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We investigate the resonance-enhanced few-photon ionization of atomic lithium by linearly polarized light
whose frequency is tuned near the 2s-2p transition. Considering the direction of light polarization orthogonal
to the quantization axis, the process can be viewed as an atomic “double-slit experiment” where the 2p states
with magnetic quantum numbers m, = =1 act as the slits. In our experiment, we can virtually close one of the
two slits by preparing lithium in one of the two circularly polarized 2p states before subjecting it to the ionizing
radiation. This allows us to extract the interference term between the two pathways and obtain complex phase
information on the final state. The experimental results show very good agreement with numerical solutions of
the time-dependent Schrodinger equation. The validity of the two-slit model is also analyzed theoretically using

a time-dependent perturbative approach.

DOI: 10.1103/PhysRevA.106.023113

I. INTRODUCTION

Two-path interference is one of the most intriguing and
intensely studied phenomena in physics. It was first demon-
strated in 1801 for optical light by Young in his well-known
double-slit experiment [1]. The historic importance of this
experiment for the development of quantum theory is hard
to overstate, because it reveals the wave nature of massive
particles such as electrons [2,3], atoms [4], and even large
molecules [5], thereby supporting de Broglie’s hypothesis
of wave-particle duality [6]. To this day, this phenomenon
has not lost its appeal, and it has been observed in numer-
ous systems. On the one hand, it allows us to extract phase
information on wave functions, which is commonly not di-
rectly observable. On the other hand, it is exploited in many
quantum-control schemes, because the manipulation of the
relative amplitudes of the two pathways makes it possible
to control the final state with high sensitivity. In atomic
and molecular scattering processes, examples include well-
known effects such as Feshbach, shape, and Fano resonances
(e.g., [7-10]), or atomic-scale double-slits formed by diatomic
molecules exhibiting interferences in differential ionization
cross sections due to ion [11-14], electron [15,16], or photon
impact [17,18].

Multiphoton ionization processes of single atoms ex-
pose two- and multipath interferences in a particularly
clean way, because of the well-defined energy and limited
angular-momentum transfer in photon absorption reactions.
A prominent example is RABBITT (Reconstruction of At-
tosecond Beating by Interference of Two-photon Transitions)
spectroscopy [19-22], which has become the standard tool
to characterize extreme-ultraviolet (XUV) attosecond pulse
trains and allows the study of attosecond atomic dynamics in
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the time domain. Two-color ionization schemes using (lower)
harmonic radiation [23-26] enable the coherent control of
the reactions’ final state via two-path interferences. Re-
cently, other schemes have been considered, where double-slit
structures in so-called Kramers-Henneberger states emerge
through the distortion of a bound state by an external field,
once again resulting in interference patterns [27]. Two-path
interference has not only been observed in laser pulses but also
using two mutually incoherent (i.e., without relative phase
lock) continuous-wave (cw) lasers in the two-photon ioniza-
tion of rubidium atoms [28], where the photon energies are
tuned to two different resonances.

In the present study, two-path interference occurs in the
ground-state ionization of lithium exposed to single-color
femtosecond laser pulses, which are linearly polarized in the
y direction. The laser spectrum has its center wavelength at
660 nm and partially overlaps with the 2s-2p resonance at
671 nm. For the quantization axis chosen as the z direction, the
absorption of a single photon results in the excitation to the 2p
state coherently populating the two magnetic sublevels with
my = +1 and —1, respectively. These two eigenstates resem-
ble the two “slits” in analogy to Young’s double-slit scheme
(see Fig. 1). From these two excited levels, the atom is ionized
without further resonance enhancement by the absorption of
two more photons from the same laser pulse. The final result
is a superposition of electronic p and f continuum waves.

It is important to note that the distinction of these two
pathways relies on the choice of the quantization direction.
However, this choice is motivated by the experimental ca-
pability of preparing the atoms selectively in one of the
two excited and polarized magnetic sublevels of the 2p state
before exposing them to the femtosecond laser pulse. This
enables us to measure not only the final intensity of the two

©2022 American Physical Society
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FIG. 1. Few-photon ionization scheme in lowest-order perturba-
tion theory. The ionization pathways from the 2p state with m, = +1
and —1 are shown as red dashed and blue dotted arrows, respectively.
The 2s ionization corresponds to the superposition of both.

interfering pathways, which corresponds to the differential
cross sections for the ionization of the 2s state, but also the
intensity of each pathway individually via 2p ionization. This
fact can approximately be expressed as (see Appendix for a
derivation and discussion of the validity criteria)

| A () = al AL, (p) + Ay, ()1, (1)

where Ay (p), .A;’p(p), and Aj (p) represent the ionization
amplitudes for a photoelectron with asymptotic momen-
tum p from the initial 2s(m; =0), 2p(m, = +1), and
2p (my = —1) states, respectively, while « is a real factor.
Equation (1) holds in our case under the assumptions that (i)
the pulse is sufficiently long and the light frequency is tuned
near the 2s-2p transition, such that only resonant transitions
to the 2p states through the first photon absorption contribute
(virtual excitations can be neglected), and (ii) the field is suf-
ficiently weak that the ionization amplitude can be expressed
through a perturbative expansion (even beyond the lowest
order). While the transfer between 2s and 2p was adiabatic
in our case, we found Eq. (1) to remain fairly accurate even
for nonadiabatic transfer (see Appendix for more details). In
addition, the experimental observations and calculations will
be shown to be in excellent agreement, thereby providing
further evidence of the validity of Eq. (1). Using this approach,
we obtain a direct and intuitive way to extract the complex
phase difference between A7 and A;, as a function of the
electron emission angle, thereby revealing the effect of the
orientation of the initial electron orbital angular momentum
on the final state’s phase.

II. METHODS

The experimental technique and the theoretical method
are identical to those reported in previous studies on very
similar systems [29-31]. Therefore, only some key features
are repeated here, and parameters specific to the present study
are mentioned.

Lithium atoms are cooled and confined in a volume of
approximately 4 mm? in a near-resonant all-optical atom trap

(AOT) [32] with a fraction of about 25% being in the polarized
excited 2p (m, = +1) state and about 75% in the 2s ground
state. The atoms are ionized in the field of a femtosecond
laser based on a Ti:Sa oscillator with two noncollinear optical
parametric amplifier (NOPA) stages. For the present study, the
laser wavelength was chosen to center at 660 nm with pulse
durations [full width at half-maximum (FWHM) of intensity]
of about 65 fs and a peak intensity of about 3 x 10! W/cm?.
The three-dimensional electron momentum vectors are mea-
sured with a resolution of about 0.01 a.u. [33] in a reaction
microscope, which is described in detail in [34,35]. It is
important to note that this experimental setup enables us to
obtain differential cross-normalized data for the ionization of
the 2s and the 2p initial states simultaneously.

In our theoretical model, the lithium atoms are approxi-
mated as a single active electron moving in the field of a 15>
ionic core. The latter is described by a static Hartree potential
[36,37], which is supplemented by phenomenological terms
to account for the core polarizability as well as exchange
between the valence electron and those in the core [29]. The
(complex) final-state wave function is obtained after prop-
agating the initial state in time by numerically solving the
time-dependent Schrodinger equation (TDSE).

III. RESULTS AND DISCUSSION

In the present study, lithium atoms in the 2s ground state
and 2p excited state are ionized in a laser field with a central
wavelength of 660 nm at intensities well below 10'" W /cm?.
This situation corresponds to Keldysh parameters y > 20,
and hence the system is expected to be well described in a
multiphoton picture. The two initial states are ionized by the
absorption of (at least) three (from 2s) or two (from 2p) pho-
tons, respectively, resulting in a final electron energy of about
200 meV. The measured and calculated electron momentum
spectra shown in Fig. 2 are in excellent agreement with each
other. Before proceeding to the analysis of the two-path inter-
ference introduced above, two important features of the data
should be mentioned, even though they were already reported
previously in several recent studies [29,31].

First, while the photoelectron momentum distributions
(PMDs) for 2s ionization exhibit reflection symmetry with re-
spect to the laser electric field direction (the vertical direction
in the momentum spectra shown in Fig. 2), this symmetry is
broken for ionization of the polarized 2p state. Consequently,
the main electron emission direction appears to be shifted.
The dependence of this phenomenon, known as magnetic
dichroism, on the laser wavelength and intensity was recently
investigated by Acharya et al. [31]. In this earlier study, these
asymmetries were explained in a partial-wave picture. They
were traced back to a nonvanishing mean orientation of the
final electron orbital angular momentum (#,) # 0. This “rem-
nant” of the initial target polarization is partially preserved
throughout the ionization process. The angular shifts and ob-
served asymmetries are a result of the interference between
(phase-shifted) partial waves with different m,.

Second, the azimuthal photoelectron angular distributions
(PADs) for 2p ionization feature six peaks. As discussed be-
low, this indicates beyond lowest-order contributions to the
ionization cross section. Generally, the dependence of the
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FIG. 2. Experimental (left) and theoretical (right) photoelectron
momentum distributions projected onto the xy plane for few-photon
ionization of the 2s (top row) and 2p (m, = +1) (bottom row) initial
states by linearly polarized laser pulses of 65 fs duration with a center
wavelength of 660 nm and a peak intensity of 3.1 x 10'© W/cm?2,
The laser polarization direction is along the y axis (i.e., vertical),
while the atomic initial orbital angular momentum is oriented in the
z direction (i.e., perpendicular to the drawing plane).

differential cross section on the azimuthal angle ¢ is given
by [31]

2
do

e

E Cme™?

me

2)

where the factors ¢, relate to the complex amplitudes of the
partial waves. In lowest-order perturbation theory (LOPT),
only the shortest pathways to the final state (i.e., the absorp-
tion of only the minimum number of photons needed to reach
the final photoelectron energy) are considered. For the present
initial 2p (m, = 41) state, this corresponds to two-photon
absorption. In the electric dipole approximation, this results in
partial waves with my, = —1, 41, and +3 contributing to the
final state (cf. Fig. 1). For this set of dipole-allowed m, values,
therefore, the above expression results in a photoelectron an-
gular distribution with no more than four peaks, in contrast
to the six peaks observed in both the experiment and the
ab initio calculation. This evident violation of LOPT close
to the 2s-2p resonance was reported and discussed in our
previous study as well: It is explained by the coupling between
the 2s and 2p states in the external field giving rise to adiabatic
population transfer between these two states and resulting in a
contribution of m, = —3 to the final state. Accounting for this
additional pathway, the expression in Eq. (2) allows angular
distributions with up to six peaks, which is consistent with
experiment and calculation.

The validity of the two-path interference expression given
in Eq. (1) can be tested by using our theoretical description.
In a first step, the .A;p and .A;rp amplitudes for the ionization
of the 2p initial states with m; = —1 and 41, respectively,
are calculated. Their absolute squares, corresponding to the
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FIG. 3. Absolute square of the calculated wave functions A7,

and A,, (left), of their coherent sum A;’p + A, (center), and of Ay,
(right) in the xy plane in momentum space. See text for details.

differential ionization cross sections, are shown as a function
of the photoelectron momentum in Fig. 3 (left) considering
only electron emission in the xy plane (i.e., for a polar an-
gle ¥ = 90°). Due to symmetry considerations, the systems
with opposite initial orbital angular momentum m, = +1 and
—1 are mirror images of one another with the mirror plane
spanned by the laser polarization direction (the y axis) and
the direction of the initial atomic polarization (the z axis).
Specifically, A7 (0,.p) = A;,(p), where o, is the reflection
operator through the yz plane.

In the second step, Eq. (1) is tested by comparing the calcu-
lated momentum distribution for 2s ionization (corresponding
to |Ass|%) with the intensity of the superposition of the two
amplitudes for 2p ionization IAZD + A2_p|2. The PMDs ob-
tained by both methods are shown in Fig. 3 (right and center,
respectively). They are in overall very good agreement indeed,
although the |Ay|? distribution has a slightly larger diameter.
This small discrepancy is a result of slightly different (by
approximately 10%) photoelectron energies for 2s and 2p
ionization, because the wavelength of the ionizing field is off
the 2s-2p resonance by about 10 nm.

The discussion above shows that the final momentum
distribution for 2s ionization can be calculated, to a good
approximation, from the .A;“p ionization amplitude by ex-

ploiting Eq. (1) and the mirror symmetry between A;p and

Az_,,- Evidently, this is not possible with the experimental
data, because only the absolute square of the final-state wave
function |.A;;|2 is directly measured. However, the relative
phase between A and Aj, can be extracted from Eq. (1)
by reversing the above procedure and solving for the phase
difference. This yields

A () — | A5 ()2 — el A;, (p)
20143, (P45, ()] ’

where A¢(p) = arg[AZf (p).Agp(p)]. The reconstruction of
the phase difference A¢ in three-dimensional momentum
space from experimental data using Eq. (3) requires matching
photoelectron energies for 2s and 2p ionization, which is not
strictly fulfilled for the present laser wavelength. The question
arises whether, in spite of the small photoelectron energy
mismatch, Eq. (3) is still applicable if only the dependence on

cos Ag(p) =

3)
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240°

FIG. 4. Angular distributions extracted from the wave functions
in Fig. 3 as a function of the photoelectron azimuthal angle ¢. Left:
angular distribution of |.A} |* (solid blue line) and |.A;,|* (dashed red
line). Right: | A}, + .,42’[,|2 (dashed black) and |Aj,|* (solid green).

the electron emission angle is considered (i.e., for the electron
energy fixed at the peak energy). This can be the case if the
angular distributions do not significantly vary with small shifts
of the photoelectron energy. This is tested by comparing the
calculated angular distributions for 2s ionization (extracted
from |Ay|%) with the distribution obtained for the interfering
wave functions |.A;p + A2_p|2'

The corresponding angular distributions are shown in
Fig. 4. Indeed, the angular spectrum obtained from the
interfering wave functions closely resembles the distribution
calculated for 2s ionization. There is only a small deviation
in the relative intensity of the main peak in the polarization
direction and the side peaks. Therefore, we conclude that
Eq. (3) makes it possible to extract the phase difference A¢
(to a good approximation) as a function of the azimuthal angle
for the peak photoelectron energy.

Before Eq. (3) can be employed to calculate the phase
difference A¢ from the experimental data, the factor o must
be determined. Here we can borrow an idea from Young’s
double-slit experiment, where we know that the total flux
is conserved, i.e., the total intensity equals the sum of the
intensities going through each slit individually. In our case,
this means that the momentum-integrated interference term in
Eq. (1) should vanish, i.e.,

f &’ pl A3, (p)II A, (p)] cos[ A (p)] = 0. 4)

Equation (4) holds since the azimuthal dependence of the
interference is expressed as the superposition of terms of
the form |c,||c,| cos[(n — m)¢p], where n # m, and hence
fozn d¢ cos [(n — m)¢] = 0. Therefore, the interference term
does not contribute to the total intensity, and the factor « is
readily found as

. [ &pl AL () + [ d*pl A5, (p)I
B [ d3plAx(p)? '

®)

The experimental PADs are shown in Fig. 5 (left). While
the distributions for the ionization for the 2s and the
2p (my = +1) initial states are measured directly in our exper-
iment, the data for 2p (my = —1) are obtained by reflecting
the data for the opposite target polarization on the laser po-
larization axis. Using these angular distributions, the cosine

90° ' 180°  270°  360°
azimuthal angle ¢

FIG. 5. Left: Experimental PADs as a function of the azimuthal
angle ¢ for the few-photon ionization of lithium initially in the 2s
(solid green line) and 2p state with m, =+1 (blue solid line and open
triangles) and —1 (red dashed line and solid squares). The lines are
interpolating splines to guide the eye. Right: Experimental (red open
circles) and theoretical (solid line) cosine of the phase difference as
a function of the photoelectron azimuthal angle ¢. The dashed red
line is derived from the theoretical angular distributions that were
convolved with the experimental resolution (see text).

of the phase difference is calculated with Eq. (3), plotted in
Fig. 5 (right), and compared to the theoretical predictions.

The distribution features six crests and troughs whose
positions agree very well between theory and experiment.
However, some discrepancies in the magnitude persist. While
the calculated curve reaches the maximum and minimum val-
ues of +1 and —1, respectively, the oscillation is weaker in
the experimental data. Generally, a value of 41 for cos A¢
corresponds to maximum constructive interference, which is
expected at angles where the angular distribution for 2s ion-
ization has a local maximum. Correspondingly, cos A¢ = —1
means complete destructive interference, which should occur
at local minima in the differential 2s ionization data.

There are two effects that might blur these interferences in
the experimental data: (i) There is a small but non-negligible
experimental angular uncertainty. The influence of this effect
is shown by the red dashed line in the figure, which represents
the cos A¢ distribution derived from the theoretical angular
distributions convolved with the experimental angular reso-
lution (~12° FWHM). (ii) The experimental data represent
an average over a laser intensity range, as already discussed
above. As the angular distributions are not entirely indepen-
dent of the laser intensity (see Fig. 2), this will also result in a
blurring of the data.

The ¢-dependence of the phase difference A¢ of the final-
state wave functions can be derived from the data shown in
Fig. 5 (right) and is presented in Fig. 6. It should be noted that
extracting this phase difference is somewhat ambiguous due to
the oscillatory behavior of the cosine function. In the present
case, we made the additional assumption that the phase in-
creases monotonically with the azimuthal angle ¢. The phase
difference is A¢ =0 at an angle of 90° (i.e., in the y di-
rection) due to the symmetry A¢(90 + ¢) = —Ap(90 — ).
Overall, the phases obtained from the experimental data are
consistent and in very good agreement with the theoretical
predictions, thereby supporting the validity of the two-path
interference picture developed here. The remaining deviations
are attributed to the blurring effects discussed in the previous
paragraph. It is important to note that the method used above
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FIG. 6. Theoretical (line) and experimental (open circles) phase
difference of the final-state wave functions after two-photon ioniza-
tion of the 2p initial state with m, = +1 and —1 as a function of the
photoelectron azimuthal angle.

does not allow us to unambiguously extract the individual
phases of the .A;rp and -Az_p amplitudes without using further
assumptions, for example when the angular dependence of the
wave functions is expressed as a superposition of a limited set
of spherical harmonics, as was done in Eq. (2).

IV. CONCLUSIONS AND OUTLOOK

We studied the details of electron emission in few-photon
ionization of lithium atoms initially either in the 2s ground
state or in the polarized 2p (m, = +1) excited state by radia-
tion close to the 2s-2p resonance. We exploited the fact that
the 2s state can be ionized through two possible pathways,
specifically via the 2p resonance with either my = +1 or —1.
These two pathways interfere in the final state and resemble
a double-slit. Because our experiment allows us to obtain the
differential cross sections for the 2s and the 2p initial states
separately, we are able to measure the final wave with both
“slits” open, or with one “slit” closed. Therefore, the data
make it possible to extract the interference term, thereby pro-
viding information on the relative phase of the two pathways.
The experimentally obtained phase differences are in good
agreement with our theoretical predictions.

Moreover, several interesting features are observed in the
present data, which were reported for similar systems in pre-
vious studies: First, the photoelectron angular distributions
after ionization of the polarized 2p state are not symmet-
ric with respect to the laser polarization. Instead, the peaks
are shifted. The wavelength and intensity dependence of
this effect, known as magnetic dichroism, was systematically
studied in [31]. Second, the peak structures in the present
angle-differential spectra are in direct contradiction to the
predictions of lowest-order perturbation theory, which is not
applicable in resonant conditions.

It is worth noting that the present method is not the only
way to access information regarding the final state’s phase.
Among the many possible approaches, a straightforward
one is to fit the angular distributions with model functions

described by a superposition of partial waves as expressed in
Eq. (2). In some cases, this makes it possible to extract the rel-
ative phases between the complex amplitudes of partial waves
contributing to the final state. For single-photon ionization,
such complete studies were pioneered in the 1990s using po-
larized atomic targets [38—40]. In the multiphoton ionization
regime, phase information was obtained by ionizing atoms
with elliptically polarized light [41,42] in a very similar way.
In contrast, the present scheme, which exploits the resonance
enhancement through two magnetic sublevels, provides direct,
complete, and intuitive access to the interference term and the
final-state phase.

Two- or multipath interferences in few-photon ionization
are well suited for quantum control schemes if the relative
phases and intensities of the different paths can be regulated
(e.g., [26]). It is interesting to conceive such a scheme for
the present system. In fact, controlling the relative (complex)
amplitudes of the transient 2p (m; = —1) and 2p (m; = +1)
populations is experimentally straightforward. The transitions
from the 2s ground state to the two polarized excited 2p
levels are driven by left- and right-handed circularly polarized
laser radiation, respectively, propagating in the z direction.
The superposition of these two fields with equal intensity and
fixed relative phase corresponds to the linearly polarized light
used in the present experiment. Changing the relative phase
corresponds to a rotation of the polarization direction in the
xy plane.

Furthermore, a change in the relative intensities can be
achieved by introducing an ellipticity to the radiation. In
the present scheme, quasimonochromatic light is used, and
changes of the laser polarization would also affect the ioniza-
tion steps after populating the resonant 2p levels. However,
the effect on the excitation process and the ultimate ionization
could be decoupled by using bichromatic laser fields with a
weak contribution close to the 2s-2p resonance and a stronger
contribution off resonance. Such an experiment would allow
us to prepare an atomic target in a coherent superposition of
excited magnetic sublevels before ionizing it, thereby provid-
ing numerous possibilities to analyze and control the final
state.
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APPENDIX: DERIVATION AND CONDITIONS OF
APPLICABILITY OF THE TWO-PATHWAY FORMULA

We now derive Eq. (1) and discuss its domain of appli-
cability. We consider the three-photon ionization amplitude
.Ag)(p) for the system initially in the Li |2s) ground state
undergoing a transition to a photoelectron with asymptotic
momentum p. In the interaction picture, the amplitude is
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given by

AP (p) =

Z/ dn/ dtQ/ dt

X e ﬁ"Vk i(t)e” i V()
x e T BTV, (13)e 7 F G0, (A1)

In (A1), E; and E; are intermediate Li energies, Ey is the
ground-state energy, E = k? /2m, is the photoelectron en-
ergy, and m, is the electron mass. The summation runs over
all bound and continuum electronic states. The elements
\7,; @)= |‘7(t)| Jj) represent the time-dependent field-atom
interaction between two electronic states |i) and |j), V(1) =
ep - A(t) is the dipole operator in the velocity gauge, A(t) =
F(t)sin(wt)@, is the vector potential, and F' () is a smooth
envelope that peaks at the maximum field strength.

Because the laser is tuned near the 2s — 2p transition, we
can restrict the first transition to the |2p, m = +1) states. As a
result, the amplitudes can be split into two terms,

AR () = A5 () + A (). (A2)

where A(3) *(p) are the three-photon amplitudes with the first
transition to one of the |2p, m = £1) states. These amplitudes

take the form
Z/ dl‘lf dl‘ze‘ ;‘jt'

XVk,(ll)e 7 ’°ijpi(l2)azg_,2,,(f2) (A3)

where V2,4 (1) = (jIV(2)|2p, m = £1), and E;, is the 2p
state energy. In (A2), we introduced the one-photon time-
dependent transition amplitudes to the 2p states

et B lo

A= p) =

(1) + l f A iEZp’EZx 1
ay 5, (1) = ~7 dtVapros(3)e’™ 7 2. (Ad)
To

For light polarized along the y axis, agv)’jzp ag?gzp

We define the dynamical phase, A¢(¢), by

1),+ 1),+ 1 A
a(23)—>2p(t) = |a(25)—>2p(t)|el[¢0+ ¢(I)]' (AS)

Because the detuning Aw = w — (E3, — Ex)/hi is very small
in our near-resonance condition (Aw = 30 meV), the dynami-
cal phase A¢(t) ~ (Aw)t varies very slowly. For weak fields,
when interactions with other states are neglected (two-state
model), the dynamical phase is identically zero in the reso-
nance limit of Aw = 0.

It is now possible to incorporate a2 _)2 () in V() and
factor out the time-independent phase ¢0 Th1s leads to

2 [} s E
——) Z/ dh / dl‘zelitl Vk,j(tl)
j fo fo

~i% 1~ —i%,
x e TRV, 5, 1 (t)e TR, (A6)

3),+
Ay (p) = e

where B = Exgto/Ti + ¢o and V (1) = ag)j;p(tz)x?(tz). This is

the equivalent of introducing a new complex field, A(t) =
F(r)expliAwt]sinwt &, for the second photon transition.

Therefore, the new field has a frequency shifted by the detun-
ing, £Aw, for emission/absorption, respectively, and a new
envelope given by

F(t)=F@)|as)5 @)). (A7)

2s—2p

Because |Aw| < w in our near-resonance condition, the
frequency shift Aw has a negligible effect on the second
transition. In addition, for an adiabatic process as in our study,
la g)jzp(tﬂ o F(t). Consequently, F(z) o< F2(¢), which cor-
responds to an effective decrease of the pulse intensity and a
reduction by two of the FWHMs for a Gaussian envelope. The
broadening of the spectral width for a relatively long pulse
also has a negligible impact on the final phase amplitude.

Therefore, the amplitude is simply rescaled when com-
pared to photoionization directly from the 2p states with the
field A(z), and we can write

A E(p) & Agsmaap AL (p), (A8)

where Ay, is a momentum-independent complex ampli-
tude. The two-photon ionization amplitudes, starting from
|2p, m = £1), then take the form

i 2 00 a1
iLy
) / dt1/ dne' iV (1)
j 0 Io

~i%i 1 —1y) —i%,
x e TRV 0, 4 (tr)e” TR (A9)

@+ _
AT =

As a result, we obtain

IAD ) ~ A2y PIAS  (0) + AL~ (D).

In our case, higher-order processes might play a role even
in the weak-field regime due to the near-resonance condition.
However, the above reasoning applies in exactly the same
way for higher-order processes. We generally obtain for the
(2n + 1)-photon amplitude

A(2§,1+1)’i(p) ~ Azs_)szgzpn)i(p)'

Finally, summing up the different order terms and intro-
ducing @ = |Ay—,2,|?, which only depends on the 2s — 2p
transition, we obtain Eq. (1), i.e.,

An(P)P & al AL (p) + A, ().

Numerically, we found the above relation to be quite robust
against increasing the pulse intensity and, in particular, at in-
tensities when the population transfer becomes nonadiabatic.
This is explained by the fact that A¢(¢) ~ (Aw)t holds at
higher intensities if one assumes negligible interactions with
other states. Surprisingly, as Rabi oscillations become visible
at slightly higher intensity (~10'> W/cm?), Eq. (1) still re-
mains relatively accurate. This is likely due to the fact that
higher-order terms are able to describe population transfer
between the 2s and 2p states. As Rabi oscillations take place,
the effective envelope F (¢) oscillates at the Rabi frequency €2,
such that the pulse obtains two additional frequency compo-
nents w =+ Q. This represents an alternative interpretation of
the Autler-Towns splitting besides the dressed-state picture.

When the intensity keeps increasing, the perturbative ex-
pansion will break down, and other states, besides 2p, will
start contributing to the first transition step. As a result, the
approximation (A2) will ultimately become inaccurate.

(A10)

(Al1)

(A12)
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