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Abstract— Physical platforms such as trapped ions suffer
from coherent noise that does not follow a simple stochastic
model. Stochastic errors in quantum systems occur randomly
but coherent errors are more damaging since they can accu-
mulate in a particular direction. We consider coherent noise
acting transversally, giving rise to an effective error which is a
Z-rotation on each qubit by some angle θ. Rather than address
coherent noise through active error correction, we investigate
passive mitigation through decoherence free subspaces. In the
language of stabilizer codes, we require the noise to preserve the
code space, and to act trivially (as the logical identity operator)
on the protected information. Thus, we develop necessary and
sufficient conditions for all transversal Z-rotations to preserve
the code space of a stabilizer code. These conditions require the
weight-2 Z-stabilizers to cover all the qubits that are in the
support of the X -component of some stabilizer. Furthermore,
the weight-2 Z-stabilizers generate a direct product of single-
parity-check codes with even block length. By adjusting the sizes
of these components, we are able to construct a large family
of QECC codes oblivious to coherent noise, one that includes
the [[4L2, 1, 2L]] Shor codes. The Shor codes are examples of
constant excitation codes, where logical qubits are encoded as a
code state that is a sum of physical states indexed by binary
vectors with the same weight. Constant excitation codes are
oblivious to coherent noise since a transversal Z-rotation acts
as a global phase. We prove that a CSS code is oblivious to
coherent noise if and only if it is a constant excitation code, and
that if the code is error-detecting, then the (constant) weights in
different cosets of the X -stabilizers are identical.

Index Terms— Coherent noise, decoherence-free subspace
(DFS), transversal Z-rotations, necessary conditions, constant
excitation code.
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I. INTRODUCTION

QUANTUM error correction is essential to developing
scalable and fault-tolerant quantum computers. The the-

ory of stabilizer and subsystem codes has led to several
promising error correction schemes that provide resilience to
quantum noise. In quantum systems, noise can broadly be
classified into two types – stochastic and coherent errors.
Stochastic errors occur randomly and do not accumulate over
time along a particular direction. Coherent errors may be
viewed as rotations about a particular axis, and can be more
damaging, since they can accumulate coherently over time [2].
As quantum computers move out of the lab and become
generally programmable, the research community is paying
more attention to coherent errors, and especially to the decay
in coherence of the effective induced logical channel [3], [4].
It is natural to consider coherent noise acting transversally,
where the effect of the noise is to implement a separate unitary
on each qubit. Consider, for example, an n-qubit physical
system with a uniform background magnetic field acting on the
system according to the Hamiltonian H = Z1+Z2+ · · ·+Zn,
where Zi denotes the Pauli Z operator on the ith qubit. Then
the effective error is a (unitary) Z-rotation on each qubit by
some (small) angle θ, i.e., exp(ıθH) = exp(ıθZ)⊗n, where
ı =

√−1.
While it is possible to address coherent noise through

active error correction, it can be more economical to pas-
sively mitigate such noise through decoherence free subspaces
(DFSs) [5], [6]. In such schemes, one designs a computational
subspace of the full n-qubit Hilbert space which is unperturbed
by the noise. In the language of stabilizer codes, we require the
noise to preserve the code space, and to act trivially (as the log-
ical identity operator) on the protected information. Inspired
by the aforementioned Hamiltonian, which is physically moti-
vated by technologies such as trapped-ion systems, we develop
conditions for all transversal Z-rotations to preserve the code
space of a stabilizer code, i.e., exp(ıθH)ρ exp(ıθH)† = ρ
for all code states ρ in the stabilizer code. When all angles
preserve the code space, the logical action must be trivial
for any error-detecting stabilizer code (see Appendix A-A).
The conditions we derive build upon previous work deriving
necessary and sufficient conditions for a given transversal
Z-rotation in the Clifford hierarchy [7]–[9] to preserve the
code space of a stabilizer code [10]. The key challenge is
handling the trigonometric constraints, and we exploit the
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celebrated MacWilliams Identities in classical coding theory
for this purpose [11]. Our main result is a structure theorem
that depends on technical arguments which might be of
independent interest to classical coding theorists.

The structure theorem forces a product structure on a
stabilizer code that is oblivious to coherent noise. Given any
even M , and any stabilizer code on t qubits, we construct
a product code on Mt qubits that is oblivious to coherent
noise. The Mt qubits are partitioned into t blocks of M qubits,
with each block supporting a DFS. The product code inherits
the distance properties of the initial stabilizer code. Thus,
the minimal cost of becoming oblivious to coherent noise is
scaling the number of qubits by 2.

The necessary and sufficient conditions for a stabilizer code
to be oblivious to coherent noise require the product code
structure, resulting in a code rate less than 1/2. To relax
the restrictions, we can consider stabilizer codes that are
preserved by all the transversal Z-rotations through angle π/2l

up to some finite integer l, inducing the logical identities. The
necessary and sufficient conditions for such error-mitigating
codes can be described through the generator coefficient
framework [12], [13] by requiring the generator coefficient
corresponding to the trivial syndrome and the trivial Z-logical
(logical identity) to have norm 1.

The paper is organized as follows. Section II reviews the
major technical contributions. Section III introduces notation
and reviews background results. In particular, Section III-F
introduces the general encoding map for CSS codes with
arbitrary signs. Section IV relates divisibility of weights in
classical codes to a particular trigonometric identity. Section V
connects stabilizer codes oblivious to coherent noise with
a general form of this identity. Section VI derives our
main result, the structure theorem for stabilizer codes obliv-
ious to coherent noise, Section VII provides constructions.
Section VIII concludes the paper and discusses directions for
future work.

II. DISCUSSION OF MAIN RESULTS

The introduction of magic state distillation by Bravyi and
Kitaev [14] led to the construction of a sequence of CSS
codes [15], [16], where the code space is preserved by a
transversal Z-rotation of the underlying physical space [14],
[17]–[26]. The approach in each paper is to examine the
action of a transversal Z-rotation on the basis states of a
CSS code. This approach results in sufficient conditions for a
transversal Z-rotation to realize a logical operation on the code
space.

In contrast, we derive necessary and sufficient conditions
by examining the action of the transversal Z-rotation on the
stabilizer group that determines the code. Thus we study the
code space by studying the symmetries of the code space.
We start from Rengaswamy et al. [10] which derived necessary
and sufficient conditions for a stabilizer code to be preserved
by a transversal π/2l rotation. Note that the condition l ≥ 2
corresponds to a non-Clifford physical operator. In order
to state the result we need to use the notation introduced
in Section III.

A Hermitian Pauli matrix ±E(a, b) is determined by binary
vectors a and b. The X-component of ±E(a, b) is a and the
Z-component is b. A stabilizer group S is generated by r
independent commuting Hermitian Pauli matrices, subject to
the requirement that if E(a, b) ∈ S, then −E(a, b) /∈ S. The
fixed space V(S) of S is an [[n, n− r]] stabilizer code. Recall
that the Hamming weight wH(v) of a binary vector v is the
number of non-zero entries, and that the support supp(v) is
the index set of the non-zero entries. Let 0 (1) be the binary
vector with every entry 0 (1). Given �E(a, b) ∈ S for some
� ∈ {±1} and a �= 0, define

B(a) := {z ∈ F
wH(a)
2 : supp(z) ⊆ supp(a), �zE(0, z) ∈ S}

(1)

and

O(a) := F
wH(a)
2 \ B(a), (2)

Remark 1: To simplify notation, we shall sometimes view z
as a subset of supp(a), sometimes as a subset of the n qubits,
and sometimes as a binary vector either of length wH(a) or
of length n (where entries outside supp(a) are set equal to
zero). The meaning will be clear from the context.

The necessary and sufficient conditions derived by
Rengaswamy et al. [10] are expressed as two trigonometric
constraints on weights of pure Z-stabilizers in S.

Theorem 2 (Rengaswamy et al. [10]): Transversal π/2l

Z-rotation (l ≥ 2) preserves V(S) if and only if for �E(a, b) ∈
S with a �= 0,


v∈B(a)

�v


ı tan

2π
2l

wH (v)

=


sec
2π
2l

wH(a)

, (3)


v∈B(a)

�v


ı tan

2π
2l

wH(v⊕ω)

= 0 for all ω ∈ O(a). (4)

Here, �v ∈ {±1} is the sign of E(0,v) in the stabilizer
group S, and ⊕ denotes the binary (modulo 2) sum of vectors.
The theorem reveals that the interaction of transversal physical
operators and code states depends very strongly on the signs
of pure Z-stabilizers. Note that the sign �v of the pure
Z-stabilizer �vE(0, v) takes the form �v = (−1)yvT

for
y ∈ Fn

2 . Note that vectors from the same coset of C1 (the
group of logical X operators) determine the same signs. It is
useful to think of y ∈ Fn

2 as a fixed vector when we extend
signs to Pauli matrices outside the stabilizer group.

A stabilizer code is oblivious to coherent noise if and only if
transversal π/2l Z-rotation preserves the code space V(S) for
all l ≥ 2 (see Appendix A-A). We prove that the trigonometric
conditions (3) and (4) imply the existence of a large number
of weight 2 Z-stabilizers supported on

Γ =


�E(a,b)∈S
supp(a). (5)

We define a graph with vertex set Γ, where a vertex
corresponds to a qubit of the code and two vertices are joined
by an edge if there exists a weight 2 Z-stabilizer involving
these two qubits. Let Γ1, . . . ,Γt be the connected components
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Fig. 1. The [[16, 1, 4]] Shor code constructed by concatenating the [[4, 1]] bit-
flip code and the [[4, 1]] phase-flip code. The filled circles represent physical
qubits, the white (resp. gray filled) squares represent weight-2 Z-stabilizers
with negative (resp. positive) sign, and the three large filled rectangles
represent weight-8 X-stabilizers.

of this graph and let |Γk| = Nk. The weight 2 Z-stabilizers
supported on Γk take the form

(−1)ykvT

E(0,v) where yk = y

Γk
. (6)

Here y

Γk

represents the restriction of y to Γk. (In ykvT ,
we add zeros to yk appropriately.) Our main result is

Theorem 3: A transversal π/2l Z-rotation preserves the
stabilizer code for all l ≥ 2 if and only if for every �E(a, b) ∈
S with a �= 0,

1) supp(a) is the disjoint union of components Γk ⊆
supp(a),

2) Nk is even and wH(yk) = Nk/2 for all k such that
Γk ⊆ supp(a).

Note that for every �E(a, b) ∈ S we have a

Γk

= 0 or 1
for k = 1, . . . , t. Hence Theorem 3 forces a product structure
on a stabilizer code that is oblivious to coherent noise. It also
provides constraints on the signs of weight 2 Z-stabilizers.

Example 1: The [[16, 1, 4]] Shor code is shown in Fig. 1,
and it follows from Theorem 3 that this code is oblivious
to coherent noise. The graph on Γ has four connected com-
ponents, and the component Γk is simply the k-th row of the
4×4 array. Condition (1) is satisfied since every X stabilizer is
the sum of an even number of rows. Condition (2) is satisfied
since the choice yk = [0, 1, 1, 0] for k = 1, 2, 3, 4 properly
accounts for the signs of Z-stabilizers. Observe that [[16, 1, 4]]
is also a constant excitation code (defined in Sec. III-F). The
quotient space C1/C2 = {0,w = (1000) ⊗ (1111)}, where
C2 defines the X-stabilizers and C1 defines the logical X
operators. Under the general encoding map, the codewords
are

|0	 =
1

2
√

2


x∈C2

|x ⊕ y	 and |1	 =
1

2
√

2


x∈C2

|w ⊕ x ⊕ y	.

(7)

The restriction of w and x ∈ C2 to the k-th row is either
0 and 1. Since wH(yk) = 2 = 4

2 , we have wH(x ⊕ y) =
wH(w ⊕ x ⊕ y) = 8 for all x ∈ C2.

We show that a CSS code is oblivious to coherent noise
if and only if it is a constant excitation code (Corollary 12).
Sufficiency is straightforward since a transversal Z-rotation
acts as a global phase. Given a non-degenerate stabilizer
code preserved by a diagonal physical gate, we have used
the mathematical framework of generator coefficients to show
there is an equivalent CSS code preserved by the same
diagonal physical gate and inducing the same logical gate
(for more details, see [12]). Ouyang [27], [28] observed that
one can construct constant excitation codes by concatenating a
stabilizer code with the dual rail code [29]. His original paper
was independent of and contemporaneous with our original
paper [30]. After we shared our results he realized that he
could connect his dual rail construction to stabilizer code [31].

III. PRELIMINARIES AND NOTATION

A. The MacWilliams Identities

Let F2 = {0, 1} denote the binary field. We denote the
Hamming weight of a binary vector v by wH(v). The weight
enumerator of a binary linear code C ⊂ Fm

2 is the polynomial

PC(x, y) =

v∈C

xm−wH(v)ywH(v). (8)

The MacWilliams Identities [11] relate the weight enumer-
ator of a code C to that of the dual code C⊥, and are given by

PC(x, y) =
1

|C⊥|PC⊥(x+ y, x− y). (9)

We frequently make the substitution x = cos 2π
2l and

y = −ı sin 2π
2l , and we define

P [C] := PC


cos

2π
2l
,−ı sin 2π

2l


(10)

=

v∈C


cos

2π
2l

m−wH (v)
−ı sin 2π

2l

wH (v)

. (11)

B. The Pauli Group

Let N = 2n. Any 2 × 2 Hermitian matrix can be uniquely
expressed as a real linear combination of the four single qubit
Pauli matrices/operators

I2 :=

1 0
0 1


, X :=


0 1
1 0


, Z :=


1 0
0 −1


, Y = ıXZ,

(12)

where ı =
√−1. The operators satisfy X2 = Y 2 = Z2 =

I2, XY = −Y X, XZ = −ZX, and Y Z = −ZY.
Let A ⊗ B denote the Kronecker product (tensor product)

of two matrices A and B. Given vectors a = [a1, a2, . . . , an]
and b = [b1, b2, . . . , bn] with ai, bj = 0 or 1, we define the
operators

D(a, b) := Xa1Zb1 ⊗Xa2Zb2 ⊗ · · · ⊗XanZbn , (13)

E(a, b) := ıabT (mod 4)D(a, b). (14)

We often abuse notation and write a, b ∈ Fn
2 , though entries

of vectors are sometimes interpreted in Z4 = {0, 1, 2, 3}.
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Note that D(a, b) can have order 1, 2 or 4 (order means the
smallest positive integer h such that D(a, b)h = IN ), but
E(a, b)2 = ı2abT

D(a, b)2 = ı2abT

(ı2abT

IN ) = IN . The
n-qubit Pauli group is defined as

Pn := {ıκD(a, b) : a, b ∈ F
n
2 , κ = 0, 1, 2, 3}. (15)

The n-qubit Pauli matrices form an orthonormal basis
for the vector space of N × N complex matrices
CN×N under the normalized Hilbert-Schmidt inner product
�A,B	 := Tr(A†B)/N .

We will use the Dirac notation, |·	 to represent the basis
states of a single qubit in C2. For any v = [v1, v2, · · · , vn] ∈
Fn

2 , we define |v	 = |v1	 ⊗ |v2	 ⊗ · · · ⊗ |vn	, the standard
basis vector in CN with 1 in the position indexed by v
and 0 elsewhere. We write the Hermitian transpose of |v	
as �v| = |v	†. We may write an arbitrary n-qubit quantum
state as |ψ	 =


v∈F

n
2
αv |v	 ∈ CN , where αv ∈ C and

v∈F
n
2
|αv|2 = 1. The Pauli matrices act on a single qubit as

X |0	= |1	, X |1	 = |0	, Z|0	 = |0	, and Z|1	=−|1	. (16)

The symplectic inner product is �[a, b], [c,d]	S = adT +
bcT (mod 2). Since XZ = −ZX , we have

E(a, b)E(c,d) = (−1)�[a,b],[c,d]�SE(c,d)E(a, b). (17)

C. The Clifford Hierarchy

The Clifford hierarchy of unitary operators was introduced
in [7]. The first level of the hierarchy is defined to be the
Pauli group C(1) = Pn. For l ≥ 2, the levels l are defined
recursively as

C(l) := {U ∈ UN : UE(a, b)U † ∈ C(l−1),

for all E(a, b) ∈ Pn}, (18)

where UN is the group of N×N unitary matrices. The second
level is the Clifford Group [32], C(2), which can be generated
using the unitaries Hadamard, Phase, and either of Controlled-
NOT (CX) or Controlled-Z (CZ) defined respectively as

H :=
1√
2


1 1
1 −1


, P :=


1 0
0 ı


, (19)

CZab := |0	�0|a ⊗ (I2)b + |1	�1|a ⊗ Zb, (20)

CXa→b := |0	�0|a ⊗ (I2)b + |1	�1|a ⊗Xb. (21)

It is well-known that Clifford unitaries in combination with
any unitary from a higher level can be used to approximate
any unitary operator arbitrarily well [33]. Hence, they form a
universal set for quantum computation. A widely used choice
for the non-Clifford unitary is the T gate defined by

T :=

1 0
0 e

iπ
4


=

√
P = Z

1
4 ≡


e−

ıπ
8 0

0 e
ıπ
8


= e−

ıπ
8 Z .

(22)

D. Stabilizer Codes

We define a stabilizer group S to be a commutative sub-
group of the Pauli group Pn, where every group element
is Hermitian and no group element is −IN . We say S has
dimension r if it can be generated by r independent elements
as S = �νiE(ci,di) : i = 1, 2, . . . , r	, where νi ∈ {±1}
and ci,di ∈ Fn

2 . Since S is commutative, we must have
�[ci,di], [cj ,dj]	S = cidj

T + dicj
T = 0 (mod 2).

Given a stabilizer group S, the corresponding stabilizer
code is the fixed subspace V(S) := {|ψ	 ∈ CN : g|ψ	 =
|ψ	 for all g ∈ S}. We refer to the subspace V(S) as an
[[n, k, d]] stabilizer code because it encodes k := n − r
logical qubits into n physical qubits. The minimum distance
d is defined to be the minimum weight of any operator in
NPn (S)\S. Here, the weight of a Pauli operator is the number
of qubits on which it acts non-trivially (i.e., as X, Y or Z),
and NPn (S) denotes the normalizer of S in Pn defined by

NPn (S) :={ıκE (a, b) ∈ Pn : E (a, b)E (c,d)E (a, b) =
E

c	,d	 ∈ S for all νE (c,d) ∈ S, κ ∈ Z4}

={ıκE (a, b) ∈ Pn : E (a, b)E (c,d)E (a, b) =
E (c,d) for all νE (c,d) ∈ S, κ ∈ Z4}. (23)

Note that the second equality defines the centralizer of S in
Pn, and it follows from the first since Pauli matrices commute
or anti-commute.

For any Hermitian Pauli matrix E (c,d) and ν ∈ {±1},
the projector IN +νE(c,d)

2 projects on to the ν-eigenspace of
E (c,d). Thus, the projector on to the codespace V(S) of the
stabilizer code defined by S = �νiE (ci,di) : i = 1, 2, . . . , r	
is

ΠS =
r

i=1

(IN + νiE (ci,di))
2

=
1
2r

2r
j=1

�jE (aj, bj) , (24)

where �j ∈ {±1} is a character of the group S, and is deter-
mined by the signs of the generators that produce E(aj , bj):
�jE (aj, bj) =


t∈J⊂{1,2,...,r} νtE (ct,dt) for a unique J .

E. CSS Codes

A CSS (Calderbank-Shor-Steane) code is a type of stabilizer
code with generators that can be separated into strictly X-
type and Z-type operators [15], [16]. Consider two classi-
cal binary codes C1, C2 such that C2 ⊂ C1, and let C⊥

1 ,
C⊥
2 denote the dual codes. Note that C⊥

1 ⊂ C⊥
2 . Suppose

that C2 = �c1, c2, . . . , ck2	 is an [n, k2] code and C⊥
1 =

�d1,d2, . . . ,dn−k1	 is an [n, n − k1] code. Then, the cor-
responding CSS code has the stabilizer group

S = �ν(ci,0)E (ci,0) , ν(0,dj)E (0,dj)	 i∈{1,...,k2},
j∈{1,...,n−k1}

= {�(a,0)�(0,b)E (a,0)E (0, b) : a ∈ C2, b ∈ C⊥
1 }, (25)

where ν(ci,0), ν(dj ,0), �(a,0), �(0,b) ∈ {±1}. The CSS code
projector can be written as the product:

ΠS = ΠSX ΠSZ , (26)
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where

ΠSX =:
k2

i=1

(IN + ν(ci,0)E(ci,0))
2

=


a∈C2

�(a,0)E(a,0)
|C2| ,

(27)

and

ΠSZ =:
n−k1
j=1

(IN +ν(0,dj)E(0,dj))
2

=


b∈C⊥

1
�(0,b)E(0, b)

|C⊥
1 | .

(28)

If C1 and C⊥
2 can correct up to t errors, then S defines an

[[n, k, d]] CSS code, k = k1 − k2, with d ≥ 2t + 1, which
we will represent as CSS(X, C2;Z, C⊥

1 ). If G2 and G⊥
1 are

the generator matrices for C2 and C⊥
1 respectively, then the

(n− k1 + k2) × (2n) matrix

GS =

G2

G⊥
1


(29)

generates S. The codespace defined by the stabilizer group S
is V(S) := {|ψ	 ∈ CN : g|ψ	 = |ψ	 for all g ∈ S}.

F. Encoding Map for CSS Codes

Given an [[n, k, d]] CSS(X, C2;Z, C⊥
1 ) code with all positive

signs, let GC1/C2 ∈ F
k×n
2 be a matrix that generates for all

coset representatives for C2 in C1 (note that the choice of
coset representatives is not unique). The canonical encoding
map f : Fk

2 → V(S) is given by |v	 := f(|v	L) :=
1√
|C2|


x∈C2

|vGC1/C2 ⊕ x	. Changing the signs of stabilizers

changes the fixed subspace. Hence we need to modify the
encoding map to account for nontrivial signs. Define subspaces
B and D as below.

C⊥
1 B⊥ C2 D⊥

| | | |
B = {z ∈ C⊥

1 |�z = 1} C1 D = {x ∈ C2|�x = 1} C⊥
2

We capture sign information through character vectors
y, u ∈ F

n
2 (note that the choice of y,u is unique only up to

elements in C1, C⊥
2 respectively) satisfying

B = C⊥
1 ∩ y⊥, or equivalently, B⊥ = �C1,y	, (30)

and

D = C2 ∩ u⊥, or equivalently, D⊥ = �C⊥
2 ,u	. (31)

Then, for �(a,0)�(0,b)E (a,0)E (0, b) ∈ S, we have
�(a,0) = (−1)auT

and �(0,b) = (−1)byT

.
The canonical bijective map f : Fk

2 → V(S) becomes [12]

|v	 = f(|v	L) :=
1|C2|


x∈C2

(−1)xuT |vGC1/C2 ⊕ x ⊕ y	.

(32)

The CSS code is said to be a constant excitation code [34]
if, for each fixed v ∈ Fk

2 , the weight wH(vGC1/C2 ⊕x⊕y) is
constant for all x ∈ C2. Recall that a common kind of coherent
noise is modeled by U = exp(ıθZ)⊗n for arbitrary θ. When
U acts on a |0	&|1	 computational basis state in a constant

excitation code, each term in (32) generates the same phase
term exp(ıθwH(vGC1/C2 ⊕x⊕y)), leading to a global phase,
which leaves the state invariant. Hence, a constant excitation
code is oblivious to coherent noise.

IV. DIVISIBILITY OF WEIGHTS IN BINARY CODES

The defining property of a divisible linear code [35] is that
codeword weights share a common divisor larger than one.
Codes obtained by repeating each coordinate in a shorter code
the same number of times are automatically divisible, and they
are essentially the only ones for divisors prime to the field size.
Examples that are more interesting occur when the divisor
is a power of the characteristic. For example, the theorem
of Ax [36] governing the existence of zeros of polynomials
in several variables characterizes divisibility of weights in
Reed-Muller codes [36]–[39].

Divisible codes (in particular Reed-Muller codes) appear in
protocols designed for magic state distillation [14], [18]–[20]
which achieves universal quantum computation through
transversal implementation of Clifford gates and ancillary
magic states. Divisibility tests [21], [26] are introduced to
ensure that a quantum error correcting code is preserved
by a transversal π/2l Z-rotation. We argue in the reverse
direction, showing that divisibility of weights is forced by the
requirement that the quantum error correcting code is fixed by
a transversal gate. We will make repeated use of the following
trigonometric identity that is equivalent to code divisibility and
may be of independent interest to classical coding theorists.

Lemma 4: Let C be a binary linear code with block length
m, where all weights are even. Let l ≥ 2. Then,


v∈C


ı tan

2π
2l

wH(v)

=


sec
2π
2l

m

(33)

if and only if (m−2wH(w)) is divisible by 2l for all w ∈ C⊥.
Proof: We rewrite (33) as

P [C]=

v∈C


cos

2π
2l

m−wH(v) 
ı sin

2π
2l

wH (v)

= 1. (34)

Let t+ := cos 2π
2l + ı sin 2π

2l and t− := cos 2π
2l − ı sin 2π

2l .
After applying the MacWilliams identities, (34) becomes

1
|C⊥|PC⊥ (t+, t−) = 1. (35)

Since (cos θ + ı sin θ) (cos θ − ı sin θ) = 1 for all θ,
we may rewrite (35) as

1
|C⊥|


w∈C⊥

t
m−wH(w)
+ t

wH (w)
− = 1, (36)

which may be further simplified to

1
|C⊥|


w∈C⊥

t
m−2wH(w)
+ = 1. (37)

Since 1 ∈ C⊥, the complement of a codeword in C⊥ is
again a codeword in C⊥, so we may rewrite (37) as

1
|C⊥|

⎡
⎣ 

w∈C⊥
t
m−2wH(w)
+ +


w∈C⊥

t
−(m−2wH(w))
+

⎤
⎦ = 2. (38)
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Since (cos θ + ı sin θ)n = eınθ , for all θ, equation (38)
reduces to,

1
|C⊥|


w∈C⊥

cos


2 (m− 2wH (w))π
2l


= 1. (39)

We observe that equation (39) is satisfied if and only if
each term contributes 1 to the sum, and this is equivalent to
2l dividing m− 2wH(w) for all codewords w in C⊥.

Setting C = B(a) in the above lemma provides insights into
the conditions of Theorem 2.

V. TRANSVERSAL Z-ROTATIONS

Given two binary vectors x,y, we write x � y to mean that
the support of x is contained in the support of y. We define
y|supp(x) ∈ F

wH (x)
2 to be the restriction of y to supp(x).

Consider the [[n, n−r]] stabilizer code V(S) determined by the
stabilizer group S = �νiE(ci,di) : νi ∈ {±1}, i = 1, · · · , r	.

Recall that given a stabilizer �E(a, b) with a �= 0, we define

B(a) = {z
supp(a)

∈ F
wH(a)
2 : �zE (0, z) ∈ S and z � a}

(40)

and

O(a) = F
wH (a)
2 \ B(a) = {ω ∈ F

wH (a)
2 : ω /∈ B(a)}. (41)

Since S is commutative, 1 ∈ B(a)⊥, and it follows that all
weights in B(a) are even.

Example 2: Consider the [[16, 1, 4]] Shor code shown in
Figure 1. Setting E(a,0) = ⊗8

i=1Xi, where Xi means
Pauli X on the i-th qubit, we have B(a) = F

2
2 ⊗

�[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]	.
We now consider Theorem 2 in the special case l = 2

(Transversal T ). Let

s =


v∈B(a)

�vı
wH(v). (42)

Since tan π
4 = 1 and sec π

4 =
√

2, we may rewrite (3) as

s2 = 2wH(a) =


v,w∈B(a)

�v�wı
wH(v)+wH(w) (43)

=


v,w∈B(a)

�v⊕wı
wH(v⊕w)+2vwT

. (44)

Changing variables to z = v ⊕ w and v, we obtain

2wH(a) =


z,v∈B(a)

�zı
wH(z) (−1)(z⊕v)vT

(45)

=


z∈B(a)

�zı
wH (z)


v∈B(a)

(−1)zvT

(46)

= |B(a)|


z∈B(a)∩B(a)⊥
�zı

wH (z), (47)

where the second step follows from vvT is even. Since
2wH(a) = |B(a)| · |B(a)⊥| and |B(a) ∩ B(a)⊥| ≤ |B(a)⊥|,
B(a)⊥ is contained in B(a) and so 1 ∈ B(a). Since B(a)⊥ ⊆
B(a), it now follows that B(a) contains a self-dual code. Since

|B(a)⊥| =


z∈B(a)⊥
�zı

wH(z), (48)

we must have �z = ıwH(z) for all z ∈ B(a)⊥.

Remark 5: The above derivation provides the three nec-
essary conditions given in [10, Theorem 2] that are neces-
sary for a stabilizer code to be preserved by the transversal
T gate.

1) For each �E(a, b) ∈ S with a �= 0, the Hamming
weight wH(a) is even.

2) For each �E(a, b) ∈ S with a �= 0, the binary code

B(a) contains an

n = wH(a), k = wH (a)

2


self-dual

code.
3) For each z ∈ B(a)⊥, the sign of the corresponding

stabilizer E(0, z) ∈ S is given by ıwH(z).

Example 3: Consider the [[16, 4, 2]] code that is a member
of the [[2m,


m
1


, 2]] quantum Reed-Muller (QRM) family

constructed in [10]. It is the CSS(X, C2;Z, C⊥
1 ) code, where

C2 = �1	 = RM(0, 4) ⊂ C1 = RM(1, 4) and C⊥
1 = RM

(2, 4) ⊂ C⊥
2 = RM(3, 4) (see [38] for more details of classical

Reed-Muller codes). The signs of all stabilizers are positive.
We know from [10, Theorem 19] that the code space is
fixed by transversal

√
T ( π

24 Z-rotation), and direct calculation
shows that the corresponding logical operator is CCCZ up to
some local Pauli corrections. We first verify invariance under
transversal T by checking the sufficient conditions given in
Remark 5.

The [[16, 4, 2]] code has a single non-zero X-stabilizer
a = 1, with even weight, and a single subcode B(a) =
C⊥
1 = RM(2, 4). This subcode contains a self-dual code,

denoted RM(1.5, 4), which is generated by 1, all the degree
one monomials, and half of the degree two monomials, i.e.,
x1x2, x1x3, x1x4. Since the weights in RM(1.5, 4) are 0, 4, 8,
12, and 16, we have ıwH(v) = 1 for all v ∈ RM(1.5, 4). This
matches the signs specified in the definition of the code above.
Hence, the [[16, 4, 2]] code satisfies the sufficient conditions
for invariance under transversal T . We note that the logical
operator induced by transversal T is the identity (obtained by
applying CCCZ twice).

Finally, we verify invariance under transversal
√
T by

checking the first of the trigonometric conditions given
in Theorem 2. The weight distribution of RM(2, 4) is
given by

P (x) = 1+140x4+448x6 + 870x8 + 448x10+140x12+x16.

(49)

Let α4 = tan 2π
24 = tan π

8 . Since (sec θ)2 = 1+(tan θ)2 and
�v = 1, for all v ∈ B(a), we have

v∈RM(2,4)

�v (ıα4)
wH(v) − 

1 + α2
4

8
= (ıα4)

0 + 140 (ıα4)
4 + 448 (ıα4)

6 + 870 (ıα4)
8

+ 448 (ıα4)
10 + 140 (ıα4)

12 + (ıα4)
16 − 

1 + α2
4

8
= −8α2

4(1 − α4)2(1+α4)2(α2
4+2α4 − 1)2(α2

4 − 2α4−1)2.

(50)

The first trigonometric condition is satisfied since α4 =√
2 − 1 is a root of x2 + 2x − 1 = 0. We verified the

second condition directly using MATLAB for each nonzero
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coset representative in F16
2 /B(a) and it is also implicit

in [10, Theorem 19].
Remark 5 motivates the following extension to Lemma 4.
Corollary 6: Let C be a binary linear code with block length

m where all codewords have even weight. Suppose that


v∈C

�v


ı tan

2π
2l

wH(v)

=


sec
2π
2l

m

, (51)

where � : C → {±1} is a character of the additive group C.
1) If �v = 1 for all v ∈ C, then 2l divides (m− 2wH(w))

for all w ∈ C⊥.
2) If �v �= 1 for all v ∈ C, and if B = {v ∈ C : �v = 1},

then 2l divides (m− 2wH(w)) for all w ∈ B⊥ \ C⊥.
Proof: Part (1) follows from Lemma 4.

To prove part (2), rewrite (51) as

P [B]− P [C \ B] =

v∈B


cos

2π
2l

m−wH(v) 
ı sin

2π
2l

wH(v)

−


v∈C\B


cos

2π
2l

m−wH(v) 
ı sin

2π
2l

wH(v)

=1 (52)

Recall the notations we used in the proof of Lemma 4 that
t+ = cos 2π

2l + ı sin 2π
2l and t− = cos 2π

2l − ı sin 2π
2l . Since

1 ∈ C⊥ ⊂ B⊥, we may apply the MacWilliams Identities to
obtain

P [B] + P [C \ B] =

v∈C


cos

2π
2l

m−wH(v) 
ı sin

2π
2l

wH (v)

(53)

=
1

|C⊥|PC⊥ (t+, t−) (54)

=
1

|C⊥|


w∈C⊥
cos


2 (m− 2wH (w))π

2l


.

(55)

Note that B ⊂ C is a subspace of index 2. Since
|B⊥| = 2|C⊥|, we may apply the MacWilliams Identities to
PB


cos 2π

2l , i sin 2π
2l


and obtain

P [B] =
1

|B⊥|PB⊥ (t+, t−)

=
1

2|C⊥|


w∈B⊥
cos


2 (m− 2wH (w))π

2l


. (56)

Combining equations (55) and (56) gives

1 = P [B]− P [C \ B] = 2P [B]− (P [B] + P [C \ B])

=
1

|C⊥|


w∈B⊥\C⊥
cos


2 (m− 2wH (w))π

2l


. (57)

We complete the proof by observing that each term in (57)
must contribute 1 to the sum.

Remark 7: If m �= 0 (mod 2l), then since 0 ∈ C⊥, it must
be case 2 of Corollary 6 that applies. This is always the case

when 2l > m. We must have wH(v) = m/2 for all v ∈
B⊥ \ C⊥, and we remark that if we expand the MacWilliams
Identities using Krawtchouk polynomials [38], then we can
can show that there exist at least m/2 codewords in C with
Hamming weight 2.

By setting C = B(a) in Theorem 2, we see that the
scenario 2l > wH(a) applies whenever we require that
Theorem 2 holds for all l ≥ 2. Thus, the observation using
Krawtchouk polynomials implies the existence of a large set of
weight 2 Z-stabilizers in the code. This motivates the study of
stabilizers groups with such structure, which we embark upon
next, noting that existence is proved in Theorem 3.

VI. WEIGHT TWO Z-STABILIZERS

We begin this section by examining the structure of a
stabilizer group S that contains weight 2 Z-stabilizers. Later in
this section we show (in the proof of necessity in Theorem 3)
that if a stabilizer code V(S) is preserved by the transversal
π/2l Z-rotation for all l ≥ 2, then S contains a large number
of weight 2 Z-stabilizers.

Let ei, i = 1, 2, . . . , n be the standard basis of Fn
2 . Recall

the graph with vertex set

Γ =


�E(a,b)∈S
supp(a), (58)

where vertices i and j are joined if �E(0, ei ⊕ ej) ∈ S
for some � ∈ {±1}. Recall that we denote the connected
components of the graph by Γ1, · · · ,Γt, and set Nk = |Γk|
for k = 1, 2, · · · , t.

Lemma 8: Each component Γk, k = 1, 2, · · · , t is a com-
plete graph.

Proof: If a path r0, r1, · · · , rj connects vertices r0 and rj ,
then r0 is joined to rj since

± E

0, er0 ⊕ erj


=

j−1
i=0

±E 
0, eri ⊕ eri+1


.

This implies that the Z-stabilizers corresponding to Γk

are given by all length Nk vectors of even weight, i.e., the
[Nk, Nk−1, 2] single parity check code. Henceforth, we denote
the [m,m − 1, 2] single parity check code of any length m
by W . Theorem 2 forces us to consider all Z-stabilizers B(a)
supported on the X-component a of some stabilizer �E(a, b).
The next observation shows that a either has full support or
no support on a given Γk. Together with the above result, this
means that each Γk either contributes (Nk − 1) dimensions
worth of Z-stabilizers or nothing at all to B(a). This suggests
that we split the sum that appears in Theorem 2 in terms
of smaller sums over the Γk’s lying within the support of
a. Indeed, we are building up towards such an argument in
Theorem 3.

Given v ∈ Fn
2 , let vk = v


Γk

∈ F
Nk
2 be the restriction of v

to Γk for k = 1, . . . , t.
Lemma 9: If ±E(a, b) is a stabilizer in S, then ak = 0

or 1.
Proof: ±E(a, b) commutes with ±E 

0, eri ⊕ erj


for

all i, j ∈ Γk.
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The Z-stabilizers supported on Γk take the form
(−1)ykvT

E(0,v), where v is a vector of even weight sup-
ported on Γk. Here yk is a fixed binary vector supported
on Γk. We now investigate trigonometric identities satisfied
by the weights in these component codes W representing
Z-stabilizers from Γk.

Lemma 10: Let W be the [m,m−1] code consisting of all
vectors with even weight, and let �v = (−1)vyT

be a character
on W . Then


v∈W

�v


ı tan

2π
2l

wH (v)

= cos γ ·


sec
2π
2l

m

, (59)

where γ = 2π(M−2wH (y))
2l .

Proof: If � is the trivial character, then y = 0, and we
have 

v∈W

ı tan 2π

2l

wH(v)
sec 2π

2l

m = P [W ] . (60)

We apply the MacWilliams Identities to obtain

P [W ] =
1

|W⊥|PW⊥


cos

2π
2l

+ ı sin
2π
2l
, cos

2π
2l

− ı sin
2π
2l



=
1

|W⊥|PW⊥


eı 2π

2l , e−ı 2π

2l


= cos

2πm
2l

, (61)

which means


v∈W


ı tan

2π
2l

wH (v)

= cos
2πM

2l


sec

2π
2l

m

. (62)

If � is a non-trivial character, then there exists y ∈ Fm
2 with

y �= 0 or 1 such that

B = {v ∈ W : �v = 1} = �1,y	⊥, (63)

and

B⊥ = �1,y	 = {0,1,y,1⊕ y}. (64)

Note that |B| = |W|
2 and |B⊥| = 2|W⊥|. We rewrite


v∈W

�v


ı tan

2π
2l

wH (v)

=

v∈B


ı tan

2π
2l

wH(v)

−


v∈W\B


ı tan

2π
2l

wH(v)

(65)

= 2

v∈B


ı tan

2π
2l

wH (v)

−

v∈W


ı tan

2π
2l

wH(v)

,

(66)

so that
v∈W �v


ı tan 2π

2l

wH(v)
sec 2π

2l

m = 2P [B] − P [W ] . (67)

We apply the MacWilliams Identities to obtain

P [B] =
1

|B⊥|PB⊥


eı 2π

2l , e−ı 2π

2l



=
1
2


cos

2πm
2l

+ cos
2π(m− 2wH(y))

2l


. (68)

We combine with (62) to obtain

2P [B]− P [W ] = cos
2π (m− 2wH (y))

2l
(69)

as required.
When B(a) = W , the second trigonometric identity in

Theorem 2 becomes a sum over all odd weight vectors
(Fm

2 \W). The character � is given by �v = (−1)vyT

for
some y ∈ F

m
2 and we extend the domain of � from W to F

m
2 .

If � is trivial, then
v∈F

m
2 \W �v


ı tan 2π

2l

wH(v)
sec 2π

2l

m = P [Fm
2 \W ]

= P [Fm
2 ] − P [W ] . (70)

We apply the MacWilliams Identities to obtain

P [Fm
2 ] = P�0�


eı 2π

2l , e−ı 2π

2l


(71)

=

eı 2π

2l

m−0 
eı 2π

2l

0

(72)

= cos
2πm
2l

+ ı sin
2πm
2l

. (73)

It now follows from equation (62) that

P [Fm
2 ] − P [W ] = ı sin

2πm
2l

= ı sin
2π (m− 2wH (0))

2l
.

(74)

If � is non-trivial, let B	 = {x ∈ Fm
2 |�x = 1}. If B	 = W ,

then
v∈F

m
2 \W �v


ı tan 2π

2l

wH (v)
sec 2π

2l

m = −ı sin 2πm
2l

= ı sin
2π(m− 2wH(1))

2l
.

(75)

Note that since �y	 ⊆ �1,y	 = B⊥, we have B ⊆ y⊥.
It remains to consider the case where � is non-trivial and
B	 �= W . Here B	 = y⊥ where y �= 1.

Lemma 11: Let W be the [m,m−1] code consisting of all
vectors with even weight. Let �v = (−1)vyT

, let B = {v ∈
W|�v = 1} = �1,y	⊥, and let B	 = {x ∈ Fm

2 |�x = 1}.Then


v∈F

m
2 \W

�v


ı tan

2π
2l

wH(v)

= ı sinγ ·


sec
2π
2l

m

, (76)

where γ = 2π(m−2wH(y))
2l .

Proof: See Appendix A-B.

We now consider a stabilizer code V(S) that is preserved
by π/2l Z-rotation for all l ≥ 2. The sign �v of the
Z-stabilizer �vE(0,v) is given by �v = (−1)yvT

, and we let
yk = y


Γk

be the restriction of the binary vector y to Γk.
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Given �E(a, b) ∈ S with a �= 0, we now investigate the
trigonometric conditions satisfied by Z-stabilizers supported
on supp(a). We first show that supp(a) is the disjoint union of
components Γk ⊆ supp(a). We then glue together the trigono-
metric conditions satisfied by the Z-stabilizers supported on
these components Γk.

Theorem 3: A transversal π/2l Z-rotation preserves the
stabilizer code for all l ≥ 2 if and only if for every �E(a, b) ∈
S with a �= 0,

1) supp(a) is the disjoint union of components Γk ⊆
supp(a),

2) Nk is even and wH(yk) = Nk/2 for all k such that
Γk ⊆ supp(a).

Proof of Necessity: First, we need to show that the hypoth-
esis implies the presence of many weight 2 Z-stabilizers,
and hence that the discussion of Γk is material. Though we
remarked on their presence in Remark 7, we will see in this
proof that such a structure is revealed by the trigonometric
conditions in Theorem 2 itself. For now, we begin by assuming
their presence and introducing related quantities.

We divide the weight 2 Z-stabilizers in Γk into two classes
of sizes Pk and Qk where Pk = |{v ∈ F

|Γk|
2 : wH(v) = 2

and �v = 1}| and Qk = |{v ∈ F
|Γk|
2 : wH(v) = 2 and

�v = −1}|. Setting wH(yk) = s, we have

Qk − Pk =

s

1


Nk − s

1


−


s

2


+

Nk − s

2


(77)

= −2

s− Nk

2

2

+
Nk

2
. (78)

Thus, Qk − Pk ≤ Nk

2 , and equality holds if and only if
wH(yk) = Nk

2 . Theorem 2 implies all wH(a) are even and
v∈B(a)

�v (ı tan θ)wH(v) = (sec θ)wH (a) =(1+(tan θ)2)
wH (a)

2

(79)

for all θ = π
2l with l ≥ 2. Let B2j(a) = {z ∈ B(a)|wH(z) =

2j}. We have

wH (a)
2

j=0


v∈B2j(a)

�v(−1)j (tan θ)2j =

1 + (tan θ)2

wH (a)
2 .

(80)

for all θ = π
2l with l ≥ 2. Since a finite degree polynomial (in

(tan θ)2) cannot have infinitely many roots

tan π

2l

2
, it must

be identically zero and we may equate the coefficients of
(tan θ)2 to obtain

wH(a)
2

=


v∈B2(a)

�v · (−1)=


k:Γk⊆supp(a)

(Qk − Pk). (81)

Note that this observation has established the presence of
weight 2 vectors in B(a), as we intended. It follows from (78)
that

wH(a)
2

≤


k:Γk⊆supp(a)

Nk

2
≤ wH(a)

2
. (82)

Therefore equality holds in (82) and Qk −Pk = Nk

2 for all
k such that Γk ⊆ supp(a), which completes the proof.

Proof of Sufficiency. Let W0
k be the [Nk, Nk − 1] single-

parity-check code and let W1
k = F

Nk
2 \ W0

k . Let W(r) =
k:Γk⊆supp(a) Wrk

k , where r ∈ F
|{k:Γk⊆supp(a)}|
2 and rk is

the entry of r corresponding to Γk. Then, for all r,


v∈W(r)

�v


ı tan

2π
2l

wH(v)

=

k

Γk⊆supp(a)

fk(rk), (83)

where

fk(δ) =


η∈Wδ
k

(−1)ykηT


ı tan

2π
2l

wH(η)

, for δ ∈ {0, 1}.

(84)

Here, yk = y

Γk

be the restriction of the character vector

y to Γk. Let γ = 2π(Nk−2wH(yk))
2l . We apply (62) and (76) to

simplify (84) as

fk(δ) =


cosγ · sec 2π

2l

Nk if δ = 0,
ı sinγ · sec 2π

2l

Nk if δ = 1,

=
 

sec 2π
2l

Nk if δ = 0,
0 if δ = 1.

(85)

Therefore, the summation (83) is nonzero if only if r = 0
(i.e. summing over W(0)).

To show the first trigonometric identity in Theorem 2,
we note that B(a) ⊃ W(0). Then, for all l ≥ 3


v∈B(a)

�v


ı tan

2π
2l

wH(v)

=

v∈W

�v


ı tan

2π
2l

wH (v)

=

k

Γk⊆supp(a)


sec

2π
2l

Nk

=


sec
2π
2l

wH (a)

. (86)

To verify the second condition, let ω ∈ O(a) = F
wH(a)
2 \

B(a) and we change variables to β = v ⊕ ω and ω on the
right hand side (note that we have extended the �v to all binary
vectors). Since W(0) is not contained in any nontrival coset
of B(a), we have


v∈B(a)

�v


ı tan

2π
2l

wH (v⊕ω)

= �ω


β∈ω⊕B(a)

�β


ı tan

2π
2l

wH (β)

= 0, (87)

for all l ≥ 3 and ω �= 0.
We now use the two conditions in Theorem 3 to show that if

a CSS code is oblivious to coherent noise, then it is a constant
excitation code.

Corollary 12: A CSS code is oblivious to coherent noise if
and only if it is a constant excitation code.

If the CSS code is error-detecting (d > 1) then the weights
in different cosets of the X-stabilizers are identical.
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Proof: Consider an [[n, k, d]] CSS(X, C2;Z, C⊥
1 ) code with

a fixed character vector y for Z-stabilizers. If w is a coset
representative for C2 in C1, then w ⊥ C⊥

1 so w

Γk

= 0 or 1.
If x ∈ C2, then by Lemma 9, we have x


Γk

= 0 or 1 for

all k. Theorem 3 implies wH(yk) = |Γk|
2 for all k, where

yk = y

Γk

. Since (w⊕x) = 0 or 1 on any Γk, adding yk to
the sum either leaves yk unchanged or just flips all entries of
yk. In both cases, the Hamming weight of the sum (w⊕x⊕y)
is exactly |Γk|

2 on any Γk. If Γ =
t

k=1 Γk, then

wH(w ⊕ x ⊕ y

Γ
) =

t
k=1 |Γk|

2
. (88)

If V = {1, 2, . . . , n} \ Γ, then the first condition in
Theorem 3 implies that wH(x


V

) = 0, so that for fixed w

wH(w ⊕ x ⊕ y) = wH(w ⊕ x ⊕ y

Γ
) + wH(w ⊕ x ⊕ y


V

)

(89)

is constant for all x ∈ C2, and the CSS code is a constant
excitation code. The sufficiency follows from the observation
that a transversal θ Z-rotation acts as a global phase on a
constant excitation code. If the CSS code is error detecting,
then for all i ∈ V there exists �i ∈ {±1} such that �iE(0, ei)
is a Z-stabilizer. Hence w


v

= 0 for all coset representatives
w = vGC1/C2 of C2 in C1. It now follows from (89) that
wH(w) = |Γ|

2 + wH(y

v
) is constant.

VII. CONSTRUCTION OF QUANTUM CODES

OBLIVIOUS TO COHERENT NOISE

Let A2 ⊂ A1 be two classical codes with length t, and let
R2, R1 respectively be the rates of A2,A1. We may construct a
[[t, (R2−R1)t, d = min{dmin(A1), dmin(A⊥

2 )}]] CSS code by
choosing X-stabilizers from A2 and Z-stabilizers from A⊥

1 .
Let M ≥ 2 be even, and let W be the [M,M − 1] single
parity check code consisting of all vectors with even weight
of length M . Consider the CSS(X, C2;Z, C⊥

1 ) code where

C2 = A2 ⊗ 1M , (90)

C⊥
1 =


(b ⊗ e1) ⊕ w : b ∈ A⊥

1 and w ∈
t

k=1

W

, (91)

and 1M is the all-ones vector of length M . Note that the
code C⊥

1 includes the direct sum of t single-parity-check
codes W . We determine signs of elements in C⊥

1 (Z stabilizers)
by choosing a character vector y ∈ F

tM
2 , and we satisfy

condition (2) of Theorem 3 by choosing wH(yk) = M/2,
where yk = y


Γk

. The sign �z of the Z-stabilizer �zE(0, z)
is given by �z = (−1)ykzT

. The number of logical qubits is

tM − dim(C⊥
1 ) − dim(C2)

= tM − t(M − 1) − (1 −R1)t−R2t = (R2−R1)t. (92)

If z is a vector of minimum weight that is orthogonal to all
X-stabilizers, then either z is a Z-stabilizer of z is a vector
from A⊥

2 interspersed with zeros. Hence the minimum distance
d of the CSS code is at least min(dmin(A1)M,dmin(A⊥

2 )).
Thus, we have constructed a CSS code family with parameters

[[tM, (R2 − R1)t,≥ min(dmin(A1)M,dmin(A⊥
2 ))]], that is

oblivious to coherent noise.
For fixed M , if we choose a family CSS codes with finite

rate, then the new CSS family also have finite rate but with
possible higher distances. If we allow both M and t to
grow without bound, then the new CSS family may achieve
increased distance but will have vanishing rate.

Example 4: We may choose A1 = F
2L
2 , A2, and M = 2L

to be the [2L, 2L− 1] single-parity-check code to obtain the
family of [[4L2, 1, 2L]] Shor codes.

The dual-rail inner code [29] is the CSS code determined
by the specific stabilizer group S = �−Z1Z2	. Ouyang [27]
observed that it was possible to construct a constant excitation
code by concatenating an outer stabilizer code with an inner
dual-rail code. This is simply because concatenation maps |0	
to |01	 and |1	 to |10	. In this case the number of physical
qubits doubles. When M = 2, the construction described
above coincides with the dual-rail construction. However, our
approach has shown that any CSS code can be made oblivious
to coherent noise, without requiring a special stabilizer group
as in the original dual-rail construction. In fact, our approach
can be extended to any stabilizer code as shown below.

Consider an [[n, k, d]] stabilizer code with generator matrix

GS =

n n 
A B r − l

C l
. (93)

Here, r = n−k, and the matrix C is the generator matrix of
the space {z ∈ Fn

2 |�zE(0, z) ∈ S} (thus the matrix A has full
row rank). The stabilizer code derived from our construction
has generator matrix

GS =

nM nM A⊗ 1M B ⊗ e1 r − l

C ⊗ e1 l
In ⊗W n(M − 1)

, (94)

where the (M−1) ×M matrix W generates the single-parity-
check code. We choose signs of the n(M − 1) stabilizers
generated by In ⊗ W so that the new stabilizer code is
oblivious to coherent noise.

Theorem 13: The minimum distance d	 of the stabilizer
code generated by GS satisfies d ≤ d	 ≤Md.

Proof: Suppose that (x,y) is not in the row space of GS

and GS(y,x)T = 0. Note that M | wH(x). We may write

x = f ⊗ 1M where f ∈ F
n
2 , (95)

and y = (1M ⊗ (w1, . . . ,wn)) ⊕ (g ⊗ e1) where wi ∈
W and g ∈ Fn

2 . Then

GS(y,x)T =

A B

C


(g,f )T = 0. (96)

The weight of (x,y) is at least the weight of (f , g) which is
at least d, and so d	 ≥ d. Furthermore, there exists a weight d
vector (u,v) not in the row space of GS and GS(v,u)T = 0.
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Then, we have (u⊗1M ,v⊗e1) is not in the row space of GS

and GS(v ⊗ e1,u ⊗ 1M )T = 0. Hence,

d	 ≤ wH(u ⊗ 1M ,v ⊗ e1) ≤M · wH(u,v) = Md.

The next example also demonstrates that the dual-rail
construction may sometimes increase minimum distance, and
this may be a reason to investigate M > 2 in the above
construction, where the distance d	 satisfies d ≤ d	 ≤ Md
(Theorem 13).

Example 5: Consider the [[5, 1, 3]] stabilizer code with gen-
erator matrix GS = [A|B] where

A =

⎡
⎢⎢⎣

1 0 0 1 0
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

⎤
⎥⎥⎦ .
(97)

The code is not a CSS code. The stabilizer code derived
from our construction has generator matrix

GS =

signs 
A⊗ [1, 1] B ⊗ [1, 0] +

I5 ⊗ [1, 1] −
. (98)

Consider (y,x) such that (x,y) is not in the row space of
GS and GS(y,x)T = 0. We observe that 2 | wH(x). If x =
0, then y = w ⊗ [1, 1] ⊕ 15 ⊗ [1, 0] for some w ∈ F5

2, then
after possibly applying the cyclic symmetry, we may assume
x = e1 ⊕ e2 and (A ⊗ [1, 1])yT = [0, 0, 0, 1]T . We observe
that neither [0, 0, 0, 1] nor [1, 0, 1, 0]⊕ [0, 0, 0, 1] = [1, 0, 1, 1]
is a column of A. It follows that the distance d	 ≥ 4. In fact,
we see d	 = 4 by taking

(x	,y	) = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0|0, 0, 1, 0, 0, 0, 0, 0, 1, 0].
(99)

Hence, the stabilizer code derived from the above construc-
tion has parameters [[10, 1, 4]].

By choosing y to be either [0, 1] or [1, 0] for each of the five
connected components with size M = 2, we ensure V(S	) to
satisfy Theorem 3, and thus it is oblivious to coherent noise.
We now consider the cases that when some qubits are not
involved in any X-stabilizer.

Example 6: Consider the [[5, 1, 2]] CSS code with the
character vector y = [1, 0, 1, 0, 1] defined by the following
generator matrix

GS =

⎡
⎢⎢⎣

1 1 1 1 0
1 1 0 0 0
0 0 1 1 0
0 0 0 0 1

⎤
⎥⎥⎦ . (100)

Here, we have two connected components Γ1 = {1, 2}
and Γ2 = {3, 4}. Since supp([1, 1, 1, 1, 0]) = Γ1 ∪ Γ2, and
wH(yk) = |Γk|

2 = 1 for k = 1, 2, the two conditions in
Theorem 3 are satisfied. Hence, the [[5, 1, 2]] CSS code is
oblivious to coherent noise, and we use (32) to compute

computational states to verify it is a constant excitation code:

|0̄	 =
1√
2
(|01011	 + |10101	), (101)

|1̄	 =
1√
2
(|10011	 + |10101	). (102)

Here, the constant excitation is 3 �= 5
2 (half of the number

of physical qubits). After the concatenation, we may introduce
extra physical qubits by adding zeros to the current X-
stabilizers and including all weight 1 Z-stabilizers on the extra
qubits. This construction reduces rate, but provides a large
class of codes that may be useful in implementing logical
gates.

Given any [[n, k, d]] stabilizer code, the theoretical con-
struction in (94) and the observation in Example 6 provide
a [[Mn+ s, k, d	]] stabilizer code that is oblivious to coherent
noise, where d ≤ d	 ≤Md, M ≥ 2 is even, and s ≥ 0.

VIII. CONCLUSION

We derived necessary and sufficient conditions for a stabi-
lizer to be oblivious to coherent noise, We showed that a CSS
code that is oblivious to coherent noise must be a constant
excitation code. These results were obtained by analyzing
stabilizer codes for which the code space is preserved by
transversal π/2l Z-rotations for all l ≥ 2. We intend to
investigate the finite length setting, where the code space
is only preserved by transversal π/2l Z-rotations for l ≤
lmax. We expect these codes to prove useful in fault-tolerant
implementations of non-Clifford gates.

APPENDIX A
PROOFS FOR SOME RESULTS

A. Proof for Logical Identity Induced by Infinite Transversal
Z-Rotations

Assume S defines an error-detecting code [[n, n − r, d]],
i.e., d ≥ 2, which is invariant under all the transversal π

2l Z-
rotations. Set θl = π

2l . Then, we can write the Taylor expansion

n
i=1

eıθlZi =
n

i=1

∞
k=0

(ıθlZi)k

k!
=

n
i=1

(I2 + ıθlZi + O(θ2l )I2)

(A1)

= I2n + ıθl(Z1 ⊗ I2 ⊗ · · · I2 + I2 ⊗ Z2 ⊗ I2 ⊗ · · · ⊗ I2

+ · · · + I2 ⊗ I2 ⊗ · · · ⊗ Zn) + O(θ2l )I2n .

(A2)

We can choose l large enough (say l ≥ L for some positive
integer L) in order to ignore the last term,

n
i=1

eıθlZi

≈ I2n + ıθl(Z1 ⊗ I2 ⊗ · · · I2 + I2 ⊗ Z2 ⊗ I2 ⊗ · · · ⊗ I2

+ · · · + I2 ⊗ I2 ⊗ · · · ⊗ Zn). (A3)

On one hand, since the code can detect any single-
qubit error, it can detect any linear combination of them
(Theorem 10.2 in [40]). Therefore,

n
i=1 e

ıθlZi is detectable
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TABLE I

SIGN PATTERNS FOR DIFFERENT WEIGHT ENUMERATORS P [A] WITH A ⊂ F
m
2 : THE ENTRIES OF EACH ROW SPECIFY HOW THE

SET CORRESPONDING TO THE SUBSETS A CAN BE WRITTEN AS A UNION OF SUBSETS IN DIFFERENT COLUMNS

(i.e., it maps all the codewords outside the codespace
or acts trivially on the codespace). On the other hand,n

i=1 e
ıθlZi preserves the code space by assumption. There-

fore,
n

i=1 e
ıθlZi act trivally on the codespace, which implies

that the logical operator induced by
n

i=1 e
ıθlZi is identity

for all l ≥ L. Note that the logical operator induced byn
i=1 e

ıθlZi is identity for larger l implies that the logical
operator induced by

n
i=1 e

ıθlZi is also identity for smaller
l via repeated applications. Therefore, the logical operator
induced by

n
i=1 e

ıθlZi is identity for all l.

B. Proof of Lemma 11

We may assume that y �= 0,1, and that the subspaces W ,
y⊥ and their duals �1	, �y	 intersect as shown below.
The edge label is the index of the smaller subspace in the group
larger subspace.

We have
v∈F

m
2 \W �v


ı tan 2π

2l

wH (v)
sec 2π

2l

m

= P

(Fm

2 \W) ∩ y⊥− P

(Fm

2 \W) ∩ 
F

m
2 \ y⊥ .

(B4)

Table I specifies how subsets T appearing (B4) can be
expressed as disjoint unions of subsets A that appear in the
MacWilliams Identities. It follows from Table I that we may
rewrite the right hand side of (B4) as

v∈F
m
2 \W �v


ı tan 2π

2l

wH(v)
sec 2π

2l

m

= P [Fm
2 \W ] − 2P


F

m
2 \ y⊥+ 2P

W \ (W ∩ y⊥)

.

(B5)

It follows from (74) that

P [Fm
2 \W ] = ı sin

2πm
2l

. (B6)

We rewrite (73) as

P

F

m
2 \ y⊥ = eı 2πm

2l − P [y⊥]. (B7)

Recall that we define t+ = cos 2π
2l + ı sin 2π

2l and t− =
cos 2π

2l − ı sin 2π
2l . We apply the MacWilliams Identities to

obtain

P

y⊥


=

1
|�y	|P|�y�| (t+, t−)

=
1
2


eı 2πm

2l + eı
2π(m−2wH (y))

2l


, (B8)

so that

P

F

m
2 \ y⊥ =

1
2


eı 2πm

2l − eı
2π(m−2wH (y))

2l


. (B9)

It follows from (62) that

P
W \ (W ∩ y⊥)


= cos

2πm
2l

− P [W ∩ y⊥]. (B10)

We apply the MacWilliams Identities to obtain

P
W ∩ y⊥

=
1

|�1,y	|P|�1,y�| (t+, t−)

=
1
4


eı 2πm

2l + e−ı 2πm

2l + eı
2π(m−2wH (y))

2l + eı
2π(2wH (y)−m)

2l


(B11)

so that

P
W \ (W ∩ y⊥)


=

1
2


cos

2πm
2l

−cos
2π(m− 2wH(y))

2l


.

(B12)

We now use (B6), (B9), (B12) to rewrite the right hand side
of (B5) as

ı sin
2πm
2l

− eı 2πm

2l + eı
2π(m−2wH (y))

2l + cos
2πm
2l

− cos
2π(m− 2wH(y))

2l
, (B13)

which reduces to (76).
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