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Abstract—Physical platforms such as trapped ions suffer from
coherent noise that does not follow a simple stochastic model.
We view coherent errors as rotations about a particular axis, and
observe that since they can accumulate coherently over time, they
can be more damaging. It is natural to consider coherent noise
acting transversally giving rise to an effective error, which is a
Z-rotation on each qubit by some angle θ.

Rather than addressing coherent noise through active error
correction, we instead investigate passive mitigation through
decoherence free subspaces. In the language of stabilizer codes,
we require the noise to preserve the code space, and to act trivially
(as the logical identity operator) on the protected information.
Thus, we develop necessary and sufficient conditions for all
transversal Z-rotations to preserve the code space of a stabilizer
code.

These conditions require the existence of a large number of
weight 2 Z-stabilizers, and together, these weight 2 Z-stabilizers
generate a direct product of single-parity-check codes. By adjust-
ing the size of these components, we are able to construct a large
family of CSS codes, oblivious to coherent noise, that includes the
[[4L2, 1, 2L]] Shor codes. Given m even and given any [[n, k, d]]
CSS code, we can construct an [[mn, k, d′ ≥ d]] CSS code that is
oblivious to coherent noise. This result is generalized to stabilizer
codes in [Hu, Liang, Rengaswamy, and Calderbank 2020].

The MacWilliams Identities play a central role in the technical
analysis, and classical coding theorists may be interested in
connections to classical codes with all weights divisible by some
integer d.

Index Terms — coherent noise, DFS, transversal Z-rotations,
Clifford hierarchy, MacWilliams identities

I. INTRODUCTION

In quantum systems, noise can broadly be classified into two
types – stochastic and coherent errors. Stochastic errors occur
randomly and do not accumulate over time along a particular
direction. Coherent errors may be viewed as rotations about
a particular axis, and can be more damaging, since they can
accumulate coherently over time [1]. As quantum computers
move out of the lab and become generally programmable,
the research community is paying more attention to coherent
errors, and especially to the decay in coherence of the effective
induced logical channel [2], [3]. It is natural to consider
coherent noise acting transversally, where the effect of the
noise is to implement a separate unitary on each qubit. Con-
sider, for example, an n-qubit physical system with a uniform
background magnetic field acting on the system according to
the Hamiltonian H = σ

(1)
Z + σ

(2)
Z + . . . + σ

(n)
Z , where σ

(i)
Z

denotes the Pauli Z operator on the ith qubit. Then the effective
error is a (unitary) Z-rotation on each qubit by some (small)
angle θ.

While it is possible to address coherent noise through
active error correction, it can be more economical to pas-

∗These two authors contributed equally to this work

sively mitigate such noise through decoherence free subspaces
(DFSs) [4]. In such schemes, one designs a computational
subspace of the full n-qubit Hilbert space which is unperturbed
by the noise. In the language of stabilizer codes, we require
the noise to preserve the code space, and to act trivially (as
the logical identity operator) on the protected information. In-
spired by the aforementioned Hamiltonian, which is physically
motivated by technologies such as trapped-ion systems, we
develop necessary and sufficient conditions for all transversal
Z-rotations to preserve the code space of a stabilizer code,
i.e., exp(iθH)ρ exp(iθH)† = ρ for all code states ρ in the
stabilizer code. When all angles preserve the code space, the
logical action must be trivial for any error-detecting stabi-
lizer code [5]. The conditions we derive build upon previous
work specifying conditions for a given transversal Z-rotation
in the Clifford hierarchy [6], [7], [8] to preserve the code
space of a stabilizer code [9]. The key challenge is handling
the trigonometric constraints, and we exploit the celebrated
MacWilliams identities [10] in classical coding theory for this
purpose. The conditions we derive lead to the construction of
a family of CSS codes with constant rate or growing distance.
A product structure with DFS components provides resilience
to coherent noise. Note that while our Z-DFS family is CSS,
all our conditions apply to general stabilizer codes.

Ouyang [11] provided a method of addressing coherent
phase errors by pairing two qubits to convert their collective
interactions to a global phase, in which a [[2n, k, d]] non-
stabilizer constant-excitation code is formed by concatenation
of an [[n, k, d]] stabilizer outer code with dual-rail inner code.
This approach has the disadvantage of producing a non-
stabilizer code which makes syndrome extraction and decoding
difficult. We avoid these decoding issues by deriving necessary
and sufficient conditions for a stabilizer code to be oblivious to
coherent phase errors. Based on the conditions and given any
[[n, k, d]] CSS code, we are able to construct a new [[2n, k, d′]]
CSS code, oblivious to coherent noise, with d′ ≥ d.

II. PRELIMINARIES AND NOTATIONS

A. The Pauli Group

There are four single qubit Pauli operators

I2 :=

[
1 0
0 1

]
, σX :=

[
0 1
1 0

]
, σZ :=

[
1 0
0 −1

]
,

and σY := ıσXσZ , where ı =
√
−1. σ2

X = σ2
Y =

σ2
Z = I2, σXσY = −σY σX , σXσZ = −σZσX , and σY σZ =
−σZσY .

Let A ⊗ B denote the Kronecker product (tensor product)
of two matrices A and B. For any binary vectors a =
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[α1, α2, · · · , αn] and b = [β1, β2, · · · , βn] in Fn2 , where
F2 = {0, 1} is the finite field of size 2, we define the operators

D(a,b) := σα1

X σβ1

Z ⊗ σ
α2

X σβ2

Z ⊗ · · · ⊗ σ
αn
X σβnZ ,

E(a,b) := ıab
T mod 4D(a,b).

Note that D(a,b) can have order 1, 2 or 4, but E(a,b)2 =

ı2ab
T

D(a,b)2 = ı2ab
T

(ı2ab
T

IN ) = IN (N = 2n). The n-
qubit Pauli group is defined as

HWN := {ıκD(a,b)|a,b ∈ Fn2 , κ = 0, 1, 2, 3}.

The basis states of a single qubit in C2 are represented by
Dirac notation, |·〉. For any v = [v1, v2, · · · , vn] ∈ Fn2 , we
define |v〉 = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉, which is the standard
basis vector in CN with 1 in the position indexed by v
and 0 elsewhere. An arbitrary n-qubit quantum state can be
written as |ψ〉 =

∑
v∈Fn2

αv|v〉 ∈ CN , where αv ∈ C and∑
v∈Fn2

|αv|2 = 1. The Pauli matrices act on a single qubit as

σX |0〉 = |1〉, σX |1〉 = |0〉, σZ |0〉 = |0〉, and σZ |1〉 = −|1〉.

Define 〈[a,b], [c,d]〉S = adT + bcT (mod 2) and using
the relation σXσZ = −σZσX we have (see [12])

E(a,b)E(c,d) = (−1)〈[a,b],[c,d]〉SE(c,d)E(a,b).

B. The Clifford Hierarchy

The Clifford hierarchy of unitary operators was defined in
[6]. The first level of the hierarchy is defined to be the Pauli
group C(1) = HWN . For l ≥ 2, the levels l are defined
recursively as

C(l) := {U ∈ UN : UE(a,b)U † ∈ C(l−1), ∀ E(a, b) ∈ HWN},

where UN is the group of N×N unitary matrices. The second
level is the Clifford Group, C(2), which can be generated using
the unitaries Hadamard, Phase, and Controlled-NOT (CX)
defined respectively as

H :=

[
1 1
1 −1

]
, P :=

[
1 0
0 ı

]
, CNOT :=

[
I2 0
0 σX

]
.

It is well-known that Clifford unitaries along with any
unitary from a higher level can be used to approximate any
unitary operator arbitrarily well [13]. Hence, they form a
universal set for quantum computation. A widely used choice
for the non-Clifford unitary is the T gate defined as

T :=

[
1 0

0 e
iπ
4

]
=
√
P = σ

1
4

Z ≡
[
e−

iπ
8 0

0 e
iπ
8

]
= e−

iπ
8 σZ .

C. Stabilizer Codes

We define a stabilizer group S to be a commutative subgroup
of the Pauli group HWN with Hermitian elements that does
not include −IN . We say S has dimension r if it can be
generated by r independent elements as S = 〈µiE(ci,di) :
i = 1, 2, . . . , r〉, where µi ∈ {±1} and ci,di ∈ Fn2 . Since S
is commutative, we must have 〈[ci,di], [cj,dj]〉S = cidj

T +
dicj

T = 0 (mod 2).
Given a stabilizer group S , the corresponding stabilizer code

is defined as V(S) := {|ψ〉 ∈ CN : g|ψ〉 = |ψ〉 for all g ∈ S},
which is the subspace spanned by all eigenvectors in the

common eigenbasis of S that have eigenvalue +1. The sub-
space V(S) is called an [[n, k, d]] stabilizer code because it
encodes k := n− r logical qubits into n physical qubits. The
minimum distance d is defined to be the minimum weight of
any operator in NHWN

(S) \ S . Here, the weight of a Pauli
operator is the number of qubits on which it acts non-trivially
(i.e., as σX , σY or σZ) and NHWN

(S) denotes the normalizer
of S in HWN as NHWN

(S) := {ıκE (a,b) ∈ HWN :
E (a,b)E (c,d)E (a,b) = E (c,d) for all E (c,d) ∈
S, κ ∈ {0, 1, 2, 3}}.

For any Hermitian Pauli matrix E (c,d) and ν ∈ {±1},
IN+νE(c,d)

2 is the projector on to the ν-eigenspace of E (c,d).
Thus, the projector on to the codespace V(S) of the stabilizer
code defined by S = 〈µiE (ci,di) : i = 1, 2, . . . , r〉 is

Πs =
r∏
i=1

(IN + νiE (ci,di))

2
=

1

2r

2r∑
j=1

εjE (aj,bj) ,

where εj ∈ {±1} is a character of the group S , and is deter-
mined by the signs of the generators that produce E(aj,bj):
εjE (aj,bj) =

∏
t∈J⊂{1,2,...,r} νtE (ct,dt) for a unique J .

D. CSS Codes

A CSS (Calderbank-Shor-Steane) code is a special type of
stabilizer code defined by a stabilizer S whose generators can
be split into strictly X-type and Z-type operators. Consider
two classical binary codes C1, C2 such that C2 ⊂ C1, and let
C⊥1 , C⊥2 denote the dual spaces of C1 and C2 respectively. Note
that C⊥1 ⊂ C⊥2 . The corresponding CSS code has the stabilizer
group

S = 〈νcE (c,0) , νdE (0,d) , c ∈ C2, d ∈ C⊥1 〉

for some suitable νc, νd ∈ {±1}. If C1 is an [n, k1] code and
C2 is an [n, k2] code such that C1 and C⊥2 can correct up to t
errors, then S defines an [[n, k1 − k2, d]] CSS code with d ≥
2t + 1, which we will represent as CSS(X, C2;Z, C⊥1 ). If G2

and G⊥1 are the generator matrices for C2 and C⊥1 respectively,
then a binary generator matrix for S can be written as the
(n− k1 + k2)× (2n) matrix

GS =

[
G2

G⊥1

]
.

E. The MacWilliams Identities

We denote the Hamming weight of a binary vector v by
wgt(v). The weight enumerator of a binary linear code C ⊂
Fm2 is the polynomial

PC(x, y) =
∑
v∈C

xm−wgt(v)ywgt(v).

The MacWilliams Identities [10] relate the weight enumerator
of a code C to that of the dual code C⊥

PC(x, y) =
1

|C⊥|
PC⊥(x+ y, x− y).

We frequently make the substitution x = cos 2π
2l

and y =
ı sin 2π

2l
for some integer l, and we define

P [C] := PC

(
cos

2π

2l
, ı sin

2π

2l

)

1482
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=
∑
v∈C

(
cos

2π

2l

)m−wgt(v)(
ı sin

2π

2l

)wgt(v)

.

III. MAIN CONTRIBUTIONS

Recall that we want to find conditions that render stabilizer
codes oblivious to coherent errors. Note that if an error-
detecting code can implement the transversal exp(ıθσZ) for
a sequence of θ approaching 0, then it must implement
the logical identity [5], since we treat infinitesimally small
transversal rotations as a sum of single-qubit errors. For
each l ≥ 3, Rengaswamy et al. [9] provided necessary and
sufficient conditions for a stabilizer code to be invariant under
a transversal π

2l
Z-rotation, and the conditions are expressed

as two trigonometric constraints on the binary code formed by
Z-stabilizers supported on the non-zero X-component (aj) of
any stabilizer (denoted as Zj) and its cosets. In order to be
oblivious to coherent noise, we need to design stabilizer codes
satisfying these two trigonometric conditions for all l ≥ 3.

Theorem 1. [9, Theorem 17] Let S = 〈νiE(ci,di); i =
1, . . . , r〉 define an [[n, n− r]] stabilizer code, where νi ∈
{±1}. For any εjE(aj,bj) ∈ S with non-zero aj , we define

Zj := {z ∈ Fwgt(aj)
2 : εz̃E (0, z̃) ∈ S and z̃ � aj}, (1)

where z̃ ∈ Fn2 with z̃|supp(aj) = z and constantly zeros outside
the support of aj. Then the transversal application of the
exp

(
ıπ
2l
σZ
)

gate (l ≥ 3) realizes a logical operation on V(S)
if and only if the following are true for all such aj 6= 0:∑

v∈Zj

εv

(
ı tan

2π

2l

)wgt(v)

=

(
sec

2π

2l

)wgt(aj)

, (2)

∑
v∈Zj

εv

(
ı tan

2π

2l

)wgt(v⊕w)

= 0 for all w ∈ Oj (3)

where εv = εṽ ∈ {±1} is the sign of E(0, ṽ) in the stabilizer
group S and Oj := Fwgt(aj)

2 \ Zj .

If the signs of the Z-stabilizers in Zj are all one, the
first trigonometric condition states that the weight enumerator
polynomial evaluated at x = cos 2π

2l
and y = ı sin 2π

2l
is equal

to 1. We now use the MacWilliams Identities [10] to translate
the trigonometric constraints into divisibility conditions on
Hamming weights of vectors in Z⊥j . We denote the length
m vector whose entries are all 0 (resp. 1) by 0m (resp. 1m).

Lemma 1. Let C be a binary linear code with block length
M , where all weights are even. Let l ≥ 3. Then,∑

v∈C

(
ı tan

2π

2l

)wgt(v)

=

(
sec

2π

2l

)m
(4)

if and only if (m−2 wgt(w)) is divisible by 2l for all w ∈ C⊥.

Proof. We rewrite (4) as

P [C] =
∑
v∈C

(
cos

2π

2l

)m−wgt(v)(
ı sin

2π

2l

)wgt(v)

= 1. (5)

After applying the MacWilliams Identities, (5) becomes
1

|C⊥|
PC⊥ (xnew, ynew) = 1, (6)

where xnew = cos 2π
2l

+ ı sin 2π
2l

and ynew = cos 2π
2l
− ı sin 2π

2l
.

We may rewrite (6) as

1

|C⊥|
∑

w∈C⊥
xm−wgt(w)

new ywgt(w)
new = 1, (7)

which can be further simplifed as

1

|C⊥|
∑

w∈C⊥
xm−2 wgt(w)

new = 1, (8)

since (cos θ + ı sin θ) (cos θ − ı sin θ) = 1 for all θ. Note that
1m ∈ C⊥, so the complement of a codeword is again a
codeword in C, and we may rewrite (8) as

1

|C⊥|

 ∑
w∈C⊥

xm−2 wgt(w)
new +

∑
w∈C⊥

x−(m−2 wgt(w))
new

 = 2.

(9)
Since (cos θ + ı sin θ)n = eınθ, for all θ, (9) reduces to

1

|C⊥|
∑

w∈C⊥
cos

(
2 (m− 2 wgt (w))π

2l

)
= 1. (10)

We observe that (10) is satisfied if and only if each term
contributes 1 to the sum, and this is equivalent to 2l dividing
m− 2 wgt(w) for all codewords w in C⊥. �

If half the signs are positive and half negative, then the
trigonometric condition is a linear combination of weight
enumerators, and the same method of analysis applies.

Lemma 2. IfW is the [m,m−1] code consisting of all vectors
with even weight, and if εv = (−1)vy

T

is a character on W ,
then∑

v∈W
εv

(
ı tan

2π

2l

)wgt(v)

= cos γ ·
(

sec
2π

2l

)m
, (11)

where γ = 2π(M−2 wgt(y))
2l

.

Proof. If ε is the trivial character, then y = 0m, we have∑
v∈W

(
ı tan 2π

2l

)wgt(v)(
sec 2π

2l

)m = P [W ] . (12)

We apply the MacWilliams Identities to obtain

P [W ] =
1

|W⊥|
PW⊥

(
cos

2π

2l
+ ı sin

2π

2l
, cos

2π

2l
− ı sin 2π

2l

)
=

1

|W⊥|
PW⊥

(
eı

2π

2l , e−ı
2π

2l

)
=

1

2

[(
eı

2π

2l

)m (
e−ı

2π

2l

)0

+
(
eı

2π

2l

)0 (
e−ı

2π

2l

)m]
= cos

2πm

2l
, (13)

which means∑
v∈W

(
ı tan

2π

2l

)wgt(v)

= cos
2πM

2l

(
sec

2π

2l

)m
. (14)

If ε is a non-trivial character, then there exists y ∈ Fm2 with
y 6= 0m or 1m such that

B = {v ∈W |εv = 1} = 〈1m,y〉⊥, (15)
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and
B⊥ = 〈1m,y〉 = {0m,1m,y,1m ⊕ y}. (16)

Note that |B| = |W|
2 and |B⊥| = 2|W⊥|. We rewrite∑

v∈W
εv

(
ı tan

2π

2l

)wgt(v)

(17)

=
∑
v∈B

(
ı tan

2π

2l

)wgt(v)

−
∑

v∈W\B

(
ı tan

2π

2l

)wgt(v)

(18)

= 2
∑
v∈B

(
ı tan

2π

2l

)wgt(v)

−
∑
v∈W

(
ı tan

2π

2l

)wgt(v)

, (19)

so that∑
v∈W εv

(
ı tan 2π

2l

)wgt(v)(
sec 2π

2l

)m = 2P [B]− P [W ] . (20)

We apply the MacWilliams Identities to obtain

P [B] =
1

|B⊥|
PB⊥

(
eı

2π

2l , e−ı
2π

2l

)
(21)

=
1

2

[
cos

2πm

2l
+ cos

2π(m− 2 wgt(y))

2l

]
. (22)

We combine with (14) to obtain

2P [B]− P [W ] = cos
2π (m− 2 wgt (y))

2l
(23)

as required. �

Lemma 3. [5, Lemma 6] Let ε be a non-trivial character
of Fm2 , B = {v ∈ W|εv = 1} = 〈1m,y〉⊥, and B′ = {x ∈
Fm2 |εx = 1}. If W is the [m,m − 1] code consisting of all
vectors with even weight, then∑

v∈Fm2 \W

εv

(
ı tan

2π

2l

)wgt(v)

= ı sin γ ·
(

sec
2π

2l

)m
, (24)

where γ = 2π(m−2 wgt(y))
2l

.

Suppose that every qubit is in the support of some stabilizer
εjE(aj,bj). When the trigonometric conditions are satisfied
for all l ≥ 3, we show that the weight 2 Z-stabilizers cover all
the qubits. We define a graph Γ with n vertices representing
n qubits, where two vertices are joined by an edge if there
exists a weight 2 Z-stabilizer involving those two qubits.

Let Γ1,Γ2, . . . ,Γt be the connected components of Γ, and
let Nk = |Γk| be even for k = 1, 2, . . . , t. We observe that
each Γk is a complete graph. Hence, the weight 2 Z-stabilizers
in each Γk span the [Nk, Nk−1, 2] binary single-parity-check
codeWk, which contains all vectors of even weight. Note that
the signs are multiplicative, and if half of them are positive
and half negative, then εv , the sign of Z-stabilizer E(0Nk ,v),
takes the form εv = (−1)vu

T

for some u ∈ Fn2 . We write
u =

∑t
k=1 ũk where ũk ∈ Fn2 is supported on the qubits in

Γk, and we use uk ∈ ZNk2 to denote the projection of ũk to
Γk. We calculate the trigonometric conditions on each Γk for
k = 1, · · · , t separately, and then glue them together.

Let µi = ±1 for i = 1, . . . , r and let S =
〈νiE(ci,di); i = 1, . . . , r〉 define an [[n, n− r]] stabilizer

code. Let εjE(aj,bj) ∈ S be a stabilizer with aj 6= 0n.
We define (∆j)k := 1 if Γk ⊆ supp(aj) and (∆j)k := 0
if Γk ∩ supp(aj) = ∅.

Theorem 2. Transversal π
2l
Z-rotation preserves the stabilizer

code for all l ≥ 3 if and only if
1) ⋃

k:(∆j)k=1

Γk = supp(aj) (25)

2) Nk is even and wgt(uk) = Nk
2 for all k such that

(∆j)k = 1.

Proof of Necessity. We divide the weight 2 stabilizers in Γk
into two classes of sizes Pk and Qk where Pk = |{v ∈
Γk|wgt(v) = 2 and εv = 1}| and Qk = |{v ∈ Γk|wgt(v) =
2 and εv = −1}|. Setting wgt(uk) = s, we have

Qk − Pk =

(
s

1

)(
Nk − s

1

)
−
((

s

2

)
+

(
Nk − s

2

))
(26)

= −2

(
s− Nk

2

)2

+
Nk
2
. (27)

Thus, Qk − Pk ≤ Nk
2 , and equality holds if and only if

wgt(uk) = Nk
2 . Theorem 1 implies all wgt(aj) are even and∑

v∈Zj

εv (ı tan θ)
wgt(v)

= (sec θ)
wgt(aj) = (1+(tan θ)2)

wgt(aj)

2

(28)
for all θ = π

2l
with l ≥ 3. Let Zj(2t) = {z ∈ Zj |wgt(z) =

2t}. We have
wgt(aj)

2∑
t=0

∑
v∈Zj(2t)

εv(−1)t (tan θ)
2t

=
(
1 + (tan θ)2

)wgt(aj)

2 .

(29)
for all θ = π

2l
with l ≥ 3. Since this polynomial has infinitely

many roots, it is identically zero and we may equate the
coefficients of (tan θ)

2 to obtain

wgt(aj)

2
=

∑
v∈Zj(2)

εv · (−1) =
∑

k:(∆j)k=1

(Qk − Pk). (30)

It follows from (27) that

wgt(aj)

2
≤

∑
k:(∆j)k=1

Nk
2
≤ wgt(aj)

2
. (31)

Therefore equality holds in (31) and Qk − Pk = Nk
2 for all k

such that (∆j)k = 1, which complete the proof.
Proof of Sufficiency. Let W0

k be the [Nk, Nk − 1] single-
parity-check code and let W1

k = FNk2 \ W0
k . Let Wj =⊕

k:(∆j)k=1W0
k . Then, we observe for r ∈ Fwgt(aj)

2 /Zj ,∑
v∈Zj⊕r

εv

(
ı tan

2π

2l

)wgt(v)

=
∑

δ∈(Zj/Wj)⊕r

∏
k

(∆j)
k
=1

fj,k(δ),

(32)

where

fj,k(δ) =
∑

η∈W
αk
δ

k

(−1)ukη
T

(
ı tan

2π

2l

)wgt(η)

, (33)
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and αkδ = 0 or 1 according as wgt(δ|Γk) is even or odd.
Let γ = 2π(Nk−2 wgt(uk))

2l
. We apply (14) and (24) to

simplify (33) as

fj,k(δ) =

{
cos γ ·

(
sec 2π

2l

)Nk if αkδ = 0,

ı sin γ ·
(
sec 2π

2l

)Nk if αkδ = 1,

=

{ (
sec 2π

2l

)Nk if αkδ = 0,
0 if αkδ = 1.

(34)

To verify (2) in Theorem 1, we see that if r = 0wgt(aj), the
only term that contributes to the outer sum of (32) is the trivial
δ, so for all l ≥ 3∑

v∈Zj

εv

(
ı tan

2π

2l

)wgt(v)

=
∏
k

(∆j)
k
=1

(
sec

2π

2l

)Nk

=

(
sec

2π

2l

)wgt(aj)

. (35)

To verify the second condition, let ω ∈ Oj = Fwgt(aj)
2 \ Zj

and we change variables to β = v⊕ω and ω on the right hand
side (note that we have extended the εv to all binary vectors)∑
v∈Zj

εv

(
ı tan

2π

2l

)wgt(v⊕ω)

= εω
∑

β∈ω⊕Zj

εβ

(
ı tan

2π

2l

)wgt(β)

= εω
∑

δ∈(Zj⊕ω)/Wj

∏
k

(∆j)
k
=1

fj,k(δ)

= 0, (36)

for all l ≥ 3 since the last step follows from ω 6= 0wgt(aj)

and there is at least one zero factor in the product. �

Once the code space is preserved by transversal Z rotations
from all levels l of the Clifford hierarchy, it is easy to see that
the transversal Z rotation of any angle preserves the code space
as well [5]. Furthermore, for error-detecting stabilizer codes,
it can also be seen that this implies that every such transversal
Z rotation acts trivially on the code space. Thus, any code that
satisfies the above theorem acts as a DFS for a coherent error
that acts via the Hamiltonian H = σ

(1)
Z +σ

(2)
Z +. . .+σ

(n)
Z . The

code can be seen as the product of all connected components
Γk, which act as DFS components for this noise.

Remark 1. Given any CSS code, Theorem 2 forces a product
structure on the code and provides constraints on the signs.
This enables the construction of a family of new CSS codes
that is oblivious to coherent noise.

LetA ⊂ B be two classical codes with length t. Let r1, r2 be
the rates of A, B respectively. Then, by choosing X-stabilizers
to be A and Z-stabilizers to be B⊥, we have a [[t, (r2−r1)t,≥
min(dmin(B), dmin(A⊥))]] CSS code. Let m ≥ 2 be even, and
let W to be the sigle-parity-check [m,m − 1] code. Define
C2 = A⊗ 1m and

C⊥1 = {b⊗ e1 + w | w ∈
t⊕
i=1

W and b ∈ B⊥} (37)

to be the X-stabilizers and Z-stabilizers respectively in the
new family of CSS codes. By this construction, we ensure

that C⊥1 includes the direct sum of t single-parity-check codes
W (Condition 1 in Theorem 2). Thus, we can choose y such
that

εzi
= (−1)ziy

T

, where wgt(y) =
m

2
. (38)

on each component (Condition 2 in Theorem 2). Note that
the choice of y is not unique. Observe that dim(C⊥1 ) =
(m− 1)t+ dim(B⊥) = (m− 1)t+ (1− r2)t and dim(C2) =
dim(A) = r1t. The number of logical qubits in this new
family is k = mt − dim(C⊥1 ) − dim(C2) = (r2 − r1)t.
If x is orthogonal to all Z-stabilizers, then x has weight
at least mdmin(B). If z is a vector of minimum weight
that is orthogonal to all X-stabilizers, then either z is a
Z-stabilizer or z is a vector from A⊥ interspersed with
appropriate zeros. Thus, the minimum distance of the CSS
code is at least min(mdmin(B), dmin(A⊥)). Thus, we have a
[[mt, (r2− r1)t,≥ min(mdmin(B), dmin(A⊥))]] (CSS) QECC
family that is oblivious to coherent noise.

Increasing the number of qubits by a factor m makes it
possible to design a CSS code that is oblivious to coherent
noise. In particular, if we choose m = 2, then we generalize
Ouyang’s construction [11] and are able to provide stabilizer
codes with increasing distance. Please see [5] for the general-
ized construction for stabilizer codes.

An extremal example is to take B⊥ = {0t} and A a [t, t−1]
single-parity-check code. For fixed t, this pair of A and B
leads to the maximum (r2 − r1) = t− 1 logical qubits of the
new CSS code, which achieves the maximal rate (t− 1)/2 by
choosing m = 2. On the other hand, for t = 2L, we may
choose the maximal m = t = 2L to obtain the well-known
family of [[4L2, 1, 2L]] Shor codes.

Fig. 1. The [[16, 1, 4]] Shor code constructed by concatenating the [[4, 1]]
bit-flip code and the [[4, 1]] phase-flip code. The filled circles represent
physical qubits, the white (resp. gray filled) squares represent weight 2
Z-stabilizers with negative (resp. positive) sign, and the three large filled
rectangles represent weight 8 X-stabilizers.

Example 1. The connected components Γ1, . . . ,Γ4 of this
[[16, 1, 4]] Shor code correspond to the 4 qubits in some row.
For each component Γk, we see that uk = [0, 1, 1, 0] satisfies
the aforesaid necessary and sufficient condition. Hence, all
transversal Z rotations on this code fix the code space and in-
duce the trivial logical identity operation on the single encoded
qubit. Moreover, we can see that the [[16, 1, 4]] Shor code is in-
cluded in the [[mt, (r2− r1)t,≥ min(mdmin(B), dmin(A⊥))]]
CSS family, oblivious to coherent noise, with t = m = 4 and
B⊥ = {04} and A = [4, 3] single-parity-check code.
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