
ON A CONVERSE THEOREM FOR G2 OVER FINITE FIELDS

BAIYING LIU AND QING ZHANG

Abstract. In this paper, we prove certain multiplicity one theorems and define twisted gamma
factors for irreducible generic cuspidal representations of split G2 over finite fields k of odd char-
acteristic. Then we prove the first converse theorem for exceptional groups, namely, GL1 and
GL2-twisted gamma factors will uniquely determine an irreducible generic cuspidal representation
of G2(k).

1. Introduction

In the theory of automorphic representations, the global converse problems aim to recover auto-
morphic forms from their Fourier coe�cients. Global converse theorems have played crucial roles in
establishing global Langlands functoriality ([CKPSS01, CKPSS04, CPSS11]) and are very important
for the Langlands Program. In the theory of representations of reductive groups over local and finite
fields, the converse problems aim to find a minimal complete set of invariants of twisted gamma
factors uniquely determining irreducible generic representations. Local converse theorems have been
used to prove the uniqueness of the generic local Langlands functoriality and the local Langlands
correspondence ([JS03, H93]). While converse problems have been extensively studied for general
linear and classical groups, they have not been studied for exceptional groups. The goal of this
paper is to prove the converse theorem for the split exceptional group of type G2 over finite fields
of odd characteristic, which seems to be the first converse theorem for exceptional groups. In the
following, we first introduce the recent progress on the study of the converse problems for general
linear and classical groups over local and finite fields.

Let F be a p-adic field. Let ⇡ be an irreducible generic representation of GLn(F ). The family of
local twisted gamma factors �(s,⇡ ⇥ ⌧, ), for ⌧ any irreducible generic representation of GLr(F ),
 an additive character of F and s 2 C, can be defined using Rankin–Selberg convolution [JPSS83]
or the Langlands–Shahidi method [S84]. The local converse problem is that which family of local
twisted gamma factors will uniquely determine ⇡? The following is the famous Jacquet’s conjecture
on the local converse problem.

Conjecture 1.1 (Jacquet’s conjecture on the local converse problem). Let ⇡1,⇡2 be irreducible
generic representations of GLn(F ). Suppose that they have the same central character. If

�(s,⇡1 ⇥ ⌧, ) = �(s,⇡2 ⇥ ⌧, ),

as functions of the complex variable s, for all irreducible generic representations ⌧ of GLr(F ) with
1  r  [n2 ], then ⇡1

⇠= ⇡2.

Conjecture 1.1 has recently been proved by Chai ([Ch19]), and by Jacquet and the first-named
author ([JL18]), independently, using di↵erent analytic methods.

One can propose a more general family of conjectures as follows (see [ALSX16]). Let ⇡1,⇡2 be
irreducible generic representations of GLn(F ). We say that ⇡1 and ⇡2 satisfy hypothesis H0 if they
have the same central character. For m 2 Z�1, we say that they satisfy hypothesis Hm if they
satisfy hypothesis H0 and satisfy

�(s,⇡1 ⇥ ⌧, ) = �(s,⇡2 ⇥ ⌧, )
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as functions of the complex variable s, for all irreducible generic representations ⌧ of GLm(F ). For
r 2 Z�0, we say that ⇡1,⇡2 satisfy hypothesis Hr if they satisfy hypothesis Hm, for 0  m  r.

Conjecture J (n , r). If ⇡1,⇡2 are irreducible generic representations of GLn(F ) which satisfy
hypothesis Hr, then ⇡1 ' ⇡2.

Conjecture 1.1 was exactly Conjecture J (n, [n2 ]). Conjecture J (2, 1) was first proved by Jacquet
and Langlands [JL70]. Conjecture J (3, 1) was first proved by Jacquet, Piatetski-Shapiro, and Shalika
[JPSS79]. For general n, Conjecture J (n, n� 1) was proved by Henniart in [H93], and by Cogdell-
Piatetski-Shapiro using a global method in [CPS94]. Conjecture J (n, n�2) (for n � 3) is a theorem
due to Chen [Ch96, Ch06], to Cogdell and Piatetski-Shapiro [CPS99], and to Hakim and O↵en
[HO15].

In [JNS15], Jiang, Nien and Stevens showed that Conjecture 1.1 is equivalent to the same con-
jecture with the adjective “generic” replaced by “unitarizable supercuspidal” as follows:

Conjecture 1.2. Let ⇡1,⇡2 be irreducible unitarizable supercuspidal representations of GLn(F ).
Suppose that they have the same central character. If

�(s,⇡1 ⇥ ⌧, ) = �(s,⇡2 ⇥ ⌧, ),

as functions of the complex variable s, for all irreducible supercuspidal representations ⌧ of GLr(F )
with 1  r  [n2 ], then ⇡1

⇠= ⇡2.

Making use of the construction of supercuspidal representations of GLn(F ) in [BK93] and prop-
erties of Whittaker functions of supercuspidal representations constructed in [PS08], Jiang, Nien
and Stevens introduced the notion of a special pair of Whittaker functions for a pair of irreducible
unitarizable supercuspidal representations ⇡1, ⇡2 of GLn(F ). They proved that if there is such a
pair, and ⇡1, ⇡2 satisfy hypothesis H[n2 ], then ⇡1 ⇠= ⇡2. They also found special pairs of Whittaker
functions in many cases, in particular the case of depth zero representations. In [ALSX16], Adrian,
the first-named author, Stevens and Xu proved part of the case left open in [JNS15]. In particular,
the results in [JNS15] and [ALSX16] together imply that Conjecture 1.2 is true for GLn, n prime.

It is easy to find pairs of generic representations showing that in Conjecture 1.1, [n2 ] is sharp for
the generic dual of GLn(F ). In [ALST18], Adrian, the first-named author, Stevens and Tam showed
that, in Conjecture 1.2, [n2 ] is sharp for the supercuspidal dual of GLn(F ), for n prime, in the tame
case. It is believed that in Conjecture 1.2, [n2 ] is sharp for the supercuspidal dual of GLn(F ), for
any n, in all cases. However, it is expected that for certain families of supercuspidal representations,
[n2 ] may not be sharp, for example, for simple supercuspidal representations (of depth 1

n
), the upper

bound may be lowered to 1 (see [BH14, Proposition 2.2] and [AL16, Remark 3.18] in general, and
[X13] in the tame case).

For general reductive groups, one can consider analogue converse problems whenever the twisted
gamma factors have been defined, for example, using either the Rankin-Selberg convolution method
or the Langlands-Shahidi method if available.

Nien in [N14] proved the finite fields analogue of Conjecture 1.1 for cuspidal representations of
GLn, using special properties of normalized Bessel functions and the twisted gamma factors defined
by Roditty ([Ro10]). Similar local converse theorems were extended to certain classical groups in
[LZ21]. Adrian and Takeda in [AT18] proved a local converse theorem for GLn over archimedean
local fields using L-functions. In [M16], Moss defined the twisted gamma factors for `-adic families
of smooth representations of GLn(F ), where F is a finite extension of Qp and ` is di↵erent from
p, and proved an analogue of Conjecture J (n, n � 1). In [LM20], joint with Moss, the first-named
author proved an analogue of Conjecture J (n, [n2 ]) for `-adic families, using the idea in [JL18]. In
[NZ21], Nien and Zhang verified a converse theorem for Gauss sum of characters of finite fields Fqn

and showed that such a character is determined by Gauss sum twisted by characters of GL1(Fq), for
n  5, or for n < q�1

2
p
q
+ 1 in the appendix by Zhiwei Yun.

For p-adic groups other than GLn, in particular classical groups, twisted gamma factors have
been defined in many cases and the local converse problems have been vastly studied: U(2, 1) and
GSp(4) (Baruch, [B95] and [B97]); SO(2n+ 1) (Jiang and Soudry, [JS03]); U2n (Morimoto [Mo18],
and the second named author [Zh17a, Zh17b, Zh18]); Sp(2n) and U2n+1(the second named author,
[Zh18], and [Zh19]).
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The ideas of converse theorems have been extended to distinction problems, namely, using special
values of twisted gamma factors to characterize representations of GLn(E) distinguished by GLn(F ),
where E/F is a quadratic extension, see Hakim and O↵en [HO15] (over p-adic fields), and Nien [N19]
(over finite fields).

In this paper, we consider the first case (split G2) of converse problems for generic representations
of exceptional groups. Let k be a finite field of odd characteristic p and let  be a fixed non-trivial
additive character of k. We define GL1 and GL2-twisted gamma factors for irreducible generic
cuspidal representations of G2(k), which are denoted using � rather than � since we do not consider
the normalization issue here, see Propositions 5.8 and 6.6, and prove the first converse theorem for
exceptional groups as follows:

Theorem 1.3 (Theorem 7.3). Let ⇧1,⇧2 be two irreducible generic cuspidal representation of G2(k).
If

�(⇧1 ⇥ �, ) = �(⇧2 ⇥ �, ),

�(⇧1 ⇥ ⌧, ) = �(⇧2 ⇥ ⌧, ),

for all characters � of k⇥ and all irreducible generic representations ⌧ of GL2(k), we have ⇧1
⇠= ⇧2.

To define GL1-twisted gamma factors, we use the finite fields analogue of Ginzburg’s local zeta
integral in [Gi93] and we prove the following multiplicity one theorem to deduce the functional
equation:

Theorem 1.4 (Theorem 2.1). Let ⇧ be an irreducible cuspidal representation of G2(k), then

dimHomJ(⇧, I(�)⌦ ! )  1,

where J is the Jacobi group contained in the maximal parabolic subgroup of G2(k) with the long root
in the Levi (see § 2.3 for definitions), � is a character of k⇥, I(�) is the induced representation of
SL2(k) from �, and ! is the Weil representation of J with central character  .

To prove the above theorem, we need to use the classification of representations of G2(k) given by
Chang and Ree ([CR74], for p > 3) and by Enomoto ([En76], for p = 3), and compute the dimension
of the Hom space for each irreducible cuspidal representation.

We remark that in [L84] Lusztig gave the classification of representations of connective reductive
groups using the virtual character theory of Deligne-Lusztig [DL76]. For convenience, in this paper
we follow the classification of Chang-Ree and Enomoto.

To define GL2-twisted gamma factors, we embed G2 into SO7 and use the finite fields analogue
of the local zeta integral developed by Piatetski-Shapiro, Rallis and Schi↵mann ([PSRS92]). The
functional equation in this case follows from the following multiplicity one result

Proposition 1.5 (Proposition 6.4). Let ⇧ be an irreducible generic cuspidal representation of G2(k)
and let ⌧ be an irreducible generic representation of GL2(k). Then we have

dimHomG2(k)(I(⌧)|G2(k),⇧) = 1,

where I(⌧) = IndSO7(k)
eP

(⌧ ⌦ 1SO3), eP is a parabolic subgroup of SO7(k) with the Levi subgroup

isomorphic to GL2(k)⇥ SO3(k) (see §6 for definitions).

The existence of gamma factors for G2(k) ⇥ GL2(k) follows from the above proposition and is
given in Proposition 6.6.

Over p-adic fields F , given an irreducible generic cuspidal representation ⇡ of G2(F ) and an
irreducible generic representation ⌧ of GLi(F ), i = 1, 2, assuming the gamma factor �(s,⇡ ⇥ ⌧, )
has been defined, it is expected that if the gamma factor �(s,⇡ ⇥ ⌧, ) has a pole at s = 1, then ⌧
should occur in the conjectural local Langlands parameter of ⇡. Similar results are also expected
for general reductive groups, and have been proved for classical groups (see for example [JS12] and
references given there). However, over finite fields k, the analogue meaning of gamma factors is not
clear, noting that the gamma factors over finite fields are just complex numbers.

For the convenience of readers, we summarize the proof of Theorem 1.3 briefly as follows. Let Bi :=
B⇧i

2 W(⇧i, ) be the Bessel function of ⇧i for i = 1, 2, namely, the Whittaker function associated
with a Whittaker vector, normalized by Bi(1) = 1 (see §5.1 and Lemma 5.2 for the basic properties of
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Bi). We will prove that B1(g) = B2(g) for all g 2 G2(k) under the assumption of Theorem 1.3. Since
G2(k) =

`
w2W(G2)

BwB, where B is a fixed Borel subgroup of G2, it su�ces to show that B1 agrees
with B2 on various cells BwB. Let B(G2) = {w 2 W(G2) : 8� 2 �, w� > 0 =) w� 2 �}, where
� = {↵,�} is the set of simple roots of G2 with ↵ being the short root and � being the long root.
Let s↵ (resp. s�) be the simple reflection defined by ↵ (resp. �). Then B(G2) = {1, w1, w2, w`},
where w` is the longest Weyl element, w1 = w`s↵ and w2 = w`s� . By Lemma 7.1, if w /2 B(G2), we
have B1(g) = B2(g) = 0 for g 2 BwB. If w = 1, we also have B1(g) = B2(g), 8g 2 B by Lemma 5.2.
Thus it su�ces to show that B1(g) = B2(g), 8g 2 BwB with w = w1, w2, w`. It turns out that the
equality of GL1-twisted gamma factors implies that B1(g) = B2(g), 8g 2 Bw1B, and the equality of
GL2-twisted gamma factors implies that B1(g) = B2(g), 8g 2 BwB with w = w2, w`. This completes
the proof of Theorem 1.3.

Theorem 1.3 inspires us to consider the local converse problem for G2(F ) when F is a p-adic
field. In this case, our proof in §6 is actually valid for an analogue of Proposition 1.5 without the
restriction that ⇧ is cuspidal, which gives us the local functional equation of the local zeta integral
of Piatetski-Shapiro-Rallis-Schi↵mann ([PSRS92]) and hence the existence of the GL2-twisted local
gamma factors. However, the existence of the GL1-twisted local gamma factors relies on the following

Conjecture 1.6. Let F be a p-adic field and ⇧ be an irreducible generic representation of G2(F ).
Let  be a nontrivial additive character of F . Let eI(�, ) be the genuine induced representation on

the double cover fSL2(F ) for a character � of F⇥. Then if eI(�, ) is irreducible, we have

dimJ(⇧, eI(�, )⌦ ! )  1.

Note that both eI(�, ) and ! are genuine representations on a double cover of J and the thus

the tensor product eI(�, ) is a representation on J .
In the above conjecture, we keep the requirement minimal so that it is enough to deduce the

local functional equation of Ginzburg’s local zeta integral ([Gi93]). We do expect that the following
generalized conjecture is true

Conjecture 1.7. Let F be a p-adic field and ⇧ be an irreducible (selfdual) representation of G2(F ).
Let  be a nontrivial additive character of F . Let e⇡ be an irreducible genuine representation on the
double cover fSL2(F ). Then we have

dimJ(⇧, e⇡ ⌦ ! )  1.

As explained in [LZ19, §6], Conjecture 1.7 is an analogue of the uniqueness problem of Fourier-
Jacobi models for Sp2n, which was proved in [BR00] (for n = 2) and in [GGP12, Su12](for general
n). Once Conjecture 1.6 is established, we then have the local gamma factors for irreducible generic
representations of G2(F ) ⇥ GL1(F ) using Ginzburg’s local zeta integral. Inspired by Theorem 1.3,
we propose the following conjecture on the local converse problem for G2(F ).

Conjecture 1.8. Let F be a p-adic field. Suppose that Conjecture 1.6 is true. Let ⇧1,⇧2 be two
irreducible generic representations of G2(F ). If

�(s,⇧1 ⇥ �, ) = �(s,⇧2 ⇥ �, ),

�(s,⇧1 ⇥ ⌧, ) = �(s,⇧2 ⇥ ⌧, ),

for all characters � of GL1(F ) and all irreducible generic representations ⌧ of GL2(F ), then ⇧1
⇠= ⇧2.

Conjectures 1.6–1.8 are current work in progress of the authors.
Again, by Langlands philosophy of functoriality, representations of G2(F ) are expected to be lifted

to representations of GL7(F ) and this lifting is expected to preserve GL-twisted local gamma factors.
Then the Jacquet’s local converse conjecture for GLn, which was recently proved in [Ch19, JL18],
implies that two irreducible generic representations ⇧i, i = 1, 2 of G2(F ) would be isomorphic if the
twisted local gamma factors �(s,⇧1 ⇥ ⌧, ), �(s,⇧2 ⇥ ⌧, ), are the same for all irreducible generic
representations ⌧ of GLn(F ) for all n = 1, 2, 3 (once they are all defined). Theorem 1.3 says that
we only need GL1 and GL2-twisted gamma factors over finite fields, and we expect the same is true
over p-adic fields as in Conjecture 1.8.
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The paper is organized as follows. In §2, we introduce the group G2, the Fourier-Jacobi group
J , the Weil representations ! , and the Multiplicity One Theorem 1.4. Theorem 1.4 is proved in
§3 (for p > 3) and §4 (for p = 3). We define GL1 and GL2-twisted gamma factors for irreducible
generic cuspidal representations in §5 and §6, respectively. Finally, Theorem 1.3 is proved in §7.
In Appendix A, we compute certain Gauss sums which are used in the proof of Theorem 1.4. In
Appendix B, we describe the embedding of G2 into SO7 used in this paper.
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2. The Fourier-Jacobi group and a multiplicity one theorem

2.1. Some notations and conventions. Throughout this paper, unless specified otherwise, we
fix the following notations. Let p be an odd prime and q is a power of p. Let k = Fq, the finite

field with q elements. Let ✏(x) =
⇣

x

q

⌘
, where

� ·
·
�
denotes the Legendre symbol. Let ✏0 = ✏(�1).

Then we have ✏0 = 1 if q ⌘ 1 mod 4, and ✏0 = �1 if q ⌘ 3 mod 4. Let k⇥,2 =
�
x2 : x 2 k⇥

 
,

and k⇥,3 =
�
x3 : x 2 k⇥

 
. Let k2 be the unique quadratic extension of k, i.e., k2 = Fq2 . We fix a

generator  of the multiplicative group k⇥. Then we have  2 k⇥�k⇥,2. Let  be a fixed non-trivial
additive character of k. Then there exists a 4-th root of unity ✏ such that for any a 2 k⇥, we have

(2.1)
X

x2k

 (ax2) = ✏ ✏(a)
p
q.

Moreover, we have ✏2
 
= ✏0. See [Bu97, Ex.4.1.14] for example. By abuse of notation, we write ✏ 

as
p
✏0.

We usually don’t distinguish a representation and its space. Thus for a representation ⇡ of a
group G, a vector v 2 ⇡ means that a vector v in the space of ⇡.

2.2. Weil representations of SL2(k). Let W = k2, endowed with the symplectic structure h , i
defined by

(2.2) h(x1, y1), (x2, y2)i = �2x1y2 + 2x2y1.

Let H be the Heisenberg group associated with the symplectic space W . Explicitly, H = W � k
with addition

[x1, y1, z1] + [x2, y2, z2] = [x1 + x2, y1 + y2, z1 + z2 � x1y2 + x2y1].

Let SL2(k) act on H such that it acts on W from the right and act on the third component k in
H trivially. Then we can form the semi-direct product SL2(k) n H . The product in SL2(k) n H

is given by

(g1, v1)(g2, v2) = (g1g2, v1.g2 + v2).

Here v1.g2 is the action of g2 on v1 from the right and v1 is viewed as a row vector. By [Ge77], there
is a Weil representation ! of on S(k), the space of C-valued functions on k. The Weil representation
! is determined by several formula, which can be found in [GH17]. Note that the symplectic form
in [GH17] is a little bit di↵erent from ours. Thus the formulas in [GH17] should be adapted to our
slightly di↵erent symplectic structure on W . One can consult [Ku96] for the dependence on the
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symplectic structure. The Weil representation in our case is determined by the following formulas:

! ([x, 0, z])�(⇠) =  (z)�(⇠ + x),

! ([0, y, 0])�(⇠) =  (�2⇠y)�(⇠),

! (diag(a, a
�1))�(⇠) = ✏(a)�(a⇠),

! 

✓✓
1 b

1

◆◆
�(⇠) =  (�b⇠2)�(⇠),

! 

✓✓
b

�b�1

◆◆
�(⇠) =

1

�(b, )

X

x2k

�(x) (�2xb⇠),

(2.3)

for � 2 S(k), x, y, z, ⇠, b 2 k, a 2 k⇥. Here �(b, ) =
P

x2k
 (�bx2), which can be computed using

(2.1).

2.3. The group G2 and its Fourier-Jacobi subgroup. In this subsection, we give a very brief
review of some definitions and notations related to the group G2(k). More details can be found in
[LZ19, §5].

Let G2 be the split exceptional algebraic group of type G2 over the field k. The group G2 has
two simple roots ↵,�, where ↵ is the short root and � is the long root, and has 6 positive roots
↵,�,↵ + �, 2↵ + �, 3↵ + �, 3↵ + 2�. Let s↵, s� be the reflections determined by ↵,� respectively.
One has s↵(�) = 3↵ + �, s�(↵) = ↵ + �. We use the standard notations of Chevalley groups
[St67]. For a root �, let U� ⇢ G2(k) be the corresponding root space and let x� : k ! G2(k) be
a fixed isomorphism which satisfies various Chevalley relations, see [St67, Chapter 3]. The explicit
commutator relations can be found in [Ch68, p.192]. A matrix realization of x�(r), r 2 k, is given in
Appendix B. The calculations in this paper could be performed using this explicit matrix realization.

For a root �, let w�(t) = x�(t)x��(�t�1)x�(t), w� = w�(1), and h�(t) = w�(t)w�1
�

. Note that
w� is a representative of the Weyl group element s� . Let h(t1, t2) = h↵(t1t2)h�(t21t2). One can check
that h(t1, t2) agrees with the notation h(t1, t2, t

�1
1 t�1

2 ) in [Ch68, CR74] and the notation h(t1, t2) in
[Gi93]. Let T = {h(t1, t2) : t1, t2 2 k⇥} be the maximal torus of G2(k) and let U be the subgroup
generated by U� , � positive. Then B = TU is a Borel subgroup of G2(k). It is known that G2 has
trivial center.

Let P 0 = M 0V 0 be the parabolic subgroup with Levi M 0 and unipotent V 0 such that U↵ ⇢ M 0.
Then M 0 ⇠= GL2(k) and V 0 is the group generated by U� , U↵+� , U2↵+� , U3↵+� , U3↵+2� .

Let P = MV be the parabolic subgroup with Levi M and unipotent V such that U� ⇢ M . Note
that V is generated by U↵, U↵+� , U2↵+� , U3↵+� , U3↵+2� . Let Z ⇢ V be the subgroup generated by
U2↵+� , U3↵+� , U3↵+2� . We still have M ⇠= GL2(k) and the isomorphism can be realized by

x�(x) 7!

✓
1 x

1

◆
,

h(a, b) 7!

✓
a

b

◆
.

Let J ⇢ P be the subgroup SL2(k) n V , where SL2(k) is viewed as a subgroup of M via SL2(k) ⇢
GL2(k) ⇠= M . A typical element in V is of the form

(r1, r2, r3, r4, r5) := x↵(r1)x↵+�(r2)x2↵+�(r3)x3↵+�(r4)x3↵+2�(r5).

There is a group homomorphism

pr : J = SL2(k)n V ! SL2(k)n H

given by

(g, (r1, r2, r3, r4, r5)) 7! (d1gd1, (r1, r2, r3 � r1r2)),

where d1 = diag(�1, 1), see [LZ19, §5] for more details. Thus the Weil representation ! can be
viewed as a representation of J via the above group homomorphism. By (2.3) and the description
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of the above group homomorphism, we have the following formulas

! ((r1, 0, r3, r4, r5))�(⇠) =  (r3)�(⇠ + r1),

! ((0, r2, 0, 0, 0))�(⇠) =  (�2⇠r2)�(⇠),

! (h(a, a
�1))�(⇠) = ✏(a)�(a⇠),

! (x�(b))�(⇠) =  (b⇠2)�(⇠),

! 

✓✓
b

�b�1

◆◆
�(⇠) =

1

�(b, )

X

x2k

�(x) (�2xb⇠).

(2.4)

Let � be a character of k⇥ and we view � as a character of the upper triangular subgroup
BSL2 = ASL2NSL2 of SL2(k) by

�

✓✓
a b

a�1

◆◆
= �(a).

Here ASL2 is the diagonal torus of SL2 and NSL2 is the upper triangular unipotent subgroup of SL2.

Consider the induced representation I(�) := IndSL2(k)
BSL2

(�). We view I(�) as a representation of J

via the natural quotient map J ! SL2(k). The first main result of this paper is the following

Theorem 2.1. Let ⇧ be an irreducible cuspidal representation of G2(k), then

dimHomJ(⇧, I(�)⌦ ! )  1.

Remark 2.2. By Frobenius reciprocity, the above theorem can be restated as

dimHomG2(k)(⇧, Ind
G2(k)
J

(I(�)⌦ ! ))  1

for all irreducible cuspidal representations ⇧ of G2(k). The representation IndG2(k)
J

(I(�)⌦ ! ) is a
special case of Generalized Gelfand-Graev representation considered by Kawanaka, see [K85, K86,
K87]. There are many results on the computation of multiplicities of irreducible representations ⇢ in
the Alvis-Curtis dual of certain Generalised Gelfand-Graev representations which are associated to
the unipotent support of ⇢, for example see [L92, Gec99, GeH08, T13]. In particular, in [L92], Lusztig
gave a bound on such multiplicities under the assumption that p, q large. However, in this paper, we
are mainly interested in the multiplicities of irreducible generic cuspidal representations of G2(k) in
the Generalized Gelfand-Graev representations which is associated to the next-to-minimal unipotent
orbit eA1 of G2(k) (see [Ca85, p.401]). Note that the unipotent support of generic representations is
the regular unipotent orbit, which does not contain eA1.

Remark 2.3. (1). Our proof of Theorem 2.1 is by brute force and our main tool is the character
table of G2(k). Note that the characters of a finite reductive group are given in [L84] after the
seminal work [DL76]. But prior to that, the detailed character table of G2(k) was given by Chang-
Ree [CR74] (when p > 3) and Enomoto [En76] (when p = 3). We will prove Theorem 2.1 for p > 3
and p = 3 separately in the next two sections.

(2). Note that, in the above theorem, we don’t require that I(�) is irreducible. One should
compare Theorem 2.1 with [LZ19, Remark 7.2], where we have shown that the dimension of the
Hom space may be bigger than 1 for general irreducible representations of G2(k) even when I(�) is
irreducible, however, here we show that if we consider irreducible cuspidal representations of G2(k),
then the dimension of the Hom space is indeed less than or equal to 1.

Corollary 2.4. Let ⇧ be an irreducible cuspidal representation of G2(k) and ⇡ be an irreducible
representation of SL2(k), then we have

dimHomJ(⇧,⇡ ⌦ ! )  1.

Proof. If ⇡ is an irreducible representation of SL2(k) which is not of the form I(�), the assertion
follows from the main theorem of [LZ19]. If ⇡ is of the form I(�), the assertion follows from Theorem
2.1. ⇤
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3. Proof of Theorem 2.1 when p > 3

In this section, we prove Theorem 2.1 when p > 3. The character table of G2(k) when p > 3 is
given in [CR74].

3.1. Character table of I(�)⌦! . As a preparation for the proof of Theorem 2.1, in this subsec-
tion, we give the character table of the representation I(�)⌦ ! of J . Given a representation ⇡ of
a finite group, denote by Ch⇡ the character of ⇡. It is well-known that

(3.1) ChI(�)⌦! (g) = ChI(�)(g)Ch! (g).

We first record the conjugacy classes of SL2(k):

Representative Number of elements in class Number of classes✓
1

1

◆
1 1

✓
�1

�1

◆
1 1

✓
1 1

1

◆
(q2 � 1)/2 1

✓
1 

1

◆
(q2 � 1)/2 1

✓
�1 1

�1

◆
(q2 � 1)/2 1

✓
�1 

�1

◆
(q2 � 1)/2 1

✓
x

x�1

◆
, x 6= ±1 q(q + 1) (q � 3)/2

✓
x y
y x

◆
, x 6= ±1, y 6= 0 q(q � 1) (q � 1)/2

The above table could be found in [FH91], for example. As a representation of SL2(k), the character
tables of I(�) and ! are given in [LZ19]. In particular, we know that

ChI(�)

✓✓
x y
y x

◆◆
= 0.

Thus by (3.1), it su�ces to consider elements of the form gv with v 2 V , and g 2 SL2(k) not of the

form

✓
x y
y x

◆
. Recall that Z is the group generated by U2↵+� , U3↵+� , U3↵+2� .

Proposition 3.1 ([Ge77, Theorem 4.4, (b)]). If the function ChI(�)⌦! is nonzero on j 2 J , then
j is conjugate to an element in SL2(k)n Z.

By the above proposition, we need to consider elements in J which are J-conjugate to elements
of the form g(0, 0, r3, r4, r5), g 2 SL2(k). For a group H and h1, h2 2 H, we write h1 ⇠H h2 if
h1 = h0h2h

�1
0 for some h0 2 H.

Lemma 3.2. The following is a set of representatives of j 2 J such that j is conjugate to an element

of the form g(0, 0, r3, r4, r5) with g 2 SL2(k) and not of the form

✓
x y
y x

◆
, y 6= 0 :

(1) 1; (0, 0, 0, 0, 1); (0, 0, r3, 0, 0), r3 2 k⇥;
(2) x�(b)(0, 0, r3, 0, 0);x�(b)(0, 0, r3, r4, 0), b 2 {1,} , r3 2 k, r4 2 k⇥/ {±1} ;
(3) h(�1,�1)x�(b)(0, 0, r3, 0, 0), r3 2 k, b 2 {1,} ;
(4) h(x, x�1)(0, 0, r3, 0, 0), x 6= ±1, r3 2 k.

Proof. First we notice that if g ⇠SL2(k) g0, then g(0, 0, r3, r4, r5) ⇠J g0(0, 0, r03, r
0
4, r

0
5) for some

r03, r
0
4, r

0
5 2 k. Thus we only need to consider the case when g runs over a set of representatives of

SL2(k)-conjugacy classes.
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Table 3.1. Conjugacy classes of J which are J-conjugate to elements of the form
g(0, 0, r3, r4, r5). Here ⇤ in the last row means the details of the corresponding
entries are omitted since they are not used.

Representative t CJ(t) |J(t)| No. ChI(�)⌦! ✓
1

1

◆
J 1 1 q(q + 1)

✓
1

1

◆
(0, 0, 0, 0, 1) NSL2 n V q2 � 1 1 q(q + 1)

(0, 0, r3, 0, 0), r3 6= 0 SL2 n Z q2 q � 1 q(q + 1) (r3)0

@1 1
1

1

A(0,0,r3,0,0),

r32k

µ2hU� , U↵+� , U2↵+� , U3↵+2�i
q
2�1
2 q2 q

p
✏0q (r3)

0

@1 
1

1

A(0,0,r3,0,0),

r32k

µ2hU� , U↵+� , U2↵+� , U3↵+2�i
q
2�1
2 q2 q �

p
✏0q (r3)

0

@1 1
1

1

A(0,0,r3,r4,0),

r32k,r42k⇥/h±1i
hU� , U↵+� , U2↵+� , U3↵+2�i (q2 � 1)q2 q(q�1)

2

p
✏0q (r3)

0

@1 
1

1

A(0,0,r3,r4,0),

r32k,r42k⇥/h±1i
hU� , U↵+� , U2↵+� , U3↵+2�i (q2 � 1)q2 q(q�1)

2 �
p
✏0q (r3)

h(�1,�1)(0,0,r3,0,0),
r32k

SL2 n U2↵+� q4 q (q + 1)�(�1)✏0 (r3)

h(�1,�1)x�(1)x2↵+�(r3) µ2 n U� ⇥ U2↵+�
q
2�1
2 q4 q ✏0�(�1) (r3)

h(�1,�1)x�()x2↵+�(r3) µ2 n U� ⇥ U2↵+�
q
2�1
2 q4 q ✏0�(�1) (r3)

h(x,x�1)(0,0,r3,0,0),
x 6=±1 ASL2 n U2↵+� q5(q + 1) q(q�3)

2 ✏(�(x) + �(x�1)) (r3)0

@ x y
y x

1

A(0,0,r3,r4,r5),

x 6=±1
⇤ ⇤ ⇤ 0

We first consider the case when g = 1. If r3 6= 0, we have

(3.2) (�r4/(3r3),�r5/(3r3), 0, 0, 0)(0, 0, r3, r4, r5)(�r4/(3r3),�r5/(3r3), 0, 0, 0)
�1 = (0, 0, r3, 0, 0).

Thus for any r4, r5 2 k, we have (0, 0, r3, r4, r5) ⇠J (0, 0, r3, 0, 0). If r3 = 0, r4 6= 0, then
(0, 0, 0, r4, r5) ⇠J (0, 0, 0, 0, r5). In fact, we have

w�x�(�r5/r4)(0, 0, 0, r4, r5)(w�x�(�r5/r4))
�1 = (0, 0, 0, 0, r5).

Moreover, if r5 6= 0, then (0, 0, 0, 0, r5) ⇠J (0, 0, 0, 0, 1) by considering the action of h(x, x�1).
Next, we consider the case when g = h(x, x�1), x 6= 1. We have

h(x, 1/x)(0, 0, r3, 0, 0)

=(0, 0, 0,�r4/(x� 1), r5x/(x� 1))h(x, x�1)(0, 0, r3, r4, r5)(0, 0, 0,�r4/(x� 1), r5x/(x� 1))�1.

Thus for any r3, r4, r5, we have h(x, x�1)(0, 0, r3, r4, r5) ⇠J h(x, x�1)(0, 0, r3, 0, 0).
Next, we consider the case when g = x�(b), b = 1 or . If r5 6= 0, one can check that

g(0, 0, r3, r4, r5) ⇠J g(0, 0, r3, r4, 0). In fact, we have

g(0, 0, r3, r4, 0) = x3↵+�(t)g(0, 0, r3, r4, r5)x3↵+�(�t),

with t = r5/b. Finally, we consider the action of h(a, a�1) on g(0, 0, r3, r4, 0). To preserve r3, a
should be ±1. On the other hand, we have h(�1,�1)g(0, 0, r3, r4, 0)h(�1,�1) = g(0, 0, r3,�r4, 0).

Finally, if g = h(x, x�1)x�(b), x = �1, then one can check that

(0, 0, 0, s, t).g(0, 0, r3, r4, r5).(0, 0, 0, s, t)
�1 = g.(0, 0, r3, 0, 0),

with s = r4/(1� x), t = �r5x/(1� x) + br4x2/(1� x)2. This completes the proof of the lemma. ⇤
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Table 3.2. Character table of Xi(⇡i). The missing part in rows 5-8 (i.e., those ⇤s)
depends on q and the details are given in Table 3.3 and Table 3.4.

Representative t X2(⇡2) X3(⇡3) X6(⇡6) ChI(�)⌦! ✓
1

1

◆
(q2�1)(q6�1)

(q+1)2
(q2�1)(q6�1)

q2+q+1
(q2�1)(q6�1)

q2�q+1 q(q + 1)
✓
1

1

◆
(0, 0, 0, 0, 1) �(q � 1)(q2 � q + 1) (q � 1)(q2 � 1) �(q + 1)(q2 � 1) q(q + 1)

(0, 0, r3, 0, 0), r3 6= 0 (q � 1)(2q � 1) �(q2 � 1) �(q2 � 1) q(q + 1) (r3)
x�(1)x2↵+�(r3),

r32k
⇤ ⇤ ⇤

p
✏0q (r3)

x�()x2↵+�(r3),
r32k

⇤ ⇤ ⇤ �
p
✏0q (r3)0

@1 1
1

1

A(0,0,r3,r4,0),

r32k,r42k⇥/h±1i
⇤ ⇤ ⇤

p
✏0q (r3)

0

@1 
1

1

A(0,0,r3,r4,0),

r32k,r42k⇥/h±1i
⇤ ⇤ ⇤ �

p
✏0q (r3)

h(�1,�1) (q � 1)2✏(⇡2) 0 0 (q + 1)�(�1)✏0
h(�1,�1)(0,0,r3,0,0),

r32k⇥ �(q � 1)✏(⇡2) 0 0 (q + 1)�(�1)✏0 (r3)

h(�1,�1)x�(1) �(q � 1)✏(⇡2) 0 0 ✏0�(�1)
h(�1,�1)x�(1)x2↵+�(r3),

r32k⇥ ✏(⇡2) 0 0 ✏0�(�1) (r3)

h(�1,�1)x�() �(q � 1)✏(⇡2) 0 0 ✏0�(�1)
h(�1,�1)x�()x2↵+�(r3),

r32k⇥ ✏(⇡2) 0 0 ✏0�(�1) (r3)
h(x,x�1)(0,0,r3,0,0),

x 6=±1 0 0 0 ✏(�(x) + �(x�1)) (r3)0

@ x y
y x

1

A(0,0,r3,r4,r5),

x 6=±1
⇤ ⇤ ⇤ 0

Table 3.1 gives the conjugacy classes of J . In Table 3.1, for an element t 2 J , the set CJ(t) is
the centralizer of t in J and J(t) is the set of J-congugacy classes of t. The centralizer CJ(t) is
essentially computed in [Ch68]. We have |J(t)| = |J |/|CJ(t)|. Note that |J | = q6(q2 � 1). The
column “No.” means the number of classes of a given form. Note that the last column is given by
(3.1) using the character tables of I(�) and ! , which can be found in [LZ19, §2].

3.2. Proof of Theorem 2.1 when p > 3. Following [CR74], let Hi, i = 2, 3, 6 be the 3 anisotropic
torus of G2(k) such that H2

⇠= Zq+1 ⇥ Zq+1, H3
⇠= Zq2+q+1 and H6

⇠= Zq2�q+1. For i = 2, 3, 6, in
[CR74], Chang-Ree associated a class function Xi(⇡i) of G2(k) for each character ⇡i of Hi.

Proposition 3.3. Let ⇧ be a representation of G2(k) of the form Xi(⇡i) with i = 2, 3, or 6, and �
be a character of k⇥. Then we have

h⇧|J , I(�)⌦ ! i = 1.

Remark 3.4. Here we do not require that ⇧ or I(�) is irreducible. Note that

dimHomJ(⇧, I(�)⌦ ! ) = h⇧|J , I(�)⌦ ! i.

Thus the above proposition shows that dimHomJ(⇧, I(�)⌦ ! )  1.

Proof of Proposition 3.3 relies on a brute force computation. We first give the character table of
Xi(⇡i) when restricted to J , Table 3.2, which follows from results in [CR74]. Here ✏(⇡2) is a number
depending on the character ⇡2.

The missing part in rows 5-8 of Table 3.2 depends on q ⌘ 1 mod 3 or q ⌘ �1 mod 3, which will be
described separately below. Note that if q ⌘ 1 mod 3, then  is a non-cube in Fq since it is assumed
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to be a generator of F⇥
q
. If q ⌘ �1, we fix an element ⇣ 2 Fq such that x3

� 3x � ⇣ is irreducible
over Fq.

Let u be a unipotent element in rows 5-8 in Table 3.2. The value of the characters Xi(⇡i) depends
on |CG2(k)(u)|, the size of the centralizer of u in G2(k). The detailed information of |CG2(k)(u)| is
given in [Ch68], which we will give a brief review below.

We first consider the case when q ⌘ 1 mod 3. If rr3 2 k⇥,2, then x�(r)x2↵+�(r3) ⇠G2(k)

x�(1)x2↵+�(1), whose centralizer in G2(k) has size 6q4, see [Ch68, p.202]. If rr3 2 k⇥,2, then
x�(r)x2↵+�(r3) ⇠G2(k) x�()x2↵+�(1), whose centralizer has size 2q4, see [Ch68, p.202]. Then, if
r/r4 2 k⇥,3, one has that x�(r)x3↵+�(r4) ⇠G2(k) x�(1)x3↵+�(1) ⇠G2(k) x�(1)x2↵+�(1) (see [Ch68,
p.197]), whose centralizer has size 6q4. If r/r4 /2 k⇥,3, then x�(r)x3↵+�(r4) ⇠G2(k) x�(1)x3↵+�(),
whose centralizer in G2(k) has size 3q4, see [Ch68, p.202]. Finally, we consider the conjugacy class
x�(r)x2↵+�(r3)x3↵+�(r4), rr3r4 6= 0. We first have

x�(r)(0, 0, r3, r4, r5)

=h(�r23/r4, r4/r3)w
�1
↵

x↵(�1)x�(1)(0, 0,�1, z, 0)(h(�r23/r4, r4/r3)w
�1
↵

x↵(�1))�1

for some appropriate r5, where z = �2� rr
2
4

r
3
3
. Thus we have

x�(r)x2↵+�(r3)x3↵+�(r4) ⇠G2(k) x�(r)(0, 0, r3, r4, r5) ⇠G2(k) x�(1)(0, 0,�1,�2� rr24/r
3
3, 0).

For r, r3, r4 2 k⇥, we define t = t(r, r3, r4) 2 k2 = Fq2 as a solution of

(3.3) t+ t�1 = �2� rr24/r
3
3.

Note that t 6= �1 since rr3r4 6= 0. If t(r, r3, r4) = 1, then according the calculation in [Ch68,
p.196-197], one can check that 1

x�(r)x2↵+�(r3)x3↵+�(r4) ⇠G2(k) x↵+�(1) ⇠G2(k) x2↵+�(1),

whose centralizer has order q4(q2 � 1). If t 2 k = Fq, t 6= ±1, then by [Ch68, p.197-198], we have

x�(r)x2↵+�(r3)x3↵+�(r4) ⇠G2(k) x�(1)x3↵+�(t
�1),

whose centralizer has size 6q4 if t 2 k⇥,3, and 3q4 if t 2 k⇥ � k⇥,3. If t 2 Fq2 � Fq, then
x�(r)x2↵+�(r3)x3↵+�(r4) ⇠G2(k) x�(1)x2↵+�() (see [Ch68, p.198]), whose centralizer has size 2q4.
From [CR74], rows 5-8 of Table 3.2 when q ⌘ 1 mod 3 are given in Table 3.3.

Using Table 3.1, Table 3.2 and Table 3.3, we can compute the pair h⇧|J , I(�)⌦ ! i. Recall that

|J |h⇧|J , I(�)⌦ ! i =
X

g2J

Ch⇧(g)ChI(�)⌦! (g)

=
X

t

|J(t)|Ch⇧(t)ChI(�)⌦! (t),(3.4)

where in (3.4), t runs over a complete set of representatives of conjugacy classes of J and |J(t)| is
the number of elements in the conjugacy class J(t).

Lemma 3.5. Let ⇧ be one of Xi(⇡i) for i = 2, 3, 6. Then we have

(1) The contribution of conjugacy classes of the form h(�1,�1)u, where u is an unipotent
element, to (3.4) is zero.

(2) The contribution of conjugacy classes of the form x�(r), r 2 k⇥, to (3.4) is zero.

1This relation is not explicitly given in [CR74]. Due to its importance for our calculation, we give some de-

tails in this footnote. Let '↵ : SL2(k) ! G2(k) be the embedding such that '↵

✓✓
1 x

1

◆◆
= x↵(x) and

'↵(diag(a, a�1)) = h↵(a, a�1). For g, h 2 G2(k), denote the conjugation g
�1

hg by h.g. The conjugation of '↵(g) for
g 2 SL2(k) on x�(r0)(0, r2, r3, r4, 0) is given in [Ch68, p.196, (3.5)]. From that description, one can check the following

relations x�(1)(0, 0,�1, 2, 0).'↵

✓
1 1/2
�1 1/2

◆
= (0, 0, 1, 1/2, 0), (0, 0, 1, 1/2, 0).'↵

✓
1

�1

◆
= x�(1/2)(0, 1, 0, 0, 0),

and x�(1/2)(0, 1, 0, 0, 0).'↵

✓
1 0

�1/6 1

◆
= x↵+�(1). This shows that x�(1)(0, 0,�1, 2, 0) ⇠G2(k) x↵+�(1).



12 BAIYING LIU AND QING ZHANG

Table 3.3. Missing part in rows 5-8 of Table 3.2 when q ⌘ 1 mod 3

u |CG2(k)(u)| X2(⇡2) X3(⇡3) X6(⇡6)
x�(r), r 6= 0 ⇤ �(q � 1)(q2 � q + 1) (q � 1)(q2 � 1) �(q + 1)(q2 � 1)
x�(1)x2↵+�(r3),

r32k⇥,2 6q4 �4q + 1 q + 1 �q + 1
x�(1)x2↵+�(r3),

r32k⇥,2 2q4 �2q + 1 �q + 1 q + 1
x�()x2↵+�(r3),

r32k⇥,2 2q4 �2q + 1 �q + 1 q + 1
x�()x2↵+�(r3),

r32k⇥,2 6q4 �4q + 1 q + 1 �q + 1
x�(1)x3↵+�(r4)

r42k⇥,3 6q4 �4q + 1 q + 1 �q + 1
x�(1)x3↵+�(r4)

r4 /2k⇥,3 3q4 �q + 1 �2q + 1 2q + 1
x�()x3↵+�(r4)

r42k⇥,3 6q4 �4q + 1 q + 1 �q + 1
x�()x3↵+�(r4)

r4 /2k⇥,3 3q4 �q + 1 �2q + 1 2q + 1
x�(r)(0,0,r3,r4,0),

t(r,r3,r4)=±1
q4(q2 � 1) (q � 1)(2q � 1) �q2 + 1 �q2 + 1

x�(r)(0,0,r3,r4,0),
t(r,r3,r4)2k⇥,3�{±1} 6q4 �4q + 1 q + 1 �q + 1
x�(r)(0,0,r3,r4,0),
t(r,r3,r4)2k⇥�k⇥,3 3q4 �q + 1 �2q + 1 2q + 1
x�(r)(0,0,r3,r4,0),

t(r,r3,r4)/2k
2q4 �2q + 1 �q + 1 q + 1

(3) The contribution of conjugacy classes of the form x�(1)x3↵+�(r4), r4 2 k⇥,3, and the contri-
bution of x�()x3↵+�(r4), r4 2 k⇥,3, to (3.4) are cancelled out. Similarly, the contribution
of x�(1)x3↵+�(r4) , r4 2 k⇥�k⇥,3, and the contribution of x�()x3↵+�(r4), r4 2 k⇥�k⇥,3,
to (3.4) are cancelled out.

Proof. We only give some details for the proof of (1) when ⇧ = X2(⇡2), and the proofs of the
other cases are similar or just follow from a simple observation. By Table 3.1 and Table 3.2, the
contribution of conjugacy classes of the form h(�1,�1)u to (3.4) is

q4(q + 1)�(�1)✏0(q � 1)2✏(⇡2)

� q4(q + 1)�(�1)✏0

0

@
X

r32k⇥

 (r3)

1

A (q � 1)✏(⇡2)

+
q2 � 1

2
q4✏0�(�1)(�(q � 1))✏(⇡2) · 2

+
q2 � 1

2
q4✏0�(�1)✏(⇡2)

0

@
X

r32k⇥

 (r3)

1

A .

A simple calculation shows that the above summation is zero. ⇤

The following lemma is Proposition 3.3 when q ⌘ 1 mod 3.

Lemma 3.6. Let ⇧ be one of Xi(⇡i) for i = 2, 3, 6. If q ⌘ 1 mod 3, then

h⇧|J , I(�)⌦ ! i = 1.
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Proof. We compute (3.4) for ⇧ = X2(⇡2), X3(⇡3), X6(⇡6), separately. If ⇧ = X2(⇡2), by Tables 3.1,
3.2, 3.3 and Lemma 3.5, we have

|J |hX2(⇡2), I(�)⌦ ! i

= q(q + 1)(q2 � 1)(q6 � 1)/(q + 1)2 � (q2 � 1)q(q + 1)(q � 1)(q2 � q + 1)

+ q2(q � 1)(2q � 1)q(q + 1)

0

@
X

r32k⇥

 (r3)

1

A

+
q2 � 1

2
q2
p
✏0q(�4q + 1)(A1 �A)�

q2 � 1

2
q2
p
✏0q(�2q + 1)(A1 �A)

+ q2(q2 � 1)
p
✏0q((q � 1)(2q � 1)(B0

1 �B0

))

+ q2(q2 � 1)
p
✏0q

⇥
(�4q + 1)(B1

1 �B1

) + (�q + 1)(B2

1 �B2

) + (�2q + 1)(B3

1 �B3

)
⇤
,

where

A1 =
X

r32k⇥,2

 (r3), A =
X

r32k⇥,2

 (r3),(3.5)

and

B0
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)=1

 (r3),

B1
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2k⇥,3�{±1}

 (r3),

B2
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2k⇥�k⇥,3

 (r3),

B3
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)/2k⇥

 (r3),

(3.6)

for r = 1,. Here recall that t = t(r, r3, r4) is a solution of the equation (3.3). The computations
of A1 � A, Bi

1 � Bi


for i = 0, 1, 2, 3 are given in the appendix, see Lemmas A.1 and A.2, and the

results read as

A1 �A =
p
✏0q,

B0
1 �B0


= ✏0

p
✏0q,

B1
1 �B1


= �

1

2
(1 + ✏0)

p
✏0q,

B2
1 �B2


= 0,

B3
1 �B3


=

1

2
(1� ✏0)

p
✏0q.

(3.7)

Plugging these formulas into the computation of hX2(⇡2), I(�)⌦ ! i, it follows that

|J |hX2(⇡2), I(�)⌦ ! i = q6(q2 � 1).

Thus we have

hX2(⇡2), I(�)⌦ ! i = 1.
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Similarly, we have

|J |hX3(⇡3), I(�)⌦ ! i

= q(q + 1)(q2 � 1)(q6 � 1)/(q2 + q + 1) + (q2 � 1)q(q + 1)(q � 1)(q2 � 1)

� q2q(q + 1)(q2 � 1)

0

@
X

r32k⇥

 (r3)

1

A

+
q2 � 1

2
q2
p
✏0q((q + 1)(A1 �A)� (�q + 1)(A1 �A))

+ q2(q2 � 1)
p
✏0q((�q2 + 1)(B0

1 �B0

)

+ q2(q2 � 1)
p
✏0q((q + 1)(B1

1 �B1

) + (�2q + 1)(B2

1 �B2

) + (�q + 1)(B3

1 �B3

)),

where Ar, Bi

r
for r = 1,, i = 0, 1, 2, 3 are defined in (3.5) and (3.6). Plugging the formulas (3.7)

into the computation of hX3(⇡3), I(�)⌦ ! i, we obtain that

hX3(⇡3), I(�)⌦ ! i = 1.

A similar calculation shows that

|J |hX6(⇡6), I(�)⌦ ! i

= q(q + 1)(q2 � 1)(q6 � 1)/(q2 � q + 1)� (q2 � 1)(q + 1)(q2 � 1)q(q + 1)

� q2(q2 � 1)q(q + 1)

0

@
X

r32k⇥

 (r3)

1

A

+
q2 � 1

2
q2
p
✏0q((�q + 1)(A1 �A)� (q + 1)(A1 �A))

+ q2(q2 � 1)
p
✏0q(�q2 + 1)(B0

1 �B0

)

+ q2(q2 � 1)
p
✏0q((�q + 1)(B1

1 �B1

) + (�2q + 1)(B2

1 �B2

) + (q + 1)(B3

1 �B3

)).

By formulas (3.7), we also obtain that hX6(⇡6), I(�)⌦ ! i = 1. ⇤
We next consider the case when q ⌘ �1 mod 3. In this case, we have k⇥ = k⇥,3. If rr3 2

k⇥,2, then x�(r)x2↵+�(r3) ⇠G2(k) x�(1)x2↵+�(1), whose centralizer in G2(k) has size 2q4, see
[Ch68, p.202]. If rr3 2 k⇥,2, then x�(r)x2↵+�(r3) ⇠G2(k) x�()x2↵+�(1), whose centralizer has
size 6q4, see [Ch68, p.202]. For any r4, we have x�(r)x3↵+�(r4) ⇠G2(k) x�(1)x3↵+�(1) ⇠G2(k)

x�(1)x2↵+�(1) (see [Ch68, p.197]), whose centralizer has size 2q4. Finally, we consider the conju-
gacy class x�(r)x2↵+�(r3)x3↵+�(r4), rr3r4 6= 0. As in the previous case, we still have

x�(r)(0, 0, r3, r4, r5) ⇠G2(k) x�(1)(0, 0,�1, z, 0),

with some appropriate r5, where z = �2� rr
2
4

r
3
3
. Thus we have

x�(r)x2↵+�(r3)x3↵+�(r4) ⇠G2(k) x�(r)(0, 0, r3, r4, r5) ⇠G2(k) x�(1)(0, 0,�1,�2� rr24/r
3
3, 0).

We also write t = t(r, r3, r4) 2 k2 = Fq2 as a solution of (3.3). For t 2 k⇥2 � k⇥ with t + t�1
2 k,

one can check that t1+q = 1, i.e., t 2 k12, the norm 1 subgroup of k⇥2 . Thus t = t(r, r3, r4) is either
in k⇥ or in k12. If t = 1, then,

x�(r)x2↵+�(r3)x3↵+�(r4) ⇠G2(k) x2↵+�(1),

as in the previous case. If t 2 k⇥ � {±1}, then by [Ch68, p.197-198], we have

x�(r)x2↵+�(r3)x3↵+�(r4) ⇠G2(k) x�(1)x3↵+�(t
�1),

whose centralizer has size 2q4. If t 2 (k12 � {±1}) \ k⇥,3
2 , then x�(r)x2↵+�(r3)x3↵+�(r4) ⇠G2(k)

x�(1)x2↵+�() (see [Ch68, p.198]), whose centralizer has size 6q4. If t 2 k12 � k⇥,3
2 , the centralizer

of x�(r)x2↵+�(r3)x3↵+�(r4) has size 3q4.
From [CR74], for q ⌘ �1 mod 3, the missing part in rows 5-8 of Table 3.2 is given in Table 3.4.
The following lemma is Proposition 3.3 when q ⌘ �1 mod 3.
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Table 3.4. Missing part in rows 5-8 of Table 3.2 when q ⌘ �1 mod 3

u |CG2(k)(u)| X2(⇡) X3(⇡3) X6(⇡6)
x�(r), r 6= 0 ⇤ �(q � 1)(q2 � q + 1) (q � 1)(q2 � 1) �(q + 1)(q2 � 1)
x�(1)x2↵+�(r3),

r32k⇥,2 2q4 �2q + 1 �q + 1 q + 1
x�(1)x2↵+�(r3),

r32k⇥,2 6q4 �4q + 1 q + 1 �q + 1
x�()x2↵+�(r3),

r32k⇥,2 6q4 �4q + 1 q + 1 �q + 1
x�()x2↵+�(r3),

r32k⇥,2 2q4 �2q + 1 �q + 1 q + 1
x�(u)x3↵+�(r4)
u=1,,r42k⇥ 2q4 �2q + 1 �q + 1 q + 1

x�(r)(0,0,r3,r4,0),
t(r,r3,r4)2{±1} q4(q2 � 1) (q � 1)(2q � 1) �q2 + 1 �q2 + 1

x�(r)(0,0,r3,r4,0),
t(r,r3,r4)2k⇥�{±1} 2q4 �2q + 1 �q + 1 q + 1
x�(r)(0,0,r3,r4,0),

t(r,r3,r4)2(k1
2�{±1})\k

⇥,3
2

6q4 �4q + 1 q + 1 �q + 1
x�(r)(0,0,r3,r4,0),

t(r,r3,r4)2k
1
2�k

⇥,3
2

3q4 �q + 1 �2q + 1 2q + 1

Lemma 3.7. Let ⇧ be one of Xi(⇡i) for i = 2, 3, 6. If q ⌘ �1 mod 3, then we have

h⇧, I(�)⌦ ! i = 1.

Proof. From Tables 3.1, 3.2, 3.4 and Lemma 3.5, we have

|J |hX2(⇡2), I(�)⌦ ! i

= q(q + 1)(q2 � 1)(q6 � 1)/(q + 1)2 � (q2 � 1)q(q + 1)(q � 1)(q2 � q + 1)

+ q2q(q + 1)(q � 1)(2q � 1)

0

@
X

r32k⇥

 (r3)

1

A

+
q2 � 1

2
q2
p
✏0q((�2q + 1)(A1 �A)� (�4q + 1)(A1 �A))

+ q2(q2 � 1)
p
✏0q(q � 1)(2q � 1)(C0

1 � C1

)

+ q2(q2 � 1)
p
✏0q((�2q + 1)(C1

1 � C1

) + (�4q + 1)(C2

1 � C2

) + (�q + 1)(C3

1 � C3

)),

where for r = 1,, Ar are defined as before, and

C0
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)=1

 (r3),

C1
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2k⇥�{±1}

 (r3),

C2
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2(k1
2�{±1})\k

⇥,3
2

 (r3),

C3
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2k
1
2�k

⇥,3
2

 (r3).

(3.8)

Recall that t = t(r, r3, r4) is a solution of (3.3), which actually cannot be �1. The quantities Ci

1�Ci



are computed in Lemma A.4. Applying those formulas in Lemma A.4, a straightforward calculation
shows that

hX2(⇡2), I(�)⌦ ! i = 1.

It is similar to show that

hXi(⇡i), I(�)⌦ ! i = 1,

for i = 3, 6 as well. We omit the details here. ⇤



16 BAIYING LIU AND QING ZHANG

Proof of Theorem 2.1 when p > 3. The irreducible representations of G2(k) have been classified
in [CR74]. Let H1 be the maximal split torus,

Ha =
n
h(zq, z1�q) : zq

2�1 = 1
o
,

and

Hb =
n
h(z, zq) : zq

2�1 = 1
o
.

For i = 1, 2, a, b, 3, 6, and a character ⇡i of Hi, there is an associated character Xi(⇡i) of G2(k), and
when ⇡i is in general position, see [CR74, p.398] for the precise definition, Xi(⇡i) is irreducible. There
are several other isolated classes of irreducible representations of G2(k) constructed using linear
combinations ofXi(⇡i) (when ⇡i is not in general position) and 4 other class functions Yi, i = 1, 2, 3, 4.
If a representation ⇧ is a component of Xi(⇡i) for i = 1, a, b, then ⇧ is not cuspidal. From the list
given in [CR74], it is not hard to see that if ⇧ is an irreducible cuspidal representation of G2(k),
then it has to be one of following form:

Xi(⇡i), (i = 2, 3, 6), X33 = �
1

3
X2(⇡2) +

1

3
X6(⇡6), X17, X18, X19, X19,

where ⇡i for i = 2, 3, 6 are in general positions,X33 appears when q ⌘ �1 mod 3, andX17, X18, X19, X19

are defined in [CR74, p.402].
We have shown that

hXi(⇡i), I(�)⌦ ! i = 1,

for i = 2, 3, 6, no matter ⇡i is in general position or not. Thus, we get

hX33, I(�)⌦ ! i = 0.

Finally, to deal with the last 4 isolated cases, we need to compute hYi, I(�)⌦ ! i. According to
the table given in [CR74, p.411], we have

Representative t Y1 Y2 Y3 Y4 ChI(�)⌦! ✓
1

1

◆
0 0 0 0 q(q + 1)

✓
1

1

◆
(0, 0, 0, 0, 1) 0 0 0 0 q(q + 1)

(0, 0, r3, 0, 0), r3 6= 0 0 0 0 0 q(q + 1) (r3)
x�(1)x2↵+�(r3),

r32k
⇤ 0 0 0

p
✏0q (r3)

x�()x2↵+�(r3),
r32k

⇤ 0 0 0 �
p
✏0q (r3)0

@1 1
1

1

A(0,0,r3,r4,0),

r32k,r42k⇥/h±1i
⇤ 0 0 0

p
✏0q (r3)

0

@1 
1

1

A(0,0,r3,r4,0),

r32k,r42k⇥/h±1i
⇤ 0 0 0 �

p
✏0q (r3)

h(�1,�1) 0 0 0 0 (q + 1)�(�1)✏0
h(�1,�1)(0,0,r3,0,0),

r32k⇥ 0 0 0 0 (q + 1)�(�1)✏0 (r3)

h(�1,�1)x�(r), r 2 k⇥ 0 0 0 0 ✏0�(�1)
h(�1,�1)x�(r)x2↵+�(r3),

rr32k⇥,2 0 q 0 0 ✏0�(�1) (r3)
h(�1,�1)x�(r)x2↵+�(r3),

rr32k⇥,2 0 �q 0 0 ✏0�(�1) (r3)
h(x,x�1)(0,0,r3,0,0),

x 6=±1 0 0 0 0 ✏(�(x) + �(x�1)) (r3)0

@ x y
y x

1

A(0,0,r3,r4,r5),

x 6=±1
⇤ ⇤ ⇤ 0
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The missing part for Y1 (from 5th row to 8th row) depends on the residue of q mod 3. If q ⌘ 1 mod 3,
then one has

u |CG(u)| Y1

x�(r), r 6= 0 ⇤ 0
x�(1)x2↵+�(r3),

r32k⇥,2 6q4 q2

x�(1)x2↵+�(r3),
r32k⇥,2 2q4 �q2

x�()x2↵+�(r3),
r32k⇥,2 2q4 �q2

x�()x2↵+�(r3),
r32k⇥,2 6q4 q2

x�(1)x3↵+�(r4)
r42k⇥,3 6q4 q2

x�(1)x3↵+�(r4)
r4 /2k⇥,3 3q4 q2

x�()x3↵+�(r4)
r42k⇥,3 6q4 q2

x�()x3↵+�(r4)
r4 /2k⇥,3 3q4 q2

x�(r)(0,0,r3,r4,0),
t(r,r3,r4)2{±1} q4(q2 � 1) 0

x�(r)(0,0,r3,r4,0),
t(r,r3,r4)2k⇥,3�{±1} 6q4 q2

x�(r)(0,0,r3,r4,0),
t(r,r3,r4)2k⇥�k⇥,3 3q4 q2

x�(r)(0,0,r3,r4,0),
t(r,r3,r4)/2k

2q4 �q2

and when q ⌘ �1 mod 3, one has

u |CG(u)| Y1

x�(r), r 6= 0 ⇤ 0
x�(1)x2↵+�(r3),

r32k⇥,2 2q4 q2

x�(1)x2↵+�(r3),
r32k⇥,2 6q4 �q2

x�()x2↵+�(r3),
r32k⇥,2 6q4 �q2

x�()x2↵+�(r3),
r32k⇥,2 2q4 q2

x�(u)x3↵+�(r4)
u=1,,r42k⇥ 2q4 q2

x�(r)(0,0,r3,r4,0),
t(r,r3,r4)2{±1} q4(q2 � 1) 0

x�(r)(0,0,r3,r4,0),
t(r,r3,r4)2k⇥�{±1} 2q4 q2

x�(r)(0,0,r3,r4,0),

t(r,r3,r4)2(k1
2�{±1})\k

⇥,3
2

6q4 �q2

x�(r)(0,0,r3,r4,0),

t(r,r3,r4)2k
1
2�k

⇥,3
2

3q4 �q2

It is easy to see that
hYi, I(�)⌦ ! i = 0,

for i = 2, 3, 4. We next compute hY1, I(�)⌦ ! i when q ⌘ 1 mod 3. We have

|J |hY1, I(�)⌦ ! i

=
q2 � 1

2
q2
p
✏0q(q

2(A1 �A)� (�q2)(A1 �A))

+ q2(q2 � 1)
p
✏0q(q

2(B1
1 �B1


) + q2(B2

1 �B1

) + (�q2)(B3

1 �B3

))

= q4(q2 � 1)
p
✏0q((A1 �A) + (B1

1 �B1

)� (B3

1 �B3

)).

From the computation of A1 � A and Bi

1 � Bi


for i = 0, 1, 2, 3, in Lemma A.1 and Lemma A.2,

one can see that
hY1, I(�)⌦ ! i = 0.

Similarly, when q ⌘ �1 mod 3, we also have

hY1, I(�)⌦ ! i = 0.

From the definitions of X17, X18, X19, X19, given in [CR74, p.402], one can check that

h⇧, I(�)⌦ ! i = 0,
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Table 4.1. Conjugacy class of J when p = 3. The ⇤s in the last row mean that
the corresponding entries are omitted.

Representative t CJ(t) |J(t)| No. ChI(�)⌦! 
1 J 1 1 q(q + 1)

x3↵+2�(1) NSL2 n V q2 � 1 1 q(q + 1)
x2↵+�(r3), r3 6= 0 SL2(k)n V 1 q � 1 q(q + 1) (r3)

x2↵+�(r3)x3↵+2�(1), r3 6= 0 NSL2 n V q2 � 1 q � 1 q(q + 1) (r3)

x�(1)x2↵+�(r3), r3 2 k µ2hU� , U↵+� , U2↵+� , U3↵+2�i
q
2�1
2 q2 q

p
✏0q (r3)

x�()x2↵+�(r3), r3 2 k µ2hU� , U↵+� , U2↵+� , U3↵+2�i
q
2�1
2 q2 q �

p
✏0q (r3)

x�(1)x2↵+�(r3)x3↵+�(r4)
r32k,r42k⇥/h±1i hU� , U↵+� , U2↵+� , U3↵+2�i (q2 � 1)q2 q(q�1)

2

p
✏0q (r3)

x�()x2↵+�(r3)x3↵+�(r4),
r32k,r42k⇥/h±1i hU� , U↵+� , U2↵+� , U3↵+2�i (q2 � 1)q2 q(q�1)

2 �
p
✏0q (r3)

h(�1,�1)x2↵+�(r3),
r32k

SL2 n U2↵+� q4 q (q + 1)�(�1)✏0 (r3)

h(�1,�1)x�(1)x2↵+�(r3) µ2 n U� ⇥ U2↵+�
q
2�1
2 q4 q ✏0�(�1) (r3)

h(�1,�1)x�()x2↵+�(r3) µ2 n U� ⇥ U2↵+�
q
2�1
2 q4 q ✏0�(�1) (r3)

h(x,x�1)x2↵+�(r3),
x 6=±1 ASL2 n U2↵+� q5(q + 1) q(q�3)

2 ✏(�(x) + �(x�1)) (r3)0

@ x y
y x

1

A(0,0,r3,r4,r5),

x 6=±1
⇤ ⇤ ⇤ 0

if ⇧ = X17, X18, X19, or X19. For example, we have

X17 = �
1

6
X2(1) +

1

6
X6(1)�

1

2
Y1 +

1

2
Y2.

Since hXi(1), I(�)⌦ ! i = 1 for i = 2, 3, 6, and hYi, I(�)⌦ ! i = 0, we get

hX17, I(�)⌦ ! i = �
1

6
+

1

6
= 0.

The other 3 cases can be checked similarly. This completes the proof Theorem 2.1. ⇤

4. Proof of Theorem 2.1 when p = 3

In this section let k = F3f for some integer f . The character table of G2(k) is given in [En76],
which will be used to prove Theorem 2.1.

Lemma 4.1. The following is a complete set of representatives of j 2 J (up to J-conjugacy) of the
form j = gz with z 2 Z and g 2 SL2(k) such that g is not conjugate to an element of the form✓
x y
y x

◆
, y 6= 0 :

(1) 1; x3↵+2�(1); x2↵+�(r3), r3 2 k⇥; x2↵+�(r3)x3↵+2�(1), r3 6= 0;
(2) x�(b)x2↵+�(r3),x�(b)x2↵+�(r3)x3↵+�(r4), b 2 {1,} , r3 2 k, r4 2 k⇥/ {±1} ;
(3) h(�1,�1)x�(b)x2↵+�(r3), r3 2 k, b 2 {1,} ;
(4) h(x, x�1)x2↵+�(r3), x 2 k⇥ � {±1} , r3 2 k.

Proof. The proof of this lemma is similar to the proof of Lemma 3.2. One di↵erence is that here we
have 3 = 0 in k and thus (3.2) is not valid. Hence, x2↵+�(r3) and x2↵+�(r3)x3↵+2�(1) are no longer
in the same J-conjugacy class. On the other hand, if r3 6= 0, r4 6= 0, we have

w�x�(�r5/t4)(0, 0, r3, r4, r5)(w�x�(�r5/r4))
�1 = (0, 0, r3, 0, r4).

Thus any element of the form (0, 0, r3, r4, r5) is J-conjugate to an element of the form (0, 0, r3, 0, r4).
The other parts of the proof is exactly the same as that of Lemma 3.2. We omit the details here. ⇤
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Table 4.2. Character table of Xi(⇡i) when p = 3. The missing part (i.e., those
⇤s) in 10th and 11th row are given in Table 4.3.

Representative t �12(k, l) �13(k) �14(k) ChI(�)⌦! 
1 (q2�1)(q6�1)

(q+1)2
(q2�1)(q6�1)

q2+q+1
(q2�1)(q6�1)

q2�q+1 q(q + 1)

x3↵+2�(1) �(q � 1)(q2 � q + 1) (q � 1)(q2 � 1) �(q + 1)(q2 � 1) q(q + 1)
x2↵+�(r3), r3 6= 0 �(q � 1)(q2 � q + 1) (q � 1)(q2 � 1) �(q + 1)(q2 � 1) q(q + 1) (r3)
x2↵+�(r3)x3↵+2�(1),

r3 6=0 2q2 � 2q + 1 �(q2 + q � 1) �(q2 � q � 1) q(q + 1) (r3)

x�(1) �(q � 1)(q2 � q + 1) (q � 1)(q2 � 1) �(q + 1)(q2 � 1)
p
✏0q

x�(1)x2↵+�(r3),
r32k⇥ �(2q � 1) �(q � 1) q + 1

p
✏0q (r3)

x�() �(q � 1)(q2 � q + 1) (q � 1)(q2 � 1) �(q + 1)(q2 � 1) �
p
✏0q

x�()x2↵+�(r3),
r32k⇥ �(2q � 1) �(q � 1) q + 1 �

p
✏0q (r3)

x�(1)(0,0,r3,r4,0),
r32k,r42k⇥/h±1i ⇤ ⇤ ⇤

p
✏0q (r3)

x�()(0,0,r3,r4,0),
r32k,r42k⇥/h±1i ⇤ ⇤ ⇤ �

p
✏0q (r3)

h(�1,�1) (q � 1)2✏(k, l) 0 0 (q + 1)�(�1)✏0
h(�1,�1)(0,0,r3,0,0),

r32k⇥ �(q � 1)✏(k, l) 0 0 (q + 1)�(�1)✏0 (r3)

h(�1,�1)x�(1) �(q � 1)✏(k, l) 0 0 ✏0�(�1)
h(�1,�1)x�(1)x2↵+�(r3),

r32k⇥ ✏(k, l) 0 0 ✏0�(�1) (r3)

h(�1,�1)x�() �(q � 1)✏(k, l) 0 0 ✏0�(�1)
h(�1,�1)x�()x2↵+�(r3),

r32k⇥ ✏(k, l) 0 0 ✏0�(�1) (r3)
h(x,x�1)(0,0,r3,0,0),

x 6=±1 0 0 0 ✏(�(x) + �(x�1)) (r3)0

@ x y
y x

1

A(0,0,r3,r4,r5),

x 6=±1
⇤ ⇤ ⇤ 0

The conjugacy classes in J and the character of I(�) ⌦ ! are given in Table 4.1. Note that in
Table 4.1, the element x2↵+�(r3) is in fact in the center of J , see the commutator relation in [En76,
p.192].

As in §3, we still let Hi, i = 2, 3, 6, be the 3 anisotropic torus of G2(k) such that H2
⇠= Zq+1,

H3
⇠= Zq2+q+1 and H6

⇠= Zq2�q+1. Then given a character ⇡i of Hi, there is a class function Xi(⇡i)
on G2(k) as in the case of p > 3. The notation in [En76] is di↵erent from that of [CR74]. If i = 2,
the character ⇡2 of H2 is determined by two integers (k, l) 2 12S6 and the associated class function is
denoted by �12(k, l) in [En76, p.246]. Here 12S6 is a set of pairs of integers modulo certain relations
introduced in [En76, p.194] with size |

12S6| = 1
12 (q � 1)(q � 3); here we don’t recall its precise

meaning since we don’t use it. If i = 3, 6, the character ⇡i of Hi is determined by a single integer
k, and the corresponding class functions are denoted by �13(k) and �14(k) respectively in [En76,
p.247]. As in the �12 case, the integer k appeared in �13 and �14 depends only on k modulo certain
relations and ranges over finite sets of sizes 1

6q(q + 1) and 1
6q(q � 1) respectively, see [En76, p.194

and p.205] for the details. The restrictions of the characters �12(k, l), �13(k) and �14(k) to J can
be read out directly from the table in [En76, p.246-247] and are given in Table 4.2. In Table 4.2,
✏(k, l) = (�1)k + (�1)l + (�1)k+l.

The missing part of the Table 4.2 (10th row and 11th row) is determined as follows. If r3 =
0, r4 6= 0, then

x�(r)(0, 0, r3, r4, 0) ⇠G2(k) x�(1)x2↵+�(1),

since every element in k has a cubic root, see the calculation in [Ch68, p.197] or the discussion in
the previous section. As in the previous section, if r3 6= 0, we have

x�(r)(0, 0, r3, r4, 0) ⇠G2(k) x�(1)(0, 0,�1, z, 0),
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Table 4.3. Missing part of rows 10-11 in Table 4.2.

representative �12(k, l) �13(k) �14(k)
x�(1)x3↵+�(r4)

r4 6=0 �(2q � 1) �(q � 1) q + 1
x�(1)(0,0,r3,r4,0)
t(1,r3,r4)2{±1} 2q2 � 2q + 1 �(q2 + q � 1) �(q2 � q � 1)
x�(1)(0,0,r3,r4,0)
t(1,r3,r4)/2{±1} �(2q � 1) �(q � 1) q + 1
x�()x3↵+�(r4),

r4 6=0 �(2q � 1) �(q � 1) q + 1
x�()(0,0,r3,r4,0)
t(,r3,r4)2{±1} 2q2 � 2q + 1 �(q2 + q � 1) �(q2 � q � 1)
x�()(0,0,r3,r4,0)
t(,r3,r4)/2{±1} �(2q � 1) �(q � 1) q + 1

with z = �2 � rr24/r
3
3. As in the previous section, we set t = t(r, r3, r4) as a solution of (3.3). If

t = 1, then we have

x�(1)(0, 0, r3, r4, 0) ⇠G2(k) x�(1/2)x↵+�(1) ⇠G2(k) x2↵+�(1)x3↵+2�(1),

see Footnote 1 for the first relation. Note that 1/6 is undefined in the last equation of Footnote 1
and thus we cannot obtain that x�(1/2)x↵+�(1) ⇠G2(k) x↵+�(1) here. On the other hand, we have
w�w↵x�(�1)x↵+�(1)(w�w↵)�1 = x2↵+�(1)x3↵+2�(�1). By considering a conjugation of the torus,
we then get x�(1/2)x↵+�(1) ⇠G2(k) x2↵+�(1)x3↵+2�(1).

If t 6= ±1, using the description in [Ch68] and the fact that any element in Fq and Fq2 has a cubic
root, one can check that x�(1)(0, 0, r3, r4, 0) ⇠G2(k) x�(1)x2↵+�(1) if t 2 k⇥ � {±1}, and

x�(1)(0, 0, r3, r4, 0) ⇠G2(k) x�(1)x2↵+�()

if t 2 Fq2 � Fq. Thus we obtain Table 4.3 following the table in [En76, p.246-247].

Lemma 4.2. Let ⇧ be �12(k, l),�13(k) or �14(k). Then we have

h⇧, I(�)⌦ ! i = 1.

We have

(4.1) |J |h⇧, I(�)⌦ ! i =
X

t

|J(t)|Ch⇧(t)ChI(�)⌦! (t),

where t runs over a complete set of representatives of conjugacy classes of J and |J(t)| is the number
of elements in the conjugacy class J(t). Before proving Lemma 4.2, we first record the following
result.

Lemma 4.3. Let ⇧ be �12(k, l),�13(k) or �14(k).

(1) The contribution of conjugacy classes of the form h(�1,�1)u, with u in the unipotent, to
(4.1) is zero.

(2) The contribution of conjugacy classes of the form x�(1)x2↵+�(r3), r3 2 k, and the contribu-
tion of conjugacy classes of the form x�()x2↵+�(r3), r3 2 k, to (4.1) are cancelled out.

The proof of Lemma 4.3 is the same as that of Lemma 3.5 and we omit the details.

Proof of Lemma 4.2. This lemma can be checked case by case and we only give the details when
⇧ = �12(k, l) and omit the details of the other two cases. We suppose that ⇧ = �12(k, l). By Tables
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4.1, 4.2 and 4.3, we have

|J |h⇧, I(�)⌦ ! i

=
(q2 � 1)(q6 � 1)

(q + 1)2
q(q + 1)� (q2 � 1)(q � 1)(q2 � q + 1)q(q + 1)

� (q � 1)(q2 � q + 1)q(q + 1)

0

@
X

r32k⇥

 (r3)

1

A

+ (q2 � 1)(2q2 � 2q + 1)q(q + 1)

0

@
X

r32k⇥

 (r3)

1

A

+ (q2 � 1)q2
p
✏0q((2q

2
� 2q + 1)(D0

1 �D0

))

+ (q2 � 1)q2
p
✏0q(�(2q � 1)(D1

1 +D2
1 �D1


�D2


)),

where

D0
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2{±1}

 (r3),

D1
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2k⇥�{±1}

 (r3),

D2
r
=

X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2F
q2�Fq

 (r3),

(4.2)

for r = 1,. The computation of Di

1 � Di


is given in Appendix A.4. By Lemma A.5, we have

D0
1�D0


= ✏0

p
✏0q andD1

1+D2
1�D1


�D2


= �✏0

p
✏0q. Plugging these formulas into the computation

of |J |h⇧, I(�)⌦ ! i, we can get

|J |h⇧, I(�)⌦ ! i = q6(q2 � 1).

Thus we have h⇧, I(�)⌦ ! i = 1. ⇤

We can now start the proof of Theorem 2.1 in the case p = 3.

Proof of Theorem 2.1 when p = 3. Irreducible representations of G2(k) when k = F3f are clas-
sified in [En76]. Using the notation of [En76], there are 12 isolated irreducible representations ✓i
0  i  11 and 15 families of irreducible representations ✓12(k), �i(k), 1  i  11, �12(k, l), �13(k)
and �14(k), where k, l are integers. From the definitions given in [En76, Section 5], the represen-
tations �i(k), 1  i  11, are not cuspidal. By Lemma 4.2, we only need to consider cuspidal
representations among ✓i, 0  i  11, and ✓12(k). From the definitions of ✓i in [En76, Section
5], one can check that ✓0, ✓1, ✓2, ✓3, ✓4, ✓6, ✓7, ✓8, ✓9, are components of parabolic induced represen-
tations and thus cannot be cuspidal. Precisely, first, from the definitions in [En76, p.204], one

has that ✓1 + ✓2 = µ5 = IndG2(k)
P 0 (�1(0)) � ✓0 � ✓3, and hence ✓i, 0  i  3, are components of

IndG2(k)
P 0 (�1(0)). Here �1(0) is a character of P 0 and µ5 is an auxiliary representation. Note that

the notation in [En76] is a little bit di↵erent from ours. In particular, the group P in [En76] is

our P 0. Moreover, one has ✓4 = IndG2(k)
P 0 (�3(0)) � IndG2(k)

P 0 (�1(0)) + ✓3, see [En76, p.204]. Since

✓0 + ✓1 + ✓2 + ✓3 = IndG2(k)
P 0 (�1(0)), we can get, ✓0 + ✓1 + ✓2 + ✓4 = IndG2(k)

P 0 (�3(0)). Hence ✓4
is a component of IndG2(k)

P 0 (�3(0)) and thus not cuspidal. Here �3(0) is a character on P 0. Fur-

thermore, from the description in [En76, p.201], we have ✓6 + ✓9 = IndG2(k)
P 0 (�1(

1
2 (q � 1))) and

✓7+ ✓8 = IndG2(k)
P 0 (�3(

1
2 (q� 1))). Thus ✓6, ✓7, ✓8, ✓9 are not cuspidal either. Consequently, it su�ces

to consider the cases when ⇧ = ✓5, ✓10, ✓11, ✓12(k).
Following [En76], the character table of ✓5, ✓10, ✓11, ✓12(k), is given in Table 4.4. Recall that U

is the maximal unipotent subgroup of G2(k). From the character table, we see that for u 2 U , we



22 BAIYING LIU AND QING ZHANG

Table 4.4. Character table of ✓5, ✓10, ✓11, ✓12(k).

Representative t ✓5 ✓10 ✓11 ✓12(k)
1 q6 1

6q(q � 1)2(q2 � q + 1) 1
2q(q � 1)(q3 � 1) 1

3q(q
2
� 1)2

x3↵+2�(1) 0 1
6q(q � 1)(2q � 1) �

1
2q(q � 1) �

1
3q(q

2
� 1)

x2↵+�(r3),
r3 6=0 0 1

6q(q � 1)(2q � 1) �
1
2q(q � 1) �

1
3q(q

2
� 1)

x2↵+�(r3)x3↵+2�(1),
r3 6=0 0 �

1
6q(3q � 1) �

1
2q(q � 1) 1

3q

x�(1) 0 1
6q(q � 1)(2q � 1) �

1
2q(q � 1) �

1
3q(q

2
� 1)

x�(1)x2↵+�(r3),
r32k⇥,2 0 1

6q(q + 1) �
1
2q(q � 1) 1

3q(q + 1)
x�(1)x2↵+�(r3),

r32k⇥,2 0 �
1
6q(q � 1) 1

2q(q + 1) �
1
3q(q � 1)

x�() 0 1
6q(q � 1)(2q � 1) �

1
2q(q � 1) �

1
3q(q

2
� 1)

x�()x2↵+�(r3),
r32k⇥,2 0 �

1
6q(q � 1) 1

2q(q + 1) �
1
3q(q � 1)

x�()x2↵+�(r3),
r32k⇥,2 0 1

6q(q + 1) �
1
2q(q � 1) 1

3q(q + 1)
x�(1)x3↵+�(r4),

r4 6=0 0 1
6q(q + 1) �

1
2q(q � 1) 1

3q(q + 1)
x�(1)(0,0,r3,r4,0),r3 6=0,

r42k⇥/{±1},t(1,r3,r4)2{±1} 0 �
1
6q(3q � 1) �

1
2q(q � 1) �

1
3q

x�(1)(0,0,r3,r4,0),r3 6=0,
r42k⇥/{±1},t(1,r3,r4)2k⇥�{±1} 0 1

6q(q + 1) �
1
2q(q � 1) 1

3q(q + 1)
x�(1)(0,0,r3,r4,0),r3 6=0,

r42k⇥/{±1},t(1,r3,r4)2F
q2�Fq

0 �
1
6q(q � 1) 1

2q(q + 1) �
1
3q(q � 1)

x�()x3↵+�(r4)
r4 6=0 0 1

6q(q + 1) �
1
2q(q � 1) 1

3q(q + 1)
x�()(0,0,r3,r4,0),r3 6=0,

r42k⇥/{±1},t(,r3,r4)2k⇥�{±1} 0 1
6q(q + 1) �

1
2q(q � 1) 1

3q(q + 1)
x�()(0,0,r3,r4,0),r3 6=0,

r42k⇥/{±1},t(,r3,r4)2F
q2�Fq

0 �
1
6q(q � 1) 1

2q(q + 1) �
1
3q(q � 1)

x�()(0,0,r3,r4,0),r3 6=0,
r42k⇥/{±1},t(,r3,r4)2{±1} 0 �

1
6q(3q � 1) �

1
2q(q � 1) �

1
3q

h(�1,�1) q2 �
1
2 (q � 1)2 �

1
2 (q � 1)2 0

h(�1,�1)(0,0,r3,0,0),
r32k⇥ 0 1

2 (q � 1) 1
2 (q � 1) 0

h(�1,�1)x�(1) 0 1
2 (q � 1) 1

2 (q � 1) 0
h(�1,�1)x�(1)x2↵+�(r3),

r32k⇥,2 0 �
1
2 (q + 1) 1

2 (q � 1) 0
h(�1,�1)x�(1)x2↵+�(r3),

r32k⇥,2 0 1
2 (q � 1) �

1
2 (q + 1) 0

h(�1,�1)x�() 0 1
2 (q � 1) 1

2 (q � 1) 0
h(�1,�1)x�()x2↵+�(r3),

r32k⇥ 0 1
2 (q � 1) �

1
2 (q + 1) 0

h(�1,�1)x�()x2↵+�(r3),
r32k⇥ 0 �

1
2 (q + 1) 1

2 (q � 1) 0
h(x,x�1),
x 6=±1 q 0 0 0

h(x,x�1)x2↵+�(r3),
x 6=±1,r3 6=0 0 0 0 0

0

@ x y
y x

1

A(0,0,r3,r4,r5),

x 6=±1
⇤ ⇤ ⇤ ⇤

have ✓5(u) 6= 0 if and only if u = 1. In particular, we have

X

u2U

✓5(u) = ✓5(1) = q6.
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This implies that ✓5 is not a cupidal character.2 Thus it su�ces to show that h⇧, I(�)⌦ ! i  1,
when ⇧ = ✓10, ✓11, ✓12(k). We now compute h✓10, I(�)⌦ ! i. Similar to Lemma 4.3, the contribution
of terms of the form h(�1,�1)u to h✓10, I(�)⌦ ! i is zero. Thus we get

|J |h✓10, I(�)⌦ ! i

=
1

6
q(q � 1)2(q2 � q + 1)q(q + 1) + (q2 � 1)q(q + 1)

1

6
q(q � 1)(2q � 1)

+ q(q + 1)
1

6
q(q � 1)(2q � 1)

0

@
X

r32k⇥

 (r3)

1

A+ (q2 � 1)q(q + 1)(�
1

6
)q(3q � 1)

0

@
X

r32k⇥

 (r3)

1

A

+
q2 � 1

2
q2
p
✏0q

✓
1

6
q(q + 1)(A1(1)�A(1)) +

1

6
q(q � 1)(A1(1)�A(1))

◆

+ q2(q2 � 1)
p
✏0q

✓
�
1

6
q(3q � 1)(D0

1 �D0

) +

1

6
q(q + 1)(D1

1 �D1

)�

1

6
q(q � 1)(D2

1 �D2

)

◆
.

Plugging the formula of A1(1) � A(1) from Lemma A.1 and and the formulas of Di

1 �Di


for i =

0, 1, 2, from Lemma A.5, into the above equation, a simple calculation shows that h✓10, I(�)⌦ ! i =
0. Similarly, one can check that h✓11, I(�)⌦ ! i = 0 and h✓12(k), I(�)⌦ ! i = 0. We omit the
details. ⇤

5. Gamma factors for G2(k)⇥GL1(k)

5.1. Generic representations and Bessel functions. Recall that U is the maximal unipotent
subgroup of G2(k). Let  U be the character of U defined by

 U (x↵(x)x�(y)u
0) =  (x+ y), x, y 2 k, u0

2 [U,U ].

We will write  U as  by abuse of notation. An irreducible representation ⇧ of G2(k) is called
 -generic if

HomU (⇧, ) 6= 0.

It is well-known that dimHomU (⇧, )  1.

Remark 5.1. A character  0 of U is called generic if  0
|Ua

is nontrivial for a = ↵,�. There is only
one T -conjugacy class of generic characters of U . Thus if ⇧ is  -generic, then it is generic with
respect to any generic character of U .

Let ⇧ be an irreducible generic representation of G2(k). We fix a nonzero element l 2 HomU (⇧, ).
For a vector v in the space of ⇧, we consider the function

Wv(g) := l(⇧(g)v).

Then the space W(⇧, ) := {Wv : v 2 ⇧} is called the  -Whittaker model of ⇧.
Let ⇧(U, ) be the subspace of ⇧ generated by elements of form ⇧(u)v� (u)v for u 2 U, v 2 ⇧.

Let ⇧U, = ⇧/⇧(U, ) be the twisted Jacquet module. By Jacquet-Langlands Lemma [BZ76, Lemma
2.33], an element v 2 ⇧(U, ) if and only if

P
u2U

 �1(u)⇧(u)v = 0. Note that for an irreducible
generic representation ⇧, we have dim⇧U, = 1. For a vector v 2 ⇧, v /2 ⇧(U, ), we consider the
vector

v0 =
1

|U |

X

u2U

 �1(u)⇧(u)v,

2Recall that an irreducible character ✓ of a reductive group H over a finite field is cuspidal if and only if for any
proper parabolic subgroup Q = MQUQ with Levi MQ and unipotent UQ, one has

P
u2UQ

✓(uh) = 0 for all h 2 H,

see [Ca85, Corollary 9.1.2] for example. In fact, from the character table 4.4, one can check that

h✓5, I(�)⌦ ! i =
⇢

1, if ✏� 6= 1,
2, if ✏� = 1.

Thus ✓5 indeed does not satisfy the conclusion of Theorem 2.1 if � = ✏
�1 = ✏.
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where |U | is the number of elements in U . From the choice of v and Jacquent-Langlands Lemma
[BZ76, Lemma 2.33], we have v0 6= 0. On the other hand, we have

⇧(u)v0 =  (u)v0, 8u 2 U.(5.1)

A vector which satisfies the above condition is called a Whittaker vector. Let h , i be a nontrivial
G2(k)-invariant bilinear form ⇧ ⇥ e⇧ ! C, where e⇧ is the dual representation of ⇧. Let v0 be a
Whittaker vector of ⇧. Then ṽ 7! hv0, ṽi defines a nonzero element in HomU (e⇧, �1). Conversely,
a nonzero element in HomU (e⇧, �1) can be viewed as a Whittaker vector of ⇧ via the natural

isomorphism
ee⇧ ⇠= ⇧. By the uniqueness of Whittaker model, the Whittaker vectors are unique up

to scalar.
Let B⇧ 2 W(⇧, ) be the Whittaker function associated with a Whittaker vector, normalized by

B⇧(1) = 1. By the above discussion, the function B⇧ is unique. The function B⇧ is called the Bessel
function of ⇧.

Lemma 5.2. We have

B⇧(u1gu2) =  (u1u2)B⇧(g), 8u1, u2 2 U, g 2 G2(k).

Proof. This a direct consequence of the definition of B⇧. ⇤

Lemma 5.3. (1) Let t = h(a, b) 2 T . If B⇧(t) 6= 0, then a = b = 1.
(2) If r 6= 0, then B⇧(h(a, 1)x��(r)) = 0 for all a 2 k⇥.

Proof. (1) Let a be the simple root ↵ or �. First, we have

txa(r) = xa(a(t)r)t, 8r 2 k.

Then, by Lemma 5.2, we have
B⇧(t) (r) =  (a(t)r)B⇧(t).

Thus if B⇧(t) 6= 0, we have  (r) =  (a(t)r) for all r 2 k. Since  is a nontrivial character, we must
have a(t) = 1. Since ↵(t) = b,�(t) = a/b, we get a = b = 1 if B⇧(t) 6= 0.

(2) Take s 2 k. We have x��(r) = w�x�(�r)w�1
�

and x↵+�(s) = w�x↵(s)w
�1
�

. Thus from the
commutator relations, we have

x��(r)x↵+�(s) = w�x�(�r)x↵(s)w
�1
�

= w�u1x↵+�(�rs)x↵(s)x�(�r)w�1
�

= u2x↵(�rs)x↵+�(s)x��(r),

where u2 = w�u1w
�1
�

2 [U,U ]. Thus, we get

h(a, 1)x��(r)x↵+�(s) = u3x↵(�rs)x↵+�(as)h(a, 1)x��(r),

where u3 = h(a, 1)u2h(a�1, 1). Note that  (x↵+�(s)) = 1 and  (u2x↵(�rs)x↵+�(as)) =  (�rs).
By Lemma 5.2, we get

B⇧(h(a, 1)x��(r)) =  (�rs)B⇧(h(a, 1)x��(r)), 8s 2 k.

Thus if B⇧(h(a, 1)x��(r)) 6= 0, we have  (�rs) = 1 for all s 2 k. Since  is nontrivial, we then get
r = 0. ⇤

5.2. Ginzburg’s local zeta integral. Let ⇧ be an irreducible generic representation of G2(k) and
let � be a character of k⇥. For W 2 W(⇧, ), f 2 I(�),� 2 S(k), we consider the following sum

 (W,�, f) =
X

g2NSL2\SL2(k)

X

x,y2k

W (x��(y)x�(↵+�)(x)j(g))(! �1(g)�)(x)f(g)(5.2)

=
X

g2NSL2\SL2(k)

X

x,y2k

W (j(x3↵+�(y)x↵(x)g))(! �1(g)�)(x)f(g),

where we embed SL2(k) in G2(k) by embedding it in the Levi subgroup of P , and j(g) = w�w↵gw�1
↵

w�1
�

for g 2 G2(k). One can easily check that the above sum on the quotient NSL2\SL2(k) is well-defined
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using the commutator relations of G2. The above sum is the finite fields analogue of Ginzburg’s
local zeta integral [Gi93].

Lemma 5.4. Let �0 2 S(k) be the function �0(x) = 0 if x 6= 0 and �0(0) = 1. Let f0 2 I(�) be the
function such that supp(f0) ⇢ NSL2ASL2 and f0(1) = 1. Then

 (B⇧, �0, f0) = 1.

Proof. We have SL2(k) = NSL2ASL2

`
NSL2ASL2w

1NSL2 , where w1 =

✓
1

�1

◆
. Since f0 is zero

on NSL2ASL2w
1NSL2 , we have

 (B⇧, �0, f0) =
X

a2k⇥

X

x,y2k

B⇧(x��(y)x�(↵+�)(x)j(t(a)))! �1(t(a))�0(x)�(a),

where t(a) = diag(a, a�1) 2 SL2(k). Note that j(t(a)) = h(a, 1). On the other hand, we have
! �1(t(a))�0(x) = ✏(a)�0(ax), which is zero if x 6= 0 since a 6= 0. Thus we have

 (B⇧, �0, f0) =
X

a2k⇥

X

y2k

B⇧(x��(y)h(a, 1))✏(a)�(a).

By Lemma 5.3 (2) and (1), we have

 (B⇧, �0, f0) =
X

a2k⇥

B⇧(h(a, 1))✏(a)�(a)

= B⇧(1)

= 1.

This completes the proof of the Lemma. ⇤

Lemma 5.5. The trilinear form (W,�, f) 7!  (W,�, f) on W(⇧, ) ⇥ ! �1 ⇥ I(�) satisfies the
property

(5.3)  ((⇧(j(h)))W,! �1(pr(h))�, r(pr(h))f) =  (W,�, f), 8h 2 J,

where r denotes the right translation action, and for (g, h) 2 SL2(k)nH , r(g, h)f := r(g)f . Recall
that pr is the projection map J ! SL2(k)n H in §2.3.

Proof. Note that for h 2 SL2(k), Eq.(5.3) follows from a simple changing of variables. Hence,
we only need to check formula (5.3) when h 2 V . Suppose that h = (s1, s2, s3, s4, s5). Since

pr(h) = (1, (s1, s2, s3 � s1s2)) 2 SL2(k)n H , r(pr(h))f = f . For g =

✓
a b
c d

◆
, we have

h0 := ghg�1 = (s01, s
0
2, s

0
3, s

0
4, s

0
5),

with s01 = ds1 + cs2, s02 = bs1 + as2, s03 � s01s
0
2 = s3 � s1s2. Then, pr(h0) = (1, (s01, s

0
2, s

0
3 � s01s

0
2)) 2

SL2(k)n H . Thus

(5.4) ! �1(gpr(h))�(x) = ! �1(pr(h0)g)�(x) =  �1(s03 � 2s01s
0
2 � 2xs02)(! �1(g)�)(x+ s01),

by (2.4).
Next, we compute W (j(x3↵+�(r1)x↵(r2)gh)). Using the commutator relations, see [Ch68, p.192],

one can check that:

x3↵+�(y)x↵(x)gh

= x3↵+�(y)x↵(x)h
0g

= x3↵+2�(s
0
5)x3↵+�(y + s04)x↵(x+ s01)x↵+�(s

0
2)x2↵+�(s

0
3)g

= x3↵+2�(s
00
5)x3↵+�(y + s004)x↵+�(s

0
2)x↵(x+ s01)x2↵+�(s

0
3 � 2(r2 + s01)s

0
2)g

= x3↵+2�(s
00
5)x3↵+�(y + s0004 )x↵+�(s

0
2)x2↵+�(s

0
3 � 2(r2 + s01)s

0
2)x↵(x+ s01)g

= x3↵+2�(s
00
5)x↵+�(s

0
2)x2↵+�(s

0
3 � 2(r2 + s01)s

0
2)x3↵+�(y + s0004 )x↵(x+ s01)g,
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where s005 = s05+3(x+s01)(s
0
2)

2, s004 = s04+3(x+s01)
2s02, and s0004 = s004+3(x+s01)(s

0
3�2(x+s01)s

0
2). Note

that j(x3↵+2�(s005)) 2 U3↵+� , j(x↵+�(s02)) 2 U2↵+� , j(x2↵+�(s03�2(x+s01)s
0
2)) = x↵(s03�2(x+s01)s

0
2)

and W 2 W(⇧, ), we get

(5.5) W (j(x3↵+�(y)x↵(x)gh)) =  (s03 � 2(x+ s01)s
0
2)W (j(x3↵+�(y + s0004 )x↵(x+ s01)g)).

Plugging (5.4) and (5.5) into the left hand side of (5.3), we get

 (⇧(j(h))W,! �1(pr(h))�, r(pr(h))f)

=
X

g2NSL2\SL2(k)

X

x,y2k

W (j(x3↵+�(y + s0004 )x↵(x+ s01)g))(! (g)�)(x+ s01)f(g).

By changing variables, we get

 (⇧(j(h))W,! �1(pr(h))�, r(pr(h))f) =  (W,�, f).

The completes the proof of the lemma. ⇤

Corollary 5.6. If ⇧ is an irreducible generic representation of G2(k), then we have

dimHomJ(⇧,! ⌦ I(�)) � 1.

Proof. Let ⇧j be the representation defined by ⇧j(g) = ⇧(j(g)). Note that ⇧j ⇠= ⇧ since j is an
inner automorphism. The assertion then follows from Lemma 5.4 and Lemma 5.5 directly. ⇤

Remark 5.7. In the proof of Theorem 2.1 when p > 3 in §3, we showed that if ⇧ = X33, X17, X18,
X19, X19, then h⇧, I(�)⌦ ! i = 0. Thus by Corollary 5.6, the representations X33, X17, X18,
X19, X19 can not be generic. As pointed out by the referees, this has already been known, for
example, the last 4 representations are the 4 unipotent cuspidal representation of G2(k) as in [Ca85,
p.460] hence are not generic. In particular, the irreducible generic cuspidal representations of G2(k)
when p > 3 must be in the families of the representations Xi(⇡i) for i = 2, 3, 6 when ⇡i are in general
positions. Similarly, the irreducible generic cuspidal representations of G2(k) when p = 3 must be
in the families of the representations �12(k, l),�13(k),�14(k).

5.3. GL1-twisted gamma factors for generic cuspidal representations. Consider the stan-
dard intertwining operator M : I(�) ! I(��1) defined by

M(f)(g) =
X

x2k

f((w1)�1n(x)g),

where w1 =

✓
1

�1

◆
and n(x) =

✓
1 x

1

◆
. Note that under the embedding SL2(k) ,! GL2(k) ⇠=

M ,! G2(k), w1 is mapped to w� .

Proposition 5.8. Let ⇧ be an irreducible generic cuspidal representation of G2(k) and � be a
character of k⇥. Then there is a number �(⇧⇥ �, ) 2 C such that

 (W,�,M(f)) = �(⇧⇥ �, ) (W,�, f),

for all W 2 W(⇧, ),� 2 S(k), f 2 I(�).

Proof. Note that (W,�, f) 7!  (W,�, f) and (W,�, f) 7!  (W,�,M(f)) define two trilinear forms
in HomJ(⇧j

⌦ ! �1 ⌦ I(�),C). Then the assertion follows from Theorem 2.1 directly. ⇤

Lemma 5.9. We have

�(⇧⇥ �, ) =
q5/2
p
✏0

X

a2k⇥

B⇧(h(a, 1)w1)✏�
�1(a),

where w1 = w�w↵w�w�1
↵

w�1
�

= j(w�).
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Proof. As in Lemma 5.4, let �0 2 S(k) be the function �0(x) = 0 if x 6= 0 and �0(0) = 1. And let
f0 2 I(�) be the function such that supp(f0) ⇢ NSL2ASL2 and f0(1) = 1. Then, by Lemma 5.4, we
have  (B⇧, �0, f0) = 1. Thus we get

�(⇧⇥ �, ) =  (B⇧, �0,M(f0)),

where,

M(f0)(g) =
X

x2k

f0
�
(w1)�1n(x)g

�
.

Since M(f0) 2 I(��1) and SL2(k) = NSL2ASL2

`
NSL2ASL2w

1NSL2 , we need to determine the value
of M(f0) at 1 and at w1n(r), r 2 k. Since for any x 2 k, we have (w1)�1n(x) /2 BSL2 , we have
M(f0)(1) = 0. Since (w1)�1n(x)w1n(r) 2 BSL2 i↵ x = 0, M(f0)(w1n(r)) = f0(n(r)) = 1, 8r 2 k.
Thus we get

�(⇧⇥ �, ) =
X

g2NSL2\SL2(k)

X

x,y2k

B⇧(x��(y)x�(↵+�)(x)j(g))! �1(g)�0(x)M(f0)(g)

=
X

a2k⇥,r2k

X

x,y2k

B⇧(x��(y)x�(↵+�)(x)j(t(a)w
1n(r)))

· ! �1(t(a)w1n(r))�0(x)M(f0)(t(a)w
1n(r))

=
X

a2k⇥,r2k

X

x,y2k

B⇧(x��(y)x�(↵+�)(x)j(t(a)w
1n(r)))

· ! �1(w1n(r))�0(ax)✏�
�1(a).

Note that w1 = j(w1) and j(n(r)) = x3↵+2�(r), and

x��(y)x�(↵+�)(x)h(a, 1)w1x3↵+2�(r) = h(a, 1)w1x3↵+�(ay)x2↵+�(ax)x3↵+2�(r).

By Lemma 5.2, we have B⇧(x��(y)x�(↵+�)(x)j(t(a)w
1n(r))) = B⇧(h(a, 1)w1). Thus we get

�(⇧⇥ �, ) =
X

a2k⇥,r2k

X

x,y2k

B⇧(h(a, 1)w1)! �1(w1n(r))�0(ax)✏�
�1(a)

= q
X

a2k⇥

X

x,r2k

B⇧(h(a, 1)w1)(! �1(w1n(r))�0)(ax)✏�
�1(a).

We have

(! �1(w1n(r))�0)(ax) =
1

�(1, �1)

X

y2k

 �1(�2axy)(! �1(n(r)))�0(y)

=
1

�(1, �1)

X

y2k

 �1(�2axy) (ry2)�0(y)

=
1

�(1, �1)
.

Recall that
�(1, �1) =

X

x2k

 �1(�x2) =
X

x2k

 (x2) =
p
✏0q,

see (2.1). Thus we get

�(⇧⇥ �, ) =
1

p
✏0
q5/2

X

a2k⇥

B⇧(h(a, 1)w1)✏�
�1(a).

This completes the proof of the lemma. ⇤
Remark 5.10. We use �(⇡⇥�, ) instead of �(⇡⇥�, ) to denote the gamma factor defined from
the functional equation in Proposition 5.8 because it is not normalized in any way. In fact, if one
compare the formula in Lemma 5.9 and the corresponding gamma factor formula in the GLn-case
in [N14, Proposition 2.16], it seems that q�5/2�(⇧ ⇥ (��1✏)) is certain normalized gamma factor.
Over p-adic fields, Lapid and Rallis [LR05] formulated a series of properties of local gamma factors
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which can characterize them uniquely. It is an interesting question that how to normalize gamma
factors in a canonical way in the finite field case.

6. Gamma factors for G2 ⇥GL2

In this section, we review the integral for G2 ⇥GL2 (similar to §5, in our case, it is a sum rather
than an integral) developed by Piatetski-Shapiro, Rallis and Schi↵mann in [PSRS92] and define the
GL2-twisted gamma factors.

In this section, k is a finite field of odd characteristic unless in subsection 6.4, where k can be
either a finite field or a p-adic field.

6.1. Embedding of G2 into SO7. To introduce the integral of Piatetski-Shapiro, Rallis and Schi↵-
mann, we need to embed G2 into SO7. We use the embedding of G2 into SO7 given in [RS89]. Let
H be a quaternion algebra over k. We can write H = ke0 �H

0, where e0 is the neutral element and
H

0 is the three dimensional subspace of pure quaternions. We denote by e1, e2, e3 a basis of H0 such
that eiej = �ejei and e3 = (e1e2 � e2e1)/2 = e1e2. Let � = e1e1 and µ = e2e2. Then e3e3 = ��µ.
For x = a0e0 + a1e1 + a2e2 + a3e3 2 H with ai 2 k, we define x̄ = a0e0 � a1e1 � a2e2 � a3e3.

Let C = H⇥H. We consider the non-associative product on C given by

(a, b)(c, d) = (ac+ d̄b, da+ bc̄).

With this product, C is called a Cayley or octonion algebra. The conjugate of (a, b) 2 C is defined
by (a, b) = (ā,�b) and its norm is Q((a, b)) = (a, b)(a, b) = aā� bb̄.

Note that k can be embedded in to C by the map a 7! (ae0, 0). We have a decomposition
C = k � C

0, where C
0 is the space of pure Cayley numbers. Note that dimk C

0 = 7. We put

X+ = (1/2, 1/2), X� = (1/2,�1/2), X0 = X+
�X� = (0,�1).

One can check that H0X+,H0X� are totally isotropic subspaces of C0, and we have

C
0 = H

0X+
� kX0

�H
0X�,

cf. [RS89, p.805]. The group G2(k) can be defined to be the automorphism group of the algebra C.
Note that if g 2 G2(k), then g(1) = 1, where 1 = (e0, 0) 2 C is the unit element, and (gu)(gv) = g(uv)
for u, v 2 C. In particular, g 2 G2(k) preserves the norm form Q. Consider the bilinear form
(v1, v2)Q := Q(v1) + Q(v2) � Q(v1 + v2). Then g 2 G2(k) preserves the bilinear form ( , )Q.
One can check that the decomposition C = k � C

0 is an orthogonal decomposition with respect to
( , )Q. Thus g 2 G2(k) preserves C

0 and Q|C0 . In particular, we have G2(k) ⇢ O(C0, Q|C0) =�
g 2 GL(C0) : (gv1, gv2)Q = (v1, v2)Q, 8v1, v2 2 C

0
 
. By [RS89, Corollary 4, p.810], one has

G2(k) ⇢ SO(C0, Q|C0) =
�
g 2 O(C0, Q|C0), det(g) = 1

 
.

Note that the quaternion algebra over finite fields alway splits. Thus we can assume that � =
µ = 1.

A basis of C0 is given by e+1 := e1X+, e+2 := e2X+, e+3 := e3X+, e0 := X0, e�3 = e3X�, e�2 :=
e2X�, e�1 := e1X�. From the formulas given in [RS89, p.805], we can check that the bilinear form
( , )Q with respect to the basis (e+1 , e

+
2 , e

+
3 , e0, e

�
3 , e

�
2 , e

�
1 ) is given by the following matrix (which is

still denoted by Q by abuse of notation)

Q =

0

@
s3

2
ts3

1

A ,

where

s3 =

0

@
1

1
�1

1

A .

Thus SO(C0, Q|C0) = {g 2 GL7(k) : tgQg = Q, det(g) = 1}, where we view elements in C
0 as col-

umn vectors and SO(C0, Q|C0) acts on them from the left hand side. In the following, we will
fix SO(C0, Q|C0) as the above form and write it as SO7(k). We then get our desired embedding
G2(k) ! SO7(k).
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Let TSO(Q) be the diagonal torus of SO7(k). A typical element in TSO(Q) has the form t =

diag(a1, a2, a3, 1, a
�1
3 , a�1

2 , a�1
1 ). Let ✏i be the character of TSO(Q) of the form ✏i(t) = ai for 1  i  3,

where t = diag(a1, a2, a3, 1, a
�1
3 , a�1

2 , a�1
1 ). Then the positive roots of SO7(k) relative to the upper

triangular Borel subgroup is the set {✏i � ✏j , ✏i + ✏j , ✏i with 1  i  3, 1  j  3, i < j}. Under the
above embedding G2(k) ! SO7(k), one has ↵ = ✏2,� = ✏1 � ✏2,↵+ � = ✏1, 2↵+ � = �✏3, 3↵+ � =
✏2 � ✏3, 3↵+ 2� = ✏1 � ✏3. See [RS89, p.812].

The embedding G2(k) ! SO7(k) can be explicitly realized by giving matrix realizations of x�(r)
for all roots � of G2, which is given in Appendix B. From this explicit realization, one can see how
subgroups of G2 are embedded in SO7. For example, the Levi subgroup M ⇠= GL2(k) is embedded
into SO7(k) by the map

m 7! diag(m, det(m)�1, 1, det(m),m⇤),m 2 GL2(k),

where m⇤ =

✓
1

1

◆
tm�1

✓
1

1

◆
.

6.2. The Piatetski-Shapiro-Rallis-Schi↵mann local zeta integral for G2⇥GL2. Let eP be the
parabolic subgroup of SO7(k) which is isomorphic to (GL2(k)⇥SO3(k))n eU where GL2(k)⇥SO3(k)
is the Levi factor of the form8

<

:

0

@
a

b
a⇤

1

A , a 2 GL2(k), b 2 SO3(k)

9
=

; .

Here SO3(k) is the special orthogonal group realized by the matrix

0

@
�1

2
�1

1

A. Note that the

GL2(k) part in the Levi of eP is exactly the Levi subgroup M of P ⇢ G2(k). A typical element of
eP will be written as (x, y, u), where x 2 GL2(k), y 2 SO3(k), u 2 eU . Denote H = M n Z ⇢ G2(k).
Under our fixed embedding G2(k) ! SO7(k), we have H = G2(k) \ eP , see [PSRS92, Lemma 1.2,
p.1273] and its proof there. One can also see this from the matrix realizations of the embedding in
Appendix B.

Let (⌧, V⌧ ) be an irreducible generic representation of GL2(F ) ⇠= M , we consider the induced
representation

I(⌧) = IndSO7(k)
eP

(⌧ ⌦ 1SO3).

A section ⇠ 2 I(⌧) is a map ⇠ : SO7(k) ! V⌧ such that

⇠((x, y, u)g) = ⌧(x)⇠(g), x 2 GL2(k), y 2 SO3(k), u 2 eU.

We fix a nontrivial  -Whittaker functional ⇤ 2 HomNGL2
(⌧, �1) of ⌧ , where NGL2 is the upper

triangular unipotent subgroup of GL2(F ). We then consider the C-valued function f⇠ on SO7(k)⇥
GL2(k) by

f⇠(g, a) = ⇤(⌧(a)⇠(g)), g 2 SO7(k), a 2 GL2(k).

We denote by I 0(W(⌧, �1)) the space consisting of all functions of the form f⇠, ⇠ 2 I(⌧).
Let UH be the subgroup of H generated by root spaces of �, 2↵ + �, 3↵ + �, 3↵ + 2�. We have

UH ⇢ H = G \ eP . Let  UH
be the character of UH such that  UH

|U� =  and  UH
|U� = 1 for

� = 2↵+ �, 3↵+ �, 3↵+ 2�. For u 2 UH , we have

(6.1) f⇠(ug, I2) =  �1
UH

(u)f⇠(g, I2),

where I2 is the 2⇥ 2 identity matrix.
Let ⇧ be an irreducible  =  U -generic representation of G2(k) and ⌧ be an irreducible generic

representation of GL2(k). For W 2 W(⇧, ), and f 2 I 0(W(⌧, �1)), we consider the following
Piatetski-Shapiro-Rallis-Schi↵mann local zeta integral

(6.2)  (W, f) =
X

g2UH\G2(k)

W (g)f(g, I2).

Note that by (6.1), the above sum  (W, ⇠) is well-defined.
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6.3. Decomposition of I(⌧)|G2(k). Recall that P 0 = M 0V 0 denotes the standard parabolic sub-

group of G2(k) such that U↵ is included in the Levi subgroupM 0. Let eH = w↵w�P 0(w↵w�)�1, which

is a conjugate of P 0 and thus still a parabolic subgroup of G2(k). It is clear that eH = GL2(k)nU 0,
where GL2(F ) = w↵w�M 0(w↵w�)�1 and U 0 = w↵w�V 0(w↵w�)�1. Note that U 0 is generated by the
root subgroups of �, 3↵+ 2�,�(3↵+ �),↵+ �,�↵, see [PSRS92, Corollary to Lemma 1.2, p.1276].

The double coset eP\SO7(k)/G2(k) has two elements. From [PSRS92, Lemma 1.2 and its Corol-
lary] and Mackey’s theory, we have the following decomposition

(6.3) 0 ! indG2(k)
H

(⌧ ⌦ 1Z) ! I(⌧)|G2(k) ! indG2(k)
eH

(⌧ ⌦ 1U 0) ! 0.

See [PSRS92, p.1287] for local fields analogue of the above decomposition. Note that over finite
fields, the above exact sequence splits.

For ⇠ 2 indG2(k)
H

(⌧ ⌦ 1Z), we denote f⇠(g, a) = ⇤(⌧(a)⇠(g)) for g 2 G2(k), a 2 GL2(k). We denote

I(W(⌧, �1)) the space spanned by f⇠ for ⇠ 2 indG2(k)
H

(⌧⌦1Z), which is a subspace of I 0(W(⌧, �1)).
In particular, we can consider  (W, f) for W 2 W(⇧, ) and f 2 I(W(⌧, �1)).

Remark 6.1. In the exact sequence 6.3, ind also denotes the induced representation. Note that over
finite fields, the notations ind and Ind have no di↵erence, but over local fields, they are di↵erent.
Here, we try to keep the notations the same as in the literature [PSRS92] and thus we used two
di↵erent notations (ind and Ind) to denote the same object (induced representation). Hopefully,
this won’t cause any confusion.

6.4. On the Jacquet functor ⇧Z . In general, let (⇧, V⇧) be a representation of a group L and
let � be a character of a subgroup K ⇢ L, then the twisted Jacquet functor ⇧K,� is defined to be
V⇧/h⇧(k)v � �(k)v, k 2 K, v 2 V⇧i. If � = 1 is the trivial character, then we write ⇧K,1 as ⇧K .

In this subsection, let k be either a finite field or a p-adic field. We go back to our G2 notation.
Let ⇧ be an irreducible generic smooth representation of G2(k). We consider the Jacquet functor

⇧Z . Let P 1 =

⇢✓
⇤ ⇤

1

◆�
be the mirabolic subgroup of GL2(k). Let  V be the character of V such

that  V |U↵ =  and  V |U� = 1 for � = ↵+ �, 2↵+ �, 3↵+ �, 3↵+ 2�.

Lemma 6.2. We have the following exact sequences

(6.4) 0 ! indGL2(k)
P 1 (⇧V, V

) ! ⇧Z ! ⇧V ! 0,

and

(6.5) 0 ! indP
1

NGL2
( ) ! ⇧V, V

! ⇧U, 
0
U
! 0,

where ind means compact induction when k is a local field,  0
U

is the degenerate character of U
defined by  0

U
|U↵ =  and  0

U
|U� = 1, and NGL2 is the upper triangular unipotent subgroup of

GL2(k).

Remark 6.3. Lemma 6.2 is the finite and p-adic fields analogue of [RS89, Theorem 5, p.824] and
its proof given in the following is also parallel to the one given in [RS89]. Note that over finite fields,
the above exact sequences split and the topology is discrete.

Proof of Lemma 6.2. Note that G2(k) is an `-group in the sense of [BZ76]. Note that when k is
a finite field, the topology on G2(k) is discrete. We use the language of sheaf theory on `-spaces, see
[BZ76].

Note that the parabolic subgroup P normalizes Z, and thus ⇧Z can be viewed as a representation
of P . Since Z acts on ⇧Z trivially, we can view ⇧Z as a representation of P/Z = M n (V/Z). Note
that V/Z ⇠= k2. Moreover, as a representation of V/Z, ⇧Z is smooth. Denote the space of ⇧Z by
V⇧Z

. The smoothness of ⇧Z implies that S(V/Z).V⇧Z
= V⇧Z

, see [BZ76, §2.5] for example. Let
dV/Z be the dual group of V/Z, i.e., the set of characters on V/Z. The Fourier transform defines an

isomorphism S(V/Z) ⇠= S(dV/Z). Under this isomorphism, we view V⇧Z
as a module over S(dV/Z).

By [BZ76, Proposition 1.14], up to isomorphism, there is a unique sheaf V⇧Z
on dV/Z such that as

a S(dV/Z)-module, V⇧Z
is isomorphic to the finite cross sections (V⇧Z

)c. For the definition of finite
cross sections, see [BZ76, §1.13].



A CONVERSE THEOREM FOR FINITE G2 31

Note that V/Z is generated by the root spaces of ↵ and ↵ + �. The set dV/Z is consisting of
characters of the form  1,2 ,1,2 2 k, where

 1,2(x↵+�(r1)x↵(r2)) =  (1r1 + 2r2).

The map (1,2) 7!  1,2 defines a bijection k2 ⇠= dV/Z. Under this bijection, we consider the

action of M ⇠= GL2(k) on dV/Z given by

(g, (1,2)) =
tg�1

·
t(1,2).

This action has two orbits: the open orbit O =
�
 1,2 : (1,2) 2 k2 � {0}

 
and the closed orbit

C = { 0,0}. We then have the exact sequence

(6.6) 0 ! (V⇧Z
)c(O) ! (V⇧Z

)c ! (V⇧Z
)c(C) ! 0,

see [BZ76, §1.16].
We consider  0,1 2 O. The stabilizer of  0,1 in M ⇠= GL2(k) is P 1, and the map g 7! g. 0,1

defines a bijection P 1
\GL2(k) ! O. A simple calculation shows that the stalk of the sheaf V⇧Z

at
the point  0,1 2 O is

(⇧Z)V/Z, 0,1
= ⇧V, V

,

see [BZ76, Lemma 5.10] for a similar calculation in the GLn-case. Thus by [BZ76, Proposition 2.23],
we have

(V⇧Z
)c(O) ⇠= indGL2(k)

P 1 (⇧V, V
).

Similarly, consider the stalk of the sheaf V⇧Z
at  0,0, we have

(V⇧Z
)c(C) = (⇧Z)V/Z, 0,0

= (⇧Z)V/Z = ⇧V .

Now the exact sequence (6.4) follows from the exact sequence (6.6).
In general, given any smooth representation ⇢ of P 1, we have an exact sequence

(6.7) 0 ! indP
1

NGL2
(⇢NGL2 , 

) ! ⇢! ⇢NGL2
! 0,

see [BZ76, Proposition 5.12] for example. We now apply the exact sequence (6.7) to the represen-
tation ⇢ = ⇧V, V

. Note that (⇧V, V
)NGL2

= ⇧U, 
0
U

and (⇧V, V
)NGL2 , 

= ⇧U, U
(transitivity of

Jacquet functors, see [BZ76, Lemma 2.32, p.24]). By the uniqueness of Whittaker model, we get
dim⇧U, U

= 1. Thus, as a representation of NGL2 , we have (⇧V, V
)NGL2 , 

=  . Then, the exact
sequence (6.5) follows. ⇤

6.5. Intertwining operator. Denote w2 = h(1,�1)w↵w�w↵w
�1
�

w�1
↵

, one can check that w2
2 = 1.

For an irreducible representation ⌧ of GL2(k), we consider the representation ⌧⇤ of GL2(k) defined

by ⌧⇤(a) := ⌧(a⇤), where a⇤ =

✓
1

1

◆
ta�1

✓
1

1

◆
. The realization of GL2(k) ⇠= M is given

by a 7! m(a) := diag(a, det(a)�1, 1, det(a), a⇤) with a 2 GL2(k). Note that M normalizes Z and

w2m(a)w�1
2 = m(a⇤). Thus we can define an intertwining operator Mw2 : indG2(k)

H
(⌧ ⌦ 1Z) !

indG2(k)
H

(⌧⇤ ⌦ 1Z) by the formula

Mw2(⇠)(g) =
X

z2Z

⇠(w2zg), g 2 G2(k).

For f 2 I(W(⌧, �1)), we define

Mw2(f)(g, a) =
X

z2Z

f(w2zg, d1a
⇤), g 2 G2(k), a 2 GL2(k),

where d1 = diag(�1, 1). Here the factor d1 is added to make sure that the function a 7! Mw2(f)(g, a)
is a  �1-Whittaker function on GL2(k). Hence, Mw2(f) 2 I(W(⌧⇤, �1)), and for W 2 W(⇧, ),
one can consider the sum

 (W,Mw2(f)) =
X

g2UH\G2(k)

W (g)Mw2(f)(g).
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6.6. GL2-twisted gamma factors for generic cuspidal representations.

Proposition 6.4. Let ⇧ be an irreducible generic cuspidal representation of G2(k) and let ⌧ be an
irreducible generic representation of GL2(k). Then we have

dimHomG2(k)(ind
G2(k)
H

(⌧ ⌦ 1Z),⇧) = 1

and
dimHomG2(k)(I(⌧)|G2(k),⇧) = 1.

Proof. We use the decomposition I(⌧)|G2(k) given in (6.3). By Frobenius reciprocity, we have

HomG2(k)(ind
G2(k)
eH

(⌧ ⌦ 1U 0),⇧) =Hom eH(⌧ ⌦ 1U 0 ,⇧| eH)

=HomGL2(k)(⌧,⇧U 0).

Since U 0 is the unipotent of a nontrivial parabolic subgroup and ⇧ is cuspidal, we get ⇧U 0 = 0.
Thus we have

HomG2(k)(ind
G2(k)
eH

(⌧ ⌦ 1U 0),⇧) = 0.

From the decomposition of I(⌧)|G2(k) in (6.3) and Frobenius reciprocity, we have

dimHomG2(k)(I(⌧)|G2(k),⇧) = HomG2(k)(ind
G2(k)
H

(⌧ ⌦ 1Z),⇧)

= HomH(⌧ ⌦ 1Z ,⇧)

= HomGL2(k)(⌧,⇧Z).

We now apply exact sequences in Lemma 6.2. Note that V is a unipotent subgroup of a nontrivial

parabolic, we have ⇧V = 0. Thus we have ⇧Z
⇠= indGL2(k)

P 1 (⇧V, V
) by (6.4). By Frobenius reciprocity

again, we get

HomG2(k)(I(⌧)|G2(k),⇧) = HomGL2(k)(⌧,⇧Z)

= HomGL2(k)(⌧, ind
GL2(k)
P 1 (⇧V, V

))

= HomP 1(⌧ |P 1 ,⇧V, V
).

Since  0
U
|U� = 1, we have ⇧U, 

0
U

= (⇧V 0)U↵, = 0 since V 0 is the unipotent of the nontrivial

parabolic subgroup P 0 and ⇧ is cuspidal. Thus (6.5) shows that ⇧V, V

⇠= indP
1

NGL2
( ). We then have

HomG2(k)(I(⌧)|G2(k),⇧) = HomP 1(⌧ |P 1 ,⇧V, V
)

= HomP 1(⌧, indP
1

NGL2
( ))

= HomNGL2
(⌧, ).

Since ⌧ is irreducible generic, we have HomNGL2
(⌧, ) = 1 by the uniqueness of Whittaker model for

GL2(k). The above proof also shows that dimHomG2(k)(ind
G2(k)
H

(⌧ ⌦ 1Z),⇧) = 1. This completes
the proof. ⇤
Remark 6.5. Note that if ⇧ is not cuspidal, from the above proof, we cannot expect that

dimHomG2(k)(I(⌧)|G2(k),⇧) = 1

in general. This is because the tale terms, say, ⇧U 0 ,⇧V ,⇧U, 
0
U
can cause some trouble. For example,

if ⇧U 0 6= 0 and HomGL2(k)(⌧,⇧U 0) 6= 0, then the above proof shows that

dimHomG2(k)(I(⌧)|G2(k),⇧)

= dimHomG2(k)(ind
G

eH(⌧ ⌦ 1U 0),⇧) + dimHomG2(k)(ind
G2(k)
H

(⌧ ⌦ 1Z),⇧)

� dimHomG2(k)(ind
G

eH(⌧ ⌦ 1U 0),⇧) + 1

� 2.

Note that over a p-adic field k, we can introduce a complex number parameter in the induced
representation I(⌧) and consider the induced representation

I(s, ⌧) := IndSO7(k)
eP

(⌧ | det |s ⌦ 1SO3)
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on SO7(k). Then the same strategy can show that, except for a finite number of qs, where q is the
number of residue field of k, we have

dimHomG2(k)(I(s, ⌧)|G2(k),⇧) = 1,

for any irreducible generic representation ⇧ of G2(k). Here we don’t need the cuspidal condition on
⇧, because the tale terms ⇧U 0 ,⇧V , all have finite length as a representation of GL2(k), and ⇧U, 

0
U

has finite dimension, and thus the corresponding Hom spaces are still zero if we exclude a finite
number of qs.

Proposition 6.6. Let ⇧ be an irreducible generic cuspidal representation of G2(k) and ⌧ be an
irreducible generic representation of GL2(k). Then there exists a number �(⇧⇥ ⌧, ) such that

 (W,Mw2(f)) = �(⇧⇥ ⌧, ) (W, f)

for all W 2 W(⇧, ) and f 2 I(W(⌧, �1)).

Proof. Note that (W, f) 7!  (W, f) and (W, f) 7!  (W,M(f)) define two elements in HomG2(k)(⇧⌦

indG2(k)
H

(⌧ ⌦ 1Z),C). Proposition 6.4 implies the existence of �(⇧⇥ ⌧, ). ⇤

As in the G2 ⇥GL1 case, see Remark 5.10, the gamma factor �(⇧⇥ ⌧, ) defined in Proposition
6.6 depends on Mw2 , and it is not canonically normalized in any sense.

7. A converse theorem

In this section k is a finite field of odd characteristic.

7.1. Weyl elements supporting Bessel functions. Let � = {↵,�} be the set of simple roots of
G2 and let W(G2) be the Weyl group of G2. The group W(G2) is generated by s↵, s� and has 12
elements. Let B(G2) = {w 2 W(G2) : 8� 2 �, w� > 0 =) w� 2 �}. The set B(G2) is called the
set of Weyl elements which support Bessel functions and the name is justified by the following

Lemma 7.1. Let ⇧ be an irreducible generic representation of G2(k) and B⇧ 2 W(⇧, ) be the
Bessel function. If w 2 W(G2)� B(G2) and ẇ 2 G2(k) is a representative of w, then

B⇧(tẇ) = 0, 8t 2 T.

Proof. Since w /2 B(G2), there exists an element � 2 � such that w� > 0 but w� is not simple. For
any r 2 k, we consider the element x�(r) 2 U� ⇢ U . We have

tẇx�(r) = txw�(cr)ẇ = xw�(w�(t)cr)tẇ,

where c 2 {±1}. Note that  U (xw�(w�(t)cr)) = 1 since w� is not a simple root. By Lemma 5.2, we
have

 (r)B⇧(tẇ) = B⇧(tẇ), 8r 2 k.

Since  is not trivial, we must have B⇧(tẇ) = 0. ⇤

Let w` = (s↵s�)3, which is the longest Weyl element in W(G2). One can check that B(G2) =
{1, w`s↵, w`s� , w`}. Note that w1 = w�w↵w�w�1

↵
w�1
�

is a representative of w`s↵ and w2 =

h(1,�1)w↵w�w↵w
�1
�

w�1
↵

is a representative of w`s� .

7.2. An auxiliary lemma. Let t be a positive integer and Nt be the upper triangular unipotent
subgroup of GLt(k). Let  t be a generic character of Nt.

Lemma 7.2 ([N14, Lemma 3.1]). Let � be a function on GLt(k) such that �(ng) =  t(n)�(g) for
all n 2 Nt and g 2 GLt(k). If X

g2Nt\GLt(k)

�(g)W (g) = 0,

for all W 2 W(⇡, �1
t

) and all irreducible generic representations ⇡ of GLt(k), then � ⌘ 0.

Note that in the above lemma, when t = 1, Nt is trivial. We will only use the above lemma for
t = 1, 2.
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7.3. The converse theorem and twisting by GL1. The following theorem is the main result of
this paper.

Theorem 7.3. Let k be a finite field with odd characteristic. Let ⇧1,⇧2 be two irreducible generic
cuspidal representation of G2(k). If

�(⇧1 ⇥ �, ) = �(⇧2 ⇥ �, ),

�(⇧1 ⇥ ⌧, ) = �(⇧2 ⇥ ⌧, ),

for all characters � of k⇥ and all irreducible generic representations ⌧ of GL2(k), then ⇧1
⇠= ⇧2.

The proof of Theorem 7.3 will be given in the following subsections. The strategy of the proof
is as follows. Let Bi := B⇧i

2 W(⇧i, ) be the Bessel function of ⇧i for i = 1, 2. We will
prove that B1(g) = B2(g) for all g 2 G2(k) under the assumption of Theorem 7.3. Since G2(k) =`

w2W(G2)
BwB, it su�ces to show that B1 agrees with B2 on various cells BwB. By Lemma

7.1 and Lemma 5.2, if w /2 B(G2), we have B1(g) = B2(g) = 0 for g 2 BwB. If w = 1, we
also have B1(g) = B2(g), 8g 2 B by Lemma 5.2 and Lemma 5.3. Thus it su�ces to show that
B1(g) = B2(g), 8g 2 BwB with w = w1, w2, w`. Here we do not distinguish a Weyl element and its
representative. We start from w1.

Lemma 7.4. If �(⇧1 ⇥ �, ) = �(⇧2 ⇥ �, ) for all characters � of GL1(k), then B1(g) = B2(g),
for all g 2 Bw1B.

Proof. By Lemma 5.9, we have

�(⇧i ⇥ �, ) =
q5/2
p
✏0

X

a2k⇥

Bi(h(a, 1)w1)✏�
�1(a).

Thus the assumplition implies that
X

a2k⇥

(B1(h(a, 1)w1)� B2(h(a, 1)w1))✏�
�1(a) = 0,

for all character � of k⇥. Then we get

B1(h(a, 1)w1)� B2(h(a, 1)w1) = 0

for all a 2 k⇥ by Lemma 7.2.
On the other hand, for any a, b 2 k⇥, one can check the following identity

x↵(br)h(a, b)w1 = h(a, b)w1x↵(r), 8r 2 k.

Thus by Lemma 5.2, we have

 (br)Bi(h(a, b)w1) =  (r)Bi(h(a, b)w1), 8r 2 k.

Since  is nontrivial, we get
Bi(h(a, b)w1) = 0, if b 6= 1.

Therefore, we get B1(tw1) = B2(tw1) for all t 2 T . Since Bw1B = UTw1U , we get

B1(g) = B2(g), 8g 2 Bw1B

by Lemma 5.2. ⇤

7.4. Sections in the induced representation indG2(k)
H

(⌧ ⌦ 1Z). Let (⌧, V⌧ ) be an irreducible
generic representation of GL2(k). Fix a nonzero v 2 V⌧ , we consider the function ⇠v on G2(k)
defined by supp(⇠v) = H and

⇠v(az) = ⌧(a)v, a 2 M ⇠= GL2(k), z 2 Z.

Note that ⇠v 2 indG2(k)
H

(⌧ ⌦ 1Z). Following §6.2, we fix a nonzero Whittaker functional ⇤ 2

HomNGL2
(⌧, �1) and consider the following function in I(W(⌧, �1)),

f⇠v (g, a) = ⇤(⌧(a)⇠v(g)), g 2 G2(k), a 2 GL2(k).

Let
f̃v(g, a) = Mw2(f⇠v )(g, a) =

X

z2Z

f⇠v (w2zg, d1a).
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Lemma 7.5. Let g = mx↵(r1)x↵+�(r2)w2x↵(s1)x↵+�(s2)s0 with m 2 M, s0 2 Z. Then if efv(g, I2) 6=
0, we have r1 = r2 = s1 = s2 = 0. Moreover, if r1 = r2 = s1 = s2 = 0, we have

efv(g, I2) = W ⇤
v
(m),

where W ⇤
v
(m) := ⇤(⌧(d1m⇤)v), recall that d1 = diag(1,�1).

Proof. By the definition of intertwining operator in §6.5, we have

efv(g, I2) =
X

z2Z

f⇠v (w2zg, d1)(7.1)

=
X

z̄2Z

f⇠v (z̄m
⇤x�(↵+�)(�r1)x�↵(�r2)x↵(s1)x↵+�(s2)s

0, d1),

where Z is the opposite of Z. If efv(g, I2) 6= 0, then there exists z̄ 2 Z, such that

z̄m⇤x�(↵+�)(�r1)x�↵(�r2)x↵(s1)x↵+�(s2)s
0 = h 2 H.

Then we have

(7.2) x�(↵+�)(�r1)x�↵(�r2)x↵(s1)x↵+�(s2) = m1z̄
�1h(s0)�1,

where m1 = (m⇤)�1. Suppose that h = m2z2 with m2 2 M, z2 2 Z, and write z1 = z2(s0)�1
2 Z.

Note that a typical element in Z has the form

x2↵+�(r3)x3↵+�(r4)x3↵+2�(r5) =

0

BBBBBBBB@

1 0 r5 0 0 �r3 0
0 1 r4 0 0 0 r3
0 0 1 0 0 0 0
0 0 �r3 1 0 0 0
0 0 r23 �2r3 1 r4 r5
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1

CCCCCCCCA

,

where the matrix form can be computed using the matrix realization of G2(k) given in Appendix B.
For simplicity, we write the element z1 2 Z as

z =

0

@
I2 x1 x2

0 b x⇤
1

I2

1

A ,

with b 2 SO3(k), x2 2 Mat2⇥2(k) and x1 2 Mat2⇥3(k) of the form

x1 =

✓
⇤ 0 0
⇤ 0 0

◆
.

We write mi = diag(ai, I3, a⇤i ) with ai 2 GL2(k) for i = 1, 2, and

z̄�1 =

0

@
I2
ū1 I3
ū2 ū⇤

1 I2

1

A ,

where ū1 2 Mat3⇥2(k), ū2 2 Mat2⇥2(k), and ū⇤
1 is determined by ū1.

Then we have

m1z̄
�1h(s0)�1 = m1z̄

�1m2z1

=

0

@
a1a2 a1a2x1 a1a2x2

ū1a2 ⇤ ⇤

a⇤1ū2a2 ⇤ ⇤

1

A .

On the other hand, from the matrix realization given in Appendix B, we have

x�(↵+�)(�r1)x�↵(�r2)x↵(s1)x↵+�(s2) =

0

@
b1 y1 y2
u0
1 ⇤ ⇤

u0
2 ⇤ ⇤

1

A ,
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where

b1 =

✓
1� r2s1 r2s2
r1s1 1� r1s2

◆
,

y1 =

✓
0 �2s2(1� r2s1) r2

�s21s2 �2s1(1 + r1s2) �r1

◆
,

u0
1 =

0

@
0 r1r22

r1 � r1r2s1 r2 + r1r2s2
�s1 s2

1

A ,

u0
2 =

✓
0 �r22

�r21(1� r2s1) �r1r2(2 + r1s2)

◆
.

From the identity (7.2), we have

b1 = a1a2, y1 = a1a2x1, y2 = a1a2x2, u0
1 = ū1a2, u0

2 = a⇤1ū2a2.

Since a1a2x1 is still of the form ✓
⇤ 0 0
⇤ 0 0

◆
,

the equation y1 = a1a2x1 implies that
✓
�2s2(1� r2s1) r2
�2s1(1 + r1s2) �r1

◆
=

✓
0 0
0 0

◆
,

which then implies that r1 = r2 = s1 = s2 = 0 since 2 6= 0 in k.
If r1 = r2 = s1 = s2 = 0, we then have u0

1 = 0, u0
2 = 0 and thus ū1 = 0, ū2 = 0. Hence z̄ = 1.

Thus, if r1 = r2 = s1 = s2 = 0, by (7.1), we have

efv(g, I2) = f⇠v (m
⇤s0, d1) = ⇤(⌧(d1)⇠v(m

⇤s0)) = ⇤(⌧(d1m
⇤)v) = W ⇤

v
(m).

This completes the proof of the lemma. ⇤

7.5. Proof of Theorem 7.3. Denote by B(g) = B1(g) � B2(g). By the discussion in §7.3 and
Lemma 7.4, we see that B is supported on Bw2B

`
Bw`B.

Let (⌧, V⌧ ) be an irreducible generic representation of GL2(k), v 2 V⌧ , and f⇠v 2 I(W(⌧, �1))
be the section constructed in §7.4. We now compute  (Bi, f⇠v ) for i = 1, 2. Since the function
Bi(g)f⇠v (g) is supported on H, we have

 (Bi, f⇠v ) =
X

g2UH\G2(k)

Bi(g)f⇠v (g, I2)(7.3)

=
X

g2UH\H

Bi(g)f⇠v (g, I2)

=
X

g2U�\M

Bi(g)f⇠v (g, I2)

=
X

g2NGL2\GL2(k)

Bi(g)Wv(g),

where an element g 2 GL2(k) is identified with an element of G2(k) via the embedding GL2(k) ⇠=
M ! G2(k), and Wv(g) = ⇤(⌧(g)v), which is the Whittaker function of ⌧ associated with v 2 V⌧ .
Note that M ⇢ B[Bs�B, which has empty intersection with Bw2B

`
Bw`B. Since B is supported

on Bw2B
`

Bw`B, it vanishes on M . We then have

 (B1, f⇠v )� (B2, f⇠v ) =
X

g2NGL2\GL2(k)

B(g)Wv(g) = 0.

Thus the assumption �(⇧1 ⇥ ⌧, ) = �(⇧2 ⇥ ⌧, ) and the functional equation, see Theorem 6.6,
imply that

 (B1, efv) =  (B2, efv),
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or

(7.4)  (B, efv) =  (B1, efv)� (B2, efv) = 0.

On the other hand, we have

 (B, efv) =
X

g2UH\G2(k)

B(g) efv(g, I2).

Note that G2(k) has the following decomposition

(7.5) G2(k) = P
a

Pw↵P
a

Pw↵w�w↵P
a

Pw2P.

Since B is supported on Bw2B [Bw`B ⇢ Pw2P , it vanishes on

P
a

Pw↵P
a

Pw↵w�w↵P.

Furthermore, we have

UH \ Pw2P = UH \ (MVw2V ) = U�\M ⇥ U↵U↵+� ⇥ w2V.

By the above discussion and Lemma 7.5, we have

 (B, efv) =
X

m2U�\M

X

r1,r2,s1,s22k,s02Z

B(mx↵(r1)x↵+�(r2)w2x↵(s1)x↵+�(s2)s
0)

· efv(mx↵(r1)x↵+�(r2)w2x↵(s1)x↵+�(s2)s
0, I2)

= q3
X

m2U�\M

B(mw2)W
⇤
v
(m).(7.6)

Then the equation (7.4) implies that

(7.7)
X

m2U�\M

B(mw2)W
⇤
v
(m) = 0,

which holds for all v 2 V⌧ and all irreducible generic representations ⌧ of GL2(k). Thus by Lemma
7.2, we have

(7.8) B(mw2) = 0, 8m 2 M.

If we take m = h(x, y) 2 M in (7.8), we get

(7.9) B(h(x, y)w2) = 0, 8x, y 2 k⇥.

If we take m = h(x, y)w� in (7.8), we then get

(7.10) B(h(x, y)w�w2) = 0, 8x, y 2 k⇥.

Denote ẇ` = w�w2. Note that ẇ` is a representative of w`. Together with Lemma 5.2, equations
(7.9) (7.10) imply that B vanishes on the cells Bw2B and Bw`B. This shows that B is identically
zero. Thus

B1(g) = B2(g), 8g 2 G2(k).

By the uniqueness of Whittaker model and irreducibility of ⇧1,⇧2, we get ⇧1
⇠= ⇧2.

This completes the proof of Theorem 7.3.

Appendix A. Computation of certain Gauss sums

A.1. Basic Gauss sum. Let  be a nontrivial additive character of k = Fq. Recall that we have
fixed a square root

p
✏0 of ✏0 such that

X

x2k

 (ax2) = ✏(a)
p
✏0q.

For a 2 k⇥, let

Ar(a) =
X

x2k⇥,2

 (arx), r = 1,.
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We then have

1 + 2A1(a) =
X

x2k

 (ax2) = ✏(a)
p
✏0q,

and

1 + 2A(a) =
X

x2k

 (ax2) = �✏(a)
p
✏0q.

Thus we get the following

Lemma A.1. We have A1(a)�A(a) = ✏(a)
p
✏0q.

We write Ar(1) as Ar for simplicity, for r = 1,.

A.2. Computation of Bi

r
. We now compute the sums Bi

r
for r = 1, and i = 0, 1, 2, 3 in (3.6) used

in §3. We assume q ⌘ 1 mod 3. Given r 2 {1,} , r3 2 k⇥, r4 2 k⇥/±1, let z(r, r3, r4) = �2� rr
2
4

r
3
3

2 k.

Note that for any a 2 k, the equation t+ t�1 = a for t is solvable over k2. Given r, r3, r4 as above,
and recall that t = t(r, r3, r4) denotes a solution of the equation t + t�1 = z(r, r3, r4). Note that
rr3r4 6= 0 implies that t 6= �1. Although there are two choices of t(r, r3, r4) in general, one can
check that the condition t(r, r3, r4) 2 {±1} (resp. t(r, r3, r4) 2 k⇥,3

� {±1}, t(r, r3, r4) 2 k⇥ � k⇥,3,
t(r, r3, r4) 2 k2 � k⇥) is independent on the choice of t(r, r3, r4).

Lemma A.2. We have

B0
1 �B0


= ✏0

p
✏0q,

B1
1 �B1


= �

1

2
(1 + ✏0)

p
✏0q,

B2
1 �B2


= 0,

B3
1 �B3


=

1

2
(1� ✏0)

p
✏0q.

Proof. Notice that the condition �2� rr24/r
3
3 = t+ t�1 implies that t 6= �1 and

(A.1) (�r3)
3 = rt

✓
r4

t+ 1

◆2

.

We first compute B0
r
. We first assume that r = 1. When t = 1, (A.1) becomes (�r3)3 = (r4/2)2.

Since k⇥ is a cyclic group generated by , the condition (�r3)3 = (r4/2)2 implies that �r3 2 k⇥,2.
Moreover, for each �r3 2 k⇥,2, there exists a unique r4 2 k⇥/ {±1} such that the equation (�r3)3 =
(r4/2)2 holds. Thus we get

B0
1 =

X

�r32k⇥,2

 (r3) = A1(�1).

Similarly, we have B0

= A(�1). Thus we have B0

1 �B1

= A1(�1)�A(�1) = ✏0

p
✏0q by Lemma

A.1.
We next compute B1

r
, r = 1,. Let t = t(r, r3, r4) 2 k⇥,3

� {±1}. Let a 2 k⇥ with t = a3. We
first assume that r = 1. From (A.1), we have �a�1r3 2 k⇥,2. Thus the contribution of each fixed
t = t(1, r3, r4) to the sum B1

1 is X

x2k⇥,2

 (�t1/3x),

where t1/3 is any cubic root of t in k⇥. Because t and t�1 contributes the same to the sum B1
1 , we

have

B1
1 =

1

2

X

t2k⇥,3�{±1}

X

x2k⇥,2

 (�t1/3x).

Similarly, we have

B1

=

1

2

X

t2k⇥,3�{±1}

X

x2k⇥,2

 (�t1/3x).
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Thus by Lemma A.1, we have

B1
1 �B1


=

1

2

X

t2k⇥,3�{±1}

(A1(�t1/3)�A(�t1/3))

=
1

2
✏0
p
✏0q

X

t2k⇥,3�{±1}

✏(t1/3).

We have k⇥,3 =
�
3i : 1  i  q�1

3

 
. Thus we get

X

t2k⇥,3

✏(t1/3) =

q�1
3X

i=1

✏()i = 0,

where the last equality follows from the fact that ✏() = �1 and q�1
3 must be even. Thus we get

B1
1 �B1


= �

1

2
✏0
p
✏0q(1 + ✏0) = �

1

2
(1 + ✏0)

p
✏0q.

We next consider B2
r
. Note that k⇥ � k⇥,3 = k⇥,3

`
2k⇥,3. For j = 1, 2, we define

B2,j
r

=
X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2jk⇥,3

 (r3).

We have B2
r
= B2,1

r
+B2,2

r
. Take an element t 2 k⇥ � k⇥,3 with t(r, r3, r4) = t. Then the condition

�2 �
rr

2
4

r
3
3

= t + t�1 implies (A.1). Note that if r = 1 and t 2 k⇥,3, equation (A.1) implies that

�r3 2 k⇥,2, and for such an r3, there is a unique r4 satisfying that equation. Thus we get

B2,1
1 =

X

t2k⇥,3

X

x2k⇥,2

 (�x) =
q � 1

3
A(�1).

For t 2 2k⇥,2 and r = , we also have that �r3 2 k⇥,2 and a unique r4 determined by these
datum. This shows that

B2,1
1 =

X

t2k⇥,3

X

x2k⇥,2

 (�x) =
q � 1

3
A(�1) = B2,2


.

Similarly, we have B2,1


= B2,2
1 . Thus we get B2

1 = B2

.

Finally, we consider B3
r
. We have

B0
r
+B1

r
+B2

r
+B3

r
=

X

r32k⇥,r42k⇥/{±1}

 (r3) = �
q � 1

2
.

Thus, from the previous results, we get

B3
1 �B3


= �(B0

1 �B0

)� (B1

1 �B1

).

This concludes the proof of the lemma. ⇤
A.3. Computation of Ci

r
. In this subsection, we compute the sums Ci

r
for r = 1,, and i = 0, 1, 2, 3

defined in (3.8). Note that in this case, q ⌘ �1 mod 3. Recall that k2 is the unique quadratic
extension of k = Fq. We can realize k2 as k[

p
]. Let Nm : k2 ! k be the norm map. We have

Nm(x+ y
p
) = x2

� y2. Recall that k12 is the norm 1 subgroup of k⇥2 .

Lemma A.3. (1) If an element u 2 k12 has a cubic root v 2 k⇥2 , then we must have v 2 k12.
(2) Let t 2 k12 and t 6= �1. Then t+ t�1 + 2 is a square in k⇥ if and only if t is a square in k12.

Proof. (1) Since u = v3 2 k12, we have v3q+3 = 1. On the other hand, we have vq
2�1 = 1 since

v 2 k⇥2 . Since q ⌘ �1 mod 3, the greatest common divisor of q2 � 1 and 3q + 3 is q + 1. Thus
vq+1 = 1, which means that v 2 k12.

(2) Suppose that t = �2 with � 2 k12. We write � = a + b
p
 with a, b 2 k. Then � 2 k12 means

that a2 � b2 = 1, which implies that b2 = a2 � 1. We have t = �2 = a2 + b2+ 2ab
p
. Thus

t+ t�1 + 2 = 2(a2 + b2) + 2 = 4a2 2 k⇥,2.
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Conversely, suppose that t+t�1+2 2 k⇥,2. Suppose that t = x+y
p
 with x, y 2 k and t+t�1+2 = a2

with a 2 k⇥. Note that t+ t�1 + 2 = 2x+ 2. Thus a2 = 2x+ 2. On the other hand, we have

a2 = t+ t�1 + 2 = t�1(t+ 1)2.

Thus, we have t = (a�1(t+ 1))2. It su�ces to show that a�1(t+ 1) 2 k12. We have

Nm(t+ 1) = (x+ 1)2 � y2 = 2 + 2x = a2,

where we used x2
� y2 = 1. Thus Nm(a�1(t+ 1)) = 1. ⇤

Lemma A.4. We have

C0
1 � C0


= ✏0

p
✏0q,

C1
1 � C1


= �

1

2
(1 + ✏0)

p
✏0q,

C2
1 � C2


=

1

2
(1� ✏0)

p
✏0q,

C3
1 � C3


= 0.

Proof. Note that C0
r
= B0

r
and thus C0

1 � C0
2 = ✏0

p
✏0q follows from Lemma A.2. To compute C2

r
,

we take an element t 2 k⇥ � {±1} and let t(r, r3, r4) = t, which implies

(�r3)
3 = rt

✓
r4

t+ 1

◆2

,

see (A.1). Note that any t 2 k⇥ is has a cubic root in k⇥. Let t1/3 2 k⇥ be one cubic root of t.
Then the above equation implies that

(�r3/t
1/3)3 = r

✓
r4

t+ 1

◆2

.

If r = 1, this implies that r3 2 �t1/3k⇥,2, and for such an r3 (and a fixed t), there is a unique

r4 2 k⇥/ {±1} such that (�r3/t1/3)3 = r
⇣

r4
t+1

⌘2
. Thus the contribution of a single t with t(1, r3, r4)

to the sum C1
1 is X

k⇥,2

 (�t1/3x).

Since t and t�1 have the same contribution, we have

C1
1 =

1

2

X

t2k⇥�{±1}

X

x2k⇥,2

 (�t1/3x).

Since t 7! t3 is a bijection from k⇥ � {±1} to itself, we get

C1
1 =

1

2

X

t2k⇥�{±1}

X

x2k⇥,2

 (�tx) =
1

2

X

t2k⇥�{±1}

A1(�t).

Similarly, we have

C1

=

1

2

X

t2k⇥�{±1}

A(�t).

Thus by Lemma A.1, we have

C1
1 � C1


=

1

2

X

t2k⇥�{±1}

(A1(�t)�A(�t))

=
1

2

X

t2k⇥�{±1}

✏0✏(t)
p
✏0q.

Since ✏ is a nontrivial character on k⇥, we have
P

t2k⇥ ✏(t) = 0. Thus we have

C1
1 � C1


= �

1

2
(1 + ✏0)

p
✏0q.
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We next consider C3
r
. Let ↵ be a generator of k12. Note that ↵ has no cubic root in k12. By Lemma

A.3 (1), we have

k12 � k⇥,3
2 =

�
↵i : 0  i  q, 3 - i

 
.

Consider the subsets S1, S2 of k12 � k⇥,3
2 :

S1 =
�
↵i : 0  i  q, 3 - i, 2 - i

 
, S2 =

�
↵i : 0  i  q, 3 - i, 2|i

 
.

Note that |S1| = |S2| =
q+1
3 . For i = 1, 2, let

C3,i
r

=
X

r32k⇥,r42k⇥/{±1},t(r,r3,r4)2Si

 (r3).

We have C3
r
= C3,1

r
+ C3,2

r
. Take t 2 Si, the condition t(r, r3, r4) = t implies that

(�r3)
3 =

rr24
t+ t�1 + 2

.

If t 2 S1, by Lemma A.3, we have t+ t�1 +2 2 k⇥,2. Thus for r = 1, t 2 S1, we have �r3 2 k⇥,2,
and for each �r3 2 k⇥,2, there is a unique r4 2 k⇥/ {±1} such that t(1, r3, r4) = t (for fixed t).
Thus, we get

C3,1
1 =

1

2

X

t2S1

X

x2k⇥,2

 (�x) =
q + 1

6
A(�1),

where the 1/2 was appeared since t and t�1 have the same contribution to the above sum. Similarly,
we have

C3,2


=
1

2

X

t2S2

X

x2k⇥,2

 (�x) =
q + 1

6
A(�1).

In particular, we have C3,1
1 = C3,2


. Similarly, we have C3,2

1 = C3,1


. Thus we have C3
1 � C3


= 0.

Finally, to compute C2
1 � C2


, it su�ces to notice that

3X

i=0

Ci

1 =
3X

i=0

Ci


,

and thus

C2
1 � C2


= �(C0

1 � C0

)� (C1

1 � C1

)� (C3

1 � C3

).

One can also compute C2
1 � C2


directly from Lemma A.3. ⇤

A.4. Computation of Di

r
. In this subsection, let q = 3f and k = Fq. We compute the Gauss sums

in (4.2).

Lemma A.5. We have

D0
1 �D0


= ✏0

p
✏0q,

D1
1 �D1


= �

1

2
(1 + ✏0)

p
✏0q,

D2
1 �D2


=

1

2
(1� ✏0)

p
✏0q.

Proof. Note that we have D0
r
= B0

r
. Thus the first identity follows from Lemma A.2. The second

identity can be computed similarly as the computation of C1
1 � C1


. Since D0

1 +D1
1 +D2

1 = D0

+

D1

+D2


, the last identity follows from the first one. ⇤
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Appendix B. Embedding of G2 into SO7

In this appendix, based on [RS89], we give an explicit matrix realization of x�(r) for each root � of
G2, which gives an explicit embedding of G2(k) into SO7(k). Here SO7(k) = {g 2 GL7(k) : tgQg = Q},

with Q =

0

@
s3

2
ts3

1

A , where s3 =

0

@
1

1
�1

1

A . The explicit realization of x�(r) is given as

follows.

x↵(r) =

0

BBBBBBBB@

1 0 0 0 0 0 0
0 1 0 �2r 0 �r2 0
0 0 1 0 0 0 0
0 0 0 1 0 r 0
�r 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 �r 0 0 0 1

1

CCCCCCCCA

, x�↵(r) =

0

BBBBBBBB@

1 0 0 0 �r 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 �r
0 �r 0 1 0 0 0
0 0 0 0 1 0 0
0 �r2 0 2r 0 1 0
0 0 0 0 0 0 1

1

CCCCCCCCA

,

x↵+�(r) =

0

BBBBBBBB@

1 0 0 �2r 0 0 �r2

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 r
0 r 0 0 1 0 0
0 0 r 0 0 1 0
0 0 0 0 0 0 1

1

CCCCCCCCA

, x�(↵+�)(r) =

0

BBBBBBBB@

1 0 0 0 0 0 0
0 1 0 0 r 0 0
0 0 1 0 0 r 0
�r 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

�r2 0 0 2r 0 0 1

1

CCCCCCCCA

,

x2↵+�(r) =

0

BBBBBBBB@

1 0 0 0 0 �r 0
0 1 0 0 0 0 r
0 0 1 0 0 0 0
0 0 �r 1 0 0 0
0 0 r2 �2r 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1

CCCCCCCCA

, x�(2↵+�)(r) =

0

BBBBBBBB@

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 �2r r2 0 0
0 0 0 1 �r 0 0
0 0 0 0 1 0 0
�r 0 0 0 0 1 0
0 r 0 0 0 0 1

1

CCCCCCCCA

,

x�(r) =

0

BBBBBBBB@

1 r 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 �r
0 0 0 0 0 0 1

1

CCCCCCCCA

, x3↵+�(r) =

0

BBBBBBBB@

1 0 0 0 0 0 0
0 1 r 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 r 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1

CCCCCCCCA

,

x3↵+2�(r) =

0

BBBBBBBB@

1 0 r 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 r
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1

CCCCCCCCA

,

and

x��(r) =
tx�(r),x�(3↵+�)(r) =

tx3↵+�(r),x�(3↵+2�)(r) =
tx3↵+�(r).
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[H93] G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ✏ de paires. Invent.
Math. 113 (1993), no. 2, 339–350.

[JPSS79] H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Automorphic forms on GL(3). Ann. of Math. (2) 109 (1979),
no. 1–2, 169–258.

[JPSS83] H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Rankin–Selberg convolutions. Amer. J. Math. 105 (1983),
367–464.

[JL70] H. Jacquet and R. Langlands, Automorphic forms on GL(2). Lecture Notes in Mathematics, Vol. 114.
Springer-Verlag, Berlin-New York, 1970. vii+548 pp.

[JL18] H, Jacquet and B. Liu, On the Local Converse Theorem for p-adic GLn. Amer. J. of Math. 140 (2018),
1399–1422.

[JNS15] D. Jiang, C. Nien and S. Stevens, Towards the Jacquet conjecture on the Local Converse Problem for p-adic
GLn. J. Eur. Math. Soc. 17 (2015), no. 4, 991–1007.



44 BAIYING LIU AND QING ZHANG

[JS03] D. Jiang and D. Soudry, The local converse theorem for SO(2n+1) and applications. Ann. of Math. (2) 157
(2003), no. 3, 743–806.

[JS12] D. Jiang and D. Soudry, On local descent from GL(n) to classical groups. Amer. J. of Math, Volume 134,
Number 3, 2012, 767–772 (appendix to a paper by D. Prasad and D. Ramakrishnan).

[K85] N. Kawanaka, Generalized Gelfand-Graev representations and Ennola duality, in “Algebraic Groups and
Related Topics,” pp. 175-206, Advanced Studies in Pure Math., Vol. 6, Kinokuniya and North-Holland,
Tokyo and Amsterdam, 1985.

[K86] N. Kawanaka, Generalized Gelfand Graev representations of exceptional algebraic groups over a finite field,
Invent. Math. 84 (1986), 575-616.

[K87] N. Kawanaka, Shintani lifting and Gelfand-Graev representations, Proc. Sympos. Pure Math., Vol. 47, pp.
147-163, Amer. Math. Sot., Providence, RI, 1987.

[Ku96] S. Kudla, Notes on the local theta correspondence, Lecture notes from the European School of Group Theory,
1996. http://www.math.toronto.edu/ skudla/ssk.research.html.

[LR05] E. Lapid and S. Rallis, On the local factors of representations of classical groups. Automorphic represen-
tations, L-functions and applications: progress and prospects, 309359, Ohio State Univ. Math. Res. Inst.
Publ., 11, de Gruyter, Berlin, 2005.

[LM20] B. Liu and G. Moss, On the local converse theorem and the descent theorem in families. Math. Z. 295
(2020), no. 1–2, 463–483.

[LZ19] B. Liu and Q. Zhang, Uniqueness of certain Fourier-Jacobi models over finite fields. Finite Fields Appl. 58
(2019), 70–123.

[LZ21] B. Liu and Q. Zhang, Gamma factors and converse theorems for classical groups over finite fields, Journal
of Number Theory, to appear.

[L84] G. Lusztig, Characters of Reductive Groups over a Finite Field. Annals of Math Studies, Volume 107,
Princeton University Press, 1984.

[L92] G. Lusztig, A unipotent support for irreducible representations, Advances in Math. 94(1992), 139–179.
[Mo18] K. Morimoto, On the irreducibility of global descents for even unitary groups and its applications, Trans.

Amer. Math. Soc. 370 (2018), 6245–6295.
[M16] G. Moss, Gamma factors of pairs and a local converse theorem in families. Int. Math. Res. Not. IMRN 2016,

no. 16, 4903–4936.
[N14] C. Nien, A proof of the finite field analogue of Jacquet’s conjecture, Amer. J. Math. 136 (2014), no. 3,

653–674.
[N19] C. Nien, Gamma factors and quadratic extension over finite fields, Manuscripta Math. 158 (2019), no. 1-2,

31–54.
[NZ21] C. Nien and L. Zhang, Converse theorem of Gauss sums. (with an appendix by Zhiwei Yun). J. Number

Theory 221 (2021), 365–388.
[RS89] S. Rallis, G. Schi↵mann, Theta correspondence associated to G2, American Journal of Math. 111(1989),

801–849.
[PS08] V. Paskunas and S. Stevens, On the realization of maximal simple types and epsilon factors of pairs. Amer.

J. Math. 130 (5) (2008), 1211–1261.
[PSRS92] I.I Piatetski-Shapiro, S. Rallis, G. Schi↵mann, Rakin-Selberg integral for the group G2, American Journal

of Math. 114(1992), 1269–1315.
[Ro10] E.A. Roditty, On Gamma factors and Bessel functions for representations of general linear groups over

finite fields, Master Thesis, Tel Aviv University. 2010.
[S84] F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for GL(n). Amer. J. Math.

106 (1984), no. 1, 67–111.
[St67] R. Steiberg, Lectures on Chevalley groups, Yale University, 1967.
[Su12] B. Sun, Multiplicity one theorems for Fourier-Jacobi models, American Journal of Mathematics 134 (2012),

1655–1678.
[T13] J. Taylor, On unipotent supports of reductive groups with a disconnected centre, J. Algebra 391 (2013),

41-61
[X13] P. Xu, A remark on the simple cuspidal representations of GLn. Preprint. 2013. arXiv:1310.3519.
[Zh17a] Q. Zhang, A local converse theorem for U(1, 1), Int. J. of Number Theory, 13, (2017), 1931–1981.
[Zh17b] Q. Zhang, A local converse theorem for U(2, 2), Forum Mathematicum, 29, (2017), 1471–1497.
[Zh18] Q. Zhang, A local converse theorem for Sp2r, Mathematische Annalen, 372 (2018), 451–488.
[Zh19] Q. Zhang, A local converse theorem for U2r+1, Transaction of the American Math Society, 371 (2019),

5631-5654.

Department of Mathematics, Purdue University, West Lafayette, IN 47906, USA
E-mail address: liu2053@purdue.edu

Department of Mathematical Sciences, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
E-mail address: qingzhang0@gmail.com


	1. Introduction
	Acknowledgements

	2. The Fourier-Jacobi group and a multiplicity one theorem
	2.1. Some notations and conventions
	2.2. Weil representations of Lg
	2.3. The group Lg and its Fourier-Jacobi subgroup

	3. Proof of Theorem Lg when Lg
	3.1. Character table of Lg
	3.2. Proof of Theorem 2.1 when Lg

	4. Proof of Theorem Lg when Lg
	5. Gamma factors for Lg
	5.1. Generic representations and Bessel functions
	5.2. Ginzburg's local zeta integral
	5.3. Lg-twisted gamma factors for generic cuspidal representations

	6. Gamma factors for Lg
	6.1. Embedding of Lg into Lg
	6.2. The Piatetski-Shapiro-Rallis-Schiffmann local zeta integral for Lg
	6.3. Decomposition of Lg
	6.4. On the Jacquet functor Lg
	6.5. Intertwining operator
	6.6. Lg-twisted gamma factors for generic cuspidal representations

	7. A converse theorem
	7.1. Weyl elements supporting Bessel functions
	7.2. An auxiliary lemma
	7.3. The converse theorem and twisting by Lg
	7.4. Sections in the induced representation Lg
	7.5. Proof of Theorem 7.3

	Appendix A. Computation of certain Gauss sums
	A.1. Basic Gauss sum
	A.2. Computation of Lg
	A.3. Computation of 
	A.4. Computation of Lg

	Appendix B. Embedding of Lg into Lg
	References

