Session 21: ML for Data Management 2

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Cooperative Route Planning Framework for Multiple Distributed
Assets in Maritime Applications

Sepideh Nikookar Adam Bienkowski David Sidoti
Paras Sakharkar Matthew Macesker david.sidoti@nrlmry.navy.mil
Sathyanarayanan Somasunder Krishna R. Pattipati US Naval Research Laboratory,
Senjuti Basu Roy adam.bienkowski,matthew.macesker, Marine Meteorology Division

sn627,ps863,ss4327,senjutib@njit.edu
New Jersey Institute of Technology
Newark, NJ, USA

ABSTRACT

This work formalizes the Route Planning Problem (RPP), wherein a
set of distributed assets (e.g., ships, submarines, unmanned systems)
simultaneously plan routes to optimize a team goal (e.g., find the lo-
cation of an unknown threat or object in minimum time and/or fuel
consumption) while ensuring that the planned routes satisfy certain
constraints (e.g., avoiding collisions and obstacles). This problem
becomes overwhelmingly complex for multiple distributed assets as
the search space grows exponentially to design such plans. The RPP
is formalized as a Team Discrete Markov Decision Process (TDMDP)
and we propose a Multi-agent Multi-objective Reinforcement Learn-
ing (MaMoRL) framework for solving it. We investigate challenges
in deploying the solution in real-world settings and study approx-
imation opportunities. We experimentally demonstrate MaMoRL’s
effectiveness on multiple real-world and synthetic grids, as well
as for transfer learning. MaMoRL is deployed for use by the Naval
Research Laboratory - Marine Meteorology Division (NRL-MMD),
Monterey, CA.

CCS CONCEPTS

« Information systems — Data management systems; Data-
base design and models.

KEYWORDS

Route planning; Multi-Agent Reinforcement Learning; Function
Approximation; Scalable Solution Design; Data Management for
Al

ACM Reference Format:

Sepideh Nikookar, Paras Sakharkar, Sathyanarayanan Somasunder, Sen-
juti Basu Roy, Adam Bienkowski, Matthew Macesker, Krishna R. Pattipati,
and David Sidoti. 2022. Cooperative Route Planning Framework for Mul-
tiple Distributed Assets in Maritime Applications. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD °22), June

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06...$15.00
https://doi.org/10.1145/3514221.3526131

krishna.pattipati@uconn.edu
University of Connecticut
Storrs, CT, USA

1518

Monterey, CA, USA

12-17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3514221.3526131

1 INTRODUCTION

Planning routes for multiple agents, such as ships submarines,
and unmanned aerial/surface/underwater vehicles (UAVs, USVs,
UUVs), considering multiple objectives, such as fuel, battery us-
age, time taken, and progress towards a goal, is a complex, but
highly-relevant, problem for search and rescue, reconnaissance,
and interdiction missions in maritime applications. These problems
involve trade-offs among different objectives and require a coor-
dinated search for an object in a very high-dimensional space by
multiple geographically distributed searchers (herein referred to
as assets or agents). In this vein, automated tools are needed to aid
human decision makers in planning courses of action (COAs).

A canonical formulation of the problem is as follows: we are
given a set of distributed assets over a discrete grid, each with a
given starting location (described by its (lat, long) value), a respec-
tive speed limit, and a sensing radius. The problem is to cooper-
atively discover an object at an unknown location (described by
a (lat, long) value). The assets communicate among themselves
periodically after a fixed interval of time or communicate asyn-
chronously by broadcasting their locations when an asset locates
the destination. When two assets communicate, they get to know
each other’s current locations. The goal is to decide a sequence of
moves, including waiting at nodes, for each asset (route plan) such
that the total fuel consumption by the assets and the maximum
time for reaching the mission goal over all assets (Makespan) is
minimized, while avoiding collisions among themselves. We for-
malize the Route Planning Problem (RPP) in Section 2 as a team
decision-making problem and describe the challenges in solving it.

Formalizing the RPP requires developing a principled model that
captures the nuances of simultaneous movement of the assets, along
with how that impacts the objectives and satisfaction of constraints.
At each step, the RPP solution produces the direction of move for
each asset and the corresponding speed (note that a speed of 0
corresponds to the waiting option) while accounting for its sensing
radius and the locations of other assets. For distributed assets, since
the locations of the other assets are known intermittently, each asset
has to anticipate the locations and moves of other assets through
an appropriate "internal model".

Contribution I: A Distributed RPP Model - We model the
RPP problem as a Team Discrete Markov Decision Problem (TD-
MDP) [20], where the states are the nodes in the grid and an asset’s

https://doi.org/10.1145/3514221.3526131
https://doi.org/10.1145/3514221.3526131

Session 21: ML for Data Management 2

Reward
State

Reward

Teammate State

odule

Learning
Module

Learning
Module

Action Selection
Module

Action Selection
Module

t !

[Environment]

Figure 1: MaMoRL Framework

action is the decision to transit to one of the neighboring grid points
at a particular speed or wait to avoid a collision. For each transition,
there exist vector rewards that capture the multiple objectives of
the team. Section 2 contains further details.

Contribution II: MaMoRL - We propose a Multi-agent Multi-
objective Reinforcement Learning (MaMoRL) framework for coopera-
tive route planning under constraints. We identify its data centric
challenges (Section 2.4). The MaMoRL framework contains a. Team-
mate Module (TMM) that captures the probability distribution of the
belief of each asset on the locations and actions of other assets
at each time step; b. An Action Selection Module (ASM) to enable
distributed decision making by each asset to optimize multiple
objectives, while satisfying constraints at each time step; and c.
Learning Module (LM) that allows each asset to incrementally learn
the functional approximations to the Q-functions (current best val-
ues of state-action pairs) from the environment and incorporating
that learning inside the other two modules. Section 3 contains
further details.

We also realize that solving MaMoRL exactly is infeasible in a real-
istic maritime setting, because the memory and CPU bottlenecks of
TMM and LM increase exponentially with the increase in the number
of assets, the number of nodes and neighbors of the assets, and the
cardinality of the set of speeds an asset can choose from.

We therefore develop two function approximation techniques
- one using Linear Regression and the other using a Neural Net-
work to effectively approximate the Teammate Module (TMM) and the
Learning Module (LM) [16]. The Linear Regression based approxi-
mate solution, Approx-MaMoRL, is shown to be more effective than
its Neural Network based counterpart NN-Approx-MaMoRL. It turns
out to be as effective as the exact MaMoRL, while overcoming both
the memory and CPU bottlenecks (refer to Section 4). The design
of Approx-MaMoRL involves extensive feature engineering efforts.

Contribution III: Evaluation and Deployment. We perform
an extensive experimental evaluation (Section 4) using multiple
real-world and synthetic grids and implement several baselines for
comparisons. We identify the computational bottlenecks of MaMoRL
(Section 4.3) and demonstrate how Approx-MaMoRL overcomes
those limitations. We design two variants of Approx-MaMoRL - one
with no knowledge of the destination and the other with partial

1519

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

knowledge of the destination. The experimental results demon-
strate the superiority of Approx-MaMoRL compared to the base-
line solutions with a 95% statistical significance (Section 4.4). Our
results additionally demonstrate that the policy learned by the
Approx-MaMoRL is transferable to various sized grids (Section 4.6).
Finally, in Section 4.7, we describe how we deploy Approx-MaMoRL
inside TMPLAR [22], an existing tool for Multi-objective Planning
and Asset Routing used by NRL-MMD, Monterey, CA.

2 PRELIMINARIES AND PROBLEM
DEFINITION

2.1 Preliminaries

Let N be a set of distributed assets. Each asset operates on a discrete
grid G =< V, E >. The weight of each directed edge e (weight(e))
between two nodes, up — vg, denotes the distance between vp
and vg. The assets explore the grid cooperatively to discover the
location of an object, represented as d(x,y). Each asset i € N is
represented as a quintuple:
i =< ry, sp;, source;(x,y), curl.'(x, y),di(x,y) >

where r; is the sensing radius of asset i, sp; is the maximum speed/
velocity, source;(x, y) is the starting point, curit (x,y) is the location
of asset i at time ¢, and d; (x, y) is the destination from the viewpoint
of asset i. All assets have the same destination, that is unknown in

the beginning, but gets revealed through exploration. Therefore,
di(x,y) =d(x,y); VieN.

2.2 Problem Setting and Definition
Each asset i is characterized as follows:

e It moves at a speed < sp;.

o It observes the grid up to its sensing radius r;.

o It makes a decision on its next action at each step, i.e., which
neighboring node it moves to and at what speed or to wait.
Decisions are made only when i is at a node in G.

e Two assets (i, j) exchange their respective locations when
they communicate periodically every k time steps or when
the destination d(x, y) has been found.

Fuel Consumption Model: The fuel consumption of asset i
to move from node v, — vg at speed sp’; < sp; is fueli(vp —
vg, sp’;), where sp; is the maximum allowable speed of asset i. The
fuel consumption depends on the distance between v, v4 and the
speed sp’;. There exist analytical models [3] for computing the fuel
consumption as a function of distance traveled and speed. Thus,
the fuel consumption of asset i to explore G can be computed and
we denote it by Tpyey,-

DEFINITION 1. Total fuel consumption F;o;q; : The overall fuel
consumption by the set of |N| assets while exploring G to discover

d(x,y) is Xvi TFuel,-'
Time Model: The time taken for asset i to move from node
ight .
W—?{’W. Thus, the total time
taken by asset i to explore G can be computed and is represented
by TTimei-

vp — vg at speed sp’; < sp; is

DEFINITION 2. Overall time expended T4 : The overall time
expended by |N| assets during exploration over G to discover d(x,y)
is the maximum over Tr;me,, i.e., maxy;TTime;.

Session 21: ML for Data Management 2

DEFINITION 3. Collision: Two assets i, j collide if they are at the
same location simultaneously, i.e., curl.t (x,y) = curjt. (x,v)

ProBLEM 1. (Route Planning Problem (RPP)) Plan routes of |N |
cooperative distributed assets (agents) with respective starting points
(asset i with source;(x,y)) over G to discover an initially unknown
destination d(x,y) to minimize F;,;4; and Tyyz41, While at no point
in time during the exploration, curl.t(x, y) = curjt.(x, Y), Vi, j, t.

2.3 Toy Running Example

Consider a toy example involving two assets (Table 1), their re-
spective current positions, and their visited paths after 2 moves
in Figure 2. Each asset can sense up to its sensing radius which is
based on the distance and represented by double circled green and
blue nodes for Assetl and Asset2, respectively.

ri | sp; | source;(x,y) curi2 (x,y) | di(x,y)
Assetl | 2 | 3 (0,0) (0,4) (4,3)
Assetz | 3 | 2 (8,7) (5.4) (4,3)

Table 1: A toy example using 2 assets

From starting location source;, Assetl can go to one of its two
neighboring sensed nodes. It also can move at 3 different speeds,
(sp’y = 1,2,3 < sp;) or wait; so the number of possible actions
for Assetl is 7. Evidently, without any further information, it is
beneficial to move in the direction that explores more of the not-
yet-sensed nodes, as long as collisions are avoided. Asset1 takes
action ag, because more nodes will be sensed from the new position
and moves at speed 2 based on Table 2. Its position is changed to
curl1 (x,y) = (0, 2). Similarly, Asset2 moves from sourcez to node
(6, 6) by taking action a(’) to sense 3 additional nodes. Moreover, it
chooses speed 2, because that minimizes the average of time and
fuel consumption (see Table 2).

Assetl Asset2
Speed | Time | Fuel | Average | Speed | Time | Fuel | Average
1 2 3.7664 2.8832 1 2.24 | 4.2184 3.2292
2 1 4.2714 | 2.6357 2 1.12 | 47840 | 2.9520
3 0.66 | 4.7286 2.6943 3 — — —

Table 2: Time and fuel consumption of the Assets

sourcey = (8,7)

source; = (0,0)

Figure 2: Assets’ traveled paths and positions after 2 moves

1520

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

2.4 Data Centric Challenges

The proposed work falls under the broad category of data manage-
ment/engineering for efficient AL The major data-centric challenges
to solve the RPP stem from two sources: (a) Model and reward
design; (b) Memory and CPU Bottlenecks.

2.4.1 Model and Reward Design. The problem of designing auto-
mated plans has been recently explored in several research works [2,
18, 21] that broadly fall under the umbrella of Exploratory Data
Analysis (EDA). These efforts investigate the design of RL agents to
discover user groups [21], to generate exploratory sessions for data
scientists [2], or to design complex recommendation tasks, such
as courses or trip plans [18]. Similar to these problems, we model
the RPP as a sequential decision-making/control problem, where
the fundamental model consists of a state-action pair for which an
appropriate reward function needs to be designed. Unlike existing
works, a state of the RPP corresponds to the current locations of
all |N| assets and an action constitutes deciding respective actions
of all of assets (including waiting). Moreover, the problem requires
the consideration of multiple objectives (fuel and time) and the
simultaneous planning of routes by multiple distributed assets in
a spatial domain with limited communication capabilities while
satisfying multiple constraints (avoiding collisions and intermittent
communication). Therefore, our proposed model MaMoRL, which
involves extensive data engineering for the reward design process is
significantly different from existing works. From a technical stand-
point, MaMoRL contains a Teammate Module (Section 3.2.1) that
captures the belief of each asset on the locations and actions of
other assets at each time step, which is unique to this distributed
planning problem and has not been studied in the aforementioned

prior efforts.
2.4.2 Memory and CPU Bottlenecks. As we shall describe in Sec-

tion 3.3, MaMoRL requires storing very large (multiple) P and Q tables
in memory, and the sizes of these tables increase exponentially with
the number of assets, grid size and the number of neighbors, and
the cardinality of the set of speeds an asset can choose from (refer
to Lemmata 1, 2), causing a memory bottleneck (refer to Table 6
for experimental results). We design two function approximation
methods (based on Linear Regression and a Neural Network) (Sec-
tion 3.3) that avoid pre-computing and storing these tables. The
CPU bottleneck arises from the need to learn effectively in a setting
with exponential number of environmental states and actions. To
the best of our knowledge, some existing works [2, 29] proposes
Deep Neural Network based RL framework to overcome the large
state space problem, but do not comprehensively evaluate the scal-
ability challenges. Naturally, the Neural Network based function
approximation requires more training data to be effective, which
is harder to obtain for the RPP, compared to the EDA problem
studied in [2].

3 PROPOSED SOLUTION

We present our proposed model, algorithms for TMM, LM and ASM,
and describe approximation opportunities.

3.1 Modeling

We model the RPP problem as a Team Discrete Markov Decision
Process (TDMDP) (S, A, R) [20]:

a. The state space S = |V| IN1, where |V| is the number of nodes in
G. At a given time t, state s; is the locations of all |N| assets.

Session 21: ML for Data Management 2 SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

3.2.1 Teammate Module (TMM):. Assets are distributed and com-
st — {curt(x,y), cury(x,y), ..., c“rfN| (xy)} municate among themselves intermittently. Consequently, when an
asset decides on its next move, it needs to have an internal model
that anticipates the current locations and moves of other assets.
The teammate module is designed to represent that internal model
of other team members. The purpose of this internal model is to
produce the probability distribution of actions of the remaining
|N|— 1 assets. This module is gradually updated as asset i observes
the actions of asset j (a;) Vj € N\ {i} for each executable action
aj in state s, using the following formula:

b. A is the set of actions. Given a state s, where each asset i is at
its corresponding node vp;, an action a; corresponds to making
decisions to move along vp; — vg; at speed sp < sp; or staying at
Upi, 1.e., Upi — Upi; Let a = [a;] denote the actions over all assets.
The effect of an action is a state transition T;, which is assumed to
be deterministic, that is, T, : S X E — S, a new state is obtained by
taking an action at each state.

c. R(st, ar, sp+1) is the reward obtained for transitioning from state
st to state s;41 by taking action a;.

) . T—t+1 . e
3.1.1 Reward Design. The process of designing the reward must P, (s,aj) = Fiy a9 +F ateA,-(Zs')\{aj}Pl("” (500, aj=a; (5)
be guided by the following intuition: (1) proportional to the number (1= TPy, (s.a)), otherwise
of newly explored nodes by the assets, (2) inversely proportional to Here f € [0,1] is the learning rate for determining the effect of
the time taken, (3) inversely proportional to the fuel consumption. the previous action, T is the iteration number, A; and A; are the
1. Exploration Reward: of an action a relates to how much of sets of possible actions for assets i and j, respectively. Clearly, these
the unexplored grid an asset can sense and is formulated as P values are to be stored and updated periodically while learning

IN| . from the environment.
a _ 2= Sensed(i)®
explore Dmax X |N|
where Sensed(i)% is the number of newly sensed nodes by asset
i by taking action a;, normalized by Dy, 4x, which is the maximum

Pl = (V| x |A] x sp).
out-degree in G. Using example in Section 2.3, the exploration IPI= (Vi Al 5p)
reward of taking the first action is r% _ 283 _g5 where |V| is the size of the grid, |A| is the number of actions, sp is

explore = 5x2 the max speed and |N| is the number of assets.
2. Time Reward: of an action a over all assets is the inhverse of P IN] f ’

ight i i e e .
WG pi Y1) (v{’ —%q1) At the initial state, Assetl and Asset2 take actions ag and a(’), re-

(1) LEMMA 1. TMM has P tables for (exploration, time, and fuel) rewards,
each with size

the maximum time each asset needs as part of a (where

SPi
is the time asset i needs for action a;) spectively, thus state s1 is obtained. At that time, for the exploration
reward, Assetl updates the P (sg, a’) values in the system for all
a _ 1 9 Asset2’s actions a’ in the action set using Equation 5 as follows:
Ttime = weigh . . ()
9 t(UPl_)Uql)
Mmaxi=1,. N~ sp/, (:
1N — (1 _ o 2(3-1+1
For the toy example, r;7 = —L . —0.83 for the first action P1, (s0.a5) = (1-03 Py, (s0. a0))
max(1,1.2) 3 ’ ’
of the example in Section 2.3. =(1-0.3") X 0.2 = 0.1946, Vaj € A (s0) \ {ag}
3. Fuel Reward: of an action a is the inverse of the sum of fuel Py, (o, a(’)) —0.2216
consumed by all |N| assets.
We consider T = 3 and § = 0.3 in our example. Asset2 also does
4 1 3) the same for updating P values of Assetl’s actions.
fuel = L |N]| ioh]] (1. sp’ . -
2=y weight(vpi — vgi) X fueli(1,sp’;) 3.22 Learning Module (LM):. After the transition
Fofr Oilr imple.m;ntation, we use the following model [3] to cap- (5,1, s @y @) = (57,7),
ture fuel per unit distance. asset i will update its Q-function table using the following equation:
fueli(1,sp";) = 0.2525 x sp’; 2 +1.6307 X sp’; (4)
Based on the model, the fuel reward of the initial set of actions Q(s, a1, .., @i, o aiN) = (1=)Q(s, a1, .., @i, o, AN "
. . 1
in the toy example is r}l{z}ml = s = 0-052. +a(r+ y;pezﬁQ(s, VA aiN‘))

Evidently, at state s, an action a corresponds to two things: 1.
The assets should move to the neighboring nodes to maximize the
Exploration Reward (Equation 1); 2. The speed of each asset is to
be chosen to optimize the average of Fuel Reward (Equation 3) and
Time Reward (Equation 2). LEMMA 2. There exist different Q tables, one for each reward in LM,

and each of size

where a} =argmax P;(s’,b); j=1,..,i—1i+1,..|N]|
bEAj
Clearly, LM must leverage TMM, and update it periodically.

3.2 Algorithm

Our proposed solution, Multi-agent Multi-objective Reinforcement 1Ol = (IVI X |A| X sp) INI,
Learning or MaMoRL in short, contains three different interacting
modules (Figure 1) and is inspired by model free Reinforcement
Learning for multiple agents [28]. Q(s,a.a’) = m =0.0286, Va€AVa €A’ VseS

In example 2.3, the Q values are initialized as

1521

Session 21: ML for Data Management 2

Here, we take a = 0.9 and y = 0.8. After Assetl and Asset2 take
actions ag and aj, respectively, the new state s; and exploration
reward r = % = 0.5 are obtained. Then, at t = 1, Assetl will
update its Q value for actions ag and a/) using Equation 6 as follows:

Q(s,ap, af) = (1 - 0.9) x 0.0286 +0.9(0.5 + 0.8 0.0286) = 0.47
3.2.3 Action Selection Module (ASM):. Asset i uses a greedy
policy for selecting the next action using the following equation:

a; = argmax V(a;|A) 7)
a;€A;
where A* = {a],a}_, a},; - aTNl} and V(a;|A") is the condi-

tional expectation of an action given by:

2 P(s,a)Q(s. i, .., ai, .,) t<T
V(a;la") =7 ®)
(argmax P (s, a;))Q(s, aj, .. iy oeny aI*NI), t>T
Vj#i

Here, T represents an iteration threshold. In order to see which
action Asset1 is going to take in state s; (Figure 2) in example 2.3,
we calculate the conditional expectation for all possible actions
that Asset1 can take in the current state using the first formula in
equation 8 considering T =3 and t = 1:

Vi(ail{a}}) = 4 (0.1946 X 0.0286) +0.2216 X 0.0286 = 0.0286

Vi(aol{a)}) = 4 (0.1946 x 0.0286) +0.2216 X 0.47 = 0.1264

Fori=1,..,6and j =0,..,4. Thus, Assetl chooses action a(for
the next step and state s, is obtained (see Figure 2).

3.3 Function Approximation

It is infeasible to compute MaMoRL exactly in a realistic setting
simply because of the exponential size of the P and Q tables (Re-
fer to Lemmas 1 and 2). Indeed, the computational bottlenecks
lie in exactly computing or traversing TMM and LM. Therefore, we
study function approximations for TMM and LM. The approximate
solution, Approx-MaMoRL, is designed with extensive feature en-
gineering efforts to effectively approximate TMM and LM without
actually building it, and the assets make decisions based on that
approximation.

3.3.1 Function Approximation for TMM.

1. Linear Regression. : As opposed to computing P;, (s, aj), the
action of each teammate j at state s and time t by asset i is approxi-
mated as a linear function [5, 24] fi q; s, given by

fi,aj,s = widegree(vj,s) + w20(vj,s) + w3a(aj, s)

9
+w4ﬁ(aj,d,s)+w5(spj,s) ©)
where:
.vj = latest location of asset j,
. 0(vj,s) = 1if there is another asset within m hops, else 0,
.a(aj,s) is 1, if aj leads to unsensed nodes; else 0,
. B(aj,d,s) = 1,if aj leads to d; else 0,
sp; = speed of asset j,
.wp € [0,1], 1=1,..,5 are weights of the features.
The function approximation considers features that are useful
before the goal is discovered (all features excluding f), and ones

1522

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

that are only useful afterward (all excluding). f in Equation 9 is
designed for the latter purpose.

Training: In the absence of the historical data, we obtain a
sample of the original (P;, (s, a;) values) coming from MaMoRL to
approximate TMM. The features are hand-crafted and the goal here is
to learn the weights w; that minimize the following error function:

Lo ; 2
Minimize " [fiays = fiays) (10)
Vi,aj,s
Route Planning: During the actual route planning, at a given
state s by asset i, an action is simply considered to be the action a;
for asset j that has the highest P;, (s, aj) value per Equation 9.

2. Neural Network: Using the same training instance as that of
Linear Regression, a Neural Network is trained by collecting the P
values and the concomitant feature values for each possible action-
state pair. The trained Neural Network model is then used to predict
the P values for each possible action in order to predict the action
a;j with the highest P;, (s, aj) in route planning.

3.3.2 Function Approximation of LM..

1. Linear Regression. : Similarly, as opposed to storing the entire
Q table, asset i learns a reward function as a linear combination of
features:
Fia;,s = widegree(v;, s) + w20(vj, s) + w3a(ai, s)

+waf(ai,d,s) + ws(sp;, s) + wesp’;

(11)

Here, sp] is the speed of asset i that causes collision and the
remaining features are as described in Equation 9.

Training: Similar to the function Approximation for the TMM,
we sample from the training grid to learn w; by minimizing the
least squares objective function:

Minimize Z [Fiass — Fiaps)? (12)
Vi,a;,s
Route Planning: During route planing, the reward for each
action g; is calculated using Equation 11 and the action resulting
in the highest 7; 4, s is chosen by asset i at state s.

2. Neural Network: Using the same training data as that of func-
tion approximation using Linear Regression of LM, a Neural Network
is also trained.

4 EXPERIMENTAL EVALUATION

Most of the experiments are run on OS Big Sur with 2.4 GHz Quad-
Core Intel Core i5 Processor and 16 GB RAM. Experiments in Table 6
are run on a 64-bit OS server with 3.5 GHz 11th Gen Intel Core i9
and 128 GB RAM. Our code and data are available on GitHub.! All
results are presented as an average of 10 runs.

4.1 Experimental Setup

4.1.1 Datasets. 1. Real World Data. A discrete grid of the entire
world is produced by taking high-resolution shoreline data from
the GSHHG data set and generating a mesh using Gmsh over the
world’s oceans[12][26]. In this graph, each node has an out-degree

Ihttps://github.com/RoutePlanningProblem/MaMoRL

https://github.com/RoutePlanningProblem/MaMoRL

Session 21: ML for Data Management 2

of at most 6. To represent the greater amount of navigational ad-
justments necessary near land, the mesh is generated such that
regions closer to coastlines have a higher resolution than those in
the middle of the ocean. This grid is then split into three datasets
of increasing resolution: the Caribbean Grid, the North America
Shore Grid, and the Atlantic Grid (refer to Table 3).

Datasets Region V| |E|
1 Caribbean Grid 710 1684
2 North America Shore Grid | 3291 | 7811
3 Atlantic Grid 14655 | 35061

Table 3: Datasets Description

II. Synthetic Data. We use the NetworkX library in Python to
generate grids by varying one of the three parameters at a time. (a)
number of nodes; (b) number of edges; (c) max out-degree.

4.1.2 Implemented Algorithms. We implement Approx-MaMoRL,
NN-Approx-MaMoRL, MaMoRL and compare them with several base-
lines. Additionally, we implement MaMoRL with partial knowledge,
which works as follows:
1. MaMoRL with partial knowledge: We assume that under partial
knowledge, the destination is inside a specified region (described
by a bounding box of lat, long) that the assets are aware of, but
the exact location (lat, long) is unknown. For that, all assets make
use of Dijkstra’s Shortest Path [9] algorithm to find the shortest
path to the boundary of the region containing the destination. Then
the assets leverage MaMoRL solutions inside the region to reach the
destination.
2.Baseline-1: Assets plan their routes one-by-one in a non-simulta
neous round robin fashion. The reward functions are identical to
that of the ones described in Section 3.1.1. The baseline is likely to
require less fuel for the assets to reach the destination (i.e., smaller
Fiora1) because of their long wait at the nodes and no unnecessary
moves at the expense of taking a longer time, thereby giving rise
to a larger Ty ;47 value.
3. Baseline-2: In this RL based implementation, assets use the
same reward functions as before but plan their routes indepen-
dently, without taking into account the actions of others. This fully
distributed planning is akin to the ALOHA protocol and is prone
to collisions.
4. Random Walk-Baseline: The implementation designs a random
walk based solution, where an action in each step and the assets’
speed are decided randomly from a uniform probability mass func-
tion (for actions) and density (for speed).

Experimentation Goals. Our effort attempts to answer the
following questions:

Q1. How function approximation methods Approx-MaMoRL and
NN-Approx-MaMoRL compare with each other?

Q2. What are the bottlenecks of implementing the proposed
solutions and the baselines?

Q3. How effective Approx-MaMoRL is with or without partial
knowledge w.r.t. different baselines and parameters?

Q4. The Accuracy vs. Speed Trade off of Approx-MaMoRL.

Q5. How effective is Approx-MaMoRL in Transfer Learning?

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Table 4 contains default values for the parameters that are part of
MaMoRL. We present T;ozqa1, Froral, relative improvement in objec-
tive function values (defined in Section 4.4), memory usage, and
running time of the corresponding solution for evaluation purposes.
Comparison results are presented with paired t-test [13] with 95%
statistical significance.

4.1.3 Summary of Results. Our first and foremost observation is
that the Linear Regression based function approximation Approx-Ma
MoRL requires less training time (15X faster) and less training data
and is more effective than its Neural Network counterpart NN-Appro
x-MaMoRL (Refer to Section 4.2). Hence the rest of our results pri-
marily focus on Approx-MaMoRL. Consistent with our theoretical
analysis, in Section 4.3, we demonstrate the memory and CPU bottle-
necks of MaMoRL and compare that with Approx-MaMoRL along with
other baselines (Table 6). These results demonstrate that MaMoRL
is not a practical solution beyond a small grid with only 2 assets,
whereas Approx-MaMoRL produces reasonable performance to the
exact model while being an order of magnitude faster. Baseline-2
results in asset collisions for more than 97% of the runs, due to its
unique design choice, making it infeasible in practice. Next, from
extensive synthetic data experiments, we observe in Section 4.4
that the proposed solution Approx-MaMoRL with or without par-
tial knowledge is effective and robust to problem settings. We
also observe that Approx-MaMoRL returns the pareto front which
is better at optimizing both fuel and time when compared to the
baselines. Then, in section 4.5, we explore the trade-off between
training time and accuracy of Approx-MaMoRL. Our results demon-
strate that Approx-MaMoRL is effective as a real world solution,
making substantial improvement on T;,,,; With a 95% statistical
significance with a moderate compromise on Fy,;,;. In section 4.6,
we demonstrate that our proposed model is suitable for transfer
learning.

4.2 Function Approximation Methods

We compare Approx-MaMoRL with NN-Approx-MaMoRL from two
standpoints - training time, and objective function values. The
training data is obtained from MaMoRL on a small grid (50 nodes, 93
edges) for 2 assets. Additional information is presented in Table
5. These results demonstrate that, unsurprisingly, for the same
amount of training data, Approx-MaMoRL is more effective than
NN-Approx-MaMoRL and is 15x faster in training time (Figure 3).
In fact, the Neural Network based approximation requires large
amount of training data to be effective which is hard to obtain for
our problem since MaMoRL could only be run on small instances
because of its memory and CPU bottlenecks. For the remainder of
the paper, we therefore primarily focus on Approx-MaMoRL.

100
W Approx-MaMoRL

Uil NN-Approx-MaMoRL

1250

lue Fuel

E3

1000

al

750

3

500

Training Time

250

Objective Function Value Time

Objective Function V

0 0

(a) Objective Time (b) Objective Fuel (c) Training Time

Figure 3: Approx-MaMoRL vs. NN-Approx-MaMoRL

1523

Session 21: ML for Data Management 2 SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Parameters | #Nodes(|V|) | #Edges(|E|) | #Neighbors(D;uax) | #Assets(IN|) | Speed of Assets(sp) | #Episodes(Tg) | Communication Frequency(k)
Default Value 400 846 9 6 5 10 3

Table 4: Default Parameters Values

Parameters | # Layers # Nodes Activation Function | Batch Size | # Epoch Ti t other b li H it also h. ti .
S . [Taver [Layer2 | Layer1| Layer2 o " ime w.r.t other baselines. However, it also has negative improve-
clault Value 5 | 1 ReLU | Linear ment for Fuel w.r.t Baseline-1 which is understandable. Similar
Table 5: Neural Network Parameters Setting observation holds when the number of edges is increased in Fig-
ure 5(b). Figures 5(c) and 5(e) show that having more neighbors or
4.3 Bottlenecks of the Implemented Solutions moving assets at different speeds does not change the % relative

improvement drastically. By increasing the number of assets in
Figure 5(d), the % relative improvement for Time is positive while
it is negative for Fuel. According to Figure 5(f), assets take better
actions leading to an increase in relative improvement percentage
for both objective values, when they are trained more. When assets
communicate more often, the objective values improve in general,
as a result, % relative improvement of Approx-MaMoRL w.r.t other
baselines does not increase as shown in Figure 5(g). Figure 6 shows
Approx-MaMoRL with partial knowledge behaves in a similar way.

Baseline-2 results are omitted in Figures 5 and 6, since it results
in asset collisions for 97% of the runs.

We compare Approx-MaMoRL with the exact model (MaMoRL) and
the baselines. We present the objective function values as well
as CPU time and memory usage (instances that could not be run
are represented as N/A in Table 6). Consistent with our theoret-
ical analysis, Table 6 shows that MaMoRL suffers from significant
memory and CPU bottlenecks. These bottlenecks are fully averted
in Approx-MaMoRL through a “lightweight” function approxima-
tion, whereas, the objective function values of Approx-MaMoRL are
very close to their exact counterpart in MaMoRL. Unsurprisingly,
Baseline-2 results in a majority of collisions (more than 97%).
These results demonstrate that Approx-MaMoRL is indeed a suitable

e Approx-MaMoRL

alternative to the intractable exact solution. o ApproxMatoRL + Baseline-1
« Baseline-1 a RandomWalk-Baseline
Scenario Algorithm Trotal Frotal CPU Time | Memory Usage 4 Randomwalk Baseline s
V1 =704 MaMoRL N/A N/A N/A 205 GB k3
- Approx-MaMoRL 158.85 46482.9 0.8 min 1056 B g
IN|=2 Approx-MaMoRL with Partial Knowledge | 177.94 49353.8 0.9 min 1056 B E
- Baseline-1 255.5 38912.75 0.8 min 576 B
D _7 Baseline-2 N/A N/A 0.6 min 576 B
max = Random Walk-Baseline 9953 | 54391070.5 N/A N/A
V] = 400 MaMoRL N/A N/A N/A 17000 TB 500
- Approx-MaMoRL 87.8 28891.4 1.9 min 2304 B "
[N|=3 | 7BRrox-HaNoRC with Partial Knowledge | 69.74 133387 1.9 min 2304 B er of Eges 2000
- Baseline-1 128.2 19528.7 1.8 min 864 B
Do Baseline-2 N/A N/A 0.95 min 576 B (a) Varying Number of Edges (b) Varying Number of Neighbors
max = Random Walk-Baseline 153.9 987406.5 N/A N/A .
V=400 MaMoRL 317.7 | 808984 | 208 min 38.5GB Figure 4: Pareto Front of F;,,q; and Ty
- Approx-MaMoRL 508.1 126919.5 0.8 min 1056 B . 1: . .
iy [RoBroTaRoRL it Portal Koledge | 6735 | 1635286 | 035 man T Overall, these figures demonstrate the suitability and superiority
Baseline-1 7463 | 1136669 | 0.8min 576 B of Approx-MaMoRL as a real world solution.
D, —6 Baseline-2 N/A N/A 0.6 min 576 B
max = Random Walk-Baseline 244255 | 58416741.8 N/A N/A 4.5 Accuracy and Speed Trade Oﬁ
VI =200 MaMoRL 36.3 8306.1 57 min 40 GB
Approx-HaMoRL 489 | 129075 | 0.8min 1056 B In these experiments, we measure the route planning time of our
N =2 Approx-MaMoRL with Partial Knowledge | 48.95 12139.9 0.8 min 1056 B
In| = Baseline—1 754 | 114796 | 08min 5768 model and the baselines as seen in Figure 7. We do not include
_ Baseline-2 N/A N/A 0.6 min 576 B _ : : : i : _
Dimax =9 e et A A the Random Walk-Baseline as it fails to exhibit consistent behav:

ior in optimizing F;y;q; and T;opq1. We consistently observe that
Approx-MaMoRL convincingly outperforms Baseline-1 in running
time, especially for larger problem settings. These Figures 7(a-g)

4.4 Effectiveness of Approx-MaMoRL : : He
demonstrate that Approx-MaMoRL is an effective and realistic model
In these experiments, we vary a large number of parameters sys- to deploy inside TMPLAR

tematically that are part of our proposed solution (see Table 4). Fig-
ure 4 shows that our proposed framework is capable of returning

Table 6: Comparison Among Implemented Algorithms

4.6 Transfer Learning

pareto-front based on both the objectives Fyp;q; and T4, Where We present the effectiveness of Approx-MaMoRL in transfer learning.
Approx-MaMoRL convincingly outperforms the baselines. Addition- We learn a policy on the Caribbean Grid and use it for navigating
ally, we measure the percentage of relative improvement (RI(.)) the assets in the North America Shore Grid and vice versa. Fig-
of Fyorq1 and Typq for Approx-MaMoRL with or without partial ure 8 presents these results that corroborate that Approx-MaMoRL
knowledge w.r.t other baselines using the following measure. is highly effective in transfer learning, i.e., Tyorq; and Fyozq; of the
transferred model are close to those calculated in the original grid.

ObjBaseline _ op j;\pfrlofoaMoRL 4.7 Deployment inside TMPLAR
RI(Objotal) = o ob -Basel?n: X100 MaMoRL inside TMPLAR [22][4] enables simultaneous route plan-
Jtotal ning for multiple assets that are robust to uncertainty under multiple
As demonstrated in Figure 5(a) with increase in the number of contexts (mission, environment, asset, and threat). It has two views:
nodes, Approx-MaMoRL has around 60% relative improvement for a global view, to facilitate the holistic planning of all the assets

1524

Session 21: ML for Data Management 2

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

_ 100 S _ 100 T~ 1007]
E T ; s ! g 10
& I p & “ &
£ S0f N {1 T sof 1 g 50f]
] It g | g
] b £ (I E
2 b z i z Of 1
g of 1 & of -
=3 o =3
& £ E 500]
3 o o
£ -50f 1 £ -sof T
= EEl Approx-MaMoRL w.r.t Baseline-1 = EEl Approx-MaMoRL w.r.t Baseline-1 = EEE Approx-MaMoRL w.r.t Baseline-1
g 100 [T Approx-MaMoRL w.r.t RandomWalk - 160 [{XIXD - Approx-MaMoRL w.r.t RandomWalk g 150 [0 Approx-MaMoRL w.r.t RandomWalk
S-1000 4 2-100C o g-1500 3
2 100 2 100 2 100
£ £ g
E el 1 E S
$ " 80f 17
H
£ sop E E sof]
: - = 60 Z
F o) % E £ oost E
o ¢
z OfF 1 2 40f \ 1 £ £
k-] - K y) = 0 W
g 25t % 9 : | £ o5
= 100 250 800 1000 B 500 1000 1500 2000 © 6 7 8 9 10
Number of Nodes Number of Edges Number of Neighbors
(a) Varying Number of Nodes (b) Varying Number of Edges (c) Varying Number of Neighbors
100 0 1 = 0
g 100 m 15 . - -
2 I o 2 1 & ol
< o | g sof [t
£ 50 e ‘xlnj 1 § 15 102 s
s) \ 4 H
Z A w E of | 2 —40 -
£ 0 -] W g [£ t
k] £ f E 60}
S 3 —S0F s |
£ 50 £) , E -80f ,
< Approx-MaMoRL w.r.t Baseline-1 $-100 B Approx-MaMoRL w.r.t Baseline-1 B Approx-MaMoRL w.r.t Baseline-1 z | EEE Approx-MaMoRL w.rt Baseline-1
] [0 Approx-MaMoRL w.r.t RandomWalk & [T Approx-MaMoRL w.rt RandomWalk 15 = 100t
<100 s 150 100
2 100 2 100p — g 1001 -
£ s E 75 -
™ g 50 £ 80
H i m z 2 12 70t
£ l il i £,) g 70
=) iV} E 3) = 6ol
B ﬁ‘r’i o 2 25 i £ !
225 i £ —s0¢ ! 3 1 F so- 1
g 5 g st g . _— .
= 2 3 4 6 9 2 5 6 7 8 9 10 5 10 15 20 y 1 3 5 7
Number of Assets Speed of Assets Number of Episodes Communication Frequncy

(d) varying Number of Assets (e) Varying Speed of Assets

(f) varying Number of Episodes (g) Varying Communication Frequency

Figure 5: F;,;4; and T4, Varying Parameters for Approx-MaMoRL

_ 100 .'q ~ 100 2 100F 1
o] g]
s ! 2 L
& = 50l] &
< 50p 1 = = 50f]
: I : H
£ £ £
z z 0Of 1 2 oF]
2 ok W M] 3 2
) H g
i £ i ,
£ o0 1 £]
= Il Approx-MaMoRL w.r.t Baseline-1 £-100 N Approx-MaMoRL w.r.t Baseline-1 1] %,100,- Approx-MaMoRL w.r.t Baseline-1]
& 100 {1 Approx-MaMoRL w.r.t RandomWalk o (IXEXX Approx-MaMoRL w.r.t RandomWalk “\g W/ Approx-MaMoRL w.r.t RandomWalk
*~100+ - = S
2 100 2100 2 100
=) = =)
g sof 1 T gof 1 % sof]
g g g
E 601 1 £ eof 1 £ 60
2 2 2
=3
5 400 1 E 4of 1 E 40
: H | £
£ 20f 1 220} i 1% 2
E] E - | ! 2 WL
0 < 0 - i £ 0
= 100 250 400 800 1000 s 1000 1500 2000 M 6 7 8 9 10
Number of Nodes Number of Edges Number of Neighbors

(a) Varying Number of Nodes in Grid

(b) Varying Number of Edges in Grid

(c) Varying Number of Neighbors in Grid

Figure 6: F;,;,; and T;,;,; Varying Parameters for Approx-MaMoRL with Partial Knowledge

simultaneously, as well as a local view designed for single asset
planning. The developed interface is designed through extensive
user studies involving human subjects. It is fast, intuitive, logical,
and designed to abstract the complex nature of the underlying so-
lution. TMPLAR is written in Python and is intended to be used

1525

as a back-end service with JavaScript Object Notation (JSON) ob-
jects. MaMoRL is deployed as a docker container simplifying and
accelerating the application workflow while giving developers the
freedom to innovate with their choice of tools, application stacks,
and deployment environments. The efficacy of the tool is evaluated
in the Naval Postgraduate School considering different contexts,

Session 21: ML for Data Management 2

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

150 150
—@— Approx-MaMoRL .- —-a —@— Approx-MaMoRL e—-—-n sof E —@— Approx-MaMoRL
125/ —Ml- Baseline-1 , 125F —M- Baseline-1 /F— S —l- Baseline-1
7/ 125F N
5100 /' 5100 /' 2 \l—-—K
= = = N
£ . . ‘. < 100 N
2 ,/ 2 / 2 <
= = = 75F
5 SoF / E b E
. 7 £, w-—-u
=P p E
25 _ = o - o =
- -
of .4_’__./.—/. of 25E
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
0 200 400 600 800 1000 500 750 1000 1250 1500 1750 2000 6 7 8 9 10
Number of Nodes Number of Edges Number of Neighbors
(a) Varying Number of Nodes (b) Varying Number of Edges (c) Varying Number of Neighbors
30 =
g —@— Approx-MaMoRL —@- Approx-MaMoRL , 1s —@— Approx-MaMoRL
w g7 ApproMaMoRL .- o - Bucinel o - Buchnel . W Buimel
| - . 125
o a LY A . » 7 ; W——m
g N ea | i o -
g .] . --— g s . g
gm‘ ’/ 2ol o \\N._/ K _’_.__,- zs
: : B0 w— :
£] ,/{ B g £°
':_—_‘:___._/.———0 10 ¥ s
of —o—®—¢o—0o o . - A -0 .\._——o—o
FUNPRT S | S Y S S e I I T R S L ob—v v]
2 3 4 5 6 71 8 9 6 7 8 9 10 5 75 10 125 15 175 20 1 2 4 5 6

Number of Assets

(d) Varying Number of Assets

Speed of Assets

(e) Varying Speed of Assets

Number of Episodes

(f) varying Number of Episodes

Communication Frequency

(g) Varying Communication Frequency

Figure 7: Running Time Results

[HIl Actual Data
[Ili Transfer Data

%
=3
S

3.5x10°F

=N
S
S

w
X
<
T

2.5%10°

[N]

1=

S
T

Objective Function Value Time
8
=
T

Objective Function Value Fuel

2x10°

o

Caribbean North America Shore Caribbean North America Shore

Figure 8: Transfer Learning

hazards, and threats and is now being analyzed by studying the
click and eye tracking data of the users, to quantify and compare
its ease-of-use and robustness in multi-asset decision making.

5 RELATED WORKS

Reinforcement Learning. Reinforcement Learning (RL) has a
broad range of applications in dynamic and uncertain environments
[19] [15][10], including traffic lights control and monitoring[25] ,
exploratory data analysis [2], user group discovery [21], and com-
plex task planning [18]. Authors in [14] and [11] study Markov
Decision Problems (MDPs) for a single agent considering multiple
objectives with constraints and propose a weighted RL. In [14], au-
thors introduce a Lagrange function for solving utility constrained
MDPs. In [27], the author discusses the inefficiencies associated
with sample cost in Reinforcement Learning.

Multi-Agent RL. Coordinating multiple agents in a dynamic en-
vironment is a complicated problem - some recent efforts have been
made to solve this problem using RL [7][8][28][6][23]. [28] stud-
ies a cooperative Multi-Agent RL by using a teammate model and
reward allotment. [7] considers multiple agents in a task-oriented
environment as a Decision-Theoretic Planning (DTP) problem and

1526

adapts RL for solving it. [8] shows how to adapt Generalized Learn-
ing Automata (GLA) in multi-agent systems. [6] sheds light on
the potential applications of Multi-Agent Reinforcement Learning
(MARL) in a variety of different areas from robotics to different
static games, whilst raising concerns about scalability. [23] points
out the absence of existing work where agents reuse knowledge
acquired from one another.

Path Planning. Path Planning for ships and aerial vehicles has
been studied extensively in [1] [4][22][1][17]. In [4], authors lever-
age Q-factor as an approximate dynamic programming method for
navigating ships in uncertain environments. TMPLAR [22] is devel-
oped as a system for Multi-objective Planning and Asset Routing.
We non-trivially adapt these works to address a problem of significant
interest to maritime navigation involving multiple distributed assets,
objectives, and constraints, as well as study scalability challenges.

6 CONCLUSION

We study the Route Planning Problem (RPP), which is formalized as
a Team Discrete Markov Decision Process and we propose a Multi-
agent Multi-objective Reinforcement Learning (MaMoRL) framework
for solving it. We demonstrate why exact MaMoRL is computationally
expensive and study approximation opportunities. As an ongoing
work, we are analyzing the post-deployment data collected through
click and eye tracking behavior of the users to quantify its ease-of-
use, flexibility, and robustness in multi-asset decision making.

ACKNOWLEDGMENTS

The work of NJIT is supported by the NSF, CAREER Award #1942913,
IIS #2007935, IIS #1814595, PPoSS: Planning #2118458, and by the Of-
fice of Naval Research Grants No, N000141812838, N000142112966.
The work at UConn is supported by the U.S. Office of Naval Research
and the U.S. Naval Research Laboratory under Grants N00014-18-1-
1238, N00014-21-1-2187 and N00173-18-1-G012.

Session 21: ML for Data Management 2 SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

REFERENCES with Applications 51, 2 (2006), 279-284.

[1] Gopi Vinod Avvari, David Sidoti, Lingyi Zhang, Manisha Mishra, Krishna Pat- [15] Leslie Pack Kae%bling, Michael L Littman, a‘_jd _AnfireW_W Moore. 1996. Rein-
tipati, Charles R Sampson, and James Hansen. 2018. Robust multi-objective forcement learning: A survey. Journal of artificial intelligence research 4 (1996),

asset routing in a dynamic and uncertain environment. In 2018 IEEE Aerospace 237-285. o .
Conference. IEEE, 1-9. Francisco S Melo, Sean P Meyn, and M Isabel Ribeiro. 2008. An analysis of
Ori Bar E1 Tova Milo, and Amit Somech. 2020. Automatically generating data {einforcgment learning with fungtion approximation. In Proceedings of the 25th
exploration sessions using deep reinforcement learning. In Proceedings of 2020 znterrzatlona'l canferenc? on 'Mac'hme l(farrfmg. 664_67,1' .)
ACM SIGMOD International Conference on Management of Data. 1527-1537. (17] Manisha MlShfa’ David Sldqtl’ Gopi Vm}od Avvarl, Plfjltha Mannaru, Diego
[3] Nicolas Bialystocki and Dimitris Konovessis. 2016. On the estimation of ship’s Fernando Martinez Ayala, Krishna R. Pattipati, and David L. Kleinman. 2017. A
fuel consumption and speed curve: a statistical approach. Journal of Ocean Context-Driven Framework for Proactive Decision Support With Applications.
Engineering and Science 1, 2 (2016), 157-166. IEEE, Access 5, 12475-12495. R R
[4] Adam Bienkowski et al. 2018. Path Planning in an Uncertain Environment Using S. leookaf, P. Sakharkar, B. Smagh, S. Amer-Yahxa, and S. Basu RQy, 2022. Guided
Approximate Dynamic Programming Methods. In FUSION. IEEE. Task Planning Under Complex Constraints. In 38th IEEE International Conference
[5] Lucian Busoniu et al. 2011. Approximate reinforcement learning: An overview. on Dgta Engineering. accepted for publ%catlon.
In ADPRL. [19] Edwin Pednault et al. 2002. Sequential cost-sensitive decision making with

[6] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2010. Multi-agent re- reinfc.)rcement learning. In SIGKDD. . .) .
inforcement learning: An overview. Innovations in multi-agent systems and Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
applications-1(2010), 183-221. programming. John Wiley & Sons.

[7] Gang Chen, Zhonghua Yang, Hao He, and Kiah Mok Goh. 2005. Coordinating Mariia Seleznova, Behrooz Omidvar-Tehrani, Sthem Amer-Yahia, and Eric Simon.
multiple agents via reinforcement learning. Autonomous Agents and Multi-Agent 2020. Guided exploration of user groups. Proceedings of the VLDB Endowment
Systems 10, 3 (2005), 273-325. (PVLDB) 13, 9 (2020), 1469-1482.

avid Sidoti et al. . A multiobjective path-planning algorithm with time
22] David Sidoti 1. 2016. A multiobjective path-planning algorith ith ti

[16

A

oy
&

™
=

o
=

[8] Yann-Michaél De Hauwere, Peter Vrancx, and Ann Nowé. 2010. Generalized X o ; . .
learning automata for multi-agent reinforcement learning. Ai Communications wlndows for asset routing in a dynamic we.atherflmp acted environment. IEEE
23, 4 (2010), 311-324. Transactions on Systems, Man, and Cybernetics: Systems (2016).

[9] Edsger W Dijkstra ct al. 1959. A note on two problems in connexion with graphs. [23] Da Silva et al. 2018. Autonomously Reusing Knowledge in Multiagent Reinforce-

Numerische mathematik 1, 1 (1959), 269-271. ment Learning.. In [JCAL 5487-5493.

[10] Javier Garcia and Fernando Fernandez. 2015. A comprehensive survey on safe [24] Rif:hard S Sutton et al: 199?. Policy gradient methods for reinforcement learning
reinforcement learning. Journal of Machine Learning Research 16, 1 (2015), 1437 with function approximation.. In NIPs.) o
1480. [25] Hua Wei et al. 2018. Intellilight: A reinforcement learning approach for intelligent

traffic light control. In SIGKDD.

[11] Peter Geibel. 2006. Reinforcement learning for MDPs with constraints. In Euro-
pean Conference on Machine Learning. Springer, 646-653. [26] Paul Wessel et al. 1996. A global, self-consistent, hierarchical, high-resolution
[12] Christophe Geuzaine and Jean-Francois Remacle. 2009. Gmsh: a three- shoreline database. Journal ofGeophyst:cal Res?arch (1996). .
dimensional finite element mesh generator with built-in pre- and post-processing (27] Yang Yu. 2018. Towards Sample Efficient Reinforcement Learning. In IJCAL
facilities. Internat. J. Numer. Methods Engrg. 79, 11 (2009), 1309-1331. 5739-5743.
[28] Pucheng Zhou et al. 2011. Multi-agent cooperation by reinforcement learning

[13] Henry Hsu and Peter A Lachenbruch. 2014. Paired t test. Wiley StatsRef: statistics
reference online (2014), book.

Yoshinobu Kadota, Masami Kurano, and Masami Yasuda. 2006. Discounted
Markov decision processes with utility constraints. Computers & Mathematics

with teammate modeling and reward allotment. In FSKD, Vol. 2. 1316-1319.
Xinyuan Zhou, Peng Wu, Haifeng Zhang, Weihong Guo, and Yuanchang Liu.
2019. Learn to navigate: cooperative path planning for unmanned surface vehicles
using deep reinforcement learning. IEEE Access 7 (2019), 165262-165278.

™
20,

[14

1527

	Abstract
	1 Introduction
	2 Preliminaries and Problem Definition
	2.1 Preliminaries
	2.2 Problem Setting and Definition
	2.3 Toy Running Example
	2.4 Data Centric Challenges

	3 Proposed Solution
	3.1 Modeling
	3.2 Algorithm
	3.3 Function Approximation

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Function Approximation Methods
	4.3 Bottlenecks of the Implemented Solutions
	4.4 Effectiveness of Approx-MaMoRL
	4.5 Accuracy and Speed Trade off
	4.6 Transfer Learning
	4.7 Deployment inside TMPLAR

	5 Related Works
	6 Conclusion
	Acknowledgments
	References

