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Abstract—Creating a plan, i.e., composing a sequence of items
to achieve a task is inherently complex if done manually. This
requires not only finding a sequence of relevant items but also
understanding user requirements and incorporating them as
constraints. For instance, in course planning, items are core and
elective courses, and degree requirements capture their complex
dependencies as constraints. In trip planning, items are points
of interest (POIs) and constraints represent time and monetary
budget, two user-specified requirements. Most importantly, a plan
must comply with the ideal interleaving of items to achieve a goal
such as enhancing students’ skills towards the broader learning
goal of an education program, or in the travel scenario, improving
the overall user experience.

We study the Task Planning Problem (TPP) with the goal of
generating a sequence of items that optimizes multiple objectives
while satisfying complex constraints. TPP is modeled as a
Constrained Markov Decision Process, and we adapt weighted
Reinforcement Learning to learn a policy that satisfies complex
dependencies between items, user requirements, and satisfaction.
We present a computational framework RL-Planner for TPP.
RL-Planner requires minimal input from domain experts
(academic advisors for courses, or travel agents for trips), yet
produces personalized plans satisfying all constraints. We run
extensive experiments on datasets from university programs and
from travel agencies. We compare our solutions with plans
drafted by human experts and with fully automated approaches.
Our experiments corroborate that existing automated solutions
are not suitable to solve TPP and that our plans are highly
comparable to expensive handcrafted ones.

I. INTRODUCTION

Task planning [1]-[4] is a complex and time consuming
effort that is ubiquitous and has a wide range of applications,
such as, planning courses or trips. Consider the scenario of
an aspiring youngster wanting to jump-start her career as a
data scientist right after her B.S. in Computer Science, or
a seasoned IT analyst with years of experience in industry
wanting to join the bandwagon of data science to change her
career focus. For both individuals, designing a course plan
(e.g., for an M.S. degree or a certificate in data science) is
a complex and intellectually demanding task with the goal
of managing their education goal, and satisfying different
requirements that are compatible with their experience and
background. Similarly, a student wanting to discover museums
in Europe, or a senior traveler seeking to enjoy Southeast Asia,
will need a trip plan that combines very different requirements.
In this paper, we propose a computational framework to
automate task planning that is applicable to a variety of
domains.
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The current best practices of task planning offer a contin-
uous and consistent process which is mostly done under the
guidance of human experts (e.g., academic advisors and travel
agents). It is needless to say that such a fully manual approach
is expensive and inherently not scalable. Contrarily, a fully au-
tomated approach [1], [5]-[8] may require significant historical
data or logs to learn personalized models. We advocate that
task planning must be studied as a sequence generation prob-
lem that is sensitive to the ordering and interleaving of items,
personalized and captures progression in task achievement, as
well as satisfies a multitude of complex constraints. While this
bears similarity to guided Exploratory Data Analysis (EDA),
to the best of our knowledge, there is no EDA framework that
accounts for intricate constraints required in task planning. We
propose, RL-Planner, a mostly automated computational
framework that requires minimal input from stakeholders, yet
produces highly effective task plans that are personalized
and relevant. Scenarios where in-person education or travel
advising is rare and costly and the platforms that need to scale
up the process to thousands of items (such as MOOCs [9] and
vacation rentals ') are ideal for our problem.

Example 1: Let us consider the case of a student aspiring
to obtain an M.S. degree in Data Science Computational
Track (DS-CT) with a B.S. degree in a STEM discipline.
At the very minimum, the student must have knowledge
on core (i.e., primary) CS subjects, such as Algorithms &
Data Structures, in Mathematical Science, such as Probability
and Linear Algebra, in Programming Languages (such as
Python and RStudio), and finally Applied Data Science topics
(Databases, Data Mining, Machine Learning). Additionally,
the student must satisfy the minimum credit requirement as
well as the primary vs. secondary split (e.g., 5 core courses
and 5 electives). The student must also take the prerequi-
sites before the electives (e.g., take Linear Algebra before
Machine Learning or DBMS before Data Mining) at least
a semester before. The recommended courses should satisfy
the student’s broader goal of becoming a computational data
scientist after completing the degree program. Additionally,
the student may aspire to learn some specific topics (e.g.,
Classification, Clustering, Neural Network, Linear System), or
may be interested in taking elective courses or in completing a
project that is specifically designed to gain knowledge in Data
Science in some application domains (such as pharmaceutical,
health-care, or fintech). Such specifications must come from
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the student. How to design the ideal sequence of core and
elective courses and interleave them (e.g., start with one or
two core courses, then take two electives, then another core
course) requires domain expertise that only academic advisors
are capable of providing.

Example 2: Consider a first time traveler looking for an
exciting day long trip in Paris (must be completed in 6 hours
of visitation time). There are some “must visit places” that are
the primary POIs (e.g., Eiffel Tower, Louvre Museum). The
remaining POIs are secondary/optional types (e.g., Pantheon,
Rue des Martyrs, etc). The traveler provides some preferences
and requirements, such as, she wants to visit Museum, Art
Gallery, be by a River, enjoy local food (Restaurant/Cafe),
and experience Architectures of historic importance. An ideal
itinerary should start the day with POIs that are time consum-
ing and physically strenuous to visit (such as Museum/Art
Gallery) (formalized as prerequisites or antecedents later on)
following which one can experience some relaxation time by
visiting a Restaurant/Cafe, does not contain many POIs of
same type (e.g., only one Museum/Art Gallery, one River, etc),
and the itinerary is easily commutable. Only an experienced
travel agent can craft one such itinerary that satisfies these
multitude of requirements, i.e., ensuring the presence of pri-
mary POIs and selecting the best from the secondary types to
bring variety, ensuring appropriate interleaving, and satisfying
other constraints the traveler provides.

The aforementioned examples call out the following require-
ments in task planning - (1) Satisfying Hard Constraints:
Plans must match these constraints as part of the requirement
for the task (e.g., # primary vs. # secondary, as well as
antecedents/prerequisite requirements). (2) Maximizing Soft
Constraints: These are of two different kinds: (a) Designed
plans must maximize the coverage of the topics/themes users
wish to acquire (e.g., recommend courses on Clustering and
Neural Network, or POIs related to library and cathedral); (b)
Recommended sequences must adhere to the domain expert’s
provided “template” as much as possible. A “template” is
a set of ideal permutations of primary and secondary items
(Section II-A has further details) and the generated task plan
must follow these ideal compositions as closely as possible.

This work makes the following contributions: 1. Formaliz-
ing Task Planning as a Decision Making Problem: Our first
contribution is to formalize the Task Planning Problem (TPP)
as a constrained sequence generation problem. We model TPP
as a Constrained Markov Decision Process (CMDP) [10].
where a state is an item, an action generates a transition
that adds one more item, and a “reward” is associated with
every transition to quantify how well the action satisfies the
hard constraints, and maximizes the soft constraints. In fact,
designing a reward function that captures all these nuances
is a complex and intellectually demanding data science task,
as we shall describe in Section III-A. We are unaware of a
generic framework that is capable of handling multiple hard
and soft constraints to generate sequence aware outputs for
multiple applications. Section V contains further details.

2. Solving TPP by adapting Reinforcement Learning:

Our second contribution is to present a computational frame-
work (Section III-C), that is inspired by Constrained Rein-
forcement Learning (C-RL) [11], [12], specifically Weighted
RL [13], but non-trivially adapts it to handle multiple hard
and soft constraints. Essentially, we propose a weighted reward
function to transform the CMDP to an unconstrained MDP that
captures multiple hard constraints as well as maximizes the
actual value by maximizing the soft constraints. We prove that
our designed reward function satisfies all hard constraints. We
adapt the popular model-free on-policy algorithm SARSA [14]
for updating the @ values of the states, which is known to
converge faster and with fewer errors [15].

3. Experimental Evaluation: Our third contribution is an
extensive evaluation (Section 1V) using real-world datasets
in the education and travel domains. We use two datasets
to plan courses for 4 different sought after degree programs
and one dataset to plan 2 trips. Our results convincingly
demonstrate that: (a) Our algorithm generates task plans that
are comparable in quality to handcrafted ones, and are superior
to fully automated sequence-aware recommendations (e.g.,
OMEGA [16]) and to next-step recommendation in EDA [17];
(b.1) based on user studies involving 25 data science computa-
tional track (DS-CT) major students, our course plans achieve
highly comparable satisfaction scores w.r.t. handcrafted gold
standards designed by domain experts; (b.2) based on user
studies involving 50 frequent travelers hired on Amazon Me-
chanical Turk, we find that the produced trip plans are highly
satisfactory to the users and comparable to the handcrafted
ones; (c.1) the policy learned by RL-Planner for the M.S.
DS-CT is transferable to a different degree program in M.S.
Computer Science inside the same university and vice versa;
(c.2) similarly, the policy learned from a trip to NYC is
transferable to a trip to Paris, and vice versa; (d) our algorithm
is robust to the different parameters, takes reasonable time
for learning the policy, and can therefore make interactive
recommendations.

We finally conclude in Section VI.

II. TASK PLANNING PROBLEM

We present our data model and define the Task Planning
Problem. We present the used notations in Table L.

A. General Framework and Problem Definition

Let Z and 7 represent a set of items and topics/themes,
respectively. Some of the items, denoted by P C Z, are also
designated as antecedents meaning they must be recommended
before some other items.

1) Item

Formally, an item m is represented as a quadruple

m = (type™, cr™, pre™, T™)

An item is one of the two types: a. primary or b. secondary.
An item of primary type is required for a task. Contrarily,
an item of secondary type is chosen from a number of
optional items according to the user’s interest. cr™ designates
a quantifiable number toward satisfying the requirement of a
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Symbol Description

I, TP Set of items, Set of topics/themes, Antecedent
type™ Type of item m
pm Quantifiable number toward
satisfying the requirement
m Set of items that need to be
pre recommended before item m
m Boolean vector of topics/themes
T that are covered by item m
Phard> Psojt Hard & Soft constraints
T ideal Ideal topic/themes coverage
1T Interleaving template
#primary, #secondary # of primary items, # of secondary items
cr Minimum hours requirement

The lower bound of distance between
gap m and its antecedents
R(.) Reward function

H,R(H) Trajectory of state-action pairs, Reward returned by H
Graph with a set Z of items as nodes and
§={1,E) E as edges between them
S, FE State & action space
T, N Transition function, Number of episodes
a,”, € Learning rate, Discount factor, Topic coverage threshold
AvgSim Interleaving reward

4,0 Reward functions weights
w1, w2 Weight of primary & secondary items

TABLE I: Table of Notations

task. m may have one or more prerequisite pre™ C P, where
each prerequisite m; is an item that needs to be recommended
before m (described below with examples). If m has multiple
prerequisites they are often “AND”ed meaning all antecedents
are to be recommended before m. When they are “OR”ed, any
one of these items must be taken before m. Both primary and
secondary types could serve as prerequisites for some other
item. Finally, m covers a set of topics/themes represented
by a Boolean vector 7™ of length |7|, and the i-th bit
contains 1 if m covers that topic/theme and O otherwise.
These are typically keywords that are extracted from a course
syllabus (available in training programs), or a POI description
(available in Wikipedia). Given two items m and m/, their
vectors may or not have topics in common.

For a given end user, task planning must be personalized.
That is achieved by satisfying hard constraints and maximizing
soft ones.

2) Hard Constraints

These are provided by a domain expert as the requirement
for achieving a task, typically a minimum requirement of
credits hours #cr (or items if each item offers the same
number of credit hours), a split of primary vs. secondary items
(#primary/Fsecondary)> and a specific ordering between an
item and its antecedent. Formally speaking, a hard constraint
is a quadﬂlple, Phard = <#C707 #primary7 #secondaryvgap>'

3) Soft Constraints

There are two types of soft constraints designed in con-
sultation between a domain expert (academic advisor or travel
agent) and the end user (student or traveler). Notationally, soft
constraints are represented as a pair:

Psoft = <Tideal’ IT>

Ideal Topics/Themes 7°4°*, A user needs to be recom-
mended items that are personalized and covers topics/themes
that are commensurate to her goal.

Appropriate Item Interleaving Template /7. The second
soft constraint of planning is an intricate interleaving of
primary and secondary items (e.g., start with a primary then
follow with a secondary or two, then two more primary items,
and so on) and is provided as a template /7. Formally speak-
ing, IT = {Iy,I,...,I)77|} contains a set of permutations,
where each I; is a permutation of #primary primary items
and #econdary S€condary items.
Problem 1: 4) Task Planning Problem (TPP)

Given the hard constraints Pp,-q , and the soft constraints
Psofe provided by an end user in consultation with a domain
expert, the Task Planning Problem (TPP) is formulated as
finding a personalized plan for that user. i.e., a sequence of
items that satisfies Pj,q,q and maximizes Py .

B. Instantiation of the Framework

1) Course Planning

Item. For course planning, type” represents if a course
is a core vs. elective. cr™ represents the credit hours of a
course. A prerequisite of a course is one or more courses that
is/are its prerequisite. Imagine our course planning example
consists of 6 courses, as presented in Table II. The set 7
covers 13 topics/themes: [Algorithms, Classification, Cluster-
ing, Statistics, Regression, Data Structure, Neural Network,
Probability, Data Visualization, Linear System, Matrix Decom-
position, Data Management, Data Transfer]. The last column
shows the topic vectors of each course: e.g., for the Data
Mining course, 7™ = [0,1,1,0,0,0,0,0,0,0,0,0,0] covers
two topics, Classification and Clustering out of the 13 topics.
As an example, a Data Mining and a Machine Learning course
contain overlapping topics such as Clustering, Classification,
etc.

Hard Constraints. As an example, an M.S. DS-CT pro-
gram may require a student to take at least 30 credit hours,
5 primary and 5 secondary courses. The integer constant
gap specifies the distance between m and pre™ in the rec-
ommended sequence: if a student takes 3 courses in each
semester, gap = 3 enforces that the prerequisites of m must be
taken at least a semester before. Thus, Pp.q = (30,5,5,3).

Ideal Topics/Themes 7 °““*!, For instance, in Example 1,
Classification, Clustering, Neural Network, and Linear System
are the topics that the student wishes to learn. Therefore, for
Example 1, 774 =0,1,1,0,0,0,1,0,0,1,0,0,0]

Appropriate Item Interleaving Template /7. A domain
expert provides an IT containing 3 permutations of primary
(core courses) and secondary items (elective courses) listed in
Table II:

IT = {[primary, primary, secondary, primary, secondary, secondary],
[primary, secondary, secondary, secondary, primary, primary],

[primary, secondary, secondary, primary, primary, secondary]}

Using Example 1, m; — mo — my — ms — mg — M3
is a sequence that fully satisfies the permutation I of the
aforementioned I'7. A recommended item sequence needs to
adhere to these permutations as closely as possible.
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2) Trip Planning

Item. A POI of primary type must be present in the planned
trip (such as, Eiffel Tower). cr™ designates the visitation
time of POI m. An antecedent of a POI is another POI,
that precedes the former POI temporally (e.g., Romanesque
architecture must be visited before Gothic ones, or visit a
museum before a restaurant/cafe). Let us assume that the toy
trip planning dataset contains POIs such as, Eiffel Tower,
Louvre Museum, Pantheon, Rue des Martyrs, Musée d’Orsay,
Cathédrale Notre-Dame de Paris, Palais Garnier, The River
Seine, Le Cing, etc. The set 7 covers 8 topics/themes:
Museum, Art Gallery, Cathedral, Palace, River, Street, Restau-
rant, Architecture. The topic vector for Louvre Museum
[1,1,0,0,0,0,0,1] covers three topics, Museum, Art Gallery,
and Architecture, out of 8 topics.

Hard Constraints. For the trip planning, a day long trip
in Paris to visit 2 primary and 3 secondary POIs, with a total
visit time of 6 hours ( #cr = 6) and gap = 1 enforces that
the antecedent of m must be visited before m. Thus, Perq =
(6,2,3,1).

Ideal Topics/Themes 7°%°*, Example 2, Museum, Art
Gallery, River, Restaurant, Architecture are the topics/themes.
These topics are captured in the ideal topic vector 74 and
are considered soft constraints in the model.

Appropriate Item Interleaving Template /7.

IT = {[primary, secondary, primary, secondary, secondary],
[primary, secondary, secondary, secondary, primary],

[primary, secondary, secondary, primary, secondary]}

Using Example 2, Louvre Museum — Le Cinq — Eiffel
Tower — Rue des Martyrs — River Seine is a sequence that
fully satisfies the permutation I; of the aforementioned I7'.

III. PROPOSED SOLUTION : RL-Planner

In this section, we present our proposed computational
framework RL-Planner. We describe our proposed mod-
eling first, following which we provide our solution.

A. Modeling TPP

In general, a Constrained MDP (CMDP) [10] is designed
to learn a policy of an agent with the goal to

max,E"[R(H)] st. ET[D(H)] < ¢ (1)

where H is a trajectory of state-action pairs, R(H ) is the total
return that can be obtained by H, and D(H) is the measure
of how dangerous the trajectory is.

For TPP, our abstraction contains a complete graph G =
(Z, E'), where the nodes are items in Z and each edge ¢;; € E
represents an interaction between two items m; and m;. TPP
is a deterministic discrete CMDP [12], [13] (S, E, R):

a. The set S of states is the set of nodes Z in G.

b. E is a set of actions, where each action e € E is akin to
adding one item to a given state. An action induces a transition
between two nodes in G and is represented by an edge. The
description T of an action is deterministic, thatis, 7" : Sx FE —
S, a new state is obtained by applying an action on each state.

836

c. R(s;, e, 8;41) is the reward of transitioning from state s; to
state s; 11 by taking action e;. The reward needs to be designed
to maximize P, and Ppqrq must be satisfied.

Course Planning: Trajectory H is computed considering
#cr in Pperq and the cr™ of each course. As an example, if
each course contributes a fixed credit of 3, a requirement of
30 credits translates to taking 10 items, thus H = 10. Each
state s which corresponds to an item m € Z has a theme/topic
vector 7" which represents the topics that course m covers.

Trip Planning: H is computed considering #cr in Pparq
and the c¢r™ of each POI If the user inputs 6 hours, the
itinerary will be terminated if the total visitation time exceeds
6 hours. Thus H = 6.

B. Reward Design

The process of designing the reward R(s;,e;,s;+1) of
taking action e; on state s;, is intellectually demanding and
must abide by the following: (a) an action must satisfy the
constraints in Ppq.q; (b) capture how well an action increases
the coverage of the ideal topic/theme vector for the soft
constraints; (c) quantify “how close” it is to the pre-defined IT
template; (d) weigh in primary and secondary items differently
(ideally, primary items should get higher weights); (¢) combine
these aforementioned requirements using a weighted linear
function and adjust the weights empirically.

Formally speaking, adding an item m to a state s; equates
to taking action e; that causes a transition to s;41,

R(si,eq,8i41) = 0 X [6 X AvgSim(sit1, [Tit1) + B X weight,,.m] (2)

§+B8=1,0={01}

ift type™ = primary, weight,,,,m = w1

if type™ = secondary, weight,,, .. = wa, s.t. w1 +wz =1

We also look at the scenario where our reward function
(Equation 2) uses minimum similarity rather than average
similarity.

We now describe the different components of this overall
reward.

1) Reward on Topic/Theme Coverage

During an episode, we maintain a current topic/theme vector
Teurrent that is initialized to all 0. As a state s (corresponding
to an item m) is included in the episode, T ¢“"™"t gets updated
to Fewrrent — [ewrrent| JTm  Given a state s; and an
action e; and the next state s;;; (which corresponds to adding
item m), the action is valid only if it increases the topic cover-
age of the ideal topic vector by at least a threshold e, specified
by the domain expert. Therefore, an action has a positive
reward = 1’ only when |Tidcal m{ﬁiulrrent \ﬁcurr@ntH > e,
0 otherwise.

Formally speaking,

|

T_current

1’ 1+1

0,

‘Tideal ﬂ{

otherwise

T_current > €
\TETt e
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Courseld CourseName type™ cr™ pre™ s
mi Data Structures and Algorithms primary 3 [ [1,0,0,0,0,1,0,0,0,0,0,0,0]
ma Data Mining secondary 3 [ [0,1,1,0,0,0,0,0,0,0,0,0,0]
ms Data Analytics primary 3 [ [0,0,0,1,0,0,0,1,0,0,0,0,0]
my Linear Algebra secondary 3 [ [0,0,0,0,0,0,0,0,0,1,1,0,0]
ms Big Data secondary 3 [Data Mining OR Data Analytics] [1,0,0,0,0,0,0,0,0,0,0,1,1]
me Machine Learning primary 3 [Linear Algebra AND Data Mining] [0,1,1,0,1,0,1,0,0,0,0,0,0]

TABLE II: Course Information

Since topic coverage is an important soft constraint that
allows personalization, incorporating topic coverage in this
fashion allows to eliminate items that are poor in topic
coverage w.r.t. 74! even though they are good otherwise.

Course Planning: Given € = 1, considering Example 1 and
Tideal —10,1,1,0,0,0,1,0,0,1,0,0,0], s2(ma) — s4(my4)
has reward r; = 1, but sa(mg) — s5(ms) has r; = 0, since
adding Big Data (ms5) does not increase the topic coverage of
Teurrent wrt, Tideal by at least 1.

Trip Planning: Given ¢ = 1, a new POI is considered valid
if it increases the topic/theme coverage at least by 1.

2) Reward on Antecedent/Prerequisite Gap

In state s;, if the prerequisite(s) of m, pre™ is (are)
present in the episode and Dist(pre™, m) > gap, then an
action has ro = 1, 0 otherwise. This is needed to ensure
that the gap between the antecedents/prerequisites of an item
and m must satisfy the gap mentioned in Pjpy.q. When
antecedents/prerequisites are "AND”ed, every pre™ must be
present and satisfy the gap, when they are "OR”ed, any one
of them needs to appear before m satisfying the gap.

Formally speaking,

L
To =
2 0,

Course Planning: r5 = 1, if mo or mg is taken 1 semester
(1 semester enforces a gap of 3 since typically 3 courses are
taken per semester) before ms, 0 otherwise.

Trip Planning: If Louvre is recommended before LeC'ing
(restaurant), then an action gets value 1 for 5 and O otherwise.
3) Combining Topic Coverage and Prerequisite Reward

6 = 1 if the conditions on topic coverage AND antecedents
are satisfied, and 0, otherwise. Therefore,

Dist(pre™, m) > gap @

otherwise

0:T’1X7’2

®)

4) Reward on Interleaving

This portion of the reward function quantifies how suitable
the current sequence is based on similarity, considering the dif-
ferent permutations that are present in ideal composition (IT),
and aggregates them as follows: AvgSim(s;4+1,IT;+1). Note
that the ideal composition I7" is specified in Ps,p and each
I € IT is a permutation of length #p,imary + #Fsecondary-

Course Planning: To quantify how close the item sequence
in s;41 is w.r.t. an ideal sequence I, we must use a distance
function that is sequence-aware. In our implementation, we
come up with a similarity notion, inspired by Levenshtein
distance [18]. In general, given two sequences of length
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E (1 < k < |I]), one is the first k bits of an ideal
composition I, and the other is a state in a session of
length k, their Levenshtein distance produces a binary vector
cy of length k, where the j-th bit of the vector represents
the similarity between these two sequences considering bit
j. For our problem, as an example, consider a given ses-
sion at a given state s, the so far chosen item corresponds
to {primary, secondary, primary, primary}. The similarity
score of this sequence and [T specified in Example 1 are
{[1,0,0,1],[1,1,0,0],[1,1,0,1]} where 1 means they are the
same and O otherwise. For each permutation I, we compute
Sim(s,I)* by capturing different lengths of match ¢ and
multiply that by a weight ¢, which is the maximum length
of consecutive match (¢ € [0, k]) and normalize by dividing it
by k.

Szm(s,f)k — C X ZVC l]:ngth(C[)

(6)
Finally,

> Sim(s, I)*
_ VIelT

AvgSim(s, IT)* = (7

11T

Using the aforementioned example, Sim(s,1)* =
[0.5,1,1.5] and AvgSim(s, IT)* = 1.

Theorem 1: The designed reward function (Equation 2)
satisfies Pj,qrq of the TPP.

Proof: (Sketch) We note that there are actually 4 hard
constraints present in TPP. (1) the total number of credits, (2)
a pre-specified number of primary items, (3) a pre-specified
number of secondary items (4) a pre-specified gap between
items.

Without loss of generality, we present the proof using the
course planning application. The trip planning could also be
demonstrated in a similar manner.

(1) Total number of credit constraint: The first require-
ment is easily met by enforcing trajectory size H in the reward
design.

Recall Section III-A which describes the trajectory value
H, which is computed considering #cr in Pj,q and the
cr’™ of each recommended course. By its design choice
Y wmen €’ = #cr, satisfying the first constraints.

(4) Gap between a course and its prerequisites: This
constraint is satisfied through the design of r, in the reward
function.
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Clearly, 7o = 0 denotes that the constrained is unsatisfied
and it only gets 1, when the gap between the course and its
prerequisites are met.

(2,3) Split between elective and core courses: Imagine
that the reward function does not satisfy the #primary (Fcore)
and #sccondary (Felective) constraints. In a recommended se-
quence .S, we can have two possibilities:

1) Case I: #corc < ‘Scm’e| A #elective > |Selcctive|

2) Case 1II: #core > ‘Score| A #elective < |Selective|
Case 1. Is consistent, as a core course could be construed as
an elective, thereby satisfies the constraint, as long as |S] is
H.
Case II. We prove it by contradiction. According to our reward
design, weight ore = w and weightejective = 1 —w st w >
1—w. This is akin to solving weighted RL and the appropriate
w is learned through extensive training considering the total
number of core and elective courses in the dataset. By the
design choice, |Zeore| < |Zeiective|, that is, the number of core
courses is smaller than the number of electives in the dataset.

The reward function thus simplifies to R(s;, e;, $;+1) = 8 X
weightyypem, as long as @ = 1. Therefore,

R(si, €y 8i41) = B X w; Vm; € Leore
R(s,€5,8i41) = B x (1 —w);

Since, 8 X w > B x (1 — w), therefore denoting a higher
preference for the core courses over the electives. This makes
H#eore < |Score| @ contradiction.

Thus, the designed reward function satisfies all hard con-
straints in Pprgrq.

ij € ZLejective

|

Problem 2: (Revisiting TPP): Based on our proposed

model, given the hard constraints and soft constraints P,

TPP is reformulated to find a policy 7* that maximizes the
expected cumulative reward over any initial state.

H
= argmaxﬂE[Z R(s;,€i,8i41)|7] (8)

i=1
C. Reinforcement Learning Based Solution

There are many well-known methods for solving MDPs,
including value iteration and policy iteration, which are it-
erative methods and could be solved using Dynamic Pro-
gramming [19], or Monte Carlo method, or more popular
Temporal Difference based approach which is a combination
of Monte Carlo and Dynamic Programming [14], [20], [21].
Policy iteration involves two steps: policy evaluation and
policy improvement, and these two are repeated iteratively
until the policy converges. Contrary to that, value iteration
includes: finding the optimal value function, followed by one
policy extraction. There is no repeat of the two because once
the value function is optimal, then the policy out of it should
also be optimal (i.e. converged). While these two methods
appear seemingly close, it has been proved theoretically and
empirically in [22] that policy iteration is computationally

more efficient and requires a smaller number of iterations to
converge. So, we adapt model-free RL [14], [20], [21] with
inputs (S, FE, R, H) as a policy iteration method which fits our
proposed problem remarkably well in the absence of logs.

Using model-free RL, TPP can be expressed as the prob-
lem of finding a policy =7 S — FE that maximizes
the discounted cumulative reward. The goal is to maximize
> R(si, €i, si41), where « is the discount factor € [0, 1].

Each learning episode of RL-Planner contains H action-
values that gets periodically updated as the agent learns from
the environment based on the reward function (recall Equa-
tion 2). )-values are defined for states and actions. Q(s, e) is
an estimation of how good is it to take action e at state s, and
is iteratively updated. Based on our inputs, the size of the state
action-pair is |Z| x |Z|, since the agent can go to any other
items (except for the ones that are chosen already) given our
complete graph G.

We use the popular SARSA algorithm [14] for learning a
policy by updating the ) values. A SARSA agent interacts
with the environment and updates the policy based on actions
that are taken, hence this is known as an on-policy learning
algorithm. The () value for a state-action is updated by an
error and adjusted by the learning rate «. () values represent
the possible reward received in the next step for taking action e
in state s, plus the discounted future reward received from the
next state-action observation and expressed using Equation 9.

Q(sis€i) < Q(si, i) + afrip1 +7Q(si+1, €iv1) — Q(84, €4)]
€))
where the reward r;;; is computed using Equation 2.
During the learning phase, given different hard constraints
Phard and soft constraints Pz, the agent learns ) values
for a different number of episodes. For recommending item
plans, it traverses the @-table of size |Z| x |Z| with different
starting states. It starts with a given initial state (corresponds
to an item m), and traverses the () table to find the next item
that has the maximum () value. This process is repeated until
the sequence contains H items. The pseudo-code is presented
in Algorithm 1.

IV. EXPERIMENTAL EVALUATION

We conduct various experiments to validate the effectiveness
of RL-Planner and compare it with multiple baselines.
All algorithms are implemented in Python 3.7 on a macOS
Catalina with 2.4 GHz Quad-Core Intel Core i5 Processor and
16 GB RAM. Our code and data are available on GitHub.?

A. Experimental Setup
Our effort attempts to answer the following questions:

Q1. How well RL-Planner performs in comparison to
baselines?

How do end users (students or travelers) compare rec-
ommendations by RL-Planner to gold standards?

Q3. How effective is RL—Planner for transfer learning?

Q2.

Zhttps://github.com/RL-Planner/RL-Planner-ICDE

838

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 17,2022 at 14:36:01 UTC from IEEE Xplore. Restrictions apply.



Reward Function’s Weights

Parameters N a o Threshold (¢) | Distance Threshold (d) | Time Threshold (¢) | Starting Point (s1)
w1 w2 w3 Wy ws we B
Default Univ,l 500 | 0.75 | 0.95 0.0025 — — STATS 263 0.6 04 | — | — | — | —]06]04
Value Univ_2 100 | 0.75 [ 0.95 0.0025 — — CS 675 025 1 001 [ 0.15 [ 042 [ 0.01 [ 0.16 | 0.8 | 0.2
NYC / Paris | 500 | 0.95 | 0.75 — 5 6 — — — — — — — | 06 | 04

TABLE III: RL-Planner Default Parameters Values

Algorithm 1 Algorithm in RL-Planner

1: Learning Policy:
Require: Phorq, Psost, G = (Z, E), number of episodes N,
size of an episode H, a, v
Ensure: a policy 7 satisfying Ppqrq
2: for i < 1to N do

3: S; < m

4 € < argmamed,dE{I—m}R<m7mda d)

5: r < FEquation 2

6: W« {m|Jd}

7: S5 — d

8: for j <~ 2to H do

9: €j 4 argmazys v we(z-wi (s, sjw, w)

10: W «— {(W{Jw}

11 Q(sj,ej)  +  Q(sj,e5) +  arjz +
YQ(sj41,€541) — Q(s, ¢5)]

12: Sj < Sj+1

13: €5 < €541

14: Return Q

15: Recommending a plan:
Require: policy 7, a starting item m
Ensure: A sequence rec of H items starting with m
S;i < m
W« {m}
Tec < m
for : < 2 to H do
e; ¢ argmaryieq(s; ;)@ (si, j)
rec « [rec — s;41]
W {WUsi+1}
Si & Sit+1
Sequence of items in rec

Q4. How robust is RL-P lanner w.r.t. different parameters?
Q5. How scalable is RL-Planner?

Measures. To answer Q1 and Q4, we present average scores
over 10 runs. Q2 is answered through a user study and user
satisfaction is measured on a scale of 1 — 5. We present two
representative case studies to answer Q4. The score of each
recommendation is computed using Equation 7 for each ideal
composition I € IT and the highest value is selected as the
final score. Finally, we study running time to answer Q5.

1) Datasets.

Course Planning: We consider datasets extracted from the
NJIT (Univ-1) and Stanford (Univ-2) websites. The Univ-1
(NJIT) dataset contains 1216 courses comprising 126 degree
programs through 6 professional schools and colleges. We fo-
cus on 3 M.S. degree programs: Data Science-Computational
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Track (DS-CT), Cybersecurity, and Computer Science (CS).
The hard constraints consider the number of cores and elective
courses while satisfying the gap between a course and its
prerequisites. The Univ-2 (Stanford) dataset contains 3742
courses for 4 different departments related to data science.
Each course has a title, department number, department code,
course description, prerequisites, minimum and maximum
number of required units. We focus on the M.S. Data Science
(DS) program. The hard constraints are designed considering
the number of units constraints in the following 6 sub-
disciplines while satisfying prerequisites gaps: a. Mathematical
and Statistical Foundations; b. Experimentation; c. Scientific
Computing (includes software development and large-scale
computing); d. Applied Machine Learning and Data Science;
e. Practical Component; f. Elective course in the data science.
The actual number of courses per program are 31, 30, 32, 36
for DS-CT for NJIT, MS Cybersecurity NJIT, MS CS NIIT,
MS DS Stanford. To form topic vectors, we extract nouns from
course names and removed stopwords. In Univ-1, we get 60,
61, and 100 distinct topics for the DS-CT, Cybersecurity, and
for the CS. We obtain 73 topics from Univ-2.

Trip Planning: Akin to a prior work of ours [23], we use
publicly available Flickr data to plan trips in NYC and Paris,
where the photos are tagged with corresponding POI names
and the respective date/time associated with the photos define
the set of possible itineraries (such as, a set of POIs visited on
the same day). This dataset contains 2908 and 5494 itineraries,
respectively. The number of POIs for NYC and Paris are 90,
114. The hard constraint is considered as the total time that
one will allocate for visitation. We extract the themes/topics
of the POIs from Google Maps’ Places API which comprises
21 distinct themes for NYC, and 16 for the city of Paris. The
gap is provided as not visiting two POIs of the same theme
consecutively.

2) Implemented Baselines

We implement two types of baselines.

1. Fully Manual Gold Standard: Course Planning: This
is a handcrafted sequence of courses designed by academic
advisors for the relevant degree programs at Univ-1. For Univ-
2, we obtain the gold standard from the website of the degree
program. The gold standard scores (refer to Equation 7) are
10 for Univ-1 and 15 for Univ-2, since the ideal course plans
consist of 10 and 15 courses, respectively. Trip Planning:
This is a handcrafted itinerary designed by a domain expert.
The average of gold standard score is presented which is 5,
since that is the highest popularity score of any POI in the
dataset.

2. Fully Automated Solutions: We implement two types of
automated solutions. One that performs sequence mining, and
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the other that adapts exploratory data analysis (EDA) based
solutions. Both of these are model-free and hence can not be
adapted for transfer learning.

1. OMEGA: To the best of our knowledge, the existing
sequence recommendation algorithms leverage historical data.
For the purpose of comparison, we chose a recent sequence
recommendation algorithm OMEGA [16], that leverages co-
frequency of items (courses and POIs in our case). We non-
trivially adapt it to account for topic/theme coverage and
ideal compositions. OMEGA greedily selects edges in the
graph and exploits graph-theoretic properties to determine an
optimal sequence of items from a given set of edges. It first
performs a topological ordering of items in the graph. At
each subsequent iteration, an edge is chosen to maximize
the specified utility function based on the sequence of items
induced by the selected edge. OMEGA is NOT designed to
satisfy constraints. Therefore, we adapt it into a two-step
process that generates two sub-sequences and concatenates
them. The first sub-sequence is generated greedily to satisfy
the gap constraint. The second is recommended by OMEGA
and is designed to optimize the soft constraint. The two sub-
sequences concatenated together to satisfy the length con-
straint (number of primary and secondary items). Originally,
OMEGA uses a matrix that captures the number of times item
i is consumed before item j, for each pair of items. In our
implementation, we redesign it to capture the total number of
topics covered by ¢ and j.

2. EDA: To the best of our knowledge, there does not exist
any exploratory data analysis (EDA) based solution [17] that
satisfies a multitude of complex constraints such as ours. We
adapt the EDA paradigm by implementing a greedy method
that chooses the action with the highest reward based on
Equation 2 in each step. If two actions provide the same result,
one will be picked at random.

3) Default Parameter Settings.

Table III contains default values for all parameters of our
model. After consultation with students and academic advisors
|T*deal| is set to 60 for DS-CT, 61 for Cybersecurity, 100 for
M.S. CS for Univ-1, and 73 for Univ-2 M.S. DS. For NYC
and Paris, these are 21 and 16, respectively.

4) Summary of Results.

Our results demonstrate that: (a) Existing fully automated
approaches are not capable to adapt to sequence recom-
mendations with a multitude of complex constraints. Both
OMEGA [16] and EDA are unable to generate course plans
and trip plans that satisfy the hard constraints most of the
time, RL-Planner generates high quality course plans and
trip plans that are comparable to handcrafted gold standards;
(b) Based on user studies involving 25 data science computa-
tional track (DS-CT) major students, RL—Planner is highly
comparable w.r.t. handcrafted gold standards. RL-Planner
gets a 3.39 user satisfaction score on average out of 5
compared to 3.74 for gold standards. The generated trip plans
by RL-Planner are evaluated by 50 Amazon Mechanical
Turk workers and the gold standard itineraries are also rated.
Itineraries that are generated using RL-Planner get the

Score

average score of 3.94 out of 5 compared to 4.15 for the
gold standard; (c) RL-Planner is effective in transferring
policy for both the applications, whereas, the fully automated
baselines can not; (d) RL-Planner is robust to different
parameters, takes reasonable time for learning the policy, and
is capable to make interactive recommendations in real-time.
We conduct two sets of experiments using average similarity
and minimum similarity in our reward function (Equation 2),
and RL-Planner outperforms all baselines in both scenarios.
In certain cases, using minimal similarity yields a greater
score than using average similarity, demonstrating that the
RL-Planner works effectively regardless of the similarity
metric used.

B. Comparison with Baselines

We compare the plans generated by RL-Planner to the
automated baselines OMEGA, EDA, and to the fully manual
gold standard described in Section IV-A2. Figure 1 presents
the average scores. We observe that RL-Planner generates
plans that are higher in score than the fully automated base-
lines for all cases while being very close to the gold standard.
Contrarily, OMEGA fails to produce valid recommendations
most of the time, leading to O scores. Despite our non-
trivial adaptation, OMEGA fails to meet the stringent TPP
requirements, and EDA generates lower scores compared to
our proposed solutions.

OMEGA
EDA
RL-Planner
Gold Standard

1]

Gold Standard

Score

M.S.

Cybersecurity  ypjy-2
Univ-1

NYC

M.S. DS-CT
Univ-1

M.S. DS

(a) Course Planning (b) Trip Planning

Fig. 1: RL-Planner, OMEGA, EDA, and Gold Standa
C. User Studies

We measure user satisfaction of the sequence generated
by RL-Planner against the gold standard. OMEGA and
EDA are not considered in this study due to their low quality
recommendations.

The course planning study involves 25 student volunteers
majoring in M.S. DS-CT at Univ-1, who are highly familiar
with the courses. We validate 10 handcrafted itineraries (5 for
NYC and 5 for Paris) generated by domain experts and by
RL-Planner by involving 50 unique AMT workers. Each
itinerary is validated by 5 unique experienced travelers in
NYC and Paris and their average score is presented. Each
worker is paid 50 cents. The students/workers are shown
two sequences of courses: by RL-Planner and the gold
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Course Planning Trip Planning
Q RL-Planner | Gold Standard | RL-Planner | Gold Standard
Overall Rating 3.6 4.12 4.2 4.5
Ordering of Items 3.1 34 3.7 4.12
Topic/Theme Coverage 3.6 3.76 3.8 3.9
Core and Elective Interleaving /
Distance and Time Thresho]%:l 3.24 3.68 409 411

TABLE IV: Average Ratings: RL-Planner User Study

standard without revealing which one is which. Each volunteer
is asked to provide a rating for 4 questions on a scale of
1 — 5 with 5 being the best. Our results are summarized in
Table IV. RL-Planner produces course/trip plans that are
highly comparable to the gold standards across all 4 questions,
demonstrating its effectiveness.

D. Case Study: Transfer Learning

We present the effectiveness of RL—Planner in transfer
learning through a small number of case studies using Univ-
1 dataset and for NYC and Paris trip plans. Clearly, the
automated baselines fail to adapt to transfer learning.

Course Planning: We learn a policy using M.S. DS-CT to
recommend course plans for M.S. CS and vice versa. Table V
presents the results (the full mapping to course titles is in
Table VI). We present cases where both courses accurately
meet all core and elective requirements and all other hard
constraints. We also present less effective cases, when the
learned policies produce course plans with one less core course
during transfer learning.

Trip Planning: We learn a policy for NYC and apply to
Paris and vice versa. The results are shown in Table VII. A
good sequence is one that meets the hard constraints, whereas
one that does not meet these constraints is deemed to be a bad
outcome. Table VIII shows a few results from RL-Planner,
the type of POIs in each itinerary, as well as the time and
distance thresholds that each one meets.

E. Robustness of RL-Planner

We vary one parameter at a time while all other parameters
are kept at the default values (see Table III). The parameters
are: Number of Episodes (INV), Starting Point (s1), Learning
Rate (), Discount Factor (), Topic/Theme Coverage Thresh-
old (e), Reward Function Weights (w1, ws,d, 3). The results
for both average and minimum similarity are summarized in
Tables X, IX, XI and Tables XII, XIII, XIV for Univ-1 and
Univ-2, respectively. Tables XV, XVI represent the results
for NYC and Paris. Please note that OMEGA does not have
those parameters - hence these experiments are not applicable
to OMEGA. Contrarily, EDA is a model-free solution, hence
some of the aforementioned parameters (such as N , «, 7,
and s1) can not be tuned for EDA. Those results are marked
as "—" in the tables.

If the hard constraints are not satisfied, those are marked
with values 0 in Tables IX and XIV.

Course Planning: For Univ-1 (Table XI), we notice that
starting with any of the acceptable starting core courses, has
minimal impact on the performance of the model. We also
note that our reward parameters are best at § = 0.6,3 =
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0.4,w; = 0.6,wy = 0.4. We also observe that reducing the
threshold for accepting an action improves the score, and that
setting the discount factor (v) at 0.95 and the learning rate (&)
at 0.75 produce the best set of results. Overall, these results
demonstrate that RL-Planner is robust.

Similar results are observed for Univ-2 (Tables XII, XIII,
XIV). We observe that RL-Planner performs well for all
parameter values that are stable with respect to the starting
point, as there is not much variation in the score with a
changing start point. These results corroborate the robustness
of RL-Planner with different parameters.

Trip Planning: For NYC and Paris, changing the learning
rate (o) and the discount factor () (Table XV) does not have
high impact on the final score and the results are stable with
respect to reward’s weights (6, /3).

F. Scalability Evaluation

We explore the time taken to learn a policy and recommend
a course plan based on the learned policy. We vary the number
of episodes. All other parameters are held at the default values.
In Figure 2 (a)(c), we plot the time taken to learn a policy
against the number of episodes. We observe that the time
taken to learn a policy increases linearly with the number
of episodes. In Figure 2 (b)(d), we plot the time taken to
apply a learned policy w.r.t. the number of episodes we train
against. The time taken to recommend course plans is only a
few seconds which means it can be used in interactive mode.

V. RELATED WORK

We review four types of work: (1) Sequence Recommenda-
tion, (2) Course Recommendation, (3) Trip Recommendation,
and (4) Reinforcement Learning and Guided EDA.

A. Sequence Recommendation

Sequence recommendation is explored in [16], [24], [25] ,
[26] and [27]. In [24], the authors have recently developed a
computational framework to generate a sequence of sessions
to improve user satisfaction in the web applications. In [16],
a Directed Acyclic Graph is used to model sequential depen-
dencies and a novel class of utility functions are provided to
extend the expressive power of Sub Modular functions. The
OMEGA algorithm is proposed and provides a constant factor
approximation guarantee when applied to a DAG, to produce
an ordering which maximizes a given utility function. This
algorithm, however, has a high run time and is improved upon
by an edge-based algorithm [25]. However, both [16] and [25]
do not account for constraints or prerequisites when producing
a sequence of items, which is crucial for TPP.

In [28], the authors develop a framework that automatically
mines user and route data, to build an optimal route that
provides a personalized sequence of POIs for users visiting a
city. Caser is represented in [29] that leverages Convolutional
Neural Network for capturing both general preferences and
sequential patterns. SASRec [30] balances Markov Chains
and Recurrent Neural Network approaches to make sequence
recommendations.
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Time taken to learn policy (Seconds)

Learnt Policy | Applied Policy

Sequence of Recommended Courses

Good:

M.S. CS M.S. DS-CT

CS 675 : core — CS 683 : elective — CS 652 : elective — CS 677 : core — CS 639 : elective
— CS 645 : elective — CS 644 : core -MATH 661 : core — CS 610 : elective — CS 636 : core

Bad:

CS 675 : core — CS 683 : elective — CS 645 : elective — CS 652 : elective — CS 636 : core
— CS 644 : core — CS 639 : elective — CS 696 : elective — CS 677 : core — CS 634 : elective

Good:

M.S. DS-CT M.S. CS

CS 610 : core — CS 608 : elective — CS 656 : core — CS 667 : core — CS 652 : elective
— CS 634 : elective — CS 675 : elective — CS 631 : core — CS 630 : core — CS 700B : core

Bad:

CS 610 : core — CS 608 : elective — CS 656 : core — CS 667 : core — CS 652 : elective
— CS 704 : elective — CS 675: elective — CS 645 : elective — CS 636 : elective — CS 700B : core

TABLE V: RL-Planner for Course Planning: Transfer Learning between M.S. CS and M.S. DS-CT
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Fig. 2: RL-Planner Scalability Results

Course Number Course Name
CS 675 Machine Learning
CS 683 Software Project Management
CS 652 Computer Networks-Architectures, Protocols and Standards
CS 677 Deep Learning
Data Science CS 639 Elec. Medical Records: Med Terminologies and Comp. Imp.
CS 645 Security and Privacy in Computer Systems
CS 644 Introduction to Big Data
MATH 661 Applied Statistics
CS 610 Data Structures and Algorithms
CS 636 Data Analytics with R Program
CS 610 Data Structures and Algorithms
CS 608 Cryptography and Security
CS 656 Internet and Higher-Layer Protocols
CS 667 Design Techniques for Algorithms
Computer Science CS 652 Computer Networks-Archilectu»reg Protocols and Standards
CS 634 Data Mining
CS 675 Machine Learning
CS 631 Data Management System Design
CS 630 Operating System Design
CS 700B Master’s Project

TABLE VI: Course IDs & Descriptions for RL—Planner

In [26], the authors propose techniques to mine logs for
capturing short-term user interests combined with long-term
sequential patterns for making sequence recommendations.
They also acknowledge that applications such as course and
trip recommendations require consideration of constraints. In
[27], the notion of satisfaction and disagreement is used to
present the problem of sequential group recommendations.
They mainly concentrated on aggregating the recommendation
lists of individual group members into a group list.

As shown experimentally, the above algorithms do not adapt
well to constrained sequences, as is needed to solve TPP.

B. Course Planning

The use of recommendation systems for course predictions
for students has been extensively studied in [1], [2], [7], [31]-
[37]. CourseRank [2], is a popular course planning platform
developed at Stanford University. The platform provides use-

ful course feedback on specific courses as well as course
recommendations based on existing courses or preferences.
The authors demonstrate the need for an accurate course
planning tool to assist students in fulfilling their needs whilst
navigating complex degree requirements. Our work achieves a
similar goal using Reinforcement Learning techniques as well
as provides a personalized learning experience that helps a
student acquires expertise on a topic whilst also completing
their degree. In [1], the authors acknowledge the importance
of prerequisites and ordering when recommending courses
to a college student. However, adding complex prerequisites
(such as AND/OR) in their context, requires the use of an
Integer Linear Programming algorithm which is found to be
slow when recommending courses using the Extended Model
described in the paper. In [31] a hybrid algorithm, using Col-
laborative Filtering and Sequential Pattern Mining algorithms,
is used to propose a list of learning items in an e-learning
setting as per a given user’s interests. Grade prediction and top-
n course recommendation problems are studied in [35] using
collaborative filtering and popularity ranking, and a follow up
work proposes a hybrid of the Random Forest and Matrix
Factorization in [36] for this. In [37], the authors develop a
personalized learning environment (PLE) using widgets for a
university, which point to web resources to help students find
relevant resources.

The approaches above heavily rely on existing logs or social
networks to make recommendations, unlike our work.

C. Trip Planning

How to recommend trips that are personalized have been
studied in many recent related works [4], [5], [8], [38]-[40],
including our own [3]. Unlike our solutions, most of these do
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Learnt Policy

Applied Policy

Sequence of recommended POIs

Score

NYC

Paris

['musée du luxembourg” — 'musée des Egouts de paris’ — "Eglise st-sulpice’]

4.3

Paris

NYC

[’museum of television and radio’ — 'new york university’]

4.5

TABLE VII: RL-Planner for Trip Planning: Transfer Learning between NYC and Paris

Itinerary: Constraints:
¥ Time Threshold (¢) | Distance Threshold (d) POIs’ Type
[’battery park’, *brooklyn bridge’, ’colonnade row’] <6 <4 [’park’, ’establishment’, “museum’]
NYC . s S e s . - — i - .
["brooklyn bridge’, "colonnade row’, ’flatiron building’, <3 <5 [establishment’, "museum’, "establishment’,
“hudson river park’, 'rockefeller center’] = = ’park’, ’establishment’]
[’pont neuf’, ’promenade plantee’, ’sainte chapelle’, ["establishment’, "park’, *church’, ’establishment’,
. > > DBl > <6 <5 > >
Paris tour montparnasse’, 'Eglise st-eustache’] - = church’]
['pont neuf - prlomenade pla'mtee ’ viafiuc des arts’, <5 <5 [’establishment’, "park’, "establishment’, ’church’]
Eglise st-germain des prés’]

TABLE VIII: RL-Planner for Trip Planning : Itinerary Description

Parameter Topic Coverage Threshold (€) w1, W
Value 0.0025 ] 0.005 [ 0.01 [ 0.0175 [ 0.02 [ 04 [ 06 [ 08 ] 02]05]05][067]047]065]035
RL-Planner score using Avg similarity 7.9 5.6 5.6 5.7 54 0 0 5.9 7.9 0
RL-Planner score using Min similarity 8.24 6.48 7.6 6 7.48 0 5.44 4.8 8.24 7.36
EDA Score 6.4 32 6.4 3.2 0 — — — — —

TABLE IX: RL-Planner vs. EDA: Parameter Tuning Results Univ-1 M.S. DS-CT

Parameter Number of Episodes (V) Learning Rate () Discount factor ()
Value 100 200 300 500 | 1000 | 0.5 0.6 0.75 0.8 0.95 0.5 0.6 0.9 0.95 | 0.99
RL-Planner score using Avg similarity 3.2 5.6 5.6 7.9 4.5 32 4.2 7.9 4.8 5.8 4.8 5.6 5.6 7.9 5.6
RL-Planner score using Min similarity | 5.68 | 572 | 792 | 824 | 6.08 | 56 | 6.28 | 824 | 536 | 4.08 | 4.16 | 7.48 | 8.08 | 8.24 7.2
TABLE X: RL-Planner Parameter Tuning Results Univ-1 M.S. DS-CT
Parameter Starting Point (s1) 0,8
Value CS 644 | CS636 | CS 675 | MATH 661 | 04 [ 0.6 | 045 [ 0.55 | 0.5 [ 0.5 | 0.55 [ 045 | 0.6 [ 0.4
RL-Planner score using Avg similarity 7.2 7.1 7.9 7.2 5.6 4.8 32 6.2 7.9
RL-Planner score using Min similarity 8.24 2 6.36 6 5.6 6.72 6.16 8.24 8.24
EDA Score [ J— J— —_ 4.8 4 32 6.4 6.4
TABLE XI: RL-Planner vs. EDA: Parameter Tuning Results Univ-1 M.S. DS-CT
Parameter Number of Episodes () Learning Rate («) Discount Factor () Topic Coverage Threshold (e)
Value T00 | 200 | 300 | 500 | 1000 | 0.5 | 0.6 [ 075 ] 0.8 | 09 | 0.7 | 075 ] 0.8 | 09 | 0.95 | 0.0025 | 0.005 | 0.01 | 0.015 | 0.02
RL-Planner score using Avg similarity 10 10 10 11 10 11 11 10 9 11 10 11 11 10 10 11 10 11 9 10
RL-Planner score using Min similarity | 12 | 11 | 104 | 112 | 62 | 112 | 114 | 12 | 108 | I | 108 | 11.8 | 1T | 112 | 12 12 106 | 106 | 116 | 11.4
EDA Score — | — ] — | — — — — — — | — | — — | — ] — | — 9 9 10 11 11
TABLE XII: RL-Planner vs. EDA: Parameter Tuning Results Univ-2 M.S. DS
Parameter w1, w2, W3, Wy, Ws5, We
Value 0.2 \ 0.01 \ 0.16 \ 0.4 \ 0.01 \ 0.22 | 0.21 \ 0.01 \ 0.15 \ 0.41 \ 0.02 \ 0.2 | 0.25 \ 0.01 \ 0.15 \ 0.4 \ 0.01 \ 0.18
RL-Planner score using Avg similarity 13 12 11
RL-Planner score using Min similarity 11.6 11.6 12.2
TABLE XIII: RL-Planner Parameter Tuning Results Univ-2 M.S. DS
Parameter Starting Point (s1) 6,0
Value STATS 263 | MS&E 237 | 0.2 [ 0.8 | 03 [ 0.7 | 04 [ 0.6 | 0.6 [ 04 | 0.7 [ 03 | 0.8 [ 0.2
RL-Planner score using Avg similarity 11 10 10 10 10 10 11 11
RL-Planner score using Min similarity 12 10.4 0 0 0 0 11 12
EDA Score — — 10 9 10 9 10 12

TABLE XIV: RL-Planner vs. EDA: Parameter Tuning Results Univ-2 M.S. DS
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Parameter Number of Episodes (NNV) Learning Rate («) Discount Factor () Distance Threshold (d)

Value 100 200 300 500 1000 0.5 0.6 0.75 0.8 0.95 0.5 0.6 0.75 0.8 0.95 4 5
NYC RL-Planner score using Avg similarity | 4.6 | 453 | 4.6 | 463 | 46 | 463 | 463 | 46 | 46 | 463 | 4.63 | 463 | 4.63 | 45 | 447 | 48 4.63
NYC RL-Planner score using Min similarity | 3.76 | 4.56 | 4.6 4.6 455 | 433 | 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 | 459 | 459 4.6
NYC EDA Score — | — ] — | — — -] ] — ] — ] — ] — ] — ] — ] 365 3.33
Paris RL-Planner score using Avg similarity 45 | 458 | 458 | 456 | 444 | 463 | 4.6 46 | 463 | 463 | 463 | 463 | 463 | 45 447 | 447 4.56
Paris RL-Planner score using Min similarity 4.6 4.6 4.58 | 453 | 452 | 458 | 4.58 | 456 | 4.52 | 453 | 454 | 458 | 453 | 4.58 | 4.52 | 4.58 4.53
Paris EDA Score — | — | — -] Y] -l ——|—]|—| — | — 133 2.26

TABLE XV: RL-Planner vs. EDA: Parameter Tuning Results Trip Planning
Parameter Time Threshold (t) 5,0
Value 5 6 8 0.4 [ 0.6 | 045 [ 0.55 | 0.5 [ 0.5 | 0.55 [ 045 | 0.6 [ 0.4

NYC RL-Planner score using Avg similarity 4.625 | 4.63 | 4.74 4.6 4.6 4.6 4.45 4.63
NYC RL-Planner score using Min similarity 2.33 4.6 4.6 4.62 4.6 4.61 4.59 4.62
NYC EDA Score 3.55 333 | 3.57 3.52 342 3.12 44 3.33

Paris RL-Planner score using Avg similarity 44 4.56 | 442 4.58 4.58 4.5 4.52 4.53
Paris RL-Planner score using Min similarity | 4.52 | 4.53 | 4.58 4.56 4.56 4.58 4.56 4.56
Paris EDA Score 2.9 2.27 4.1 1.8 3.14 3 2.3 2.3

TABLE XVI: RL-Planner vs. EDA: Parameter Tuning Results Trip Planning

not account for a multitude of constraints, except for [38].
Unlike these works, we study trip planning as a guided
planning problem with the goal of making an agent learn from
the environment on the go and take actions accordingly.
From the perspective of solution design, the existing ap-
proach designs combinatorial solutions, heavily rely on logs
or training data to model user preference, unlike our work.

D. RL and Guided EDA

Our guided task planning bears similarity to guiding users in
performing Exploratory Data Analysis (EDA), a well-studied
problem [41]-[44].

Numerous works proposed next-step recommendations [17],
by using logs of previous operations (e.g., [45]), or by relying
on real-time feedback [46], [47]. The fully automated gener-
ation of EDA sessions has been examined in [21], [48]. The
use of Reinforcement Learning (RL) for recommending user
groups or sequences of EDA techniques has been documented
in [48] and [21] respectively. In [48], RL is used to allow an
agent to learn a policy that helps find a set of target users
(such as forming a conference PC). In [21], deep RL is used
to produce an ideal set of EDA strategies to explore a dataset.
The objective is to provide meaningful EDA notebooks for
use in data analysis. In [49], the authors propose how to
design a curriculum through transfer learning. The problem
is formulated as an MDP for training the agents through a
series of tasks and solved using RL.

Existing work on guided EDA (either next-step recommen-
dation or end-to-end guidance) does not handle the intricacies
of the constraints, we consider in our framework. We will
nevertheless adapt a next-step EDA to create a baseline for
our experiments.

The closest to our work is the area of safe Reinforcement
Learning [42], which is defined as the process of learning
policies that maximize the expectation of the return in prob-
lems in which it is important to ensure a reasonable system
performance and/or respect safety constraints. In particular,
our work borrows inspiration from Constrained MDPs [11],

[13] , for which linear programming, weighted sum, state
space extension, and recursive formulation of the constraints
based approaches are known. In [11], the reward function is
designed by weighting the original value function and the risk
associated with constraints. The weight parameter is adapted
in order to find a feasible solution for the constrained problem
that has a good performance with respect to the value function.
Our proposed solution bears similarity to the weighted
approach, although traditional weighted RLs do not have to
deal with multiple soft and hard constraints, such as TPP.

VI. CONCLUSION

We formalize task planning as a constrained sequence
generation problem. We present a computational framework
RL-Planner for task planning especially for scenarios
where little to no data is available as logs that specify students’
past preferences. RL—Planner requires minimal input from
domain experts, yet produces personalized plans. We adapt
Reinforcement Learning to learn a policy that satisfies item
interleaving, requirements, and item features. We compare our
solutions with item plans drafted by human experts and with
fully automated ones. Our experiments corroborate that our
proposed model and solution recommend high quality plans.
We also experimentally demonstrate that RL-Planner is
effective in transfer learning using several real-world data in
the education and trip planning domains.

In the future, we would like to investigate an adaptive
approach to task planning that leverages feedback. Feedback
could come as binary values (useful item/ not useful), cate-
gorical rating (e.g., on a scale of 1 — 5), or as a probability
distribution. This will allow us to create a loop that accounts
for effectiveness and incorporate that in future design choices.
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