ON A CONVERSE THEOREM FOR G; OVER FINITE FIELDS

BAIYING LIU AND QING ZHANG

ABSTRACT. In this paper, we prove certain multiplicity one theorems and define twisted gamma
factors for irreducible generic cuspidal representations of split Go over finite fields k of odd char-
acteristic. Then we prove the first converse theorem for exceptional groups, namely, GL; and
GLo-twisted gamma factors will uniquely determine an irreducible generic cuspidal representation
of Ga(k).

1. INTRODUCTION

In the theory of automorphic representations, the global converse problems aim to recover auto-
morphic forms from their Fourier coefficients. Global converse theorems have played crucial roles in
establishing global Langlands functoriality ([CKPSS01, CKPSS04, CPSS11]) and are very important
for the Langlands Program. In the theory of representations of reductive groups over local and finite
fields, the converse problems aim to find a minimal complete set of invariants of twisted gamma
factors uniquely determining irreducible generic representations. Local converse theorems have been
used to prove the uniqueness of the generic local Langlands functoriality and the local Langlands
correspondence ([JS03, H93]). While converse problems have been extensively studied for general
linear and classical groups, they have not been studied for exceptional groups. The goal of this
paper is to prove the converse theorem for the split exceptional group of type G2 over finite fields
of odd characteristic, which seems to be the first converse theorem for exceptional groups. In the
following, we first introduce the recent progress on the study of the converse problems for general
linear and classical groups over local and finite fields.

Let F be a p-adic field. Let 7 be an irreducible generic representation of GL,,(F'). The family of
local twisted gamma factors v(s, ™ x 7,%), for 7 any irreducible generic representation of GL,.(F),
1 an additive character of F' and s € C, can be defined using Rankin—Selberg convolution [JPSS83]
or the Langlands—Shahidi method [S84]. The local converse problem is that which family of local
twisted gamma factors will uniquely determine 7?7 The following is the famous Jacquet’s conjecture
on the local converse problem.

Conjecture 1.1 (Jacquet’s conjecture on the local converse problem). Let 71, me be irreducible
generic representations of GLy, (F). Suppose that they have the same central character. If

7(87W1 X T7¢) = 7(8771-2 X T7¢)7

as functions of the complex variable s, for all irreducible generic representations T of GL,.(F) with
1 <r < [3], then m = mo.

Conjecture 1.1 has recently been proved by Chai ([Ch19]), and by Jacquet and the first-named
author ([JL18]), independently, using different analytic methods.

Omne can propose a more general family of conjectures as follows (see [ALSX16]). Let 1,7 be
irreducible generic representations of GL,,(F'). We say that 7; and my satisfy hypothesis H, if they
have the same central character. For m € Z>;, we say that they satisfy hypothesis H,, if they
satisfy hypothesis Hy and satisfy

’7(8,,”1 X T,w) = ’7(8,7T2 X va)
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as functions of the complex variable s, for all irreducible generic representations 7 of GL,,(F). For
T € Z>0, we say that 7,y satisfy hypothesis H<, if they satisfy hypothesis H,,, for 0 < m < r.

Conjecture J(n,r). If m1,m2 are irreducible generic representations of GL,(F) which satisfy
hypothesis H<,, then m ~ ms.

Conjecture 1.1 was exactly Conjecture J(n, [5]). Conjecture J(2,1) was first proved by Jacquet
and Langlands [JL70]. Conjecture (3, 1) was first proved by Jacquet, Piatetski-Shapiro, and Shalika
[JPSST9]. For general n, Conjecture J(n,n — 1) was proved by Henniart in [H93], and by Cogdell-
Piatetski-Shapiro using a global method in [CPS94]. Conjecture J(n,n—2) (for n > 3) is a theorem
due to Chen [Ch96, ChO06], to Cogdell and Piatetski-Shapiro [CPS99], and to Hakim and Offen
[HO15).

In [JNS15], Jiang, Nien and Stevens showed that Conjecture 1.1 is equivalent to the same con-
jecture with the adjective “generic” replaced by “unitarizable supercuspidal” as follows:

Conjecture 1.2. Let 71,7 be irreducible unitarizable supercuspidal representations of GL,(F).
Suppose that they have the same central character. If

’Y(svﬂ-l X va) = 7(877[-2 X 7—7/(/))7
as functions of the complex variable s, for all irreducible supercuspidal representations 7 of GL,.(F)
with 1 < r < [3], then m = m.

Making use of the construction of supercuspidal representations of GL, (F") in [BK93] and prop-
erties of Whittaker functions of supercuspidal representations constructed in [PS08], Jiang, Nien
and Stevens introduced the notion of a special pair of Whittaker functions for a pair of irreducible
unitarizable supercuspidal representations my, my of GL,(F'). They proved that if there is such a
pair, and 7y, 7y satisfy hypothesis H<[n, then m = 2. They also found special pairs of Whittaker
functions in many cases, in particular the case of depth zero representations. In [ALSX16], Adrian,
the first-named author, Stevens and Xu proved part of the case left open in [JNS15]. In particular,
the results in [JNS15] and [ALSX16] together imply that Conjecture 1.2 is true for GL,,, n prime.

It is easy to find pairs of generic representations showing that in Conjecture 1.1, [] is sharp for
the generic dual of GL, (F). In [ALST18], Adrian, the first-named author, Stevens and Tam showed
that, in Conjecture 1.2, [%] is sharp for the supercuspidal dual of GL,,(F), for n prime, in the tame
case. It is believed that in Conjecture 1.2, [§] is sharp for the supercuspidal dual of GL, (F), for
any n, in all cases. However, it is expected that for certain families of supercuspidal representations,
[5] may not be sharp, for example, for simple supercuspidal representations (of depth %), the upper
bound may be lowered to 1 (see [BH14, Proposition 2.2] and [AL16, Remark 3.18] in general, and
[X13] in the tame case).

For general reductive groups, one can consider analogue converse problems whenever the twisted
gamma factors have been defined, for example, using either the Rankin-Selberg convolution method
or the Langlands-Shahidi method if available.

Nien in [N14] proved the finite fields analogue of Conjecture 1.1 for cuspidal representations of
GL,,, using special properties of normalized Bessel functions and the twisted gamma factors defined
by Roditty ([Ro10]). Similar local converse theorems were extended to certain classical groups in
[LZ21]. Adrian and Takeda in [AT18] proved a local converse theorem for GL,, over archimedean
local fields using L-functions. In [M16], Moss defined the twisted gamma factors for ¢-adic families
of smooth representations of GL,,(F), where F is a finite extension of Q, and ¢ is different from
p, and proved an analogue of Conjecture J(n,n — 1). In [LM20], joint with Moss, the first-named
author proved an analogue of Conjecture J(n,[%]) for f-adic families, using the idea in [JL18]. In
[NZ21], Nien and Zhang verified a converse theorem for Gauss sum of characters of finite fields Fyn
and showed that such a character is determined by Gauss sum twisted by characters of GL; (F,), for
n <5, or for n < % + 1 in the appendix by Zhiwei Yun.

For p-adic groups other than GL,, in particular classical groups, twisted gamma factors have
been defined in many cases and the local converse problems have been vastly studied: U(2,1) and
GSp(4) (Baruch, [B95] and [B97]); SO(2n + 1) (Jiang and Soudry, [JS03]); Us,, (Morimoto [Mo18],
and the second named author [Zh17a, Zh17b, Zh18]); Sp(2n) and Usgy,1(the second named author,
[Zh18], and [Zh19]).
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The ideas of converse theorems have been extended to distinction problems, namely, using special
values of twisted gamma factors to characterize representations of GL,, (E) distinguished by GL,,(F),
where E/F is a quadratic extension, see Hakim and Offen [HO15] (over p-adic fields), and Nien [N19]
(over finite fields).

In this paper, we consider the first case (split Gz) of converse problems for generic representations
of exceptional groups. Let k be a finite field of odd characteristic p and let ¥ be a fixed non-trivial
additive character of k. We define GL; and GLo-twisted gamma factors for irreducible generic
cuspidal representations of Ga(k), which are denoted using I' rather than v since we do not consider
the normalization issue here, see Propositions 5.8 and 6.6, and prove the first converse theorem for
exceptional groups as follows:

Theorem 1.3 (Theorem 7.3). Let 1, Iy be two irreducible generic cuspidal representation of Go(k).
If

F(Hl X Xﬂ/’) - F(HQ X Xaw)a

(I} x 7,¢) =Ty x 7,9),

for all characters x of k™ and all irreducible generic representations 7 of GLo(k), we have Ty = Tl,.

To define GL;-twisted gamma factors, we use the finite fields analogue of Ginzburg’s local zeta
integral in [Gi93] and we prove the following multiplicity one theorem to deduce the functional
equation:

Theorem 1.4 (Theorem 2.1). Let II be an irreducible cuspidal representation of Ga(k), then
dim Hom ;(IT, I (x) ® wy) < 1,

where J is the Jacobi group contained in the mazimal parabolic subgroup of Ga(k) with the long root
in the Levi (see § 2.3 for definitions), x is a character of k™, I(x) is the induced representation of
SLa(k) from x, and wy is the Weil representation of J with central character .

To prove the above theorem, we need to use the classification of representations of Go(k) given by
Chang and Ree ([CR74], for p > 3) and by Enomoto ([En76], for p = 3), and compute the dimension
of the Hom space for each irreducible cuspidal representation.

We remark that in [L84] Lusztig gave the classification of representations of connective reductive
groups using the virtual character theory of Deligne-Lusztig [DL76]. For convenience, in this paper
we follow the classification of Chang-Ree and Enomoto.

To define GLy-twisted gamma factors, we embed Gs into SO7 and use the finite fields analogue
of the local zeta integral developed by Piatetski-Shapiro, Rallis and Schiffmann ([PSRS92]). The
functional equation in this case follows from the following multiplicity one result

Proposition 1.5 (Proposition 6.4). Let II be an irreducible generic cuspidal representation of G (k)
and let T be an irreducible generic representation of GLa(k). Then we have

dim Homg, 1) (1(7)|cy k), 11) = 1,

where I(1) = Indsﬁo7(k)(7 ® 1s0,), P is a parabolic subgroup of SO7(k) with the Levi subgroup
isomorphic to GLa(k) x SO3(k) (see §6 for definitions).

The existence of gamma factors for Ga(k) x GLo(k) follows from the above proposition and is
given in Proposition 6.6.

Over p-adic fields F', given an irreducible generic cuspidal representation 7 of Go(F') and an
irreducible generic representation T of GL;(F), ¢ = 1,2, assuming the gamma factor v(s,m x 7, 1))
has been defined, it is expected that if the gamma factor (s, 7 x 7,9) has a pole at s = 1, then 7
should occur in the conjectural local Langlands parameter of w. Similar results are also expected
for general reductive groups, and have been proved for classical groups (see for example [JS12] and
references given there). However, over finite fields &, the analogue meaning of gamma factors is not
clear, noting that the gamma factors over finite fields are just complex numbers.

For the convenience of readers, we summarize the proof of Theorem 1.3 briefly as follows. Let B; :=
B, € W(II;, %) be the Bessel function of II; for ¢ = 1,2, namely, the Whittaker function associated
with a Whittaker vector, normalized by B;(1) = 1 (see §5.1 and Lemma 5.2 for the basic properties of
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B;). We will prove that B1(g) = Ba(g) for all g € Go(k) under the assumption of Theorem 1.3. Since
Ga(k) = Hwew(GQ) BwB, where B is a fixed Borel subgroup of Go, it suffices to show that By agrees
with By on various cells BwB. Let B(Gz) = {w € W(Gg) : Vy € A,wy >0 = wy € A}, where
A = {a, B} is the set of simple roots of Go with «a being the short root and S being the long root.
Let sq (resp. sg) be the simple reflection defined by « (resp. 8). Then B(Gz) = {1, w1, wa,we},
where wy is the longest Weyl element, wy = wysq and we = wesg. By Lemma 7.1, if w ¢ B(G2), we
have Bi(g) = B2(g) = 0 for g € BwB. If w =1, we also have B1(g) = Bz2(g),Vg € B by Lemma 5.2.
Thus it suffices to show that By (g) = Ba(g),Vg € BwB with w = wy,ws,w,. It turns out that the
equality of GL;-twisted gamma factors implies that By (g) = Ba2(g), Vg € Bwy B, and the equality of
GLoy-twisted gamma factors implies that By (g) = Ba(g), Vg € BwB with w = way, wy. This completes
the proof of Theorem 1.3.

Theorem 1.3 inspires us to consider the local converse problem for Go(F') when F' is a p-adic
field. In this case, our proof in §6 is actually valid for an analogue of Proposition 1.5 without the
restriction that II is cuspidal, which gives us the local functional equation of the local zeta integral
of Piatetski-Shapiro-Rallis-Schiffmann ([PSRS92]) and hence the existence of the GLo-twisted local
gamma factors. However, the existence of the GL;-twisted local gamma factors relies on the following
Conjecture 1.6. Let F' be a p-adic field and I1 be an irreducible generic representation of Go(F).

Let ¢ be a nontrivial additive character of F. Let I(x,v) be the genuine induced representation on

the double cover SLo(F') for a character x of F*. Then if f(x,w) is 1rreducible, we have
dim  (T1, I(x, ¥) ® wy) < 1.

Note that both I(x,v) and wy are genuine representations on a double cover of J and the thus
the tensor product I (x, ) is a representation on J.

In the above conjecture, we keep the requirement minimal so that it is enough to deduce the
local functional equation of Ginzburg’s local zeta integral ([Gi93]). We do expect that the following

generalized conjecture is true

Conjecture 1.7. Let F' be a p-adic field and I1 be an irreducible (selfdual) representation of Go(F').
Let 4 be a nontrivial additive character of F'. Let 7 be an irreducible genuine representation on the
double cover SLo(F). Then we have

dim;(II, 7 ® wy) < 1.

As explained in [LZ19, §6], Conjecture 1.7 is an analogue of the uniqueness problem of Fourier-
Jacobi models for Sp,,,, which was proved in [BR00] (for n = 2) and in [GGP12, Sul2|(for general
n). Once Conjecture 1.6 is established, we then have the local gamma factors for irreducible generic
representations of Gz(F) x GL1(F) using Ginzburg’s local zeta integral. Inspired by Theorem 1.3,
we propose the following conjecture on the local converse problem for Go(F).

Conjecture 1.8. Let F' be a p-adic field. Suppose that Conjecture 1.6 is true. Let 111,15 be two
irreducible generic representations of Go(F). If

7(87H1 X Xﬂﬁ) = ’7(871_—[2 X Xaw)7
’Y(Sanl X 7-7’(/)) = 7(571—[2 X T, w)a

for all characters x of GL1(F) and all irreducible generic representations T of GLo(F'), then II; = Il,.

Conjectures 1.6-1.8 are current work in progress of the authors.

Again, by Langlands philosophy of functoriality, representations of Go(F’) are expected to be lifted
to representations of GL7(F') and this lifting is expected to preserve GL-twisted local gamma factors.
Then the Jacquet’s local converse conjecture for GL,,, which was recently proved in [Ch19, JL1§],
implies that two irreducible generic representations II;,i = 1,2 of Go(F') would be isomorphic if the
twisted local gamma factors v(s,II1 x 7,%), v(s,IIs X 7,1), are the same for all irreducible generic
representations 7 of GL, (F) for all n = 1,2,3 (once they are all defined). Theorem 1.3 says that
we only need GL; and GLy-twisted gamma factors over finite fields, and we expect the same is true
over p-adic fields as in Conjecture 1.8.
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The paper is organized as follows. In §2, we introduce the group Go, the Fourier-Jacobi group
J, the Weil representations wy, and the Multiplicity One Theorem 1.4. Theorem 1.4 is proved in
83 (for p > 3) and §4 (for p = 3). We define GL; and GLa-twisted gamma factors for irreducible
generic cuspidal representations in §5 and §6, respectively. Finally, Theorem 1.3 is proved in §7.
In Appendix A, we compute certain Gauss sums which are used in the proof of Theorem 1.4. In
Appendix B, we describe the embedding of Gs into SO7 used in this paper.
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2. THE FOURIER-JACOBI GROUP AND A MULTIPLICITY ONE THEOREM

2.1. Some notations and conventions. Throughout this paper, unless specified otherwise, we
fix the following notations. Let p be an odd prime and g is a power of p. Let k = F,, the finite

field with ¢ elements. Let ¢(z) = (%), where (-) denotes the Legendre symbol. Let ey = €(—1).
Then we have ¢g = 1if ¢ = 1 mod 4, and ¢g = —1 if ¢ = 3 mod 4. Let kX2 = {x2:x€kx},
and k>3 = {x?’ cx €k } Let ko be the unique quadratic extension of &, i.e., ky = Fp2. We fix a

generator  of the multiplicative group £*. Then we have x € kX —k>2. Let v be a fixed non-trivial
additive character of k. Then there exists a 4-th root of unity €, such that for any a € k>, we have

(2.1) 3 t(az?) = epela) Va

ek

Moreover, we have 61211 = €g. See [Bu97, Ex.4.1.14] for example. By abuse of notation, we write €y

as /€g.
We usually don’t distinguish a representation and its space. Thus for a representation 7 of a
group G, a vector v € m means that a vector v in the space of .

2.2. Weil representations of SLy(k). Let W = k2, endowed with the symplectic structure ( , )
defined by

(2.2) ((z1,91), (w2, 42)) = —221Y2 + 22291

Let 5% be the Heisenberg group associated with the symplectic space W. Explicitly, 7 = W @& k
with addition

(1, Y1, 21] + [2, Y2, 22]) = [T1 + T2, Y1 + Y2, 21 + 22 — T1Y2 + T2y ].

Let SLy(k) act on J# such that it acts on W from the right and act on the third component & in
S trivially. Then we can form the semi-direct product SLo(k) x J#. The product in SLy(k) x 2
is given by

(91,v1)(92,v2) = (9192, v1.92 + v2).

Here v;.gs is the action of g on vy from the right and v; is viewed as a row vector. By [Ge77], there
is a Weil representation wy, of on S(k), the space of C-valued functions on k. The Weil representation
wy is determined by several formula, which can be found in [GH17]. Note that the symplectic form
in [GH17] is a little bit different from ours. Thus the formulas in [GH17] should be adapted to our
slightly different symplectic structure on W. One can consult [Ku96] for the dependence on the
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symplectic structure. The Weil representation in our case is determined by the following formulas:

wy([2,0,2])9(§) = P(2)¢(E + @),
wy ([0, y,0])¢ () P(=28y)9(§),
wy (diag(a,a”™! = e(a)¢(ag),

06

o
(23) (( )) (—bE2)6(6),
ANE | -

ek
for ¢ € S(k),x,y,2,§,b € k,a € k™. Here v(b,v) = > cp (—bx?), which can be computed using
(2.1).

2.3. The group G, and its Fourier-Jacobi subgroup. In this subsection, we give a very brief
review of some definitions and notations related to the group Ga(k). More details can be found in
[LZ19, §5].

Let Go be the split exceptional algebraic group of type Go over the field k. The group Gs has
two simple roots «, 3, where « is the short root and [ is the long root, and has 6 positive roots
a,B,a+ 5,20+ B,3a+ 5,3 + 28. Let sq,sp be the reflections determined by «, 5 respectively.
One has s,(8) = 3a + 8,s3(a) = a + . We use the standard notations of Chevalley groups
[St67]. For a root v, let U, C Ga(k) be the corresponding root space and let x, : k& — Ga(k) be
a fixed isomorphism which satisfies various Chevalley relations, see [St67, Chapter 3]. The explicit
commutator relations can be found in [Ch68, p.192]. A matrix realization of x,(r),r € k, is given in
Appendix B. The calculations in this paper could be performed using this explicit matrix realization.

For a root v, let w,(t) = x4 (£)x_(—t7")x,(t), wy = wy(1), and h,(t) = w,(t)w;"'. Note that
w., is a representative of the Weyl group element s.. Let h(t1,t2) = ho(t1t2)hs(t3ts). One can check
that h(t;,t2) agrees with the notation h(ty,to,t; *t; ) in [Ch68, CR74] and the notation h(t,ty) in
[Gi93]. Let T = {h(t1,t2) : t1,t2 € K} be the maximal torus of Ga(k) and let U be the subgroup
generated by U, positive. Then B = TU is a Borel subgroup of Ga(k). It is known that Go has
trivial center.

Let P’ = M'V’ be the parabolic subgroup with Levi M’ and unipotent V' such that U, C M’.
Then M’ = GLg(k) and V' is the group generated by Ug, Ua+8, Uza+8; Usa+8; Usa+23-

Let P = MV be the parabolic subgroup with Levi M and unipotent V such that Ug C M. Note
that V is generated by Uy, U8, U2a+8: Uza+8, Usat2s- Let Z C V be the subgroup generated by
Usza+8,Usa+s, Usa+2p. We still have M = GLg(k) and the isomorphism can be realized by

xso) - (1 7).

h(a,b) — (a b) .

Let J C P be the subgroup SLa(k) x V, where SLy(k) is viewed as a subgroup of M via SLa(k) C
GLy(k) & M. A typical element in V is of the form

(r1, 72,73, 74, 75) = Xa(r1)Xat8(r2)X20+8(73) X304 (ra)X3a-+28(75)-
There is a group homomorphism
pr:J =SLa(k) x V= SLa(k) x #
given by
(g, (r1,7m2,73,74,75)) — (d1gdy, (r1,72,73 — T172)),

where d; = diag(—1,1), see [LZ19, §5] for more details. Thus the Weil representation wy can be
viewed as a representation of J via the above group homomorphism. By (2.3) and the description
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of the above group homomorphism, we have the following formulas

wy ((11,0,73,74,75))$(§) = ¥(r3)d(§ + 1),
wy((0,72,0,0,0))6(§) = ¥ (—2&r2)B(€),
(2.4) wy (h(a,a™"))p(€) = e(a)p(al),
Ww(X,B( Ne(&) = w(b§2) ?(§),

Z &(x)1h(—22bE).

zc€k

- <(—b‘1 b)) v b )

Let x be a character of k* and we view x as a character of the upper triangular subgroup

Bsy, = Ast, Nst, of SLa(k) by
a b
X (( (Il)) = X(a).

Here Agr,, is the diagonal torus of SLs and Ngr,, is the upper triangular unipotent subgroup of SLs.
Consider the induced representation I(x) := IndSBI:L(Qk) (x). We view I(x) as a representation of J
via the natural quotient map J — SLa(k). The first main result of this paper is the following

Theorem 2.1. Let IT be an irreducible cuspidal representation of Go(k), then
dim Hom ;(IT, I (x) ® wy) < 1.
Remark 2.2. By Frobenius reciprocity, the above theorem can be restated as

dim Homg,, (1) (H,Ind?2(k)(I(X) ®uwy)) <1

for all irreducible cuspidal representations IT of Go(k). The representation Ind}; Ga(k )( I(x) @wy) is a
special case of Generalized Gelfand-Graev representation considered by Kawanaka, see [K85, K86,
K87]. There are many results on the computation of multiplicities of irreducible representations p in
the Alvis-Curtis dual of certain Generalised Gelfand-Graev representations which are associated to
the unipotent support of p, for example see [L92, Gec99, GeH08, T13]. In particular, in [L92], Lusztig
gave a bound on such multiplicities under the assumption that p, ¢ large. However, in this paper, we
are mainly interested in the multiplicities of irreducible generic cuspidal representations of G (k) in
the Generalized Gelfand-Graev representations which is associated to the next-to-minimal unipotent
orbit Ay of Go(k) (see [Ca85, p.401]). Note that the unipotent support of generic representations is
the regular unipotent orbit, which does not contain f~11.

Remark 2.3. (1). Our proof of Theorem 2.1 is by brute force and our main tool is the character
table of Ga(k). Note that the characters of a finite reductive group are given in [L84] after the
seminal work [DL76]. But prior to that, the detailed character table of Go(k) was given by Chang-
Ree [CR74] (when p > 3) and Enomoto [En76] (when p = 3). We will prove Theorem 2.1 for p > 3
and p = 3 separately in the next two sections.

(2). Note that, in the above theorem, we don’t require that I(x) is irreducible. One should
compare Theorem 2.1 with [LZ19, Remark 7.2], where we have shown that the dimension of the
Hom space may be bigger than 1 for general irreducible representations of Go(k) even when I(x) is
irreducible, however, here we show that if we consider irreducible cuspidal representations of Ga(k),
then the dimension of the Hom space is indeed less than or equal to 1.

Corollary 2.4. Let II be an irreducible cuspidal representation of Ga(k) and 7 be an irreducible
representation of SLa(k), then we have

dim Hom ;(IT, 7 ® wy,) < 1.

Proof. If 7 is an irreducible representation of SLo(k) which is not of the form I(x), the assertion
follows from the main theorem of [LZ19]. If 7 is of the form I (), the assertion follows from Theorem
2.1. O
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3. PROOF OF THEOREM 2.1 WHEN p > 3
In this section, we prove Theorem 2.1 when p > 3. The character table of Go(k) when p > 3 is
given in [CR74].

3.1. Character table of I(x) ® wy. As a preparation for the proof of Theorem 2.1, in this subsec-
tion, we give the character table of the representation I(x) ® wy of J. Given a representation 7 of
a finite group, denote by Ch, the character of w. It is well-known that

(3.1) Chr()@w, (9) = Chry)(9)Chy, (9)-
We first record the conjugacy classes of SLa(k):

Representative Number of elements in class | Number of classes
(1 1) | |
! . 1 1
1 1
(1) (- 1)/2 1
1 &
(1) (- 1)/2 !
-1 1
" 4) (- 1)/2 |
-1 K
(" o) (- 1)/2 !
x
(", 1)ar ala+1) (1-3)2
Ty
(;@y x),w#il,y#o q(q—1) (¢—1)/2

The above table could be found in [FH91], for example. As a representation of SLa(k), the character
tables of I() and w,, are given in [LZ19]. In particular, we know that

r oy
chy (1) 2)) =0

Thus by (3.1), it suffices to consider elements of the form gv with v € V', and g € SLy(k) not of the
form <ij i) Recall that Z is the group generated by Uz, Usa+s, Usat23-

Proposition 3.1 ([Ge77, Theorem 4.4, (b)]). If the function Chj(\)gw,, is nonzero on j € J, then
J is conjugate to an element in SLa(k) x Z.

By the above proposition, we need to consider elements in J which are J-conjugate to elements
of the form ¢(0,0,75,74,75),9 € SLa(k). For a group H and hy,hy € H, we write hy ~g hgy if
hy = hohahy* for some hy € H.

Lemma 3.2. The following is a set of representatives of j € J such that j is conjugate to an element

of the form ¢(0,0,r3,74,75) with g € SLa(k) and not of the form (:y z> ,y#0:

) 1;(0,0,0,0,1);(0,0,7r5,0,0),r3 € k*;
5(0)(0,0,r3,0,0);x(b)(0,0,73,74,0),0 € {1,5} , 73 € k,rqg € ¥/ {£1};
—1,-1)x3(b)(0,0,73,0,0),73 € k,b € {1,k};

z,271)(0,0,73,0,0),z # £1,7r3 € k.

Proof. First we notice that if g ~gr,x) ¢, then g(0,0,73,74,75) ~; ¢'(0,0,73,7),75) for some
rh, 14,75 € k. Thus we only need to consider the case when g runs over a set of representatives of
SLa(k)-conjugacy classes.
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TABLE 3.1. Conjugacy classes of J which are J-conjugate to elements of the form
9(0,0,73,74,75). Here  in the last row means the details of the corresponding
entries are omitted since they are not used.

Representative ¢ Cy(t) [J(t)] No. Chrew,
1
< 1> J 1 1 q(q + 1)
1 ) (0,0,0,0,1) New, x V 21 1 (g +1)
(0,0,73,0,0),r3 £ 0 SLy X Z q° g—1 q(q+ 1)p(rs)
( 1) ©073.0.0), 21 o
o 12(Ug, Uayps Uzar g, Usayas) | 154 q Veoqy(rs)
T3
1 kK
< 1] ©075.00), 21 o
o 12U, Uay g, Usat g, Usat2s) 54 q —/€q(r3)
T3
1
( 1 (() 0 33,74, O) 2 2 q(Q71)
<U,37 U(Jé-‘rﬂv U2a+,57 U3O¢+2/3> (q - 1)q 9 \/@1)[}(7’3)
rsek ra€k* /(£1)
( (0,0,73,m4,0), 2 2 | a(g—1)
e i (Uss Ua+8:Usa+p,Usat2s) | (¢© —1)¢° | 55— —/€oqip(r3)
rz€k,ry€k>
RIS 0 SLa X Usa g ¢ ¢ | (a+Dx(—Detb(rs)
h(=1, —=)xp(1)x20+5(r3) p2 X Ug X Uzasip q2{1q4 q eox(—1)¢(r3)
h(-1 —12 5(K)X2a+5(73) p2 X Ug X Uzayp gt q cox(=1)¥(rs)
h@a™)(0.0:r3,0,0), A, ¥ Uzars Pa+1) | 10 [ e(x(@) + x(z71)v(rs)
r Yy (0,0,73,r4,75),
KYy * * * 0
xF+1

We first consider the case when g = 1. If r3 # 0, we have
(3.2) (—ra/(3rs),—75/(3r3),0,0,0)(0,0,73,74,75)(—74/(3r3), —75/(3r3),0,0,0) " = (0,0,73,0,0).
Thus for any r4,75 € k, we have (0,0,75,74,75) ~j (0,0,73,0,0). If r3 = 0,74 # 0, then
(0,0,0,74,75) ~s (0,0,0,0,75). In fact, we have
wgxp(—75/74)(0,0,0,74,75) (wpxs(—75/r4)) "' = (0,0,0,0,75).

Moreover, if r5 # 0, then (0,0,0,0,75) ~ (0,0,0,0,1) by considering the action of h(x,z~1).
Next, we consider the case when g = h(x,z71),r # 1. We have

h(x,1/2)(0,0,75,0,0)
:(070707 —7’4/(1’ - 1); 7’51'/("E - 1))h(m,x71)(0, O,?"g,?“4,7"5)(0,070, —7"4/({E - 1)a T5£L'/("E - 1))71

Thus for any 73, 74,75, we have h(z,271)(0,0,73,74,75) ~7 h(x,271)(0,0,73,0,0).
Next, we consider the case when g = xg(b),b = 1 or k. If r5 # 0, one can check that
9(0,0,73,74,75) ~7 9(0,0,73,74,0). In fact, we have
9(07 07T37T470) = X3a+ﬁ(t)g(07 Oa r37T47T5)X3a+5(_t)7

with t = r5/b. Finally, we consider the action of h(a,a™!) on ¢(0,0,73,74,0). To preserve 73, a
should be 1. On the other hand, we have h(—1,—1)g(0,0,73,74,0)h(—1,—1) = g(0,0,r3, —r4,0).
Finally, if g = h(z,27*)xg(b),z = —1, then one can check that

(07 0) 07 S, t)g(07 07 T3,T4, 7"5).(0, 07 0) S, t)_l = 9(07 07 T3, 07 O)a
with s = ry/(1—2),t = —r52/(1 — x) + bryz?/(1 — x)2. This completes the proof of the lemma. [
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TABLE 3.2. Character table of X;(m;). The missing part in rows 5-8 (i.e., those *s)
depends on g and the details are given in Table 3.3 and Table 3.4.

Representative ¢ Xo(ma) Xs(m3) X¢(m6) Chr(y)gw,
1 >~1)(¢°~1) (@®=1)(¢°~1) (@*=1)(¢°~1)
1 i s | q(g+1)
1
1) 00001 [ ~@- 0 -0+ 1) | 4= D6~ 1) | ~(a+ 1) - 1) dla+1)
(0,0,73,0,0),73 # 0 (¢—1)(2¢ — 1) —(¢* 1) —(¢* - 1) q(g + 1) (r3)
Xzs(l)ﬁ:ggcﬁ(fs)v % * * V€0qY(r3)
xﬁ(”)’:jézﬁ(ﬁ)v % % % —\/€0q¥(r3)
1

(0,0,r3,74,0),

1 x x x Veoqy(rs)

rs€k,rs€k> (il)

1 II (0,0,’!“3,7‘4,0), w( )
* * * — /€ r
rg€k,ra€k> /(£1) o °
h(=1,-1) (¢ —1)%¢(m2) 0 0 (¢ + Dx(=1eo
LD 000 —(g — De(m) 0 0 (g + D)x(=1)eot(rs)
h(—1,-1)xp(1) —(q — 1)e(ms) 0 0 eox(—1)
R e(r2) 0 0 cox(—1)u(rs)
h(=1, —1)xg(k) —(g —1)e(m2) 0 0 cox(—1)
h(—1,—1)xg(K)X2a r3),
(h ilrgéokz)ﬁ g‘;( 2) €(m2) 0 0 eox(—1)y(rs)
Ea 000D 0 0 0 Ocle) + X ))v(rs)
<:I: y) (0,0,TS,T4,T5),
Ky * * * 0
r#£+1

Table 3.1 gives the conjugacy classes of J. In Table 3.1, for an element ¢ € J, the set C;(t) is
the centralizer of ¢ in J and J(¢) is the set of J-congugacy classes of t. The centralizer C;(¢) is
essentially computed in [Ch68]. We have |J(t)| = |J|/|Cy(t)|. Note that |J| = ¢5(¢®> — 1). The
column “No.” means the number of classes of a given form. Note that the last column is given by
(3.1) using the character tables of I(x) and wy, which can be found in [LZ19, §2].

3.2. Proof of Theorem 2.1 when p > 3. Following [CR74], let $;,7 = 2, 3,6 be the 3 anisotropic
torus of Ga(k) such that $o = Zgy1 X Zgy1, H3 = Lz g1 and He = Zg2_g4q. For i = 2,3,6, in
[CR74], Chang-Ree associated a class function X;(m;) of Go(k) for each character 7; of ;.

Proposition 3.3. Let II be a representation of Go(k) of the form X;(m;) with i = 2,3, or 6, and x
be a character of k*. Then we have

(7, I(x) @ wy) = 1.
Remark 3.4. Here we do not require that IT or I(x) is irreducible. Note that
dim Hom, (I, I (x) @ wy ) = (I].7, 1(x) @ wy)-
Thus the above proposition shows that dim Hom ;(IL, I (x) ® wy) < 1.

Proof of Proposition 3.3 relies on a brute force computation. We first give the character table of
X (m;) when restricted to J, Table 3.2, which follows from results in [CR74]. Here e(m3) is a number
depending on the character ms.

The missing part in rows 5-8 of Table 3.2 depends on ¢ = 1 mod 3 or ¢ = —1 mod 3, which will be
described separately below. Note that if ¢ = 1 mod 3, then x is a non-cube in F, since it is assumed
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to be a generator of F;*. If ¢ = —1, we fix an element ¢ € F, such that 23 — 3z — ( is irreducible
over F,.

Let u be a unipotent element in rows 5-8 in Table 3.2. The value of the characters X;(m;) depends
on |Cg, k) (u)|, the size of the centralizer of u in Ga(k). The detailed information of |Cq, k) (u)] is
given in [Ch68], which we will give a brief review below.

We first consider the case when ¢ = 1 mod 3. If rr3 € kX2, then xg(r)X2a+4(r3) ~Gy(k)
x5(1)x24+5(1), whose centralizer in Ga(k) has size 6¢*, see [Ch68, p.202]. If rr3 € kk*2, then
x3(r)X2a+8(r3) ~ay k) X5(K)X2a48(1), whose centralizer has size 2¢*, see [Ch68, p.202]. Then, if
7"/7‘4 S /€><’3, one has that XB(T)X3a+ﬁ(T4) ~Ga(k) X[g(l)Xg(H_ﬁ(l) ~Ga(k) Xﬁ(l)Xga_Hg(l) (SCC [Chﬁ&
p.197]), whose centralizer has size 6¢*. If r/ry ¢ k™, then xg(r)Xsa44(ra) ~c, k) X5(1)X3a44(K),
whose centralizer in Go(k) has size 3¢*, see [Ch68, p.202]. Finally, we consider the conjugacy class
x3(r)X2a+8(73)X30+5(ra), 7374 # 0. We first have

X[j(’f')(o, 07 3,74, T5)
=h(—12 /14, 74/r3)w5 X0 (—1)x5(1)(0,0, =1, 2,0)(h(—r2 14, 74 /73wy ' Xa (—1)) "

2

. T

for some appropriate 5, where z = —2 — —+. Thus we have
T3

X5 (1) X204 8(73) X304 8(T4) ~ayk) X5(1)(0,0,73,74,75) ~a,y ) X5(1)(0,0, =1, =2 — rri/rg, 0).
For r,r3,ry € kX, we define t = t(r,73,74) € ky = F,2 as a solution of
(3.3) t+t =2 —rr/r.
Note that ¢t # —1 since rrsry # 0. If t(r,r3,74) = 1, then according the calculation in [Ch68,
p.196-197], one can check that !
x5(r)X2a+5(r3)X3a48(74) ~G (k) Xa+s(1) ~aa (k) X2a48(1),
whose centralizer has order ¢*(¢? — 1). If t € k = F,, t # +1, then by [Ch68, p.197-198], we have

x5(r)X2a+45(r3)X3a48(4) ~Gy k) X8(1)Xsasp(t ™),

whose centralizer has size 6¢* if ¢ € k*3, and 3¢* if t € kX — k3. If t € Fp — Fy, then
X3 (1) X20+8(73)X3a+8(ra) ~a, k) X3(1)X2a+5(k) (see [Ch68, p.198]), whose centralizer has size 2¢*.
From [CR74], rows 5-8 of Table 3.2 when ¢ = 1 mod 3 are given in Table 3.3.

Using Table 3.1, Table 3.2 and Table 3.3, we can compute the pair (II| 7, I(x) ® wy). Recall that

[T1(T] 5, I(x) ® wy) = > Chri(9)Chy(y)ew, (9)
geJ

(3-4) = > [(0)[Chr(t)Chy e, (1),

where in (3.4), t runs over a complete set of representatives of conjugacy classes of J and |J(t)] is
the number of elements in the conjugacy class J(¢).

Lemma 3.5. Let IT be one of X;(m;) fori=2,3,6. Then we have

(1) The contribution of conjugacy classes of the form h(—1,—1)u, where u is an unipotent
element, to (3.4) is zero.
(2) The contribution of conjugacy classes of the form xg(r),r € k>, to (3.4) is zero.

IThis relation is not explicitly given in [CR74]. Due to its importance for our calculation, we give some de-

tails in this footnote. Let ¢o : SLa(k) — G2(k) be the embedding such that ¢ <<1 T)) = Xq(z) and
o (diag(a,a™ 1)) = ha(a,a™1). For g, h € Ga(k), denote the conjugation g~ 'hg by h.g. The conjugation of ¢q(g) for
g € SLa(k) on xg(70)(0, 72,73, 74,0) is given in [Ch68, p.196, (3.5)]. From that description, one can check the following

relations x5(1)(0,0, —1,2,0).¢a (_11 }g) — (0,0,1,1/2,0), (0,0,1,1/2,0).0a (_1 1) = x4(1/2)(0,1,0,0,0),

and x4(1/2)(0,1,0,0,0).0a (_11/6 ‘1)) — Xa 4 5(1). This shows that x(1)(0,0,~1,2,0) ~a, k) Xats(1)-
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TABLE 3.3. Missing part in rows 5-8 of Table 3.2 when ¢ = 1 mod 3
u 1Cay ) (w)] Xo(m2) X3(m3) X ()
xg(r),r #0 * (D@ —g+D) [(g-DE@ -1 ]| —(¢g+ D¢ -1
o (xzaalra, 6" —4q+1 q+1 —q+1
X1 alra) 2" —2¢+1 —q+1 q+1
xR (1), 2" —2¢ + 1 —q+1 q+1
xR (e alrs), 64 —4q+1 q+1 —q+1
Pt 6q* —4g+1 q+1 —q+1
o (haalr) 3¢* —q+1 —2+1 2 +1
ST | o a1 01 ~g+1
X (e o) 3¢ —q+1 —2¢+1 2g + 1
a0 g 1) | (a—1)(2q—1) —?+1 —¢?+1
o iﬁfﬁj?’eo,;?,!j’{og} 6q* —4g+1 g+1 —q+1
tgggg;egh 3¢* —q+1 —2¢+1 2+ 1
0T 0 2¢* —2¢+1 —q+1 q+1

(3) The contribution of conjugacy classes of the form x5(1)X3a45(14),74 € K3, and the contri-
bution of x5(k)X3a+5(ra), 4 € kK3, to (3.4) are cancelled out. Similarly, the contribution
of x5 (1)X30-4+5(14) , T4 € kX —k*3, and the contribution of x(k)X3a+5(ra), T4 € KX —Kkk™3,

to (3.4) are cancelled out.

Proof. We only give some details for the proof of (1) when IT = Xs3(m3), and the proofs of the
other cases are similar or just follow from a simple observation. By Table 3.1 and Table 3.2, the

contribution of conjugacy classes of the form hA(—1, —1)u to (3.4) is

q*(q+ 1)x(—1)eo(q — 1)%e(m2)

- ¢*(¢+1)x(-1)eo

2

2

-1
2

q*eox(—1)e(ma)

ra€kX

r3€kXx

Z Y(rs) | (¢ — 1)e(ma)

g*eox(~1)(=(g = 1))e(m2) - 2

Z Y(r3)

A simple calculation shows that the above summation is zero.

The following lemma is Proposition 3.3 when ¢ = 1 mod 3.

Lemma 3.6. Let IT be one of X;(m;) fori=2,3,6. If ¢ =1 mod 3, then

({7, I(x) ® wy) = 1.
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Proof. We compute (3.4) for II = Xa(ma), X3(m3), X¢(ms), separately. If IT = X5(ms), by Tables 3.1,
3.2, 3.3 and Lemma 3.5, we have

[J[{(X2(m2), 1(x) ® wy)
=qlq+ 1)@ - 1)(¢° —1)/(qg+1)* = (¢ = Dg(g+1)(¢ — 1)(¢* —q+1)

+ % (- 1)2g—D)glg+1) | Y 9(rs)
r3€kx

-1 21
+ 4 5 *Veoq(—4q + 1)(A; — A,) — qTq2\/EOCI(—2q +1)(A1 — Ay)

+ ¢*(¢* — 1)y/eoa((q — 1)(2¢ — 1)(BY — BY))
+ ¢*(¢° — 1)y/eoq [(—4g + 1)(Bf — BL) + (—q+ 1)(Bf — B2) + (—2¢ + 1)(B} — BY)] ,

where
(3.5) A=Y w(rs), Aw= Y. ¥(rs),
rz€kx,2 r3€rkx:2
and
Bg = Z 1/](7’3)7
rs€kX ra€k> /{x1},t(r,r3,ra)=1
B,} = Z '(/J(TB)’
(3 6) rg€kX ra€k> /{x£1},t(r,r3,ra)€LX3—{£1}
B? = Z T/’(TS),
rs€kX ra€k> /{x1},t(r,r3,ra)ELX —k*>3
B} = > Wb (rs),

r3€k* ,ra€k* /{£1},t(r,r3,ma) k>

for r = 1, k. Here recall that ¢ = t(r,r3,r4) is a solution of the equation (3.3). The computations
of Ay — A, B{ — B! for i = 0,1,2,3 are given in the appendix, see Lemmas A.1 and A.2, and the
results read as

Al - An = V€04,
B? - Bg = €0y €04,
1
(3.7) Bi - B, = —5 1+ €0)veod,
B} — B2 =0,

1
B} - B} = 5(1 — €0)v/€0q-

Plugging these formulas into the computation of (Xs(m2), I(x) ® wy), it follows that
| T[{X2(m2), I(x) ® wy) = ¢°(¢* = 1).

Thus we have

(Xa(m2), I(x) @ wy) = 1.
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Similarly, we have
|T{(X3(73), I(x) @ wy)
=qlq+ 1)@ - - D)/(@+q+ 1)+ (- Dalg+1)(g—1)(¢° — 1)

— Calg+ (@ =) | D w(rs)
rg€kX>
T Va((a+ 1A~ A) — (~a-+ ) - 4,))
+¢*(¢* = D/eoa((—¢* + 1)(BY - By)
+ e = 1)yaa((a + V(B = BY) + (=20 + 1)(B} — BY) + (= + 1)(Bf - BY),

where A,, B! for r = 1,k,i = 0,1,2,3 are defined in (3.5) and (3.6). Plugging the formulas (3.7)
into the computation of (X3(ms),I(x) ® wy), we obtain that

(X3(m3), I(X) ® wy) = 1.

2
+

A similar calculation shows that
| J1(X6(76), I(x) ® wy)
=qlg+ (@ - -1)/(®—q+1) = (¢ = D(g+1)(¢> — Dalg+1)

(@ = Dalg+1) [ D ¢(ra)

+ C L2 aa(—a+ DA - A = (g + D(As — 4,)
+¢*(¢* — )/eoa(—q* +1)(BY — BY)
+ % (¢ — Dy/eoa((—q + 1)(By — By) + (=2¢ + 1)(B} — B) + (¢ + 1)(B} — B})).
By formulas (3.7), we also obtain that (X¢(ms), I(x) ® wy) = L. O

We next consider the case when ¢ = —1 mod 3. In this case, we have k* = kX3, If rry €
kX2, then xg(r)X2a+8(r3) ~c,k) Xp(1)X2a+45(1), whose centralizer in Go(k) has size 2q*, see
[Ch68, p.202]. If rrs € kk™?, then Xg(r)X2a+4(r3) ~G,k) Xs(K)X2044(1), whose centralizer has
size 6¢*, see [Ch68, p.202]. For any ry, we have Xg(r)Xsa+s(ra) ~ay) %X8(1)Xsa48(1) ~cym)
x5(1)X20+5(1) (see [Ch68, p.197]), whose centralizer has size 2¢*. Finally, we consider the conju-
gacy class xg(7)X2a+3(73)X3a+8(r4), 7374 # 0. As in the previous case, we still have

x5(1)(0,0,73,74,75) ~a, k) Xp(1)(0,0, -1, 2,0),

2
with some appropriate 75, where z = —2 — 2. Thus we have
3

X5 (1) X2a+5(73)X3a+5(r4) ~au ) X5(1)(0,0,73,74,75) ~ay ) X6(1)(0,0, =1, =2 =17 /r3, 0).
We also write t = t(r,73,74) € ko = F,2 as a solution of (3.3). For t € k) — k* with t + ¢t~ € £k,
one can check that t17¢ =1, i.e., t € ki, the norm 1 subgroup of k. Thus t = t(r,r3,r4) is either
in kX orin ki. If t = 1, then,

Xp(r) %2044 (73)X3048(r1) ~Ga (k) X20+5(1),
as in the previous case. If t € k™ — {£1}, then by [Ch68, p.197-198], we have
X5 (1)X20+5(73)X30+5(14) ~Ga(t) X5 (1)Xs3a15(t™"),
whose centralizer has size 2¢*. If t € (k) — {£1}) N k%, then x5(r)Xoa+5(73)X3045(74) ~Ga (k)

x3(1)Xaa1 (k) (see [Ch68, p.198]), whose centralizer has size 6¢*. If t € ki — k5, the centralizer

of x5(r)X20+5(73)X30+5(r4) has size 3¢*.
From [CR74], for ¢ = —1 mod 3, the missing part in rows 5-8 of Table 3.2 is given in Table 3.4.
The following lemma is Proposition 3.3 when ¢ = —1 mod 3.
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TABLE 3.4. Missing part in rows 5-8 of Table 3.2 when ¢ = —1 mod 3
u |Cay i (u)] Xa () X3(ms3) Xe ()
xp(r),r #0 * —(-D(@-¢+D) [ (¢-D(@-D | -(@g+D(-1)
e 2¢* —2q+1 —q+1 q+1
R 6q* —dq+1 g+1 —q+1
xR (1), 64 —4q+1 q+1 —q+1
xﬁ(fz);(}ﬁgm’ 2¢* —2¢+1 —q+1 q+1
xalPse ol 2 —2¢+1 —q+1 q+1
xg(r 6.6,r ,74,0),
f(é«,%%,ﬁ)g{:ﬁl}; ¢'(¢®=1) | (¢-1(2¢-1) —¢* +1 —¢* +1
x3(r)(0,0,r3,74,0), 4
t(rﬁn(&),%)eki _“{i)l} 2q —2¢+1 —q+1 q+1
x3(r)(0,0,r3,74,0), 4 _ —
Hrirrocb— (k2 04 dat1 g+l g+l
xg(r 0,0,73,74,0), 4
t(r,r;;,m)Ek%—k;’S 3q —q+ 1 _2q +1 2(] +1

Lemma 3.7. Let II be one of X;(m;) for i =2,3,6. If g = —1 mod 3, then we have

(ILI(x) @ wy) = 1.
Proof. From Tables 3.1, 3.2, 3.4 and Lemma 3.5, we have
| J{(Xa(m2), 1(x) ® wy)

=qlq+ 1)@ -1)(¢° —1)/(qg+1)* = (¢ = Dg(g+1)(¢ —1)(¢* —q+1)

+ g+ 1D)(g—1)2g—1) [ D (rs)

rz3€kXx

q2

T3

+ ¢*(¢* — 1)y/eoa(q — 1)(2¢ — 1)(CY — Cp)

L ea((—2g + 1)(As — Ay) — (—4g + 1)(A; — A,)

+¢*(¢® = D)veoa((—2¢ + 1)(Cf = C) + (—4g + 1)(CF = CF) + (=g + 1)(C} — C})),

where for r = 1, k, A, are defined as before, and

Cy = > ) (rs),
r3€kX,ra€kX /{£1},t(r,r3,ra)=1
i = >

rs€kX ra€k> /{x1},t(r,r3,ra)EL* —{£1}

(3.8) o

>

P(r3),

Y(rs),

ra€kX ra€kx [{£1},t(r,rs,ra)€ (ki —{£1H)NkS 3

3 = >

ra€kX ra€kX [{£1},t(r,rs,ra) €kt —k®

P(r3).

Recall that t = ¢(r, 73, 74) is a solution of (3.3), which actually cannot be —1. The quantities C} —C?
are computed in Lemma A.4. Applying those formulas in Lemma A.4, a straightforward calculation

shows that

(Xa(m2), I(x) ®wy) = 1.
It is similar to show that

(Xi(mi), I(x) @ wy) =1,
for ¢ = 3,6 as well. We omit the details here.
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Proof of Theorem 2.1 when p > 3. The irreducible representations of Gy (k) have been classified
in [CR74]. Let $; be the maximal split torus,

Ha = {h(zq,zl’q) P 1},
and
Hp = {h(z,zq) P 1} )

For i =1,2,a,b,3,6, and a character m; of $);, there is an associated character X;(m;) of Ga(k), and
when 7; is in general position, see [CR74, p.398] for the precise definition, X;(m;) is irreducible. There
are several other isolated classes of irreducible representations of Ga(k) constructed using linear
combinations of X;(m;) (when 7; is not in general position) and 4 other class functions Y;,i = 1,2, 3, 4.
If a representation IT is a component of X;(m;) for i = 1,a,b, then II is not cuspidal. From the list
given in [CR74], it is not hard to see that if II is an irreducible cuspidal representation of Ga(k),
then it has to be one of following form:

. 1 1 _
Xi(m), (i =2,3,6), X33 = —§X2(772) + §X6(776),X17,X18,X19,X19,

where 7; for i = 2,3, 6 are in general positions, X33 appears when ¢ = —1 mod 3, and X7, X158, X19, X 19
are defined in [CR74, p.402].
We have shown that

(Xi(m), I(x) @ wy) =1,
for ¢ = 2, 3,6, no matter m; is in general position or not. Thus, we get
<X33, I(X) ® ww> = 0

Finally, to deal with the last 4 isolated cases, we need to compute (Y;, I(x) ® wy). According to
the table given in [CR74, p.411], we have

Representative t Yi| Yo | V3|V, Chrew,
<1 1) 0o|ofolo alg+1)
1 1 (0,0,0,0,1) 00010 qqg+1)
(0,0,73,0,0),73 # 0 0] 0]0]O q(q+ 1)3(rs)
BRI 0 [o]o VEav(rs)
XB(”)’;:?ZZ&(TS): « 1 0l0]oO —/€oq(rs)
1 ) (0,0,r3,74,0), ololo b(rs)
* eoq (1
rg€k,ra€k> /(£1 \/T °
1 wK
1 (0,0,r3,74,0), 0 0 0 w( )
* —\/€ T
rg€k,ra€k> /(£1 od °
h(—1,-1) 0| 0]0]0O0 (¢ + 1)x(—1)eo
FELDEET O T0 [0 [0 [ 0 | (a+ Dx(=Deot(rs)
h(=1,-1)xg(r),r€k* | 0] 0 | 0] 0 cox(—1)
T 0 g [0 [0 aod—huly)
(; s 10 [—ql 0] 0 cox(=1)¢(rs)
e Qom0 Lo [ 0] 0 |elx(@ +x@ "))
( z y> (0,0,’!‘3,’!‘4,7‘5)7
KYy x | x| 0
r£E1
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The missing part for Y (from 5th row to 8th row) depends on the residue of ¢ mod 3. If ¢ = 1 mod 3,
then one has

u [Co(w)] | Y1
xg(r),r #0 * 0
xﬁ(lr):ezzig(rs)v 6q* P2
*o(1hxealra), 2q* —q
x3(K)X20+5(T3), 4 2
xp (qd)i';f :[;2(7"4) 2q4 q2
xg ({)453’21; (r4) 3q4 qz

radkx 3 q q
xp (Z)gzitﬁj(m) 6q* P2
X (:);(;i(l;t??’(hn 3q4 q2
iy | a'@ -] 0
oraebsery | 6| @
T34
R I A &
Merige | 2 [~
and when ¢ = —1 mod 3, one has
u ICo(w)] | Y1
xp(r),r # 0 * 0
xﬁ(lr)xezzig(m)v 2" 7
X3 (i;’ézl{aktﬂ,g‘s% 6q* e
XB("?Xezgié(TS): 6q* P
R 0t | 7
R 20 | &
sy 6@ -D] 0
i T T
Xﬂ(T)(Oﬁ?,Ts,m,O), s 6q* ¢
t(r,r3,ma) € (ks —{£1})Nky
b T I s

It is easy to see that
(Yi, I(x) @ wy) =0,
for i = 2,3,4. We next compute (Y7, I(x) ® wy) when ¢ = 1 mod 3. We have

|J|<Y1J( ) @ wy)

T =1 Jerad(@(Ar - Ao — (—)(Ar - A,)
+ P 1) B B+ F(B— B + (B — BY)
= ¢"(¢*> — 1)\/eoq((A1 — Ay) + (B} — B.) — (B} — BY)).

From the computation of A; — A, and Bi — B! for i = 0,1,2,3, in Lemma A.1l and Lemma A.2,
one can see that

(Y1, 1(x) ® wy) = 0.
Similarly, when ¢ = —1 mod 3, we also have
(Y1, I(x) @ wy) = 0.
From the definitions of X7, X1g, X19, X 19, given in [CR74, p.402], one can check that
(IL I(x) ® wy) = 0,
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TABLE 4.1. Conjugacy class of J when p = 3. The *s in the last row mean that
the corresponding entries are omitted.

Representative ¢ Cy(t) [J(t)] No. Chrew,
1 J 1 1 q(qg+1)
X3a+25(1) Ngp, x V ¢? -1 1 q(g+1)
X2a+4(r3),73 # 0 SLa(k) x V 1 g—1 a(g +1)Y(rs)
X2a+5(3)X3a+25(1), 73 # 0 Ngr, XV ¢ -1 q-—1 q(g + 1)y (r3)
xp(1)X2a+5(r3),73 €k | 112(Us, U8, Uaat 5, Usar2) q2§1q2 q Veoqy(rs)
xp(K)X2045(r3),m3 €k | p2(Up, Uat, Uzat 8, Usat2s) q2§1q2 q —/€0q(r3)
O U (Us, Uatp, Uzatp, Usatzs) | (% —1)g? | 452 Vg (rs)
Ot | U Ut Usars Usaras) | (@ =D | M52 | —Jaaw(rs)
S S SLy x Uzass ¢ ¢ | (et Dx(=Deot(rs)
h(—1, =1)x5(1)X2q45(73) p2 X Ug X Ugayp q;;lff q eox(—1)9(rs)
h(—1, —1)x5(k)*X2a+5(r3) p2 X Ug X Uzasp gt q eox(—1)(rs)
T Asty % Usars Cla+) | 52 | elx(@) + x@@))(rs)
( r y) (0,0,73,r4,75),
Ry T * * * 0
r#£+1

if IT = X17, X18, X19, or X19. For example, we have

1 1 1 1
Xi7=—=-X2(1)+ = X6(1) — Y1 + 51/2

6 6 2
Since (X;(1), I(x) @ wy) =1 for i =2, 3,6, and (V;,I(x) @ wy) =0, we get
(Xim I(x) @ wi) = == 42 =0
17, 4(X v/ — 6 6 — U
The other 3 cases can be checked similarly. This completes the proof Theorem 2.1. |

4. PROOF OF THEOREM 2.1 WHEN p = 3

In this section let k = F3; for some integer f. The character table of Gy(k) is given in [En76],
which will be used to prove Theorem 2.1.

Lemma 4.1. The following is a complete set of representatives of j € J (up to J-conjugacy) of the
form j = gz with z € Z and g € SLa(k) such that g is not conjugate to an element of the form

T Ky '
y oz ) y#0:
(1) 15 X3a+428(1); Xoa48(13),73 € k™5 Xoays(73)X3a425(1), 73 # 0;
(2) x5(b)x20+5(r3), X5(b)X20+5(73)X30+5(72),b € {1, K}, 73 € k1 € K/ {£1};
(3) h(—l, —l)Xg(b)XgoH_B(?“g),?“g ek,be {1,%};
(4) h(z, 27 Xo045(r3),® € KX — {£1},73 € k.

Proof. The proof of this lemma is similar to the proof of Lemma 3.2. One difference is that here we
have 3 = 0 in k and thus (3.2) is not valid. Hence, X2q15(73) and Xaa43(r3)Xsq+23(1) are no longer
in the same J-conjugacy class. On the other hand, if r3 # 0,74 # 0, we have

wpxg(—rs/t1)(0,0,73,74, r5)(w5x5(—r5/r4))_1 =(0,0,73,0,74).

Thus any element of the form (0,0, 73,74, 75) is J-conjugate to an element of the form (0,0, r3,0,74).
The other parts of the proof is exactly the same as that of Lemma 3.2. We omit the details here. [
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TABLE 4.2. Character table of X;(m;) when p = 3. The missing part (i.e., those
xs) in 10th and 11th row are given in Table 4.3.

Representative t zglg(k:il) 2)(13(12) 2)(14(12) Chr(y)gw,
@01 @D -1 @D -1
1 CEE ) iz s wndll M alg+1)
X3a+26(1) —(g=1(¢*—q+1) [ (¢—=D(*=1) [ =(¢g+1)(¢* = 1) q(g+1)
x2a14(r3), 7370 [ —(¢—D(@—q+ 1) [(¢—D(®-1) [ —(¢+1)(¢" - 1) q(g + Do(rs)
et 2’ 2 +1 | @+q-1) [ (@ —a-1) [ alat 1l
x5(1) (- —q¢+) |- -1 | -(g+1)(¢*-1) NG
R ~(20-1) —(a-1) a+1 VE0aL(rs)
x5(k) (D@ —qg+) [ —-D(@ -1 | -(g+1)(¢*>—1) —\/e0q
R —~(24-1) —a-1) gt — /b (rs)
Eii&z * * * Ve (rs)
x3(k)(0,0,r3,74,0),
riek,mekf (4:i:1) *2 * * —/€0q¥(r3)
h(=1,-1) (g —1)%e(k,1) 0 0 (¢ +1)x(=1)eo
MELED007s 0.0), —(q — De(k,1) 0 0 (g + 1)x(—1eoth(rs)
h(—1,-1)xp(1) —(q— 1De(k,1) 0 0 eox(—1)
e e(k.) 0 0 cox(—1)v(rs)
h(=1,-1)x3(k) —(q — De(k, 1) 0 0 cox(—1)
) e(k, ) 0 0 cox(—1)¥(rs)
x x71 3, _
S s 0 0 0 e(x(@) + x(2~1)¥(rs)
<:I: y) (0,0,TS,T4,T5),
Ky * * * 0
r#£+1

The conjugacy classes in J and the character of I(x) ® wy, are given in Table 4.1. Note that in
Table 4.1, the element X244 5(r3) is in fact in the center of J, see the commutator relation in [En76,
p.192].

As in §3, we still let $;,7 = 2,3,6, be the 3 anisotropic torus of Ga(k) such that $3 = Z,yq,
93 = Zy2ygr1 and He = Zg2_g41. Then given a character m; of $);, there is a class function X;(m;)
on Go(k) as in the case of p > 3. The notation in [En76] is different from that of [CR74]. If i = 2,
the character 2 of 2 is determined by two integers (k,1) € 1255 and the associated class function is
denoted by x12(k,1) in [En76, p.246]. Here 1254 is a set of pairs of integers modulo certain relations
introduced in [En76, p.194] with size ['2Ss| = (¢ — 1)(¢ — 3); here we don’t recall its precise
meaning since we don’t use it. If ¢ = 3,6, the character m; of §); is determined by a single integer
k, and the corresponding class functions are denoted by x13(k) and x14(k) respectively in [En76,
p-247]. As in the x12 case, the integer k appeared in x13 and x14 depends only on k& modulo certain
relations and ranges over finite sets of sizes %q(q + 1) and %q(q — 1) respectively, see [En76, p.194
and p.205] for the details. The restrictions of the characters xi12(k,1), x13(k) and x14(k) to J can
be read out directly from the table in [En76, p.246-247] and are given in Table 4.2. In Table 4.2,
e(k, 1) = (=1)F + (1)} + (=1)**.

The missing part of the Table 4.2 (10th row and 11th row) is determined as follows. If r3 =
0,74 # 0, then

X3 (7")(0, 07 T3,T4, O) ~Ga(k) XB(l)X2a+B(1),

since every element in k has a cubic root, see the calculation in [Ch68, p.197] or the discussion in
the previous section. As in the previous section, if r3 # 0, we have

Xﬂ(r)((L 07 3,74, 0) ~Ga(k) Xﬁ(l)(07 07 _17 2, 0)5
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TABLE 4.3. Missing part of rows 10-11 in Table 4.2.

representative x12(k, 1) x13(k) Y (B)
gt 1 —2¢-1) | —(a-1) g+1
tlzilzssorg)reg{lll? 2 =2¢+1 | —(®*+q-1) | —(¢*—q—1)
OB T g 1) | (¢ 1) o
el [ —@2¢-1) | -(a-1) g+1

T4 0
OO 22 —2g+1 | —(P+q—1) | —(* —g—1)

x3(x)(0,0,r3,74,0)
t?n,7'3,7'4)¢3{£1} 7(2(] - 1) 7((] - 1) q-+ 1

with 2 = —2 — rr3/r3. As in the previous section, we set t = t(r,r3,74) as a solution of (3.3). If
t = 1, then we have

x5(1)(0,0,73,74,0) ~ay) X5(1/2)Xa+5(1) ~ay k) X2a+5(1)X3a+25(1),

see Footnote 1 for the first relation. Note that 1/6 is undefined in the last equation of Footnote 1
and thus we cannot obtain that x5(1/2)Xa5(1) ~q,(k) Xat+s(1) here. On the other hand, we have
wawaXs(—1)Xat+5(1)(wswa) ™' = X2a+4(1)X3a+25(—1). By considering a conjugation of the torus,

we then get x5(1/2)Xa45(1) ~a, k) X2048(1)X3a425(1).
If t # £1, using the description in [Ch68] and the fact that any element in F, and F,2 has a cubic
root, one can check that xg(1)(0,0,73,74,0) ~G, k) X5(1)X2a45(1) if t € B — {£1}, and

Xﬁ(l)(07 07 3,74, 0) ~Ga(k) X,@(l)x2a+ﬂ(ﬂ)
if t € Fj2 — Fy. Thus we obtain Table 4.3 following the table in [En76, p.246-247].

Lemma 4.2. Let IT be x12(k,1), x13(k) or x14(k). Then we have
(ILI(x) ®wy) = 1.

We have

(4.1) [T I(x) @ wy) = Y |J(#)[Chr(£)Chy(y) g, (1),

where t runs over a complete set of representatives of conjugacy classes of J and |J(t)| is the number
of elements in the conjugacy class J(t). Before proving Lemma 4.2, we first record the following
result.

Lemma 4.3. Let IT be x12(k,1), x13(k) or x14(k).

(1) The contribution of conjugacy classes of the form h(—1,—1)u, with u in the unipotent, to
(4.1) is zero.

(2) The contribution of conjugacy classes of the form xg(1)X2q+5(r3), 73 € k, and the contribu-
tion of conjugacy classes of the form xg(Kk)Xoa+s(73),73 € k, to (4.1) are cancelled out.

The proof of Lemma 4.3 is the same as that of Lemma 3.5 and we omit the details.

Proof of Lemma 4.2. This lemma can be checked case by case and we only give the details when
IT = x12(k,1) and omit the details of the other two cases. We suppose that IT = y;2(k,1). By Tables
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4.1, 4.2 and 4.3, we have

[T I(x) © wy)

)
W(J(q +1) = (¢* = 1)(g = 1)(@® — ¢+ Dalg + 1)

— (- =g+ Dalg+1) [ D ¥(rs)

rz€k>

+(® - 12" =20+ Dglg+1) | D ¢(rs)
rz€kX
+ (¢* — 1)¢*Veoa((2¢* — 2q + 1)(DY — DY)
+ (¢# = 1)¢*Véoq(—(2¢ — 1)(D1 + D} — D, — D)),

where

Dg = Z ?/’(7’3)a
rg€kX ra€k* /{x1},t(r,r3,ra)e{£1}
1 _
(42) Dr - Z 1/)(7“3)7
rs€kX ra€k* /{£1},t(r,rg,ra) €k —{£1}

D? = Z ¥(rs),

r3€kX,ra€kX /{£1}t(r,r3,74)€EF 2 —Fq

for r = 1,k. The computation of D} — D is given in Appendix A.4. By Lemma A.5, we have
D{—D° = ¢y /e0q and D} +D? — D! —D? = —¢,/oq. Plugging these formulas into the computation
of |J|(IL, I(x) ® wy), we can get

[TI(IL I(x) @ wy) = ¢°(¢* = 1).
Thus we have (I, I(x) ® wy) = 1. O

We can now start the proof of Theorem 2.1 in the case p = 3.

Proof of Theorem 2.1 when p = 3. Irreducible representations of Ga(k) when k = Fss are clas-
sified in [En76]. Using the notation of [En76], there are 12 isolated irreducible representations 6;
0 <4 < 11 and 15 families of irreducible representations 612(k), xi(k),1 < i < 11, x12(k, 1), x13(k)
and x14(k), where k,l are integers. From the definitions given in [En76, Section 5], the represen-
tations y;(k),1 < ¢ < 11, are not cuspidal. By Lemma 4.2, we only need to consider cuspidal
representations among 6;,0 < i < 11, and 612(k). From the definitions of §; in [En76, Section
5], one can check that 6y, 01, 02,603,064, 60s,07,0s,09, are components of parabolic induced represen-
tations and thus cannot be cuspidal. Precisely, first, from the definitions in [En76, p.204], one
has that 61 + 0 = pus = Indg?(k) (x1(0)) — 6y — 65, and hence 6;,0 < i < 3, are components of
Indg?(k)(xl(O)). Here x1(0) is a character of P’ and s is an auxiliary representation. Note that
the notation in [En76] is a little bit different from ours. In particular, the group P in [En76] is
our P’. Moreover, one has 04 = Ind?,’f(k) (x3(0)) — Indg?(k) (x1(0)) + 05, see [En76, p.204]. Since
0o + 601 + 05 + 03 = IndG (k) ( 1(0)), we can get, Oy + 61 + 02 + 64 = Indgf(k) (x3(0)). Hence 64
is a component of IndGz(k)( 3(0)) and thus not cuspidal. Here x3(0) is a character on P’. Fur-
thermore, from the description in [En76, p.201], we have 85 + 09 = Indg; G (k) (x1(3(qg — 1)) and

0;+0s = IndGQ(k)( 3(7( —1))). Thus b, 07, 605,09 are not cuspidal either. Consequently, it suffices
to consider the cases when II = 05, 619, 011, 612(k).

Following [En76], the character table of 05,619,011, 612(k), is given in Table 4.4. Recall that U
is the maximal unipotent subgroup of Gy(k). From the character table, we see that for u € U, we
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TABLE 4.4. Character table of 05, 019, 011, 912(]6')

Representative t 05 010 011 012(16')
1 ¢ 2ala—1* (@ —q+1) [ 9(¢—D(® -1 %g(ff — 1)
X3a+28(1) 0 talg—1)(2¢—1) —3q(g—1) —3q(¢® —1)
Xaatsrs): 0] Zqlq—1)(2¢—1) —3alg—1) | —3q(¢* 1)
*2ats (73l aat2s (1), 0 —1q(3¢—1) —1a(g—1) 1q
xs(1) 0 sql¢g—1)(2¢—1) —3q(qg—1) —3q(® — 1)
X 0aalra), 0 la(g+1) —1q(q—1) talg+1)
%o (a0 rp(ra), 0 —galg—1) saa+1) | —zala—1)
( ;%(H)( ) 0 tql¢g—1)(2¢—1) —1%q(q -1) —%161(612 -1)
e 0 —54(g—1) 39(g+1) —5q(g — 1)
"‘“;’;m’fﬁr”’ 0 gala+1) “pale—D) | gelat )
Ko e ) 0 galg +1) —34(a—1) 3alg+1)
x3(1)(0,0,r3,74,0),r37£0, 1 1 1
7‘4Eki(lj{(%%},tS(lfrso,)nji{Oil} 0 _EQ(?"J —1) _iq(q -1) . —34
x ,0,73,74,0),7: s 1 1
”‘W5%%373(1:3‘78))6’3“;5&1} 0 (g +1) —3dlg—1) 3a(g+1)
xX ,U,13,T4, T 5 1 1 1
?”4ka/{:l:l},t(i,rg,m)é]b‘qg7]Fq 0 —ga(g—1) 3a(g+1) —3q(qg—1)
RS 0 sa(g+1) —3a(¢—1) za(g+1)
x3(x)(0,0,r3,74,0),737£0, 1 1 1
mekxﬁ%%lié,é(;m‘j%))ez;g{il} 0 lo(g+1) ~Lq(g—1) La(g+1)
X/ K ,U,13,T4, ST N 1 1 1
rack® /1)t s ra) ek o —F, | O —galg—1) 2a(g +1) —3a(a—1)
x3(x)(0,0,r3,74,0),737#0, 1 - 1 - 1
ra€kX {:i:l},tg(n,rg,m)se{:l:l} 02 qu(gq 12) ?q(q 12) 34
h(—1,-1) q —3(g—1) —5(g—1) 0
h(—l,—l)(Ok,:O,T‘g,0,0), 0 %(q _ 1) %(q _ 1) 0
ra3€kX
h h(—1,—1)xg(1) 0 3(g—1) 3(¢—1) 0
—1,—1)xg(1)x2q T3),
R S 0 —3(g+1) Ja-1) 0
h(—lv—l)XB(}c)XQaw(rs)y 0 %(q —1) 7%((] 1) 0
raCrkX:2
h h(—1,—1)xg(k) 0 3(g—1) 3(g—1) 0
—1,—1)x3(K)X24 r3),
S s 1 0
T T(fegklx:"‘” N 0 —3(a+1) 3(a—1) 0
h(x,x™ "),
s q 0 0 0
h(z, ™ " )x2045(T3),
(e Jaeiplre 0 0 0
(!,C y) (0,0,73,r4,75),
RYy * * * *

r#££1

have 05(u) # 0 if and only if w = 1. In particular, we have
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This implies that 65 is not a cupidal character.? Thus it suffices to show that (IT, I(x) ® wy) < 1,
when II = 619, 011, 012(k). We now compute (610, I(x) ® wy). Similar to Lemma 4.3, the contribution
of terms of the form h(—1, —1)u to (610, I(x) ® wy) is zero. Thus we get

1010, 1(x) © wy)

= éq(q —1)*(¢* —q+1)qlqg+1) + (¢ — Dalg + 1)%(1(61 —1)(2¢ - 1)

Falg+ Dgala-DC-1 (3 00) | +@ - Dala+ D-aGa-1) | Y vira)

r3ekx ra3€k>

ey ((gata + () = A1) + gala = DA - A1) )

+ (e = 1)@~ gat3a - V(D8 - DY)+ gala+ 1D} - D) - Gala ~ D(DE - D).

Plugging the formula of A;(1) — A.(1) from Lemma A.1 and and the formulas of D} — D? for i =
0,1,2, from Lemma A.5, into the above equation, a simple calculation shows that (610, I(x) ® wy) =
0. Similarly, one can check that (011, 1(x) ® wy) = 0 and (012(k), I(x) @ wy) = 0. We omit the
details. 0

5. GAMMA FACTORS FOR Ga(k) x GL4 (k)

5.1. Generic representations and Bessel functions. Recall that U is the maximal unipotent
subgroup of Gao(k). Let )y be the character of U defined by

Yy (xa(2)xp(W)u') = (x +y), 2,y € k,u' € [U,UJ.
We will write 1y as ¢ by abuse of notation. An irreducible representation I of Ga(k) is called
1-generic if
Homy (1, ¥) # 0.
It is well-known that dim Homg (I, ¢) < 1.

Remark 5.1. A character ¢’ of U is called generic if ¢'|y, is nontrivial for a = «, 3. There is only
one T-conjugacy class of generic characters of U. Thus if II is -generic, then it is generic with
respect to any generic character of U.

Let IT be an irreducible generic representation of Ga (k). We fix a nonzero element ! € Homg (1, ¢).
For a vector v in the space of II, we consider the function

Wy (g) = I(IL(g)v).

Then the space W(II, ¢) := {W,, : v € II} is called the ¢-Whittaker model of II.

Let II(U, v) be the subspace of IT generated by elements of form II(u)v — ¢ (u)v for u € U,v € TI.
Let Iy, = II/II(U, 9) be the twisted Jacquet module. By Jacquet-Langlands Lemma [BZ76, Lemma
2.33], an element v € I(U,v) if and only if >, ¥~ (u)II(u)v = 0. Note that for an irreducible
generic representation II, we have dim Il = 1. For a vector v € II,v ¢ II(U, ¢), we consider the
vector

e f,ljl S o W u)o,

uelU

2Recall that an irreducible character 8 of a reductive group H over a finite field is cuspidal if and only if for any
proper parabolic subgroup Q = MgUg with Levi Mg and unipotent Ug, one has ZuEUQ O(uh) =0 for all h € H,

see [Ca85, Corollary 9.1.2] for example. In fact, from the character table 4.4, one can check that

. 1, ifex#1,
(65,100 ® wy) = { 2, ifex=1.

Thus 65 indeed does not satisfy the conclusion of Theorem 2.1 if x = e~ =e.
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where |U| is the number of elements in U. From the choice of v and Jacquent-Langlands Lemma
[BZ76, Lemma 2.33], we have vg # 0. On the other hand, we have

(5.1) II(uw)ve = P (u)vg, Vu € U.

A vector which satisfies the above condition is called a Whittaker vector. Let ( , ) be a nontrivial
Ga(k)-invariant bilinear form IT x IT — C, where II is the dual representation of II. Let vy be a

Whittaker vector of II. Then © + (vg,®) defines a nonzero element in Homy (11,1 ~1). Conversely,
a nonzero element in Homy (1,1~ 1) can be viewed as a Whittaker vector of II via the natural

isomorphism =R By the uniqueness of Whittaker model, the Whittaker vectors are unique up
to scalar.

Let B € W(I1, ¢) be the Whittaker function associated with a Whittaker vector, normalized by
Bri(1) = 1. By the above discussion, the function By is unique. The function By is called the Bessel
function of II.

Lemma 5.2. We have
Br(uigus) = t(u1uz)Bu(g), Vui,uz € U, g € Ga(k).
Proof. This a direct consequence of the definition of Byy. O
Lemma 5.3. (1) Lett=h(a,b) € T. If Bu(t) #0, thena=b=1.
(2) If r #0, then Br(h(a,1)x_g(r)) =0 for all a € k*.
Proof. (1) Let a be the simple root « or 8. First, we have
tx,(r) = x4 (a(t)r)t,Vr € k.
Then, by Lemma 5.2, we have
Bu(t)i(r) = ¢(a(t)r)Bu(t).

Thus if Bri(t) # 0, we have ¢(r) = ¢ (a(t)r) for all » € k. Since ¢ is a nontrivial character, we must
have a(t) = 1. Since «(t) = b, 8(t) = a/b, we get a = b= 11if By (t) # 0.

(2) Take s € k. We have x_g(r) = ng5(—’f‘)w§1 and Xqo44(8) = nga(s)wgl. Thus from the
commutator relations, we have

X_p(r)Xa+5(s) = wexs(—r)Xa(s)wy
= w[gulxa_,_ﬁ(—rs)xa(s)xﬁ(—r)wﬁ_l
= U ()X 5 (5)%_p(r),
where ug = wﬁulwgl € [U,U]. Thus, we get
(@, 1% ()% 5(5) = ts%a (=X s(as)h(a, 1x_s(r),
where ug = h(a, 1)uzh(a=!,1). Note that 1 (x445(s)) = 1 and Y(usxa(—78)Xat5(as)) = ¥(—rs).
By Lemma 5.2, we get
Bri(h(a,1)x_g(r)) = ¥(—rs)Bu(h(a, 1)x_a(r)), Vs € k.

Thus if Br(h(a,1)x_g(r)) # 0, we have (—rs) = 1 for all s € k. Since 9 is nontrivial, we then get
r=0. ]

5.2. Ginzburg’s local zeta integral. Let II be an irreducible generic representation of Go(k) and
let x be a character of k*. For W € W(II, ¢), f € I(x), ¢ € S(k), we consider the following sum

(5-2) YW,e )= ) Y Wxp(y)x(ars)(2)i(9) (wy-1(9)d) (@) (9)

g€NsL2 \SLQ(]C) z,yek

ST Y Wlsars@)xal@)9))(wy-1(9)0) () f(9),

9gE€NsL, \SL2 (k) z,y€k

where we embed SLa (k) in G2 (k) by embedding it in the Levi subgroup of P, and j(g) = wgwagwglwgl

for g € Ga(k). One can easily check that the above sum on the quotient Ngr,,\SLa (k) is well-defined
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using the commutator relations of Go. The above sum is the finite fields analogue of Ginzburg’s
local zeta integral [Gi93].

Lemma 5.4. Let §y € S(k) be the function do(x) =0 if £ # 0 and 60(0) = 1. Let fo € I(x) be the
function such that supp(fo) C Nsp,Asr, and fo(1) =1. Then

\II(BHa 607 fO) =1

Proof. We have SLa(k) = Nsr, AsL, || Vs, Ast,w! NsL,, where w! = <_1 1). Since fo is zero

on Ngr,, Asr,w! Nsr,,, we have
U(Bu,bo, fo) = D Y Bulx—sy)x_(atp) (@)j(t(a)wy-1 (H(a))do(x)x(a),
a€k* z,yck
where t(a) = diag(a,a™!) € SLa(k). Note that j(t(a)) = h(a,1). On the other hand, we have
wy—1(t(a))do(z) = €(a)dp(ax), which is zero if x # 0 since a # 0. Thus we have
W(Bu, b0, fo) = Y > Bulx—s(y)h(a,1))e(a)x(a).
a€kX yek
By Lemma 5.3 (2) and (1), we have
V(Br, do, fo) = Z Br(h(a,1))e(a)x(a)
ackX

= Bu(1)

=1.
This completes the proof of the Lemma. |
Lemma 5.5. The trilinear form (W, ¢, f) — W(W, ¢, f) on W(IL,1)) X wy-1 x I(x) satisfies the
property
(5-3) W (I (R)))W, wy—1 (PE(h))d, (PE(R)) ) = W(W, ¢, f),Vh € J,
where v denotes the right translation action, and for (g,h) € SLa(k) x S, r(g,h)f :=1(g9)f. Recall
that DT is the projection map J — SLo(k) x 2 in §2.3.

Proof. Note that for h € SLy(k), Eq.(5.3) follows from a simple changing of variables. Hence,
we only need to check formula (5.3) when h € V. Suppose that h = (s1, s2, S5, 84,85). Since

pr(h) = (1, (s1, 82,83 — s182)) € SLa(k) x 52, r(pr(h))f = f. For g = (Z Z), we have

’._ —1
h' = ghg - (81a32753v34755)a

with s} = ds1 + ¢sa, 85 = bsy + asa, 85 — s)sh = s3 — s182. Then, pr(h') = (1, (s, sh, s5 — s1s5)) €
SLo(k) x 2. Thus

(5.4)  wy-1(gpr(h))(z) = wy-1 (PE(R)g)d(z) = P~ (55 — 25755 — 2255 ) (wy-1(9)9) (z + 1),
by (2.4).
Next, we compute W (j(x30+5(r1)Xa(r2)gh)). Using the commutator relations, see [Ch68, p.192],
one can check that:
Xo(z)gh
Y)Xa(z)h'g
X3a+5(Y + 54)Xa (2 + 81)Xat5(52)X2045(53)9
X3a+8(Y + 51)Xa+8(55)Xa (@ + 51)X20+p(s5 — 2(r2 + 51)s2)g
X3a+6(Y + 51 Xats(52)X2a45(s5 — 2(r2 + 51)55)Xa(z + s1)g
Xa+6(85)X20+5(s5 = 2(r2 + 51)52)X3a44(y + 81 )Xa(x + 1),

o

w

Q

+

DN

™
—~ o~ o~

V)

X ol
— — ~— —
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where s? = st +3(x+57)(s5)?, 8§ = s} +3(x+51)%sh, and s’ = s +3(x+5))(s5—2(x+5})sh). Note
that j(X3a+24(55)) € Usatp, J(Xa+p(52)) € Uzatp, J(Xaa+p(s5 —2(z+51)s5)) = Xa(s5 —2(x+51)s5)
and W e W(II, ¢), we get

(5:5) W (j(X3at5(y)Xa(x)gh)) = ¥(s3 — 2(x + 51)52) W (j (Xsat5(y + 51 )Xa(z + 51)9))-
Plugging (5.4) and (5.5) into the left hand side of (5.3), we get
W(IL(G ()W, wy—1. (PT(R)) b, 7(PT () f)
= > Y Wlixsars(y + si)xalz + 51)9)) (s (9)9) (z + 1) (9).

gE€NsL, \SL2 (k) z,y€k
By changing variables, we get
(I (h))W, wy-1 (Pr(h)) ¢, 7(PT(h)) f) = ¥ (W, ¢, f).
The completes the proof of the lemma. O

Corollary 5.6. IfII is an irreducible generic representation of Ga(k), then we have
dim Hom ;(IT, wy ® I(x)) > 1.

Proof. Let Tl be the representation defined by I (g) = II(j(g)). Note that Il = II since j is an
inner automorphism. The assertion then follows from Lemma 5.4 and Lemma 5.5 directly. ([

Remark 5.7. In the proof of Theorem 2.1 when p > 3 in §3, we showed that if I = X33, X717, Xis,
X19, X 19, then (IL,I(x) ®wy) = 0. Thus by Corollary 5.6, the representations X33, X17, X1s,
X19,X19 can not be generic. As pointed out by the referees, this has already been known, for
example, the last 4 representations are the 4 unipotent cuspidal representation of Go(k) as in [Ca85,
p.460] hence are not generic. In particular, the irreducible generic cuspidal representations of G (k)
when p > 3 must be in the families of the representations X;(m;) for ¢ = 2, 3,6 when 7; are in general
positions. Similarly, the irreducible generic cuspidal representations of Go(k) when p = 3 must be
in the families of the representations x12(k, 1), x13(k), x14(k).

5.3. GL;-twisted gamma factors for generic cuspidal representations. Consider the stan-
dard intertwining operator M : I(x) — I(x~!) defined by

M(f)(g) =Y F((w") "n(2)g),

z€k

where w! = (_1 1) and n(r) = (1 f) Note that under the embedding SLa(k) — GLa(k) =

M — Go(k), w! is mapped to wpg.

Proposition 5.8. Let II be an irreducible generic cuspidal representation of Go(k) and x be a
character of k*. Then there is a number T'(IL x x,¢) € C such that

U(W, ¢, M(f)) =TI x x, ) ¥ (W, ¢, f),
for all W € WL ), ¢ € S(k), f € I(x).

Proof. Note that (W, ¢, f) — U(W, ¢, f) and (W, ¢, f) — U(W,p, M(f)) define two trilinear forms
in Hom ;(IV ® wy-1 ® I(x),C). Then the assertion follows from Theorem 2.1 directly. O

Lemma 5.9. We have

5/2
T(IT x x, ¥) = qf 3" Bulh(a, Dw)ex (a),

ack>

where wy = wﬁwawgwglwgl = j(wg).
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Proof. As in Lemma 5.4, let 6o € S(k) be the function do(z) = 0 if z # 0 and dp(0) = 1. And let
fo € I(x) be the function such that supp(fo) C Nsw,Asr, and fo(1) = 1. Then, by Lemma 5.4, we
have W(Bry, do, fo) = 1. Thus we get

F(H X Xa’l/}) = \II(BI—Iv(;OaM(fO))a

= Z fo ((wh)~'n(z)g) .

z€k
Since M(fo) € I(x~ ') and SLa(k) = Nsr, Asr, [ [ NsL, AsL,w' Nsr,, we need to determine the value
of M(fo) at 1 and at w'n(r),r € k. Since for any = € k, we have (w!) 'n(z) ¢ Bgr,, we have
M(fo)(1) = 0. Since (wh)In(z)w'n(r) € Bsy, iff z = 0, M(fo)(w'n(r)) = fo(n(r)) = 1,Vr € k.
Thus we get

(I x x, )

where,

SN Bulxo ()% (ars) (@)(9))wy-1(9)00(x) M (fo)(9)

g€ NsL, \SL2 (k) z,y€k

Yo Y Bulx ()X _(ass) (@)i(H@)w'n(r)))

a€k*,rek xz,yck

rwy (t(a)w! ()) o(@) M (fo)(t(a)w'n(r))
Yo D Bulxs0)x(arp (@)it(@)w'n(r))

ack* rckz,yck
cwy-1 (w'n(r))do(az)ex*(a).
Note that w; = j(w!) and j(n(r)) = x34+25(7), and

X (Y)X—(arp)(¥)h(a; DwiXza+25(r) = h(a, )wiXza+s(ay)X2a+s(ax)Xza+25(r).
By Lemma 5.2, we have Br(x—g(y)X_(a+)(2)j(t(a)w'n(r))) = Bu(h(a, 1)w;). Thus we get
(I x x,9) = Z Z Br(h(a, 1)w1)wy-1 (w'n(r))do(az)ex " (a)

ack* ,rek z,yck

q Z Z Bri(h(a, 1)w1)(wy-1 (w'n(r))do)(az)ex ™" (a).

a€k* z,r€k
We have
1
(wy-1 (w'n(r))do) (az N R Yo7 (=2azy) (wy-1 (n(r)))do(y)
’ yek
1
T > (=2azy)(ry*)do(y)
’ yek
_ 1
v(1,971)
Recall that
=Y v (=a?) =) w(a?) = Ve,
€k z€k
see (2.1). Thus we get
I(II x x, ) = 5/2 Z Br(h(a, 1w )ex ™ (a).
a€kX
This completes the proof of the lemma. |

Remark 5.10. We use I'(7 X x, ¢) instead of (7w X x, %) to denote the gamma factor defined from
the functional equation in Proposition 5.8 because it is not normalized in any way. In fact, if one
compare the formula in Lemma 5.9 and the corresponding gamma factor formula in the GL,,-case
in [N14, Proposition 2.16], it seems that ¢~%/?T(IT x (x~'€)) is certain normalized gamma factor.
Over p-adic fields, Lapid and Rallis [LR05] formulated a series of properties of local gamma factors
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which can characterize them uniquely. It is an interesting question that how to normalize gamma
factors in a canonical way in the finite field case.

6. GAMMA FACTORS FOR Go X GLg

In this section, we review the integral for Go x GLo (similar to §5, in our case, it is a sum rather
than an integral) developed by Piatetski-Shapiro, Rallis and Schiffmann in [PSRS92] and define the
GLo-twisted gamma factors.

In this section, k is a finite field of odd characteristic unless in subsection 6.4, where k can be
either a finite field or a p-adic field.

6.1. Embedding of G; into SO7. To introduce the integral of Piatetski-Shapiro, Rallis and Schiff-
mann, we need to embed Gg into SO7. We use the embedding of Gg into SO7 given in [RS89]. Let
H be a quaternion algebra over k. We can write H = keo @ H°, where eq is the neutral element and
10 is the three dimensional subspace of pure quaternions. We denote by e, €2, €3 a basis of H° such
that e;e; = —eje; and e3 = (e1e2 — eze1)/2 = erea. Let A = ejeq and p = egsep. Then eges = —Ap.
For x = ageg + are1 + ases + azez € H with a; € k, we define T = ageg — are1 — ases — ages.

Let C =H x H. We consider the non-associative product on C given by

(a,b)(c,d) = (ac + db,da + be).

With this product, C is called a Cayley or octonion algebra. The conjugate of (a,b) € C is defined
by (a,b) = (@, —b) and its norm is Q((a,b)) = (a,b)(a,b) = aa — bb.

Note that k& can be embedded in to C by the map a — (aep,0). We have a decomposition
C =k C° where C is the space of pure Cayley numbers. Note that dimj C° = 7. We put

Xt =(1/2,1/2), X =(1/2,-1/2),X° =X+ - X~ = (0,-1).
One can check that H°X+,H%X ~ are totally isotropic subspaces of C°, and we have
CO=HXT kX" ®H' X",
cf. [RS89, p.805]. The group Ga(k) can be defined to be the automorphism group of the algebra C.
Note that if g € Ga(k), then g(1) = 1, where 1 = (eq,0) € C is the unit element, and (gu)(gv) = g(uv)
for u,v € C. In particular, g € Ga(k) preserves the norm form Q. Consider the bilinear form
(v1,v2)g = Qv1) + Q(v2) — Q(v1 + v2). Then g € Go(k) preserves the bilinear form ( , )g.
One can check that the decomposition C = k @ C° is an orthogonal decomposition with respect to

(, )o- Thus g € Ga(k) preserves C and Q|co. In particular, we have Ga(k) C O(C° Qlco) =
{g € GL(CY) : (g1, gv2)g = (v1,v2)q, Vv1,v2 € CO}. By [RS89, Corollary 4, p.810], one has

Ga(k) € SO(C”, Qleo) = {g € O(C°, Qo). det(g) = 1}
Note that the quaternion algebra over finite fields alway splits. Thus we can assume that A =
w=1
A basis of C? is given by ef := e1 X ef = eaXT,ed 1= e3XF,e0 := X0 e5 = e3X " ,e; =
es X ~,e] = e1X . From the formulas given in [RS89, p.805], we can check that the bilinear form
(, )o with respect to the basis (e],es,eq, e, €5, €5, € ) is given by the following matrix (which is
still denoted by @ by abuse of notation)

where

Thus SO(C°, Q|co) = {g € GL7(k) : }gQg = Q,det(g) = 1}, where we view elements in C° as col-
umn vectors and SO(C°, Q|co) acts on them from the left hand side. In the following, we will
fix SO(CY, Q|co) as the above form and write it as SO7(k). We then get our desired embedding
Ga(k) = SOz (k).
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Let Tso(g) be the diagonal torus of SO7(k). A typical element in Tso(g) has the form ¢t =
diag(a, az, as, 1, agl, ay*,a;t). Let ¢ be the character of Tso(q) of the form €;(t) = a; for 1 <i < 3,
where ¢t = diag(ay, as,as, 1, agl, ay*,a;t). Then the positive roots of SO7(k) relative to the upper
triangular Borel subgroup is the set {e; —¢;j,€; +¢€;,¢; with 1 <i<3,1<j <3,i<j}. Under the
above embedding Ga(k) — SO7(k), one has « = €3, 8 =€1 — €3, + B =€1,2a+ f = —€3,3a+ =
€9 — €3, 3o+ 2B = €1 — €3. See [RSSQ, p812]

The embedding Ga(k) — SO7(k) can be explicitly realized by giving matrix realizations of x(r)
for all roots v of Go, which is given in Appendix B. From this explicit realization, one can see how
subgroups of Gy are embedded in SO7. For example, the Levi subgroup M = GLy(k) is embedded
into SO7(k) by the map

m — diag(m,det(m) ™1, 1, det(m), m*),m € GLa(k),

. (1, 1
Wherem—(1 )tml(l )

6.2. The Piatetski-Shapiro-Rallis-Schiffmann local zeta integral for G, x GLo. Let P be the
parabolic subgroup of SO7(k) which is isomorphic to (GL2(k) x SO3(k)) x U where GLa (k) x SO3(k)
is the Levi factor of the form

b ,CLGGLQ(/ﬂ),bESO;g(k)

a*

—1
Here SO3(k) is the special orthogonal group realized by the matrix 2 . Note that the
-1

GLy(k) part in the Levi of Pis exactly the Levi subgroup M of P C Ga(k). A typical element of
P will be written as (x,y,u), where x € GLy(k),y € SOs(k),u € U. Denote H = M x Z C Ga(k).
Under our fixed embedding Ga(k) — SO7(k), we have H = Ga(k) N P, see [PSRS92, Lemma 1.2,
p.1273] and its proof there. One can also see this from the matrix realizations of the embedding in
Appendix B.

Let (7,V;) be an irreducible generic representation of GLy(F) = M, we consider the induced
representation

I(7) = md3 "™ (r @ 150,).
A section € € I(7) is a map & : SO7(k) — V; such that
g((it,y, u)g) = T(x)g(g)wx € GLQ(k)a Yy e Sod(k)vu € [7

We fix a nontrivial ¢-Whittaker functional A € Homng, (1,971) of 7, where Ngp, is the upper
triangular unipotent subgroup of GLg(F'). We then consider the C-valued function fe on SO7(k) x
GL2(k) by
fe(g,a) = A(T(a)é(9)),9 € SO7(k),a € GLa(k).

We denote by I'(W(r,19~1)) the space consisting of all functions of the form f¢, £ € I(7).

Let Uy be the subgroup of H generated by root spaces of 3,2« + 3,3a + 3,3a + 25. We have
Uy C H=Gn P. Let Yy, be the character of Uy such that wUH|Ug = ¢ and ¢UH‘UW =1 for
v =2a+ B,3a+ B3,3a+ 2. For u € Uy, we have

(6.1) fe(ug,Io) =y} (u) fe(g,12),
where I5 is the 2 x 2 identity matrix.
Let II be an irreducible ¢ = ¥y-generic representation of Go(k) and 7 be an irreducible generic

representation of GLa(k). For W € W(IL ), and f € I'(W(r,v~1)), we consider the following
Piatetski-Shapiro-Rallis-Schiffmann local zeta integral

(6:2) YW= Y, W(9)f(gl)
9€Un\G2(k)
Note that by (6.1), the above sum ¥(W,¢) is well-defined.
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6.3. Decomposition of I(7)|q, ). Recall that P* = M’'V’ denotes the standard parabolic sub-
group of Gz (k) such that U, is included in the Levi subgroup M’. Let H= wawg P’ (wawg) !, which
is a conjugate of P’ and thus still a parabolic subgroup of Gy (k). It is clear that H = GLy(k) x U,
where GLy(F) = wawsM' (wawg) ™! and U’ = wawsV'(wawg) ™. Note that U’ is generated by the
root subgroups of 3,3a + 28, —(3a + ), a + 8, —a, see [PSRS92, Corollary to Lemma 1.2, p.1276].

The double coset P\SO7(k)/Gz(k) has two clements. From [PSRS92, Lemma 1.2 and its Corol-
lary] and Mackey’s theory, we have the following decomposition

(6.3) 0 — indi? ™ (r @ 12) = I(7)|gae) = nd5** (7 @ 107) > 0.
See [PSRS92, p.1287] for local fields analogue of the above decomposition. Note that over finite
fields, the above exact sequence splits.

For € € indGz(k) (T®1z), we denote fe(g,a) = A(T(a)é(g)) for g € Ga(k),a € GLa(k). We denote

I(W(r,9~")) the space spanned by f¢ for £ € deZ(k) (1®1z), which is a subspace of I'(W(,¢1)).
In particular, we can consider ¥(W, f) for W € W( ;) and f € IW(T,97h)).

Remark 6.1. In the exact sequence 6.3, ind also denotes the induced representation. Note that over
finite fields, the notations ind and Ind have no difference, but over local fields, they are different.
Here, we try to keep the notations the same as in the literature [PSRS92] and thus we used two
different notations (ind and Ind) to denote the same object (induced representation). Hopefully,
this won’t cause any confusion.

6.4. On the Jacquet functor IIz. In general, let (II, Vi) be a representation of a group L and
let x be a character of a subgroup K C L, then the twisted Jacquet functor Ilg , is defined to be
Vin/(M(k)v — x(k)v,k € K,v € Vi1). If x =1 is the trivial character, then we write Ik ; as k.

In this subsection, let k& be either a finite field or a p-adic field. We go back to our Gs notation.
Let II be an irreducible generic smooth representation of Ga(k). We consider the Jacquet functor

My Let PL={ (% ]
that ¢y |y, = ¢ and Yy |y, =1 for v = a + 3,2a + §,3a + 3,3a + 20.

Lemma 6.2. We have the following exact sequences

be the mirabolic subgroup of GLy(k). Let 1y be the character of V' such

(6.4) 0 — ind51?*) (My 4, ) = Mz = Ty — 0,
and

1
(6.5) 0 — indyg, () = vy, = Ty — 0,

where ind means compact induction when k is a local field, 1y, is the degenerate character of U
defined by Yy |u, = ¥ and Yylu, = 1, and Ng, is the upper triangular unipotent subgroup of
GLay (k).

Remark 6.3. Lemma 6.2 is the finite and p-adic fields analogue of [RS89, Theorem 5, p.824] and
its proof given in the following is also parallel to the one given in [RS89]. Note that over finite fields,
the above exact sequences split and the topology is discrete.

Proof of Lemma 6.2. Note that Go(k) is an ¢-group in the sense of [BZ76]. Note that when & is
a finite field, the topology on Go(k) is discrete. We use the language of sheaf theory on f-spaces, see
[BZ76].

Note that the parabolic subgroup P normalizes Z, and thus IIz can be viewed as a representation
of P. Since Z acts on Il trivially, we can view Il as a representation of P/Z = M x (V/Z). Note
that V/Z = k2. Moreover, as a representation of V/Z, Il is smooth. Denote the space of Iz by
Vir,. The smoothness of I implies that S(V/Z). Vi, = Vi, see [BZ76, §2.5] for example. Let
V/Z be the dual group of V/Z i.e., the set of characters on V/Z. The Fourier transform deﬁnes an
isomorphism S(V/Z) = (V/Z ). Under this isomorphism, we view Vi, as a module over S (V/Z ).
By [BZ76, Proposition 1.14], up to isomorphism, there is a unique sheaf Vi, on V/Z such that as

a S(V/Z)-module, Vi1, is isomorphic to the finite cross sections (Vi1 ). For the definition of finite
cross sections, see [BZ76, §1.13].
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Note that V/Z is generated by the root spaces of « and « + 5. The set X7]\Z is consisting of
characters of the form vy, x,, K1, K2 € k, where

Vioy s (Xa+ﬁ(r1)xa(r2>) = 1/}(%17“1 + Kara).

The map (K1, K2) — Py, .x, defines a bijection k% = ‘7/\Z Under this bijection, we consider the
action of M = GLy(k) on V/Z given by

(9, (K1,52)) =g~ " - (K1, Ka).

This action has two orbits: the open orbit O = {4y, «, : (k1,2) € k* — {0}} and the closed orbit
C = {t0,0}. We then have the exact sequence

(6.6) 0= (Vi,)e(0) = (Vi )e = Vi, )e(C) = 0,

see [BZ76, §1.16].

We consider 191 € O. The stabilizer of 191 in M = GLa(k) is P!, and the map g — g.¢o 1
defines a bijection P*\GLy(k) — O. A simple calculation shows that the stalk of the sheaf Vi1, at
the point 9y, € O is

I2)v/ 20, = Dvpy
see [BZ76, Lemma 5.10] for a similar calculation in the GL,-case. Thus by [BZ76, Proposition 2.23],
we have
(Vi1,)e(0) = indpy*® (T, ).

Similarly, consider the stalk of the sheaf Vi1, at g, we have

(Vn2)e(C) = (z2)v)z,40,0 = lz)v/z = Hy.

Now the exact sequence (6.4) follows from the exact sequence (6.6).
In general, given any smooth representation p of P!, we have an exact sequence

. 1
(6.7) 0— mdﬁ% (PNew, ) = P = PNar, — 0,

see [BZ76, Proposition 5.12] for example. We now apply the exact sequence (6.7) to the represen-
tation p = Ily,y, . Note that (Ilv,y, )ngr, = Huyy, and (Ivigy, )Nar,.» = Loy, (transitivity of
Jacquet functors, see [BZ76, Lemma 2.32, p.24]). By the uniqueness of Whittaker model, we get
dim Iy, = 1. Thus, as a representation of Ngr,, we have (Ily,y, )Ngy,.» = ¥ Then, the exact
sequence (6.5) follows. O

6.5. Intertwining operator. Denote ws = h(1, —1)waw5wawg w !, one can check that w3 = 1.
For an irreducible representation T of GLa(k), we consider the representation 7* of GLa(k) defined

by 7*(a) := 7(a*), where a* = (1 1) fg=t <1 1). The realization of GLa(k) = M is given
by a — m( ) := diag(a,det(a)™1,1,det(a),a*) with a € GLa(k). Note that M normalizes Z and
wam(a)wy - = m(a*). Thus we can define an intertwining operator M,,, : ind%(k)(r ®1lz) —
indg2 k)( 1z) by the formula
Mo, (§)(9) = > &(wazg), g € Ga(k).
2€Z

For f € IW(r,¢™ 1)), we define
My, (f)(g:a) =Y fwazg,dra*), g € Ga(k), a € GLy(k),

z€EZ

where d; = diag(—1, 1). Here the factor d; is added to make sure that the function a — M., (f)(g,a)
is a ¢~ !-Whittaker function on GLa(k). Hence, M,,(f) € IW(r*,%1)), and for W € W(IL, 1),
one can consider the sum

YW, Mo ()= D W(9Mu,(f)(9).

9€Un\G2(k)
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6.6. GLo-twisted gamma factors for generic cuspidal representations.

Proposition 6.4. Let IT be an irreducible generic cuspidal representation of Go(k) and let T be an
irreducible generic representation of GLa(k). Then we have

dim Homg, (1) (ind%’(k) (T®1g),II)=1
and
dim Homg, (1) (1 (7) |Gy k), II) = 1.
Proof. We use the decomposition I(7)|a,x) given in (6.3). By Frobenius reciprocity, we have
Homg, () (ind 5*™ (7 @ 1¢7), 1) =Hom (7 ® 1y, 11| )
=Homgp, (1) (7, y).

Since U’ is the unipotent of a nontrivial parabolic subgroup and II is cuspidal, we get Il = 0.
Thus we have
Home, (1) (ind 5™ (7 @ 14,), 1) = 0.

From the decomposition of I(7)|q, (k) in (6.3) and Frobenius reciprocity, we have
dim Homg, (1) (1(7)|ay (1), IT) = Homg, (4 (ind 52 ™ (7 @ 1), I0)
= HOIHH(T X 12,1_[)
= HOHIGLQ(k) (T, Hz)

We now apply exact sequences in Lemma 6.2. Note that V is a unipotent subgroup of a nontrivial
GL2(k)

parabolic, we have IIy, = 0. Thus we have Iz = ind 5,*"" (Ily,y,, ) by (6.4). By Frobenius reciprocity
again, we get
HomGg(k) (I(T)|G2(k)a H) == HOI’IlGL2(k) (7’7 Hz)
. GLy(k

= HOI’IlGL2(k)(T, ind 5, 2( )(Hv,wv))

= HOInpl (T|p1 s HV,wV )
Since Yy;|lu, = 1, we have Iy, = (Ily+)y,,» = 0 since V' is the unipotent of the nontrivial
parabolic subgroup P’ and II is cuspidal. Thus (6.5) shows that ITy, ,,, = indﬁlL2 (1). We then have

Homg, (1) (1(7)|G, (), 1) = Homp: (7]p1, Iy g, )
. 1
= Homp1 (7, 1nd§GL2 (¥))
= Hompyy,, (1,9).
Since 7 is irreducible generic, we have Homyg,, (1,7%) = 1 by the uniqueness of Whittaker model for

GLz(k). The above proof also shows that dim HomGQ(k)(ind%(k)(T ® 1z),1I) = 1. This completes
the proof. O

Remark 6.5. Note that if II is not cuspidal, from the above proof, we cannot expect that
d1m HOHIGQ(]C) (I(7)|G2(k)u H) =1

in general. This is because the tale terms, say, Iy, Iy, Il 4, can cause some trouble. For example,
if Ily» # 0 and Homgr, &) (7, ITy7) # 0, then the above proof shows that

dim HOHIGZ(;C) (I(T) |G2(k)7 H)
= dim HomGz(k)(ind%(T ® 1yr), ) 4 dim Homg, () (ind%(k) (T®1z),1)

> dim Home, (1) (ind% (7 ® 1¢7), IT) + 1
> 2.

Note that over a p-adic field k, we can introduce a complex number parameter in the induced
representation I(7) and consider the induced representation

I(s,7):= Ind%o7(k)(7'| det |* ® 1s0,)
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on SO7(k). Then the same strategy can show that, except for a finite number of ¢°, where ¢ is the
number of residue field of k£, we have
dim HomGQ(k) (I(Sa T)|G2(k)a H) = 13

for any irreducible generic representation IT of Go(k). Here we don’t need the cuspidal condition on
I1, because the tale terms Iy, [Ty, all have finite length as a representation of GLy(k), and HUJ%
has finite dimension, and thus the corresponding Hom spaces are still zero if we exclude a finite
number of ¢°.

Proposition 6.6. Let II be an irreducible generic cuspidal representation of Go(k) and 7 be an
irreducible generic representation of GLa(k). Then there exists a number T'(IL x 7,1)) such that

U(W, My, (f)) =TI x 7,4) W (W, f)
for all W € W(L,%) and f € IWV(r,%™1)).
Proof. Note that (W, f) — (W, f) and (W, f) = W (W, M(f)) define two elements in Homg, ;) (IT®
ind%(k)(T ® 1z),C). Proposition 6.4 implies the existence of I'(IT x T,1)). ]

As in the Gy x GL; case, see Remark 5.10, the gamma factor T'(IT x 7,1) defined in Proposition
6.6 depends on M,,,, and it is not canonically normalized in any sense.

7. A CONVERSE THEOREM

In this section k is a finite field of odd characteristic.

7.1. Weyl elements supporting Bessel functions. Let A = {«, 8} be the set of simple roots of
G2 and let W(G2) be the Weyl group of Gg. The group W(Gz) is generated by sq,sg and has 12
elements. Let B(G3) = {w € W(Gz) : Vy € A,wy >0 = wy € A}. The set B(Gz) is called the
set of Weyl elements which support Bessel functions and the name is justified by the following

Lemma 7.1. Let II be an irreducible generic representation of Ga(k) and By € W(IL,¢) be the
Bessel function. If w € W(Gz2) — B(G2) and w € Ga(k) is a representative of w, then

Br(tw) = 0, € T.

Proof. Since w ¢ B(Gsy), there exists an element v € A such that wy > 0 but wy is not simple. For
any r € k, we consider the element x,(r) € U, C U. We have
tWX (1) = tXqpy (€)W = Xy (WY (t)er)tw,

where ¢ € {£1}. Note that Yy (xy~(wy(t)er)) = 1 since wy is not a simple root. By Lemma 5.2, we
have
P(r)Bn(tw) = B (tw),Vr € k.

Since v is not trivial, we must have B (tw) = 0. O

Let wy = (s453)%, which is the longest Weyl element in W(Gs). One can check that B(Gg) =
{1, weSa,wesg, we}t. Note that wy = wﬁwawlgwglwgl is a representative of wys, and wy =
1

h(1, —1)waw5waw51w’

~ is a representative of wysg.

7.2. An auxiliary lemma. Let ¢ be a positive integer and N; be the upper triangular unipotent
subgroup of GL(k). Let v, be a generic character of Ny.

Lemma 7.2 ([N14, Lemma 3.1]). Let ¢ be a function on GLi(k) such that ¢(ng) = ¥(n)e(g) for
alln € Ny and g € GLy(k). If

geN\GL¢ (k)
for all W € W(m, ;") and all irreducible generic representations © of GL¢(k), then ¢ = 0.

Note that in the above lemma, when ¢ = 1, Ny is trivial. We will only use the above lemma for
t=1,2.
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7.3. The converse theorem and twisting by GL;. The following theorem is the main result of
this paper.
Theorem 7.3. Let k be a finite field with odd characteristic. Let 11,11y be two irreducible generic
cuspidal representation of Go(k). If

F(Hl X dej) = F(HQ X Xvw)v

F(Hl X T71/)) = F(HQ X T, ¢)7
for all characters x of k™ and all irreducible generic representations T of GLo(k), then 11y = Il,.

The proof of Theorem 7.3 will be given in the following subsections. The strategy of the proof

is as follows. Let B; := Bp, € W(IL;, ) be the Bessel function of II; for ¢ = 1,2. We will

prove that By (g) = Bz2(g) for all g € Go(k) under the assumption of Theorem 7.3. Since Go(k) =
BwB, it suffices to show that B; agrees with By on various cells BwB. By Lemma
wEW(GQ)

7.1 and Lemma 5.2, if w ¢ B(Gz), we have Bi(g9) = Bz2(g) = 0 for ¢ € BwB. If w = 1, we
also have Bi(g) = B2(g),Vg € B by Lemma 5.2 and Lemma 5.3. Thus it suffices to show that
Bi(g) = Ba(g),Vg € BwB with w = wy, wa, wy. Here we do not distinguish a Weyl element and its
representative. We start from wy.

Lemma 7.4. If T(II; x x,v¢) = T'(Ily x x,%) for all characters x of GLy(k), then Byi(g) = Ba(g),
for all g € Buy B.

Proof. By Lemma 5.9, we have

I(IT; x x, 9 Z Bi(h(a, Dw;)ex (a).
aEkX
Thus the assumplition implies that
> (Bi(h(a, 1)wy) — Ba(h(a, D)wr))ex™ ' (a) =0,
a€kX
for all character x of k*. Then we get
Bi(h(a,1)w1) — Ba2(h(a,1)wi) =0
for all a € k* by Lemma 7.2.
On the other hand, for any a,b € k>, one can check the following identity
Xq(br)h(a,b)w; = h(a,b)wix,(r),Vr € k.
Thus by Lemma 5.2, we have
»(br)B;(h(a,b)wy) = ¥ (r)B;(h(a, b)w:),Vr € k.
Since 9 is nontrivial, we get
B;(h(a,b)wy) =0, if b # 1.
Therefore, we get By (twy) = Ba(tw,) for all t € T. Since Bwi B = UTw U, we get
Bi(g) = Ba(g), Vg € Bur B
by Lemma 5.2. O

7.4. Sections in the induced representation ind CGalk )(T ® 1z). Let (7,V;) be an irreducible
generic representation of GLy(k). Fix a nonzero v € V;, we consider the function &, on Ga(k)
defined by supp(&,) = H and

&u(az) = T(a)v,a € M = GLy(k),z € Z.

Note that &, € dez(k)( ® 1z). Following §6.2, we fix a nonzero Whittaker functional A €
Homyy,, (7,4~") and consider the following function in I(W(r,%~")),

fe.(9,0) = M((a)6,(9)), 9 € Ga(k), a € GLa(k).
Let R
Folg,a) = My, (fe,)(g:0) = > fe, (w2zg, dra).

z€Z
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Lemma 7.5. Let g = mXo(r1)Xa45(r2)woXa (51)Xats(s2)s’ withm € M, s' € Z. Then if f,(g, ) #
0, we have 11 =19 = 51 = S92 = 0. Moreover, if r1 = ro = s1 = so = 0, we have

Folg, T2) = W (m),
where Wr(m) := A(T(dym*)v), recall that d; = diag(1, —1).

Proof. By the definition of intertwining operator in §6.5, we have

(7.1) folg.Ta) = > fe, (wazg, dy)
z€Z
= Z fﬁu (Em*xf(cwrﬁ)(_Tl)x—a(_T2)Xa(31)xa+5(32)sla dl)a
zeZ

where Z is the opposite of Z. If ﬁ,(g, I5) # 0, then there exists z € Z, such that
ZM X _(a1p)(—T1)X—a(—T2)Xa(51)Xays(s2)s’ = h € H.

Then we have

(7.2) X (a4 8) (=T1)X-a(=72)Xa(51)Xats(52) = miz7 h(s") 77,

where m; = (m*)~!. Suppose that h = mazo with my € M, 29 € Z, and write 21 = 22(s') "t € Z.
Note that a typical element in Z has the form

1 0 Ts5 0 0 —T3 0

0 1 T4 0 0 0 T3

0 0 1 0 0 0 0
X20+4(73)X30+8(r4)Xsa42p(rs) = [0 0 —r3 1 0 0 0],

0 0 T§ —2r3 1 r4 1y

0 0 O 0 0 1 0

00 O 0 0 0 1

where the matrix form can be computed using the matrix realization of Go(k) given in Appendix B.
For simplicity, we write the element z; € Z as

IQ X1 T2
z=|(0 b 27|,
I

with b € SO3(k),x2 € Mataoxao(k) and 1 € Mataxs(k) of the form

_(* 0 O
1=\« 0 0/

We write m; = diag(a;, I3, a}) with a; € GLy(k) for i = 1,2, and

I
2_1 =|wm I3 )
wy uy I

where @; € Matsxa(k), 42 € Mataya(k), and 4 is determined by ;.
Then we have

miz  h(s )Tt = miz i ma sy

@102 a102T1 G102T2
= U1 a2 * *
alt20as * *

On the other hand, from the matrix realization given in Appendix B, we have

by Y1 Y2
X_(at4p)(—T1)X-a(—T2)Xa(51)Xatp(s2) = | Uy  * * |,
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where
b — 1-— T2S81 252
1= r181 1-— 182 ’

_ ( O 7282(1 — 7’281) T2 )

Y1 =
8289 —2s1(14+1r189) —11
0 T3
/
Uy = | r1 —rireS1 ro +1rirese |,
—S1 52

o — 0 -5
P\ il —rest) —rira(24rs2) )
From the identity (7.2), we have

/ *
b1 = a0z, Y1 = a1a271, Yo = a1G2T2, Uy = urag, u2 = a1U20a2.

* 0 0
*x 0 0)’
the equation y; = ajasx; implies that

—282(1 — 7“281) T2 o 0 0
—281(1 + ’/‘182) -r) \0 0)°
which then implies that 1 = ro = s1 = s5 = 0 since 2 # 0 in k.
If iy =ro = 81 = so = 0, we then have v} = 0,u} = 0 and thus 4y = 0,42 = 0. Hence z = 1.
Thus, if r1 =19 = 51 = 59 =0, by (7.1), we have
Folg I) = fe,(m*s' di) = A(r(d1)&,(m"s")) = A(r(dym*)v) = W (m).
This completes the proof of the lemma. (]

Since ajasx; is still of the form

7.5. Proof of Theorem 7.3. Denote by B(g) = Bi(g) — Ba(g). By the discussion in §7.3 and
Lemma 7.4, we see that B is supported on BwyB ][] Bw,B.

Let (7,V;) be an irreducible generic representation of GLa(k), v € V;, and fe, € IW(1, 9~ 1))
be the section constructed in §7.4. We now compute ¥(B;, f¢,) for ¢ = 1,2. Since the function
Bi(9) fe, (9) is supported on H, we have

(7.3) U(Bi fe,)= Y. Bilg9)fe,(9,12)
g€Un\Ga(k)
= Y. Bi(9)fe.(9,T2)
QGUH\H
= Y Bilg)fe,(9.T2)
geUg\M
= Y BigWuly),
g€NGL, \GL2 (k)

where an element g € GLy(k) is identified with an element of Go(k) via the embedding GLo (k)
M — Go(k), and W, (g) = A(7(g)v), which is the Whittaker function of 7 associated with v € V.
Note that M C BU BsgB, which has empty intersection with BwsB [[ Bw,B. Since B is supported
on Bwy B[] BwyB, it vanishes on M. We then have

U(Bi, fe,) = ¥(Ba, fe, )= D>, BlgWu(g) =0.
9g€NcL, \GL2(k)

Thus the assumption I'(IT; x 7,¢) = I'(Il; X 7,%) and the functional equation, see Theorem 6.6,
imply that

(B, fo) = U(Ba, fu),
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or
(74) \11(87 ﬁ)) = \I/(Blv .}TU) - \11(627 ﬁ)) =0.
On the other hand, we have
VB f)= Y Blo)fulg L)
g€Un\GC2(k)

Note that Go(k) has the following decomposition

(7.5) Ga(k) = P[] PwaP [ [ Pwawswa P [ [ Pw,P.
Since B is supported on BwsB U BwyB C Pws P, it vanishes on
PJ] PwaP [ PwawswaP.

Furthermore, we have
U \ PwaP =Up \ (MVwV) =Ug\M X UyUqsqp X waV.
By the above discussion and Lemma 7.5, we have
V(B f)= Y, > B(mxa(r1)Xa+5(r2)woXa(s1)Xa+4(s2)s")
mEUR\M r1,72,51,52€k,s' €Z
 fo(mXa (r1)Xa4 5 (r2)woXa (51)Xats(s2)s, I2)

(7.6) =q¢* > B(mwy)W;(m).
meUg\M
Then the equation (7.4) implies that
(7.7) Z B(mw2)W) (m) = 0,
meUg\M

which holds for all v € V; and all irreducible generic representations 7 of GLa(k). Thus by Lemma
7.2, we have

(7.8) B(mws) = 0,¥Ym € M.
If we take m = h(x,y) € M in (7.8), we get
(7.9) B(h(z,y)wz) = 0,Va,y € k™.
If we take m = h(z,y)wg in (7.8), we then get
(7.10) B(h(z,y)wsws) = 0,Va,y € k*.

Denote w, = wgws. Note that w, is a representative of w,. Together with Lemma 5.2, equations
(7.9) (7.10) imply that B vanishes on the cells BwyB and Bw,B. This shows that B is identically
zero. Thus

Bi(g) = Ba(9), Vg € Ga(k).
By the uniqueness of Whittaker model and irreducibility of I1y, 15, we get II; = Il.
This completes the proof of Theorem 7.3.

APPENDIX A. COMPUTATION OF CERTAIN (GAUSS SUMS

A.1l. Basic Gauss sum. Let ¢ be a nontrivial additive character of k = F,. Recall that we have
fixed a square root /€y of €y such that

Zz/}(aJ:Z) = €e(a)+/€0q.
z€k
For a € k™, let

Ar(a) = Z Y(arz),r =1,k.

zekx:?
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We then have
1+ 2A:(a Z Y(azx? (a)\/€04,

x€k
and

1+24,( Zw arz?) = —e(a)\/eoq.

zek
Thus we get the following

Lemma A.1. We have Ai(a) — Ax(a) = €(a)\/€0q.
We write A,.(1) as A, for simplicity, for r = 1, k.

A.2. Computation of B:. We now compute the sums B: for r = 1,5 and i = 0,1,2, 3 in (3. 6) used
7’7"4

in §3. We assume ¢ = 1 mod 3. Givenr € {1,k},r3 € k*,rq € k*/£1,1et z(r,r3,r4) = —2—— € k.

Note that for any a € k, the equation ¢ + ¢~ = a for ¢ is solvable over ko. Given 7,73, 74 as above
and recall that t = t(r,r3,74) denotes a solution of the equation ¢ +t~1 = z(r,r3,74). Note that
rrsry # 0 implies that ¢ # —1. Although there are two choices of ¢(r,r3,r4) in general, one can
check that the condition t(r,r3,74) € {£1} (vesp. t(r,r3,m4) € kX3 — {£1}, t(r,r3,74) € KX — kX3,
t(r,r3,r4) € ky — k™) is independent on the choice of t(r, r3,r4).

Lemma A.2. We have

BY — BY = ¢y\/e0q,

B{ — B} = f%(l + €0)v/€04,
B} - B2 =0,

B} - B} = %(1 — €0)\/€0q-

Proof. Notice that the condition —2 — rrf/r3 =t +¢~! implies that ¢ # —1 and

(A1) (—r3)% = rt (t:fl)z

We first compute B?. We first assume that 7 = 1. When ¢ = 1, (A.1) becomes (—r3)% = (r4/2)%.
Since k* is a cyclic group generated by k, the condition (—r3)® = (r4/2)? implies that —rs € k*2.
Moreover, for each —r3 € k*2, there exists a unique r4 € k*/ {1} such that the equation (—r3)3 =

(r4/2)? holds. Thus we get
By = Z Y(rs) = A1(=1).
—rz€kX,?
Similarly, we have BY = A, (—1). Thus we have BY — B. = A;(—1) — A, (—1) = €0,/é0q by Lemma
Al
We next compute B}, r = 1,k. Let t = t(r,r3,74) € k>3 — {&£1}. Let a € k* with t = a®. We
first assume that 7 = 1. From (A.1), we have —a~!r3 € k>>2. Thus the contribution of each fixed

t =t(1,73,74) to the sum Bj is
Z 1/}(7151/33:)’

z€kX:2

where ¢!/3 is any cubic root of ¢ in k*. Because t and ¢t~ contributes the same to the sum Bj, we

have
=y ¥ % u-"

tekX:3 —{£1} zckX2

B} = % Z Z Y(—t3kx).

tekx3—{£1} zekx 2

Similarly, we have
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Thus by Lemma A.1, we have

1
Bi=Bi=g Y (At - A=)
tekx:3—{£1}
1
= e0\/eod S '),

tekx:3—{£1}

We have kX2 = {Ii?’i 1< < %1} Thus we get

q—1

3

Z e(tt/?) = Ze(/{)i =0,

tekx,s 1=1

where the last equality follows from the fact that e(x) = —1 and q%l must be even. Thus we get

1 1
B — Bl = —560\/60q(1 +e€) = —5(1 + €0)/€0q-
We next consider B2. Note that kX — kX3 = k>3 [[ k2,3, For j = 1,2, we define
B} = Z P(rs).
rg€kX ra€kX /{x1},t(r,r3,ra)ErIk*:3
We have B2 = B2! 4+ B22. Take an element t € kX — k>3 with ¢(r,r3,74) = t. Then the condition
2
—2— % = ¢+ ¢! implies (A.1). Note that if 7 = 1 and ¢ € kk™*?, equation (A.1) implies that
3
—r3 € kk>2, and for such an rj, there is a unique 74 satisfying that equation. Thus we get
2,1 q—1
BYt= > > (—kz) = A1),
texk*:3 pek*:2

For t € k?k*? and r = k, we also have that —r; € kk*? and a unique r4 determined by these
datum. This shows that

q—1
Bl = D0 D7 wlese) = T A1) = B
texkkX:3 zekx:2

Similarly, we have B>! = B%’2. Thus we get B = B2.
Finally, we consider B3. We have

0 1 2, p3 g—1
BY + B} + B? + B3 raekx,rgw{il}w(m) T
Thus, from the previous results, we get
B} - Bi = —(B} - B}) — (B - By).
This concludes the proof of the lemma. O

A.3. Computation of C!. In this subsection, we compute the sums C? for r = 1, k, and i = 0,1,2,3
defined in (3.8). Note that in this case, ¢ = —1 mod 3. Recall that ko is the unique quadratic
extension of k = F,. We can realize ko as k[\/k]. Let Nm : ky — k be the norm map. We have
Nm(z + y/k) = 2% — y?k. Recall that k3 is the norm 1 subgroup of k.

Lemma A.3. (1) If an element u € ki has a cubic root v € k., then we must have v € kJ.
(2) Lett € ki andt# —1. Thent+t~1+2 is a square in k* if and only if t is a square in ki.

Proof. (1) Since u = v* € kb, we have v3+3 = 1. On the other hand, we have v4° ~! = 1 since
v € k. Since ¢ = —1 mod 3, the greatest common divisor of ¢> — 1 and 3¢ + 3 is ¢ + 1. Thus
v9*t1 =1, which means that v € ki.

(2) Suppose that t = 32 with 3 € k. We write 8 = a + by/k with a,b € k. Then B € ki means
that a® — b%x = 1, which implies that b*x = a® — 1. We have t = 3% = a? + b?k + 2ab\/k. Thus

t+17 42 =2(a® + b2k) + 2 = 4a® € k2
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Conversely, suppose that t+t~1+2 € k**2. Suppose that t = z+y+/k with z,y € k and t+t~1+2 = a?
with @ € k*. Note that t + ¢~ 1 + 2 = 22 + 2. Thus a? = 22 + 2. On the other hand, we have

a®=t+tt 2=ttt +1)%
Thus, we have t = (a=1(t + 1))2. It suffices to show that a=1(t + 1) € k3. We have
Nm(t+1) = (x +1)* — y*k = 2 + 22 = a?,
where we used 22 — y?k = 1. Thus Nm(a=1(t + 1)) = 1. O
Lemma A.4. We have
CY — % = egy/eoq,

1
Ci—Cl= —5(1 + €0)v/€04,

1
Ci - CZ= 5 (1 —€0)veoa,
c3-C3=0.

Proof. Note that C? = B? and thus C? — C§ = €y,/éoq follows from Lemma A.2. To compute C2,
we take an element ¢ € k* — {£1} and let ¢(r, r3, r4) = ¢, which implies

2
3 T4
— = t
(=rg)”=r (t+1) ’

see (A.1). Note that any ¢ € k* is has a cubic root in k*. Let t'/ € k* be one cubic root of t.
Then the above equation implies that

2
e t1/3)3 = T4 '
(=rs/t7?) r 1

If 7 = 1, this implies that 73 € —t'/3k>2, and for such an r3 (and a fixed t), there is a unique

2
r4 € KX/ {£1} such that (—r3/t'/3)3 =7 (T—‘*) . Thus the contribution of a single ¢ with t(1,r3,74)

t+1

> u(=ta).

kX2

to the sum C7 is

Since ¢ and ¢~! have the same contribution, we have
1
1+ _41/3
=l Y Y wee
tek* —{+1} zekx 2

Since t + 3 is a bijection from kX — {1} to itself, we get

1 1

1 _ - _ — _
Ci = 3 Z Z Y(—tz) = 5 Z Aq ().
tekX — {1} xekx 2 tekx —{£1}

Similarly, we have

11
Ci=35 > An(-t).

tekx —{£1}
Thus by Lemma A.1, we have
1
1 1_
cl-cl=1 Y (it - A
tekx —{£1}
1
=3 Z eo€e(t)\/€0q.
tekx —{£1}

Since € is a nontrivial character on £*, we have ), . €(t) = 0. Thus we have

1
Ci—Cl= —5(1 + €0)v/€0q-



A CONVERSE THEOREM FOR FINITE G» 41

We next consider C2. Let o be a generator of k1. Note that a has no cubic root in k3. By Lemma
A3 (1), we have

ky —ky?={a':0<i<q3¢i}.
Consider the subsets Sy, Sy of k3 — k%
={a":0<i<¢31i,21i},8 ={a":0<i<q31i,2i}.

Note that |S1]| = |S2| = % Fori=1,2, let

Cr = Z ¥(rs3).

rs€kX ra€k> /{x1},t(r,r3,r4)ES;

We have C2 = C3! + C32. Take t € S;, the condition ¢(r,r3,r4) = t implies that
rri

_ 3:7'
(=rs)" = 3

If t € S1, by Lemma A.3, we have t +¢t~! +2 € kk*-2. Thus for r = 1,¢ € S1, we have —r3 € Kk*2,
and for each —rs € kk*>2, there is a unique ry € k*/{Z£1} such that t(1,rs,r4) = t (for fixed ).
Thus, we get

G =2 Y wenn) = Tl A,

t€51 z€EX 2

where the 1/2 was appeared since t and ¢! have the same contribution to the above sum. Similarly,

we have
032 = Z S w(- q+1AK(_1).

t€52 r€kX 2

In particular, we have 013’1 = C32. Similarly, we have Cf”Q = C31. Thus we have C3 — C3 = 0.
Finally, to compute C? — C2, it suffices to notice that

3. 3
> Ci=> ¢
i=0 i=0
and thus
C? - Ci=—(CY - C) - (0 = Cp) = (C7 = C).

One can also compute C7 — C? directly from Lemma A.3. g

A.4. Computation of D!. In this subsection, let ¢ = 3/ and k = F,. We compute the Gauss sums
n (4.2).

Lemma A.5. We have
D? — Dg = €0+/€09,
1
Di — D} = _5(1 + €0)v/€04,

1
D% — Di = 5(1 — 60)«/60(].

Proof. Note that we have DY = BY. Thus the first identity follows from Lemma A.2. The second
identity can be computed similarly as the computation of C] — CL. Since DY + D} + D? = DY +
D} + D2 the last identity follows from the first one. O
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APPENDIX B. EMBEDDING OF Gg INTO SO7

In this appendix, based on [RS89], we give an explicit matrix realization of x, (1) for each root y of
G, which gives an explicit embedding of Gz (k) into SO7(k). Here SO7(k) = {g € GLz(k) : 'gQg = Q},

S3 1
with Q = 2 , where s3 = 1 . The explicit realization of x,(r) is given as
t83 -1
follows.
1 0 0 0 0 0 O 1 0 0 0 —r 0 O
0 1 0 -2r 0 —2 0 0 1 0 0 0 0 O
0 0 1 0 0O 0 O 0 0 1 0 0 0 —r
Xo(r) = 0 0 O 1 0 r 0, X_o(r) = |0 —r 0 1 0 0 O
-r 0 0 0 1 0 O 0 0 00 1 0 O
0 0 O 0 0 1 o0 0 -2 0 2r 0 1 0
0o 0 - 0 0 0 1 0 0 0 0 0 0 1
100 —=2r 0 0 —r? 1 00 0 00O
01 0 0 00 O 0 10 0 » 0 O
0 0 1 0 0 0 O 0o 01 0 0 r O
Xat+s(r) = ooo 1 oo0 r |, X_(atp)(T) = -~ 0 0 1 0 0 0],
0O~ 0 0 10 O 0 00 0 1 00O
0 0r 0 01 O 0 00 0 O 10
0 0 0 0 0 0 1 -2 0 0 2r 0 0 1
1 0 0 0 0O — 0 1 0 0 0 0O 0 O
01 0 0 0 0 r 0 1.0 0 0 00
0 0 1 0 0 0 O 0 01 —2r 72 0 0
Xoa48(T) = 00 —r 1 0 0 0], X_(2a48)(1) = 0 00 1 —r 00
00 2 —2r 1 0 0 0 0 0 O 1 00
0 0 O 0 0 1 0 —-r 0 0 0 0O 1 0
00 O 0 0 0 1 0O » 0 0 0 0 1
1 » 00 00 O 1000000
01 00 0O0 O 01 » 00O0O0
001 0O0OO0 O 001 0O0O0O
xg(r) = 000100 0, Xsasslr) = looo 100 0of,
00 0 01 0 O 00 0 01 » O
000001 —r 0 000O0T1O
000 0O0TO 0 1 000 0O0TO 01
1 0~ 00 0 O
01 00 0O0O
001 0O0O0TO
X3a428(r)=10 0 0 1 0 0 O],
00 0 01 0 r
00 0 0 0 1 0
000 O0O0TO 01
and

x_g(r) ="%5(r), X_3a+8) (1) = X30+8(r), X_(3a+28) (1) = "X3015(r).
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