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ABSTRACT

Given multiple individual rank orders over a set of candidates or
items, where the candidates belong to multiple (non-binary) pro-
tected groups, we study the classical rank aggregation problem
subject to proportionate fairness or p-fairness (RAPF in short),
considering Kemeny distance. We first study the problem of pro-
ducing a closest p-fair ranking to an individual ranked order (IPF
in short) considering Kendall-Tau distance, and present multiple
solutions for IPF. We then present two computational frameworks
(a randomized RANDALGRAPF and a deterministic ALGRAPF) to
solve RAPF that leverage the solutions of IPF as a subroutine.

We make several non-trivial algorithmic contributions: (i) we
prove that when the group protected attribute is binary, IPF can
be solved exactly using a greedy technique; (ii) we present two
different solutions for IPF when the group protected attribute is
multi-valued, ExXAcTMULTIVALUEDIPF is optimal and APPROXMUL-
TIVALUEDIPF admits a 2 approximation factor; (iii) we design a
framework for RAPF solution with an approximation factor that
is 2+ the approximation factor of the IPF solution. The resulting
RANDALGRAPF and ALGRAPF solutions exhibit 3 and 4 approxi-
mation factors when designed using ExAcTMULTIVALUEDIPF and
APPROXMULTIVALUEDIPF respectively.

We run extensive experiments using multiple real world and
large scale synthetic datasets and compare our proposed solutions
against multiple state-of-the-art related works to demonstrate the
effectiveness and efficiency of our studied problem and proposed
solution.
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1 INTRODUCTION

Ranking is a commonly used method to prioritize desirable out-
comes among a set of candidates and is an essential step in many
high impact applications, such as, hiring candidates for a job, select-
ing students for school and college admission or scholarship, finding
winning candidates in a competition, or approving loans. Tradition-
ally, producing the final ranking involves aggregating potentially
conflicting preferences from multiple individuals and is a central
problem in the areas of voting and social choice theory, which is
traditionally known as the rank aggregation problem [3, 19, 32].
Our goal in this work is to revisit the rank aggregation problem
considering a notion of fairness, namely proportionate fairness or
p-fairness [8, 31] that ensures proportionate representation of ev-
ery group based on a protected attribute in every position of the
aggregated ranked order. P-fairness has been studied in the theory
community to enable resource allocation satisfying temporal fair-
ness or proportionate progress. The classical problem in this context
is known as the Chairman Assignment Problem [6, 31] which studies
how to select a chairman of a union every year from a set of r states
such that that at any time the accumulated number of chairmen
from each state is proportional to its weight. We formalize the rank
aggregation subject to p-fairness or RAPF to that end.

RAPF is defined formally as follows: m conflicting rankings are
given over a database of n candidates, where candidates have a
protected attribute A with ¢ associated values (defined, e.g., over se-
niority level, ethnicity, or gender). Let f(p) denote the fraction
of candidates with protected attribute value p, that is, f(p) =
% 2oev 14(v)=p- The goal is to find an aggregated ranking such
that the total number of disagreements between the aggregated
ranking and each of the individual m rankings is minimized, and
for every protected attribute value p and every position k in the
aggregated ranking, the representation of the candidates with pro-
tected attribute value p in the top k candidates is proportional to
f(p). P-fairness is desirable in several compelling rank aggregation
applications, such as, French process of admitting students to uni-
versity (Parcoursup), matching medical students to US hospitals
for residency, or faculty hiring in the universities, to name a few.
Section 1.1 describes one such application in depth.

We initiate this investigation by studying the Individual p-
Fairness or IPF problem that finds a closest p-fair ranking to an
individual ranking, which we believe is an important problem in its
own merit. A similar problem is studied in the past [22] with weaker
notion of fairness and the designed solutions are just heuristic. We
investigate how a solution designed for IPF could solve RAPF.

1.1 Motivation

Running Example: p-fairness in faculty hiring. Consider a
toy database of n (12) applicants who are interviewed to be hired
for a small number of faculty positions in a university. The hiring
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committee comprises of a set of m (4) members, each of whom
ranks these n candidates (refer to Table 1) based on their credentials
and interview performance. After that, these individual ranks are
to be aggregated to create an overall order based on which the
candidates would be made job offers until the positions are filled.
Potential protected attributes of the candidates are seniority level,
research areas, and gender. As an example, considering seniority
level, 3 applicants are junior, 4 are mid-career, and 5 are senior,
making the proportion over seniority level to be 3/12, 4/12, and
5/12, respectively.

The goal of RAPF is to produce a ranked order over the 12 candi-
dates by aggregating all 4 ranked lists such that the produced order
is closest to the individual 4 ranks and for each of the 12 positions
and for each of the values of a particular protected attribute the candi-
dates appear proportionate to their representation in the original data.
Indeed, it is important to ensure fairness in each of the 12 positions
considering the given protected attribute - otherwise, depending on
who accepts/declines the job offer, the proportionate representation
of the candidates based on the underlying protected attribute would
get disrupted. Intuitively speaking, assuming seniority level as the
protected attribute, a solution designed for RAPF must ensure that
the representation of junior, mid-career, and senior candidates is
(0.75, 1, 1.25) up to integral rounding in the top 3 positions, (1, 1.33,
1.67) up to integral rounding in the top 4 positions, and so on.

Candidate Name | Gender | Seniority level | Area | Mem1 | Mem2 | Mem 3 | Mem 4

Molly Female Junior DB 1 3 4 6
Amy Female Junior DB 2 2 1 5
Abigail Female Junior Al 3 5 2 7
Kim Male Mid career HCI 4 7 3 8
Lee Male Mid career Theory 5 9 6 1
Park Male Mid career Vision 6 1 5 2
Kabir Male Mid career NLP 7 4 8 3
Damien Male Senior ML 8 6 7 4
Andres Male Senior Security 9 3 10 9
Aaliyah Female Senior Systems 10 10 9 10
Kiara Female Senior DM 11 11 12 11
Jazmine Female Senior PL 12 12 11 12

Table 1: Original ranks provided by 4 members

We acknowledge that the existing popular group based fairness
definition statistical parity [18] is somewhat similar to p-fairness,
however, the best adapted version of top-k statistical parity studied in
a recent paper [25] does not account for proportionate representation
in every position of the top-k, limiting its applicability. Section 3.4
contains further details.

1.2 Contributions

Our first contribution is to formalize two optimization problems,
Individual p-Fairness or IPF and the rank aggregation problem
subject to proportionate fairness (RAPF) (Section 2) considering
binary (£ = 2) and multi-valued (£ > 2) protected attributes.

Our second contribution is theoretical and algorithmic (Sec-
tions 4, 5). For the IPF problem, we present an efficient greedy
solution GRBINARYIPF for a binary protected attribute that runs in
O(n) time. For a multi-valued protected attribute, we prove that
the proposed algorithms studied in a recent work [22] for IPF are
heuristics and do not ensure optimality (refer to Section 3.1 for de-
tails). In fact, we claim that solving IPF for multi-valued protected
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attribute is non-trivial. We present two solutions for multi-valued
IPF - a dynamic programming based exact algorithm ExactMuL-
TIVALUEDIPF that takes linear time when the number of values
on the protected attribute is a constant, and APPROXMULTIVAL-
UEDIPF based on a minimum weight matching on convex bipartite
graphs [12], that admits a 2 approximation factor.

Since rank aggregation problem under Kemeny Optimization is
NP-hard for 4 or more lists [3, 19, 32], RAPF is also NP-hard. In
Section 5, we present two algorithmic frameworks RANDALGRAPF
and ALGRAPF for RAPF, one is randomized and the other one
is deterministic that admit provable approximation factors. Both
frameworks are scalable while the randomized one is highly scalable
but because of its randomized nature, its approximation factor is
expressed in expectation. Both algorithmic frameworks use as sub-
routine the solutions of IPF. They also leverage on variants of the
Pick-A-Perm algorithm [3, 19, 32] that is widely used in the classical
rank aggregation context. We then prove that the approximation
factor of the solution designed for RAPF is 2+ the approximation
factor of the IPF algorithm used as subroutine. This implies that
multi-valued RAPF with ExaAcTMULTIVALUEDIPF admits a 3 ap-
proximation factor; whereas, it admits a 4 approximation factor
when ApPROXMULTIVALUEDIPF is used instead. Table 2 summarizes
our theoretical results.

Our third contribution is experimental (Section 6). We run ex-
tensive experiments using 3 real world and a large scale synthetic
datasets, and compare an implementation of our solution with
the implementation of two state-of-the-art solutions DETCONST-
Sorr [22] for IPF and FAIRILP [25] for RAPF. Our first and fore-
most observation is that, consistent with our theoretical analysis,
p-fairness promotes stronger notion of fairness, by ensuring propor-
tionate representation of each of the protected attribute values for
every position in the aggregated ranked order. Our experimental
results demonstrate that our proposed model and solutions satisfy
the fairness criteria proposed in state-of-the-art solutions [22, 25] -
however, existing solutions do not extend to satisfy p-fairness. Our
experimental results corroborate our theoretical results in terms
of approximation factors and demonstrate that our solutions are
highly scalable to large number of items and ranks.

2 PRELIMINARIES & FORMALISM

Database. contains n items or candidates. These two terms will
be used interchangeably in the paper. Using the running example,
n = 12. The set of items will be denoted V, individual items will be
denoted by u and v.

Rank. We consider rankings of the items in V. Each such ranking
can be viewed as a permutation. We will use the terms ranking and
permutation interchangeably.

Multiple Rankings. The input consists m different complete rank-
ings. Using the running example, m = 4.

Protected Attribute. Each item/candidate v € V has a protected
attribute A(v) that can take any of ¢ different values. As an exam-
ple, seniority level is a multi-valued protected attribute with three
possible values Junior, Mid career, Senior - thus £ = 3. Contrarily,
gender is a binary protected attribute with two values male and
female, and ¢ = 2.
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Problem Prot.ected Hardness Algorithm Approx R'unnlng
Attribute Factor | Time Notation | Meaning
binary p-time GRBINARYIPF exact O(n) 1 Protected
IPF multi- EXACTMULTIVALUEDIPF exact O(ne2t) attribute
open 75
valued ApPPROXMULTIVALUEDIPF 2 O(n*logn) Number of
. RANDALGRAPF+GRBINARYIPF 2 O(n) ¢ different values
b NP-hard
mary ar ALGRAPF+ GRBINARYIPF 2 O(m’nlogn) in A
RAPF RANDALGRAPF+ EXACTMULTIVALUEDIPF | 3 O(ne2t) proportion of
multi- NP-hard RANDALGRAPF+ APPROXMULTIVALUEDIPF | 4 O(n*°logn) f(p) candidates with
valued ALGRAPF+ EXACTMULTIVALUEDIPF 3 O(mjn';lﬁf[)‘* attribute value p
> position of item
ALGRAPF+ APPROXMULTIVALUEDIPF 4 °<'"m"n1;§ ;‘:g w o(u) u in rank o

Table 2: Summary of technical results

Rank Aggregation Measures [3, 19]. In this work we consider
two popular rank distance measures Kendall-Tau distance and
Spearman’s footrule distance.

Definition 2.1. Kendall-Tau distance. Given two permutations
o,n : V. — [1..n], the Kendall-Tau distance between the two per-
mutations is the sum of pairwise disagreements between o and n
(bubble-sort distance).

Kom= D} Lo)-aw)n©-nw)<o
{u,0}CV
Note that the Kendall-Tau distance is symmetric, thatis, K'(o, ) =
K(n, 0). It also satisfies the triangle inequality, for any three per-
mutations o, y,  we have K(o, p) + K(u,n) > K(o,n).

Definition 2.2. Spearman’s footrule distance. Given two per-
mutations o, : V — [1..n], the Spearman’s footrule distance
between the two permutations is the sum of the absolute values (1
distance) of the differences between two permutations.

Sta.m) = ) l(o(w) - n(w)l

uevV

Using the running example, the Kendall-Tau distance between
the rankings of Member 1 and Member 2 is 12 because there are 12
pairs of items that appear in opposite order in these two rankings.
Spearman’s footrule distance between them is 22, which is the sum
of the absolute values of the difference in the order between these
two rankings.

Relationship between the two measures. Diaconis and Gra-
ham [17] proved that for any two permutations the Spearman’s
footrule distance is at least the Kendall-Tau distance between them,
and at most twice the Kendall-Tau distance. That is, for any two
permutations o, 1, we have K(o,n) < S(o,n) < 2K(o, ).

In the rest of the paper, we focus on Kendall-Tau distance and
when we refer to Spearman’s footrule distance we will state it explic-
itly. The Kemeny distance between a single ranking and multiple
rankings is based on Kendall-Tau distance.

Definition 2.3. Kemeny Distance. For rankings p1, pa, . .
the Kemeny Distance of the ranking o to these rankings is

> Pm

m
k(0,p1,p2, .-, pm) = ZW(G, pi)
i=1
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Table 3: Important notations

Using the running example, Kemeny Distance between each of the
aggregated rankings presented in the three columns of Table 4 and
the individual member ranks are 34, 34, and 46, respectively.

We note that Kemeny distance which is based on Kendall-Tau dis-
tance is the most popular and accepted measure for quantifying the
quality of rank aggregation and has been widely used in the related
work on rank aggregation [2, 3, 18]. The Kemeny distance measure
has a maximum likelihood interpretation and it is the only known
measure that simultaneously satisfies: neutrality, consistency, and
the (extended) Condorcet property. Moreover, Kendall-Tau/Kemeny
has also been adopted in the only previously known fair rank ag-
gregation FairILP [25] work. Other distance measures are briefly
described in Section 3.

Definition 2.4. Proportionate Fair or p-fair ranking [8, 31].
For any protected attribute value p, let f(p) denote the fraction of
items with this value, that is, f(p) = % 2oev 1A(v)=p- A ranking
o is proportionate fair or p-fair if for every k € [1..n], the number
of items with protected attribute value p among the k top ranked
items in o is either | f(p) - k] or [f(p) - k].

Using the running example, if gender is the protected attribute
with 50% representation of male and female, then p-fairness implies
1 male and 1 female in the top-2 items, 2 males and 2 females in
the top-4 items , and so on. (Note that for any odd k the difference
between the number of males and females in the top-k is exactly
1.) We refer to the 3rd column of Table 4 and note that p-fairness is
satisfied.

Definition 2.5. Relaxed p-fair ranking. Given an integer input
d > 0, a ranking o is relaxed proportionate fair or relaxed p-fair if
for every k € [1..n], the number of items with protected attribute
value p among the k top ranked items in o is between | f(p) - k] -0
and [f(p) - kT +6.

This alternative fairness definition essentially relaxes p-fair rank-
ing definition, such that for every position, the proportionate rep-
resentation of items with protected attribute value p is allowed
to have at most § deviation (an input parameter) from its original
p-fair ranking. Using the running example, if gender is the pro-
tected attribute with 50% representation of male and female, then
the relaxed p-fairness with § = 1 implies at least 1 male and at least
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Rank Rank aggregation Rank aggregation Rank aggregation
(without fairness) | (with statistical parity) [25] | (with p-fairness)
1 Amy (Female) Amy (Female) Amy ( Female )
2 Molly (Female) Molly (Female) Park ( Male )
3 Abigail (Female) Abigail (Female) Molly ( Female )
4 Kim (Male) Kim (Male) Kabir ( Male )
5 Lee (Male) Lee (Male) Abigail ( Female )
6 Park (Male) Park (Male) Kim ( Male )
7 Kabir (Male) Kabir (Male) Lee (Male )
8 Damien (Male) Damien (Male) Aaliyah ( Female )
9 Andres (Male) Andres (Male) Damien ( Male )
10 Aaliyah (Female) Aaliyah (Female) Kiara ( Female )
11 Kiara (Female) Kiara (Female) Andres (Male)
12 Jazmine (Female) Jazmine (Female) Jazmine ( Female )
Kemeny Distance | 34 34 46

Table 4: Rank aggregation results of comparable methods using
Section 1.1 example considering gender as the protected attribute.

1 female in the top-4 items, at least 2 males and at least 2 females
in the top-6 items, and so on.

2.1 Problem Formulation

P1: Individual p-fair rank (or IPF). Given a ranking p find a
p-fair ranking that is closest to p in Kendall-Tau distance.
Rank aggregation under p-fairness (or RAPF). Given
m rankings p1, p2, ..., pm find a p-fair ranking that mini-
mizes the Kemeny distance to these m rankings. We observe
that RAPF is NP-Hard which directly follows from the fact
that rank aggregation considering unconstrained Kemeny
distance minimization is NP-hard when m > 4 [3].

We study IPF and RAPF for binary and multi-valued protected
attributes considering fairness as a constraint. By that process, it is
likely to deteriorate the Kemeny Distance values, i.e., the Kemeny
Distance of an unfair rank aggregation is likely to be smaller than
that of a fair one (recall Column 1 and Column 3 of Table 4). These
choices and other alternative ways of incorporating fairness inside
rank aggregation are explored in Section 7.

We also study IPF and RAPF subject to the relaxed p-fairness.
Our proposed solutions trivially adapt for this version and we
omit those for brevity. Experimental results based on this relaxed
definition are included in Section 6.4.

P2:

3 RELATED WORK & COMPARISON

Rank Aggregation. The rank aggregation study was initiated
in the early 2000s by Dwork et. al. [19]. Since then, rank aggre-
gation and several of its variants have been well studied, includ-
ing rank aggregation considering different optimization functions,
rank aggregation with partial ranking information, or with ties [2,
3,7, 11, 20]. Kemeny optimal rank aggregation which minimizes
the sum/average Kendall-Tau distances [23, 24] to the individually
ranked lists is the most popular variant. In [3, 7], the authors show
that computing the Kemeny optimal rank aggregation is NP-hard
for 4 or more rankings. There exist both randomized and deter-
ministic approximation algorithms for rank aggregation [3, 32, 33].
In [3], Ailon et al. introduced a randomized approximation algo-
rithm with a % approximation factor. In [32, 33], the authors propose
deterministic pivoting algorithms with the same approximation fac-
tors. In [16] Conitzer et al. propose an exact integer programming
solution for the Kemeny optimal rank aggregation.

265

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

One of the early yet popular results in this space is the randomized
algorithm Pick-a-Perm [3, 19] that is shown to admit a % approxima-
tion factor for the Kemeny Rank Aggregation Problem in expectation.
We adapt Pick-a-Perm in our proposed solution for the RAPF problem.

Alternative rank aggregation measures. Other than Kemeny,
alternative measures of the quality of rank aggregations, such as,
those based on Spearman’s Footrule and Borda’s Method [19]. We
note that finding an optimal rank aggregation using Spearman’s
Footrule based measure is computationally easy. However, it is open
whether the RAPF problem using Spearman’s Footrule distance
is computationally tractable. On the other hand, the IPF problem
using Spearman’s Footrule distance is tractable. We design a poly-
nomial time algorithm for the IPF problem in Spearman’s Footrule
distance and use it to approximate the IPF problem in Kendall-Tau
distance. Borda’s method [10] is a “positional” method. It assigns a
score corresponding to the position in which a candidate appears
within each voter’s ranked list of preferences, and the candidates
are sorted by their total score. Rank aggregation using Borda’s
method is also computationally easy, however, it does not satisfy
the Condorcet criterion. Since Borda’s method does not induce a
distance between rankings it is unclear how to extend it to satisfy
the p-fairness constraint.

Proportionate Fairness. Based on the Chairman assignment
problem [31], the idea of proportionate fairness (p-fairness) was
studied in the context of resource scheduling [8]. The Chairman
assignment problem simply studies how to select a chairman for a
union from k states such that at any time the accumulated number
of chairmen from each state is proportional to its weight. In [8],
Baruha et al. propose an algorithm for generating the p-fair sched-
ule. Then, [9] introduces a series of algorithms for different single
resource p-fair scheduling problems. Note that p-fairness is a group
fairness criteria that is close to statistical or demographic parity [15]
studied in the context of group fairness. We note that for the rank
aggregation problem, p-fairness is more suitable and stronger than
statistical parity, because it ensures statistical parity for every position
in the ranked order. This makes the problem significantly harder and
the existing solutions do not trivially adapt.

Social Choice Theory. Various ranking methods have been
studied in the field of social choice theory [4, 21, 23, 28, 29, 35].
Early social choice theory literature considered rank aggregation
in the context of preference aggregation methods [23, 29, 35]. The
social choice theory papers [4, 21] focus on Arrow’s impossibility
theorem. This theorem states that it is impossible to have a rank
aggregation method that simultaneously satisfies several conditions
some of which relate to fairness. The paper [28] seeks to identify
rank aggregation methods that are “close” to satisfying Arrow’s
conditions, enabling decisions that are fairer in practice. However,
the focus of these works is to propose models, whereas, our primary
goal is to develop efficient computational framework by adapting
some of these proposed models.

3.1 Fair Ranking Solutions

Several recent fair ranking studies focus on achieving fairness on a
single rank [5, 13, 22, 36]. Celis et al. [13] introduce a top-k fairness
measure that ensures a given upper and lower bound of the repre-
sentation of each of the protected attribute values in the top-k, for
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fixed values of k. They use Spearman’s footrule-like distance which
is easier than Kendall-Tau distance since it can be modeled by a max-
imum weight perfect matching problem in a bipartite graph. They
provide a dynamic programming exact algorithm, and efficient ap-
proximation algorithms. In [36], Zehlike et al. extend group fairness
using the standard notion of protected groups and ensure that the
proportion of protected candidates in every top-k ranking remains
statistically above a given minimum (while not ensuring any upper
bound). Asudeh et al. [5] propose sweep-line-based algorithms for
a more general fairness ranking problem.

Next, we describe two related works in more detail: the first one
is a recent work DETCONSTSORT [22] that studies a variant of the
IPF problem. The other one is FAIRILP [25], which to the best of
our knowledge is the only recent work that studies some version
of fair rank aggregation alas only with binary protected attributes
and thus can be compared to RAPF.

3.1.1 DETCONSTSORT. Geyik et al. [22] propose Algorithm DET-
CoNSTSORT to produce fairness-aware ranking given an input rank-
ing. This algorithm ensures that for every protected attribute value
p, and for every k € [1..n] the number of items with protected
attribute value p among the top k ranked items in the output rank-
ing is at least | f(p) - k], where f(p) is the fraction of items with
protected attribute value p, that is, f(p) = % 2oev 1A(v)=p- Es-
sentially, Algorithm DETCONSTSORT produces a ranking that only
satisfies the lower bound of p-fairness.

Example 3.1. Statement: DETCONSTSORT [22] does not pro-
duce the closest ranking that satisfies the p-fairness lower
bound. We simulate the running of Algorithm DETCONSTSORT on
the ranking given by Member 1 in Table 1 considering seniority
level as the protected attribute. The algorithm scans the ranked
items in descending order starting at the top (k = 1), and checks at
each position, whether any value of the protected attribute becomes
“tight” and thus an item with this value needs to be inserted to the
tentative output ranking. For the ranking given by Member 1, no
seniority level becomes tight at k = 1,2. Atk = 3, | f(Senior) - k] =
[5/12%3] = 1 and |f(Mid career) - k| = [4/12%3] = 1. So,
the top ranked Senior candidate (Damien) and the top ranked
Mid career candidate (Kim) are inserted to the tentative output
ranking. Since Kim is ranked higher than Damien in the input
ranking, the tentative (ordered) output ranking is [Kim, Damien].
Atk =4, | f(Junior) - k| = |3/12 * 4] = 1 and the top Junior can-
didate Molly needs to be inserted in the list. Since Molly is ranked
higher than both Kim and Damien in the input ranking and since
both Kim and Damien can be pushed to position 3 without violat-
ing the p-fairness lower bound, Molly is inserted into position 1 of
the tentative output ranking which is now [Molly, Kim, Damien].
Continuing in the same manner, the final output ranking is

[Molly, Kim, Lee, Damien, Amy, Park,
Andres, Abigail, Aaliyah, Kabir, Kiara, Jazmine)

The Kendall-Tau distance between the Member 1 ranking and the
output ranking is 12. However, consider the following ranking.

[Molly, Amy, Kim, Damien, Abigail, Lee,
Andres, Park, Aaliyah, Kabir, Kiara, Jazmine)]

266

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

It also satisfies the p-fairness lower bound and the Kendall-Tau
distance between it and the Member 1 ranking is only 8.

Example 3.2. Statement: DETCONSTSORT [22] does not pro-
duce a p-fair ranking. The ranking produced by DETCONSTSORT
in Example 3.1 violates the upper bound of the p-fairness condi-
tion, since the seniority level of 2 out of the top 3 candidates is
Mid career but [ f(Mid career) -3] = [4/12%3] =1 < 2.

3.1.2  FarrILP. Kuhlman and Rundensteiner [25] consider fairness
aware rank aggregation in a setting of a binary protected attribute.
To measure fairness they propose pairwise statistical parity.

Definition 3.3. Pairwise statistical parity. For a ranking o with
a binary protected attribute, let V; be the set of items with protected
attribute value i, we define Rpqr (o) as:

1
Rpar(0) = m {ug‘;l} {U;/Z} (la(u)<cr(v) - 10‘(0)<o‘(u)) :

The ranking o satisfies pairwise statistical parity if Rpqr (o) = 0.
The relaxed pairwise statistical parity requires that Rpar(0) < 0,
for a given § > 0. The unnormalized pairwise statistical parity is
defined as |V1||V2|Rpar (o).

Given m rankings p1, p2, . . ., pm, FAIRILP finds a ranking o whose
pairwise unnormalized statistical parity is bounded by a given § > 0
that is closest to the input rankings in Kemeny distance.

Example 3.4. Statement: FAIRILP [25] is not necessarily p-
fair even with § = 0.

Consider the running example and assume that the (binary)
protected attribute considered is gender.

Table 4 shows three aggregated rankings for the running ex-
ample, the first without fairness, with second subject to pairwise
statistical parity with § = 0, and the third subject to p-fairness.
Note that the first two rankings are identical, which implies that
pairwise statistical parity does not imply p-fairness. Intuitively, the
reason for this is that pairwise statistical parity just considers pairs
of items with different protected attribute value in an aggregated
manner and does not consider the actual positions of the items in
the aggregated ranking.

In summary, IPF is stronger than any of the existing fairness aware
single rank problem [5, 13, 22, 36], because we consider proportionate
representation considering both lower and upper bound of the protected
attributes for every position. Similarly, RAPF promotes a stronger
notion of fairness compared to FAIRILP [25], as well as consider both
binary and multi-valued protected attribute.

4 INDIVIDUAL P-FAIRNESS (IPF)

In this section, we describe our proposed solutions for the individ-
ual p-fairness or the IPF problem. First, we consider the binary
case, denoted BinaryIPF, in which the protected attribute has two
values, i.e., £ = 2. We present an exact greedy algorithm GRBINA-
RYIPF for BinaryIPF, prove its correctness, and analyze its running
time. Then, we consider the general case of IPF, denoted Multi-
ValuedIPF, when ¢ > 2. We demonstrate that MultiValuedIPF
cannot be solved using a greedy algorithm similar to the binary
case, and present two solutions: a dynamic programming based
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exact algorithm ExAcTMULTIVALUEDIPF, and an approximation
algorithm APPROXMULTIVALUEDIPF based on minimum weight
matching. We analyze the running time and prove the correctness
of both algorithms.

4.1 BinaryIPF

In this subsection we present an exact algorithm to BinaryIPF in
which the protected attribute value of each of the items can take
only two possible values. Algorithm GrRBINARYIPF takes an input
ranking p and the output is a p-fair ranking ¢ with the minimum
Kendall-Tau distance to p. The algorithm builds on Lemma 4.1 that
implies that if item u is the i-th item (counting from the top) with
protected attribute value p in ranking p, then the same item is also
the i-th item with protected attribute value p in ranking o.

Baruah et al. [8] proved the following for any p-fair ranking.
Consider the ranks of the items with protected attribute value p
in the p-fair ranking. Then, for i € [1..f(p) - n], the i-th such item
has to be ranked within the interval

ikl
f®l TIfel

Thus, for every item v € V, we define the interval [top(v), bot(v)]
as the feasible positions of this item in any p-fair ranking that is
closest to permutation p.

Algorithm GRBINARYIPF whose pseudo code is given in Algo-
rithm 1 starts by computing bot(v), for every v € V (Line 1). Then,
it sorts the items according to their rank, and partitions the sorted
list into two sub-lists, one for each protected attribute value (Line 3).
The ranking o is constructed from top to bottom. For each position
i, Algorithm GRBINARYIPF considers the current top items u; and
uy in each of the sub-lists. In case bot(-) of one of these two items
is “tight”, that is, equals i, Algorithm GRBINARYIPF assigns i to o
of this item. (In Lemma 4.2, we show that both items cannot be
tight.) Otherwise, Algorithm GRBINARYIPF assigns i to o of the
item among u; and uy that is ranked higher in p. (Lines 5-12).

Algorithm 1 GRBINARYIPF

1: compute bot(v) for each itemv € V

2: sort the items according to the ranking p

3: partition the sorted list into two sub-lists Ly, Ly, one for each
protected attribute value

4: fori=1tondo

5: Let u; and uy be the current top items in L; and Ly

6: if bot(u1) =iV bot(uz) =i then

7: v « the tight item among u; and uy

8: else

9: v « the higher ranked item in p among u; and uy
10: end if

11 o(v) «—i

12: remove v from its ordered list

13: end for

14: return o

We demonstrate the algorithm considering as input the initial
ranking provided by Member 2 in the running example and the
binary protected attribute gender. The following two sub-lists are
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obtained:
Ltemale = [Amy, Molly, Abigail, Aaliyah, Kiara, Jazmine]
Linale = [Kim, Lee, Park, Kabir, Damien, Andres]

Note that bot(Amy) = bot(Kim) = 2. Amy is put into the first
position in o since Amy is ranked higher than Kim in p. Since
bot(Kim) = 2, Kim is assigned be the second place in o. By repeat-
ing this procedure, we end up with the ranking:

[Amy, Kim, Molly, Lee, Abigail, Park,

Kabir, Aaliyah, Damien, Kiara, Andres, Jazmine],

where K(p, o) = 17.

Running Time Analysis: It is straightforward to see that Algo-
rithm GRBINARYIPF runs in O(n) time, since all the computations
can be done by a constant number of linear scans over the items.

As mentioned above the algorithm is based on the following
lemma.

LEMMA 4.1. Consider two elementsu andv with the same protected
attribute value (A(u) = A(v)). If p(u) < p(v) then o(u) < o(v) in
any p-fair ranking o that is closest to permutation p,

Proof Sketch: The proof is by contradiction. Assume that o(v) <
o(u). Consider the ranking o’ given by swapping o(v) and o(u),
that is, o’ (u) = o(v), ¢’ (v) = o(u), and for every w € V \ {u, 0},
o’ (w) = o(w). The ranking ¢’ is also p-fair (since A(u) = A(v)),
and we prove below that K(¢”, p) < K (o, p); a contradiction.
Since p(u) < p(v) and o(u) > o(v) we have
(o(u) = 0(2))(p(u) = p(v)) <0
(o' () = ' (@) (p(w) = p(2)) > 0.
So, the pair (u,v) contributes 1 to K(a, p) and 0 to K(o’, p). Since
forx,y € V\{u, v}, we have (o(x)—0c(y)) = (¢/(x)—0’ (y)) all such
pairs (x, y) contribute the same to (o, p) and K(o’, p). Consider
w € V \ {u,0}, such that either c(w) > o(u) or o(w) < o(0).
We have (6(w) — o(u)) = (¢/(w) — ¢’ (u)) and (o(w) — o(v)) =
(6’ (w)—0’(v)). Thus, the contribution of the pairs (u, w) and (v, w)
is the same to K(o, p) and K(d’, p).
We are left with the case w € V \ {4,0}, such that o(w) €
(0(v), o(u)). In this case

(o(v) = a(w)) = (o' (u) =’ (w)) <0
(o(u) = a(w)) = (¢’ (v) =’ (w)) > 0.
Clearly, p(v) — p(w) > p(u) — p(w). Thus
(0(v) = a(w)(p() = p(w)) < (o' (u) = o’ (W) (p(u) — p(w))
(o(u) = a(w))(p(u) = p(w)) < (¢’ () = o' (W) (p(0) = p(W)),
which implies that the contribution of the pairs (u, w) and (v, w)

to K'(o’, p) is at most their contribution to K(a, p). |

LEMMA 4.2. For any iteration i of the algorithm one cannot have
bot(ui) =i andbot(uy) =i.

Proor. Since bot(:) is nondecreasing as we iterate over the
items, then for all items v that are added to o up to iteration i we
have bot(v) < i. Suppose that both bot(u;) = i and bot(uz) = i.In
this case thare are i + 1 items (i — 1 items from previous iterations
together with u; and uy) that need to be ranked in the top i places,
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which is infeasible, and thus in contradiction to the feasibility of
p-fair ranking as proved in [8]. O

THEOREM 4.3. Algorithm GRBINARYIPF returns the exact solution
to the BinaryIPF problem.

Proor. To obtain a contradiction assume that p is the p-fair
ranking with minimum distance to p, and that y # o. Let i be the
top rank where p and o differ. Let u be the item ranked i in p and v
be the item ranked i in 0. Since the order of the items with the same
value of the protected attribute has to be the same in both y and o,
we must have that A(u) # A(v). Without loss of generality assume
that u is in sub-list L; and v is in sub-list L. Certainly bot(u) # i
and bot(v) # i as otherwise either y or o would not be p-fair. Thus,
according to our algorithm p(v) < p(u). Let j be the rank of v in
4. Since i is the top rank where p and o differ we must have j > i.

Also, all items ranked i,...,j — 1 in g must be in sub-list L;. As
otherwise, the order of the items from Ly would not be the same in
both p and o.

Since p(v) < p(u), then for item w ranked j — 1 in y, we also
have p(v) < p(w). Item w is ranked lower than j — 1 in o, thus
bot(w) > j. Since the rank of item v in o is i, top(v) <i < j—1.
However, then the ranking p’ given by swapping the items w and
v ranked j — 1 and j in y is p-fair and similar to Lemma 4.1 it can
be shown to be closer than p to the ranking p, a contraction. O

4.2 MultiValuedIPF

In this subsection we present an approximate and an exact algo-
rithms for MultiValuedIPF. The input is a ranking p and the output
is a p-fair ranking ¢ that minimizes the Kendall-Tau distance to p.

MultiValuedIPF is a harder problem. We begin this section by
demonstrating that a simple greedy scheme is not adequate to solve
MultiValuedIPF like in the binary case. Consider the following
artificial example consisting of 20 items with four possible values of
their protected attribute. There are 5 items with protected attribute
value a, 10 items with protected attribute value b, 4 items with
protected attribute value c, and 1 item with protected attribute
value d. Note that we must have one item with protected attribute
value a in each block of 4 ranked items starting from the top, one
item with protected attribute value b in each block of 2 ranked
items starting from the top, and one item with protected attribute
value ¢ in each block of 5 ranked items starting from the top.

Now, consider the ranking p = 1,..., 20 (the identity permuta-
tion [30]). The value of the protected attribute for these items in
given in the table 5.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dcbcb ab ¢c b a b ¢c b a b

Table 5: Protected attribute values

123 45
aabbb

The greedy algorithm creates a p-fair ranking by starting with
the highest ranked item 1 (with protected attribute value a), then
the 2 items 3, and 4 (with value b), then the item 6 (with value d),
next it must pick item 7 (with value c), and 5 (with value b), and only
then item 2 (with value a). From this point on the p-fair ranking
coincides with the original ranking; that is, items 8, .. ., 20 appear
in order, and the resulting ranking is (1,3,4,6,7,5,2,8, ..., 20). The
Kendall-Tau distance of this ranking from p is 7.
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However, the optimal p-fair ranking is (1,3,4,7,2,5,6,8, ..., 20)
which is closer to p with Kendall-Tau distance 5.

4.2.1  Approximation Algorithm. We first present an efficient algo-
rithm ApPROXMULTIVALUEDIPF for computing IPF that is based on
minimum weight matching in a bipartite graph. Then, we proceed
with the exact algorithm that is more complex.

The proposed algorithm ApproxMULTIVALUEDIPF whose pseudo
code is given in Algorithm 2 considers as the underlying abstraction
a weighted bipartite graph G(V,Y,E), where |V| = |Y| = n. The
nodes in V represent the items and the nodes in Y represent their
potential position.

Recall that Baruah et al. [8] proved that in any p-fair ranking the
position of an item v € V must be within [top(v)..bot(v)]. Conse-
quently, an edge eyy € E exists, if y € [top(v)..bot(v)]. The algo-
rithm assigns the weight |p(0) — y| to every edge eyy € E (Line 2),
which is the Spearman’s footrule distance between position of v in
p and y. Then, ApPROXMULTIVALUEDIPF finds a perfect matching in
this graph (Line 4), and the output of the perfect matching induces
a p-fair ranking o (Line 6) that is closest to p in Spearman’s footrule
distance.

Algorithm 2 ApPROXMULTIVALUEDIPF(G)

: for eyy € E do

weight(eyy) < |p(v) -yl

: end for

: Find M a minimum weight perfect matching in G
: for e,y € M do

v is set to be the item ranked y in o

: end for

: return o

[ I - NS R O

We demonstrate the algorithm considering as input the initial
ranking provided by Member 2 and the ternary protected attribute
seniority level. The top ranked candidate of Member 2 is Park whose
seniority level is Mid career. Note that f(Mid career) = % = %
Thus, top(Park) = 1 and bot(Park) = {1 . %] = 3. Thus, there
are 3 edges connecting to nodes in Y: epg,k 1, €park 2> €Park,3 With
weights 0, 1, 2, respectively. The rest of the edges of the bipartite
graph are computed similarly. The minimum weight perfect match-
ing in the created bipartite graph implies the following ranking,
and the Spearman’s footrule distance to the original ranking of

Member 2 is 18:
[Park, Amy, Damien, Kabir, Andres, Molly,
Kim, Aaliyah, Abigail, Kiara, Lee, Jazmine].

Running Time: The running time of Algorithm ApprRoxMUL-
TIVALUEDIPF is dominated by the running time of the minimum
weight perfect matching which is O(n?? log n).

THEOREM 4.4. APPROXMULTIVALUEDIPF admits a 2-approximation
factor for the IPF problem.

Proof Sketch: A lemma similar to Lemma 4.1 holds also for the
Spearman’s footrule distance, and thus any p-fair ranking that is
closest in Spearman’s footrule distance to the ranking p has to
correspond to a perfect matching in G. It follows that the min-
imum weight perfect matching implies a p-fair ranking o that
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is closest in Spearman’s footrule distance to the ranking p. Let
4 be a p-fair ranking that is closest (in Kendall-Tau distance) to
p. Clearly, S(p,0) < S(p,p). Thus, by the inequalities in [17]
K(p,0) <S(p,0) <S(p,p) < 2K (p, ). We conclude that o is a
2-approximation to a p-fair ranking that is closest (in Kendall-Tau
distance) to the ranking p. |

4.2.2  Exact Algorithm. We present a dynamic programming based
exact algorithm ExacTMULTIVALUEDIPF for the MultiValuedIPF
problem. We prove that when ¢, the number of different values of
the protected attribute, is a constant (or even logarithmic in n), Algo-
rithm ExAcTMULTIVALUEDIPF computes the closest p-fair ranking
in polynomial time. The running time of ExAcTMULTIVALUEDIPF
is exponential in #, and thus when ¢ = Q(n), the running time of
ExAcTMULTIVALUEDIPF is exponential. Due to space constraints
we just describe the intuition behind this algorithm.

Consider an index 1 < k < n. Suppose that we wish to break
the problem of computing the closest p-fair ranking into two sub-
problems. One is computing the top k items of the p-fair ranking
and the other is computing the bottom n — k items. Let’s concen-
trate on computing the bottom n — k items, that is, which items
are in positions k + 1, ..., n and their order. Certainly, this depends
on which items are ranked in the top k (but it does not depend
on the order of these top k items). The algorithm is based on the
observation that the amount of this information is limited. Note
that for each item u if bot(u) < k then u must be in the top
k and if top(u) > k then u must be in the bottom n — k. The
only ambiguity is regarding the items u for which top(u) < k
and bot(u) > k + 1. It follows that for all these items u we have
k,k+1 € [top(u),bot(u)]. By the definition of top(-) and bot(-),
for any two items u and v such that A(u) = A(v), the intersection
of [top(u),bot(u)] and [top(v),bot(v)] consists of no more than
a single item. It follows that for each of the ¢ possible values of
the protected attribute we have exactly one item u with this value
for which k,k + 1 € [top(u),bot(u)]. Since each such item can be
either in the top k or in the bottom n — k, the number of possibilities
is bounded by 2¢.

The dynamic programming based exact algorithm ExactMuL-
TIVALUEDIPF for the MultiValuedIPF problem works as follows.
The algorithm works in n iterations. For k = 1,. .., n, and for every
subset Ly of the items u for which k,k + 1 € [top(u), bot(u)], it
computes the optimal rank of the top k elements of the closest
p-fair ranking subject to the constraint that the items in Ly are in
the bottom n — k. (Note that there may not be a feasible solution for
some of these subsets.) The computation is done using the optimal
ranking of the top k — 1 elements computed for all possible subsets
Li_;. It is not difficult to see that each such computation can be
implemented in O(£2¢) time, and thus the algorithm is polynomial
as long as £ = O(log n).

THEOREM 4.5. The running time complexity of EXACTMULTIVAL-
UEDIPF is linear when ¢ is constant and polynomial when ¢ is O(log n).

5 RANK AGGREGATION SUBJECT TO
P-FAIRNESS (RAPF)

In this section, we present two scalable solution frameworks for
the RAPF problem both for binary and multi-valued protected
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attribute. Algorithm RANDALGRAPF is randomized, highly scalable,
but the approximation factor is in expectation. Algorithm ALGRAPF,
on the other hand, produces a deterministic approximation factor,
but less scalable than its randomized counterpart.

5.1 Randomized Algorithm

We start with the randomized algorithm RANDALGRAPF. Input
to this algorithm are m rankings p1, p2, . .., pm and the output is
o, the aggregated p-fair ranking. Algorithm RANDALGRAPF ran-
domly selects one of the p1, pa, . .., pm input rankings uniformly,
denoted p,qndrngd- Then, Algorithm RANDALGRAPF calls the sub-
routine ALGIPF(p), with the parameter p,;,41mq4- The subroutine
ALGIPF(p) computes the p-fair ranking that is closest to this se-
lected ranking p,qndrna (either exactly or approximately). The re-
sulting p-fair ranking o is the output of Algorithm RANDALGRAPF.

The subroutine ALGIPF(p) can invoke any of the algorithms
described in Section 4. Recall that GRBINARYIPF produces an exact
p-fair solution of the binary IPF problem. For multi-valued IPF,
the highly scalable Algorithm APPROXMULTIVALUEDIPF produces a
2 approximation factor, whereas, the dynamic programming based
solution Algorithm ExacTMULTIVALUEDIPF is more expensive but
produces an exact solution for the multi-valued IPF problem. De-
pending on the underlying IPF problem, any of these could be used
inside ALGIPF.

We prove that in expectation the approximation factor of the
aggregate ranking returned by this incredibly simple Algorithm
RANDALGRAPF is 2+ the approximation factor of the algorithm for
the IPF problem invoked in ALGIPF(p).

Running Time: The running time of Algorithm RANDALGRAPF
is the same as the running time of Algorithm ALGIPF.

THEOREM 5.1. Let a be the approximation factor of the algorithm
for the IPF problem invoked in ALGIPF(p). The expected Kemeny
distance of the ranking returned by Algorithm RANDALGRAPF to
P1, P2, - - Pm is bounded by a + 2 times the minimum Kemeny dis-
tance of any p-fair ranking to p1, p2, .- -, Pm-

Proor. Let OPTy be the optimal (unconstrained) aggregate rank-
ing of p1,p2,..., pm, and let OPTr be the optimal p-fair aggre-
gate ranking. For i € [1..m], let 0; = ALGIPF(p;). Note that for
i # randInd, we do not compute o;; it is just used in the proof. We
have
- Pm)-

k(OPTy, p1, p2, - - -» pm) < K(OPTE, p1, p2, . .

Since for i € [1..m], K(oi, pi) < aK(OPTF, p;i) we also have

m
Z K(oi, pi) < ax(OPTF, p1,p2,. .., Pm)-

i=1

BX<E13% t/ﬁ;’igg’l.e.ip,%}ll?hty for any i € [1..m] we have

< " [K(os, pi) + K(pi, OPTy) + K(OPTy, p))]
Jj=1

=m [K(oi, pi) + K(pi, OPTy)] + k(OPTy, p1, p2, - - -» Pm)

Summing over all i € [1..m] we get
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m

Zk(ai, P1, P2, -5 Pm)

i=1

m

M=

[K(oi, pi) + K(pi, OPTy)]

3 4

m - k(OPTy, p1, p2, - - - Pm)

=m > K(oi, pi) +2m- k(OPTy, p1, pa. ... pm)

i=1

<m-a-k(OPTE, p1,p2, ..., pm) +2m - k(OPTy, p1, p2, - - -, Pm)
<m-(a+2)- k(OPTg, p1,p2, ..., Pm)
The expected distance is % of this sum, that is
E [K(Grandlndapb P2 - ,,Dm)] < (a+ 2) : K(OPTFapl’ P2 - ,,Dm)
]

5.2 Deterministic Algorithm

We proceed to describe the deterministic algorithm ALGRAPF. Input
to this algorithm are m rankings p1, p2, . . ., pm and the output is o,
the aggregated p-fair ranking. Algorithm ALGRAPF whose pseudo
code is given in Algorithm 3 runs in two steps. (1) Invoke the
subroutine ALGIPF(p) to solve the IPF problem for each of the m
input rankings (Line 2); (2) out of the m fair rankings produced
in step 1, find the ranking that minimizes the Kemeny distance to
the input rankings and output it as the aggregated p-fair ranking
(Lines 4-11).

As in the randomized case, the subroutine ALGIPF(p) inside
ALGRAPF computes an approximation to the closest p-fair of p by
invoking any of the algorithms described in Section 4. The resulting
approximation factor is 2+ the approximation factor of the chosen
algorithm.

Algorithm 3 ALGRAPF(p1, p2, ..., pm)

1: fori e [1.m] do

2 o; «ALGIPF(p;)
3: end for

4 min «— m - n? > upper bound on the distance
5. fori € [1.m] do

6 if k(oi, p1, P2, .., pm) < min then

7 min < k(0i, p1, P25 - - - Pm)

8 minlnd « i

9 end if

10: end for

11: return o,,inrnd

We demonstrate Algorithm ALGRAPF using the running example.
It first calls subroutine ALGIPF to find the p-fair rankings that are
closest to the rankings of each of the 4 members. The Kendall-Tau
distances between the resulting p-fair rankings and the original
rankings are 6, 3, 4, and 9, respectively. Next, Algorithm ALGRAPF
outputs the ranking among these 4 p-fair rankings that minimizes
the Kemeny distance to original rankings. The output is the one
closest to the ranking of member 2, shown below, and its Kemeny
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distance to the original rankings is 50.
[Park, Amy, Molly, Kabir, Abigail, Damien,
Kim, Aaliyah, Andres, Kiara, Lee, Jazmin]
Running Time: The running time of Algorithm ALGRAPF is
m times the running time of algorithm ALGIPF plus O(m?nlog n).

Note that the Kendall-Tau distance between two rankings can be
computed in O(nlogn) time using a binary search tree.

THEOREM 5.2. Let o be the approximation factor of the algorithm
for the IPF problem invoked in ALGIPF(p). The aggregate ranking
returned by Algorithm ALGRAPF is an a + 2 approximation of the
closest p-fair aggregate ranking of p1, pa2, ..., Pm.

Proor. In Theorem 5.1 we proved that

m

ZK(O’i,pl,pz,...,pm) <m-(a+2) k(OPTg, p1,p2,-- -, Prn)-
i=1

It follows that the minimum distance is bounded by % of this sum,
and thus
s Pm)-

O

K(Cmininds P1, P2 - - - Pm) < (a +2) - k(OPTF, p1, pa, -

LEmMA 5.3. Algorithms RANDALGRAPF and ALGRAPF admit 3,
3, and 4 approximation factors for the RAPF problem when GRBINA-
RYIPF, ExAcTMULTIVALUEDIPF, and APPROXMULTIVALUEDIPF, re-
spectively, are used as the underlying solutions for the IPF problem.

6 EXPERIMENTAL EVALUATIONS

The goal of this study is to evaluate the quality and scalability of
our proposed solutions, designed for IPF and the RAPF problems.
We also compare our solutions with multiple state-of-the-art solu-
tions [22, 25] to demonstrate how our studied problems promote
stronger notion of fairness for the rank aggregation problem.

All algorithms are implemented in Python 3.8. All experiments
are conducted on a cluster server machine with 32GB RAM memory,
OS: Scientific Linux release 7.8 (Nitrogen), CPU: Intel(R) Xeon(R)
CPU E3-1245 v6 @ 3.70GHz. All numbers are presented as an aver-
age of 10 runs. For brevity, we present a subset of results that are
representative. The code and the data is available at !.

6.1 Dataset Description

We perform evaluations considering 3 real world datasets. (a) Fan-
tasy players choose real athletes for their fantasy teams and gen-
erate scores based on the athlete’s real performance. Rankings of
the athletes are provided by real human voters. We use rankings of
National Football League (NFL) players for 16 weeks of the 2019
football season from the top 25 experts. (b) German Credit Score:
This is a publicly available dataset in the UCI repository. It is based
on credit ratings generated by Schufa, a German private credit
agency based on a set of variables for each applicant, including age,
gender, and marital status, among others. Schufa Score is an essen-
tial determinant for every resident in Germany when it comes to
evaluating credit rating before getting a phone contract, a long-term
apartment rental or almost any loan. We use the credit-worthiness

Uhttps://github.com/MouinullslamNJIT/Rank- Aggregation_Proportionate_Fairness.
git
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as scores just it is done in [34], and create a protected attribute
with 4 different values. (c) MoveLens Dataset: We use MovieLens
25 million movie dataset to select a set of movies that are all rated
by the same set of users. The individual user rating is used to cre-
ate individual ranking. We use the movie genres as the protected
attribute. Table 6 has further details.

6.1.1 Synthetic dataset. We generate large scale synthetic data [25,
34] using Mallows’ Model [26]. The Kemeny rank aggregation
has been shown to be a maximum likelihood estimator for this
model [34]. It contains two parameters - (i) 0 that controls the de-
gree of consensus among the rankings (higher values shows more
agreement); (ii) p that dictates the probability of elements of the
first group to be ranked higher than elements in the Second group.
We refer to [25] for further details. The 6 and p are set to 0.9 and
0.7 respectively in our experiments.

6.2 Implemented Algorithms

DETCONSTSORT [22] is a fairness-aware ranking algorithm designed
towards mitigating algorithmic bias for a single rank. DETCONST-
SorT only ensures the lower bound of proportionate representation.
As shown in Section 3.1, it neither guarantees smallest Kendall-Tau
distance nor ensures p-fairness. We implement this for IPF.
FAIrILP [25] finds the closest aggregate ranking that satisfies a
bound on the pairwise statistical parity. The original implementa-
tion of FAIRILP is specified for a binary protected attribute. To adapt
it for multi-valued protected attribute we ensure that for each value
of the protected attribute, the bound on the pairwise statistical
parity is satisfied between the items with this value and the rest of
the items. In our experiments we set § = 1 as the (unnormalized)
bound on the pairwise statistical parity. We note that due to the
definition of pairwise statistical parity, it may be infeasible in many
instances to find a solution for § = 0.

OpTIPF is the exact solution for IPF produced by solving an Inte-
ger Linear Programming (ILP) model using Gurobi Optimizer 9.1.
The optimizer does not scale and thus exact solutions cannot be
computed for large-scale datasets.

OPTRAPF is the exact solution for RAPF produced by solving an
ILP model using Gurobi Optimizer 9.1. Again, the optimizer only
produces the optimal solution on small datasets.

OPTRA is the exact solution for rank aggregation without consider-
ing fairness, and is produced by solving an ILP model.

Measures. For quality evaluation we use the following measures.
(i) Kendall-Tau and Kemeny Distances, (ii) percentage of items
satisfying p-fairness, and (iii) approximation factors. For scalability
evaluation, we measure the running time.

6.3 Summary of Results

Our first observation is that, consistent with our theoretical analysis,
p-fairness promotes stronger notion of fairness, by ensuring pro-
portionate representation of each of the protected attribute values
for every position in the ranked order. Naturally, incorporating p-
fairness inside rank aggregation comes with a cost - the Kendall-Tau
and Kemeny distances are typically higher (albeit not substantially
worse) for the p-fair rank aggregation than that of OpTRA. Second,
our experimental results demonstrate that our proposed model and
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solutions satisfy the fairness criteria proposed in state-of-the-art so-
lutions [22, 25] - however, these aforementioned existing solutions
do not extend to satisfy p-fairness. Third, our experimental results
corroborate our theoretical results, that is, GRBINARYIPF is exact,
APPROXMULTIVALUEDIPF admits a solution that is no more than
twice the optimal for MultiValuedPF, and ALGRAPF in conjunc-
tion with APPROXMULTIVALUEDIPF admits tighter approximation
factor compared to our proposed theoretical bound 4. Finally, our
scalability results indicate that our proposed solutions are scal-
able considering very large number of items (1, 000, 000) and ranks
(10,000). In fact, RANDALGRAPF is insensitive to the number of
ranks. We extend our experiments and consider relaxed p-fairness
varying § > 0 values as defined in Definition 2.5.

6.4 Quality Experiments

In this section we describe the results of our qualitative analysis.

6.4.1 BinarylPF Results. Figures la and 2a compare the fairness
of GRBINARYIPF and DETCONSTSORT. These results clearly indi-
cate that GRBINARYIPF consistently satisfies p-fairness, whereas,
DETCONSTSORT does not.

Figure 3a compares the Kendall-Tau distance between the input
ranking and the ranking computed by OpTIPF, GRBINARYIPF, and
DeTCoNsTSORT. Consistent with our theoretical analysis OpTIPF
and GRBINARYIPF always produce the same distance. At times DET-
CoNSTSORT computes a ranking with a smaller distance. This can
indeed happen, as DETCONSTSORT does not necessarily compute a
p-fair ranking.

Figure 4a plots the Kendall-Tau distance of the ranking computed
by GRBINARYIPF as we relax the p-fairness using § > 0 values. We
note that for a small value of § the relaxed output is the same as
input unfair ranking, and the Kendall-Tau distance is 0.

6.4.2 MultiValuedIPF Results. We use the MovieLens and German
Credit Score datasets to demonstrate the effectiveness of our pro-
posed solution APPROXMULTIVALUEDIPF and compare it with DET-
ConsTSoRT. Figures 1b, 1c, 2b, and 2c demonstrate that also in
this case APPROXMULTIVALUEDIPF consistently satisfies p-fairness
whereas DETCONSTSORT fails to satisfy p-fairness. Figures 3b, 3c
compares the Kendall-Tau distance between the input ranking and
the ranking computed by APPROXMULTIVALUEDIPF and DETCON-
STSORT. Again, at times DETCONSTSORT computes a ranking with
a smaller distance since DETCONSTSORT does not necessarily com-
pute a p-fair ranking.

Figures 4b, 4c plot the Kendall-Tau distance of the rankings by
APPROXMULTIVALUEDIPF, as we relax the p-fairness using § > 0.
Unsurprisingly, for large §, the Kendall-Tau values become 0.

6.4.3 RAPF Results. Next, we evaluate the RAPF problem by study-
ing the effectiveness of our proposed ALGRAPF using GRBINARYIPF
(Fantasy football) and ApPROXMULTIVALUEDIPF (MovieLens), and
compare it with FAIRILP [25] and OPTRAPF, whenever appropriate.

Figures 6a and 6b demonstrate that ALGRAPF consistently satis-
fies p-fairness whereas FAIRILP fails to satisfy p-fairness. Figures 7a
and 7b compare the Kemeny distance between the input rankings
and the aggregate ranking produced by ALGRAPF, RANDALGRAPF,
FAIRILP, and OPTRA. As expected OPTRA achieves the smallest
distance, followed by FAIRILP, since it does not require p-fairness,
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H Dataset #records (n) #ranks (m) protected attributes (£) H
Fantasy football American Football Conference (AFC):proportion: 50% , National Foot-
. 55 25 ]
ranking ball Conference (NFC): proportion: 50%
. <35 & = f le: tion: 33.5% , >35& = f le:
German Credit age % sex = female: proportion % , age ' sex = female
Score 1000 1 proportion: 35.5% age<35 & sex = male: proportion: 21.3%, age>35
& sex = male: proportion: 9.7%
Thriller: proportion: 2.24%, Western: proportion: 6.72%, Documen-
MovieLens 268 7 tary:.proportion: 3.3“6%, Comedy:. proportion.: 21.64%, Horror: I.)ro-
portion: 4.85%, Musical: proportion: 0.37%, Film-Noir: proportion:
1.49%, Drama: proportion: 59.33%
Table 6: Real world datasets
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- ] [— = 300 | — ApPrOXMuItValuedPF Number of items 10 15 20 25 30
§ 4 5 GRBINARYIPF (Football) 1.0 1.0 1.0 1.0 1.0
@3 2
2 : 200 APPRF)XMULTIVALUEDIPF 1.52 1.46 137 133 1.30
02 . 100 (MovieLens)
£ £
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and then ALGRAPF and RANDALGRAPF. Algorithm RANDALGRAPF
is inferior to ALGRAPF in practice, since its performance is same as
the latter one only in expectation.
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Table 7: Approximation factor of the algorithms

Figures 9a and 9b plot the Kemeny distance of the ranking com-
puted by OpTRA, ALGRAPF, RANDALGRAPF as we relax the p-
fairness using 6 > 0 values. Unsurprisingly, with large §, our algo-
rithms become very close to OPTRA.

Finally, Table 7 presents the actual approximation factors of the
different algorithms proposed in this work. Because of the expo-
nential nature of the OpTIPF this comparison could be conducted
only on small datasets. As evident from the table the actual approx-
imation factors are lower than the proven theoretical bounds.

6.5 Case Study

For the case study we use the 10 popular movies based on 5 different
IMDB users. All these movies belong to 3 different genres (protected
attribute): Drama, Western, Comedy. The proportion of these genres
are 0.4, 0.3, and 0.3, respectively. The last two columns of the table 8
show the ranked order of the results based on FAIRILP [25] and our
proposed OPTRAPF, respectively. It is easy to notice that compared
to FAIRILP, OpTRAPF ranks the movies in a manner where different
genres are proportionally distributed in all 10 ranked positions,
thereby promoting improved user experience.

6.6 Scalability Experiment

We present the running times of RAPF, RANDALGRAPF, GRBINA-
RYIPF, APPROXMULTIVALUEDIPF. We do not present these results
wrt any other baselines because of two reasons: first, we have
shown that the baselines DETCONSTSORT [22] and FAIRILP [25] do
not satisfy the p-fairness criteria; second, the baseline algorithm
FAIrILP [25] is inherently not scalable. We use synthetically gen-
erated data using Mallows’ model for this purpose. We vary n and
m. Figures 5, and 8 show these results and demonstrate that our
solution easily scale to 1 million items (n) and 10, 000 ranks (m).
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Movie Userl | User2 | User3 | User4 | User5 | OpTRAPF | FAIRILP Genre
Bad News Bears, The (1976) 9 7 7 7 4 7 3 Comedy
True Grit (2010) 7 5 1 9 3 9 6 Western
My Darling Clementine (1946) 2 3 3 3 10 4 4 Western
Last Picture Show, The (1971) 4 1 5 1 5 5 1 Drama
Man with the Golden Arm, The (1955) 6 8 4 10 6 8 10 Drama
Heaven Can Wait (1978) 10 10 8 8 8 10 9 Comedy
Rio Bravo (1959) 1 4 6 5 7 1 5 Western
Elephant Man, The (1980) 5 2 2 4 2 6 2 Drama
Buddy Holly Story, The (1978) 3 6 10 6 9 2 8 Drama
Animal House (1978) 8 9 9 2 1 3 7 Comedy

Table 8: Case study results on MovieLens dataset
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Figure 9: Varying § analysis RAPF

These results also corroborate our theoretical analysis and shows
that the running time of RANDALGRAPF is not dependent on m.

7 CONCLUSION AND FUTURE WORK

We propose the RAPF problem to incorporate a group fairness
criteria (p-fairness) considering binary and multi-valued protected
attributes with the classical rank aggregation problem. We first
study how to produce a p-fair ranking that is closest to a single
input ranking (IPF). IPF can be solved exactly using a greedy tech-
nique when the protected attribute is binary. When the protected
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attribute is multi-valued such an approach fails. We then present
two solutions for multi-valued IPF, ExActTMULTIVALUEDIPF is opti-
mal and APPROXMULTIVALUEDIPF admits 2 approximation factor.
Next, we design two computational frameworks to solve RAPF:
RANDALGRAPF and ALGRAPF that exhibit 3 and 4 approximation
factors when designed using ExAcTMULTIVALUEDIPF and APPROX-
MurTIVALUEDIPF, respectively. The effectiveness of our proposed
solutions is demonstrated by comparison to state-of-the-art solu-
tions using multiple real world and large scale synthetic datasets.

Our work opens up several interesting research directions.

A. Alternative models. There exist alternative ways to in-
corporate p-fairness inside rank aggregation. As an example, one
can study the problem of minimizing “weighted” Kemeny distance
where the weights are derived considering p-fairness criteria. A
slightly different problem is to ensure proportionate fairness not
on every position, but for every x (given as input) positions. This
problem would be important in applications where every x con-
secutive individuals in a ranked order are eligible to get the same
preferable outcome (such as, top-5% of employees get 100% bonus
of their base salary, etc). Studying RAPF considering Spearman’s
Footrule remains part of our ongoing investigation.

B. RAPF for Top-k or considering incomplete information.
We are studying how to adapt RAPF to produce only top-k aggre-
gated rank. This will require us to adapt Kendall-Tau and Kemeny
Optimization for top-k results. One possible approach is to consider
all items in the individual rank starting at place k + 1 as ties, and
generalize Kemeny based on ties [2, 20]. We are also interested to
study how to obtain an aggregate p-fair ranking when each member
inputs only a partial ranking [2, 20].

C. Hardness of IPF. We note that IPF essentially finds a perfect
matching in a convex bipartite graph while minimizing crossings.
The problem of minimizing the number of crossings in a (geometric)
bipartite matching is known to be NP-Hard for general bipartite
graphs [1]. For convex bipartite graphs, we currently explore if
and how existing works that aim at finding a maximum matching
without any crossing [14, 27] can adapt to crossing minimization
of a perfect matching.
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