplerian value
with our assumption of a polytropic index of 5/3 (Coughlin &
Begelman 2014). Coincidentally, we find that the @-velocities in
the disc are 76 percent of the Keplerian values for circular orbits.
As we discuss in Section 4.4, the non-zero eccentricity of our disc
automatically decreases the ¢-velocities in the disc relative to the
Keplerian velocity. Adjusting for this effect, the ¢-velocities in the
disc are 81 per cent of the Keplerian values.

As we mention in Section 3.1, the internal energy density and
mass density floors at 2.27 x 107'2 may artificially decrease the
radial and vertical extent of the disc by providing external pressure
support. Therefore, our results at radii within the disc boundaries (<
500R,) are more reliable than at larger distances. Without the floors,
it is possible that the power-law curves for density and pressure in
Figs 6 and 10 would continue past S00R,. This additional pressure
confinement may also be responsible for the flattening of the disc
as compared to the ZEBRA model. Because the floors are non-
rotating, the external pressure could decrease the angular momentum
of material at the edges of the disc, possibly leading to artificially
efficient accretion.

4.5.2 Bonnerot and Lu model

Recently, Bonnerot & Lu (2020) performed a TDE simulation with
a realistic stellar trajectory and mass ratio. They found that self-
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intersections launch outflows. These outflows undergo extensive
‘secondary shocks’ that ultimately result in the formation of an
accretion disc. This contrasts with our results, in which the formation
and circularization of the accretion disc results primarily from
stream—disc interactions near pericentre (Section 4.1). Even when
violent self-intersections do not occur, as in model TDET30, an
accretion disc still forms.

Bonnerot & Lu (2020) overcame the numerical challenges of
simulating a TDE with a realistic stellar trajectory and mass ratio
by using a non-spinning BH and incorporating the local simulation
of Lu & Bonnerot (2019) into their initial conditions to describe the
outflows produced by self-intersection shocks. However, that local
simulation includes assumptions that maximize the impact of the
self-intersection shocks.

Lu & Bonnerot (2020) perform their simulation in a special inertial
frame, which they refer to as the simulation box (SB) frame, in which
the incoming and outgoing streams collide head-on. The frame is
related to the lab frame by a boost to the comoving frame of a local
stationary observer at the self-intersection radius followed by a boost
to a frame where the p-velocity of the outgoing stream vanishes. This
technique relies on three assumptions.

First, it requires that the incoming and outgoing streams have equal
(p-velocities, aspect ratios) or precisely opposite (radial velocities)
properties at the point of self-intersection. However, significant peri-
centre dissipation, Lense—Thirring frame dragging, or hydrodynamic
instabilities at the boundary of the stream and the disc could cause the
outgoing stream to have a lower density and velocity and a different
trajectory relative to the incoming stream, decreasing the violence of
the self-intersections.

Secondly, the incoming and outgoing streams are only completely
parallel in the SB frame at the intersection point. As the radial
distance from the self-intersection point increases, the head-on gas
trajectories used in Lu & Bonnerot (2019) diverge from the physical
trajectories. Therefore, the approach is only accurate in the case that
there are minimal interactions between pre- and post-intersection
material and, e.g. the accretion disc. By ignoring these interactions,
the head-on approach increases the relative importance of the self-
intersections in the overall TDE evolution.

Thirdly, the Lu & Bonnerot (2019) simulation uses 2D cylindri-
cal coordinates, implicitly assuming axisymmetry of the colliding
streams. This 2D approach also cannot fully capture 3D fluid
instabilities and turbulence inherent in the violent interaction.

Many of the novel effects observed by Bonnerot & Lu (2020) are
tied to the strong outflows sourced at the self-intersection point: for
instance, the formation of a retrograde accretion disc with respect to
the star’s initial orbital angular momentum is due to the preferential
loss of prograde debris in the self-intersection outflows. In our
simulations, stream—disc interactions near pericentre rapidly become
the primary locus of energy dissipation and efficiently suppress the
return of coherent outgoing streams to the self-intersection site. This
behaviour is difficult to reconcile with local mass injection schemes
near the self-intersection radius.

One source of the discrepancy between our work and that of
Bonnerot & Lu (2020) may be the high-8 encounter analyzed here,
which causes the outgoing stream to significantly expand after the
pericentre passage due to differential precession (Section 3.1). For
a more standard TDE with 8 = 1, the approach of Bonnerot & Lu
(2020) may become more accurate. It is also possible that increasing
the resolution across the vertical extent of the stream in our simulation
would result in stronger nozzle shocks. We leave it to future work to
apply our methods to less deeply penetrating TDEs.
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Figure 23. The tilt angle 7 and precession angle P of the tilted disc over time in our titled TDE simulation TDET30. Panels (a) and (b) depict the tilt and
precession angles calculated from the net angular momentum of the disc for material r < 500R,. Panels (c) and (d) depict the tilt and precession angles calculated
from the net angular momentum of the disc material at the radius indicated on the y-axis. Both tilt and precession angles are continuous within the range of radii
in the disc outside of stream’s pericentre (10R, < r < 200R, at the beginning of the simulation and 10R, < r < 400R, at the end of the simulation), indicating
that there is no disc-tearing. Below 10R,, tilt and precession angles fluctuate rapidly due to stream—disc interactions at pericentre. We do not observe significant
precession of the disc in the duration of the simulation. It is possible that disc precession at small radii is inhibited by the constant injection of stream material

in the orbital plane of the star.

4.6 Analysis of the tilted TDE simulation, model TDET30

Fig. 22 shows that the accretion efficiency of the tilted TDE is only
slightly less than the aligned TDE, hovering from 10 to 15 per cent.
Just like the aligned scenario, all three mass fluxes increase roughly
linearly in time, implying a quadratically increasing disc mass.

In Fig. 23, we compute the tilt and precession angle of the
disc using the method of Fragile et al. (2007), Fragile & Anninos
(2005), Nelson & Papaloizou (2000) which we describe below for
convenience. The tilt angle 7 is given by

(34

T(r) = arccos [M] ,

JBH!W disc!
where Jgyy = aMpyZ is the angular momentum vector of the BH

and Jgisc(r) is the angular momentum vector of the disc in an
asymptotically flat space. J g;js.(7) is given component-wise by

€vop L1V S?
(Jdise)r = 2 /=55 (35
where
L = / (xHTY —x"TH) dV (36)
N / T°°dV 37

T is the stress—energy tensor, and € is the 4D Levi—Civita symbol. The
unit vector y points along the axis about which the initial conditions
are initially tilted and Z points along the angular momentum axis
of the BH. The precession angle is computed similarly using the
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definition

(38)

P(r) = arccos JBH X Jdisc(r) -9

BH X Jdisc!

Due to Lense-Thirring precession, we would expect the precession
angle of the inner disc to increase monotonically with time. The
precession rate of the line of nodes of a particle orbiting with
eccentricity e and semimajor axis dq, around a BH with dimension-
less spin parameter a is given by Merritt (2013) as
dQLT 2G2M§Ha
S . (39)

dr Aad, (1 —e)?

Plugging in the dimension-less spin parameter a = 0.9375 and the
mean eccentricity at each radius (Fig. 17), we find that the precession
period exceeds the simulation duration of 5 d for radii » > 85R,. The
disc in our simulation radially extends to 400R, at late times, so we
should only expect significant precession within the inner regions of
the disc. However, even at radii r < 85R,, Fig. 23 shows that the
precession angle remains consistent throughout the duration of our
simulation. One explanation is that precession is inhibited by the
angular momentum supplied by the debris stream which is in the
initial orbital plane of the star.

At the times well before peak fallback time considered in our
simulation, the fallback rate of the stellar debris increases linearly
with time (Fig. 22). Therefore, the debris stream accounts for a
significant proportion of the total angular momentum budget. By
summing the components of Newtonian angular momentum in the
region r < 500R,, we estimate that the net angular momentum of the
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stream in this region is approximately 7 percent of the net angular
momentum of the disc at late times.

Previous GRMHD simulations of tilted accretion discs have shown
disc tearing, where the accretion disc occupies separate planes over
different ranges in radii (Liska et al. 2021). disc tearing occurs
when the torque exerted on the disc by differing rates of Lense—
Thirring precession at different radii surpasses the viscous forces
holding the disc together. In particular, the inner part of the disc may
become aligned with the equatorial plane of the BH, a phenomenon
known as Bardeen—Peterson alignment. The continuity of the tilt and
precession angles over the range of radii in the disc (Fig. 23) suggests
that the disc remains intact. Similarly to precession, disc tearing and
Bardeen—Peterson alignment may be inhibited by the contribution of
angular momentum from the stream.

At times well after the end of our simulation, the mass accretion
rate will drop below the Eddington limit. Therefore, the disc may cool
and begin precessesing and/or tearing. Since this simulation was not
run for multiple viscous times of the accretion disc, the presence of
precession in tilted TDEs remains an open question.

5 CONCLUSIONS

In this work, we simulate a tidal disruption of a Sun-like star by a
supermassive BH for a realistically large mass ratio (Q = 10°) and
for a realistic stellar orbit (ey & 1). We simulate the initial disruption
in post-Newtonian SPH and migrate to full GRHD as the debris
stream approaches the BH. We also present the first simulation of
a tilted TDE in GRHD (Section 6). Our use of realistic parameters
poses a number of challenges. A high mass ratio leads to a thin
stellar debris stream that is difficult to resolve. We accommodate this
difficulty using two levels of AMR. A parabolic stellar trajectory
necessitates a large range of temporal and spatial scales. As the initial
eccentricity of the star increases, the fallback time of the stellar debris
and the apocentre of the debris stream orbit grow. The unprecedented
efficiency of H-AMR due to GPU-acceleration and AMR allows us
to cover the necessary range of scales to simulate the earliest stages
of accretion disc formation.

‘We find that the TDE naturally and efficiently forms an accretion
disc, although the high-eccentricity material constantly supplied by
the stream inhibits circularization. The accretion efficiency fluctuates
between 10 and 20 percent over the duration of our simulation
(Fig. 18). We also find that a significant fraction of material accretes
at moderate eccentricities (0.4 < e < 0.7), with highly eccentric
material (e > 0.7) preferentially accreted at high latitudes (Fig. 20).

During the post-disruption phase of our aligned TDE simulation,
the debris stream undergoes a series of violent self-intersection events
in which the incoming and outgoing streams collide. We propose
that these self-intersections are the phenomena responsible for the
early-time flaring of TDE Swift J1644+4-57 and other TDEs. The
self-intersections account for both the number of flares and their
time-scale.

At early times (i.e. during the first 3 d of the simulation), self-
intersections play a crucial role in orbital energy dissipation. At
late times, the newly formed accretion disc completely intercepts the
outgoing stream, causing the violent self-intersection events to cease.
As aresult, stream—disc interactions near pericentre are the dominant
dissipation mechanism. These interactions raise the entropy of the
debris stream three quarters of the way to the final entropy of the
accretion disc (Fig. 13). Consequently, thermal energy flux dominates
over mass energy flux in the debris stream post-pericentre compared
to before the pericentre passage.
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We find that the newborn disc exhibits super-Eddington accretion.
The radial and polar dependencies of density and pressure within the
disc closely reflect the self-similar solutions proposed by Coughlin &
Begelman (2014) in the ZEBRA model. Non-zero eccentricity has a
small effect on the deviation from Keplerian velocities in the disc,
and the more prominent effects are from thermal pressure gradient
forces (Fig. 21). The thermal energy generated by accretion heats up
the inner part of the disc. The temperature distribution through the
disc creates a thermal pressure gradient force that supports the disc
against gravity, leading to a sub-Keplerian velocity distribution.

For a TDE with a 30 deg BH-spin—stellar-orbit misalignment
angle, we find that nodal precession causes the incoming and
outgoing streams to intersect off-centre (Fig. 9). This ejects gas from
the outgoing stream on to orbits with larger tilt angles and results in
less violent self-intersections. However, an accretion disc still forms
with a similar accreted fraction of the material to the aligned case.

The largest drawback of our simulation is its short duration, of
about one week, which allows only the small fraction of the stellar
debris with specific energy well outside the frozen-in approximation
to accrete on to the BH (Section 2.1). However, these early stages
of TDE disc formation are crucial because they capture the initial
disc formation and the emergence of the orbital energy dissipation
mechanism. Our results suggest that disc formation in TDEs may be
a runaway process; once sufficient mass has partially circularized at
small radii, stream—disc interactions become the dominant dissipa-
tion mechanism, further growing the (initially eccentric) accretion
disc. Clearly, the late-time evolution of TDE discs requires further
study, particularly as the fallback rate approaches its peak and
deviates from linear growth.

As discussed in Section 2.3, it is possible that we under resolve
pressure gradients within the stream. This will be corrected in future
simulations by including additional levels of AMR. In future work,
we plan to study how TDE accretion disc formation is affected by
the magnetic field of the disrupted star. This will allow us to model
the MRI of the disc. We also plan to incorporate a variable polytropic
index based on the equation of state used by Shiokawa et al. (2015)
to more accurately model the thermodynamics of the disc. Finally,
we will either use the pseudo-Newtonian potential from Tejeda &
Rosswog (2013) in our initial SPH simulation or we will model the
entire disruption in full general relativity.
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APPENDIX A: DERIVATIONS

In this appendix, we provide several derivations used in our analysis
which did not fit into the main body of the text.

A1 Bernoulli parameter

Throughout our analysis, we used the Bernoulli parameter to distin-
guish between bound and unbound material. The Bernoulli parameter
is the ratio of total energy flux to mass energy flux. The total energy
flux in spatial coordinate x' is given by

total = — T = =0 + p+ uuu’ = —(p* + yu ',
(A1)

where T is the stress—energy tensor and g is the metric tensor. The
total mass energy flux in spatial coordinate x' is given by

Plags = pc’u’ (A2)
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Figure Al. The ratio of ¢-velocity to circular Keplerian velocity for orbits of
various eccentricities. We compute ¢-velocity by setting up artificial velocity
fields in the equatorial plane with a constant eccentricity. Then, we average
@-velocity over radius using a mass weight determined by the power law of
best fit for the mass density radial profile in the aligned TDE simulation.
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Therefore, the relativistic Bernoulli parameter is given by
= Ptotal _ (o +yuguu’ _ wilpe +yuy) (A3)
Phnass pctul pc?

Thus defined, the relativistic Bernoulli parameter is counted off
from unity, which corresponds to the rest-mass contribution: b >
1 corresponds to hydrodynamically unbound and » < 1 bound
material. To follow the more familiar non-relativistic convention,
we subtract the rest-mass contribution so that positive and negative
values correspond to unbound and bound material, respectively:

_ulpc® + yuy)

b=b—1= -
pc

1 (A4)

A2 Equatorial geodesics

In Fig. 5, we depict a geodesic in the equatorial plane. In the Kerr
geometry, equatorial geodesics remain in the equatorial plane, so we
set @ = /2 and u’ = 0. We then solve for ', u”, and u? using the
following equations.

E =—g,u" (AS)
L = gy u" (A6)
guu'u’ =k, (A7)

where g is the metric tensor, E is energy, L is angular momentum,
and k¥ = —1 for time-like geodesics. For the geodesic in Fig. 5, E
and L are taken from their simulation values at the Cartesian point
(=500, —200, 0). At each point along the geodesic, we compute 1"
and u? and integrate the resulting differential equations. We linearly
interpolate the covariant metric to the points along the geodesic.

A3 Artificial velocity fields

In Section 4.4, we create artificial velocity fields to control for the
effect of the non-zero eccentricity of the disc in our analysis of its
velocity distribution. We set up artificial velocity fields of constant
eccentricity e and aligned pericentres under a Newtonian regime. For
a given point in the midplane, we calculate the semimajor axis of the
orbit a and the eccentric anomaly E from the distance from the BH
r and the true anomaly v =0 — 7/2.

r(1 + ecosv)

— A8

“ 1—¢? (A8)
JT=etsi

E = arctan Y- %V (A9)
e + cosv

Then, we compute the Cartesian state vectors.

X=r (cf)s ”) (A10)

sin v

a —sinE
X =4/ — . All
X \/:(\/l—ezcosE> (ALD)
Finally, we compute 7 and ¢.
i X1X1 + x2X (A12)

r
X1Xp — X1X2

g=122 T2 (A13)

r2
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A4 Analytical self-intersection radius

The analytical self-intersection radius is given by Wevers et al.
(2017). Consider the orbit of a mass-less test particle in the equatorial
plane around the BH. Averaged over one orbit, general relativistic
apsidal precession causes the argument of pericentre to advance by
approximately an amount

Sw = Ag —2A,, (Al14)

where Ag and A; are the contributions to the apsidal precession of
BH mass and spin-induced frame dragging, respectively, and the
precession due to the BH’s quadrupole moment is ignored. To the
lowest post-Newtonian order, Ag and A; are given by Merritt et al.
(2010) as

6m GMpy
_om AlS
5T 2 rp(l+e) (ALS)
4 GM 2
A, = ? <J> , (A16)
c rp(l +e)

where e is the orbital eccentricity. From dw, we find the self-
intersection radius with equation (A17).

1 4 ecos(mt+ dw/2)

Rgp = (A17)
For a marginally bound stellar orbit e &~ 1 with a pericentre radius
r, = TRy, we find a self-intersection radius of 142R,. For a similar
orbit with a pericentre radius r, = 12R, as seen in our simulation at
late times, we find an analytical self-intersection radius of 565R,.

APPENDIX B: CURVE FITTING DATA

In this appendix, we provide the curve fitting data for Figs 6 and 10
in Tables B1 and B2, respectively.

Table B1. Curve-fitting results for the radial profiles of mass density,
pressure, and ¢-velocity from 20-250 R, shown in Fig. 6, including the
power-law parameters (ax”) and their relative standard deviation errors. The
exponent for g-velocity is fixed at -0.5.

Variable a a1ty b obv/ b

P 4.13E-7
Pressure 2.54E-7
@-velocity 0.759

4.71 per cent —1.10
7.37 per cent —-2.32
1.64 per cent

1.26 per cent
1.00 per cent
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Table B2. Curve-fitting results for the tilted TDE radial profiles of mass
density, pressure, and ¢-velocity from 20-250 R, shown in Fig. 10, including
the power-law parameters (ax?) and their relative standard deviation errors.
The exponent for ¢-velocity is fixed at -0.5.

Variable a 04l b o/
P 5.19E-7 1.73 per cent —1.34 0.397 per cent
Pressure 291E-7 6.75 per cent —-2.62 0.840 per cent

@-velocity 0.593 2.17 per cent

APPENDIX C: TILTING ALGORITHM

In this appendix, we describe the tilting algorithm used in our analysis
of model TDET30. For our analysis of the tilted TDE, we untilt the
data so that the orbital plane of the star lies in the equatorial plane.
For each point on our original spherical grid, we convert to Cartesian
coordinates and multiply by the rotation matrix Ry(7t/6). Then, we
use a third-order spline method to interpolate our data to each point
on the rotated grid.

In Fig. C1, we test our tilting algorithm by tilting and untilting
one time slice. While the edges of the stream lose some of their
definition, the overall structure of the system remains intact.

Tilted and Untilted

Original

-500  -250 Q 250 500 -500 -250 0 250 500
z/R, z/R,

Figure C1. Contour plots of the log of rest mass density in the equatorial
plane at 5.7 d. The left-hand panel shows the unaltered data and the right-hand
panel shows the data after two applications of the tilting algorithm at angles
of /6 and —n/6.
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