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ABSTRACT
This work formalizes the Route Planning Problem (RPP), wherein a

set of distributed assets (e.g., ships, submarines, unmanned systems)

simultaneously plan routes to optimize a team goal (e.g., find the lo-

cation of an unknown threat or object in minimum time and/or fuel

consumption) while ensuring that the planned routes satisfy certain

constraints (e.g., avoiding collisions and obstacles). This problem

becomes overwhelmingly complex for multiple distributed assets as

the search space grows exponentially to design such plans. TheRPP
is formalized as a TeamDiscrete Markov Decision Process (TDMDP)

and we propose a Multi-agent Multi-objective Reinforcement Learn-
ing (MaMoRL) framework for solving it. We investigate challenges

in deploying the solution in real-world settings and study approx-

imation opportunities. We experimentally demonstrate MaMoRL’s
effectiveness on multiple real-world and synthetic grids, as well

as for transfer learning. MaMoRL is deployed for use by the Naval

Research Laboratory - Marine Meteorology Division (NRL-MMD),

Monterey, CA.
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• Information systems→ Data management systems; Data-
base design and models.
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1 INTRODUCTION
Planning routes for multiple agents, such as ships submarines,

and unmanned aerial/surface/underwater vehicles (UAVs, USVs,

UUVs), considering multiple objectives, such as fuel, battery us-

age, time taken, and progress towards a goal, is a complex, but

highly-relevant, problem for search and rescue, reconnaissance,

and interdiction missions in maritime applications. These problems

involve trade-offs among different objectives and require a coor-

dinated search for an object in a very high-dimensional space by

multiple geographically distributed searchers (herein referred to

as assets or agents). In this vein, automated tools are needed to aid

human decision makers in planning courses of action (COAs).

A canonical formulation of the problem is as follows: we are

given a set of distributed assets over a discrete grid, each with a

given starting location (described by its (lat, long) value), a respec-

tive speed limit, and a sensing radius. The problem is to cooper-

atively discover an object at an unknown location (described by

a (lat, long) value). The assets communicate among themselves

periodically after a fixed interval of time or communicate asyn-

chronously by broadcasting their locations when an asset locates

the destination. When two assets communicate, they get to know

each other’s current locations. The goal is to decide a sequence of

moves, including waiting at nodes, for each asset (route plan) such

that the total fuel consumption by the assets and the maximum

time for reaching the mission goal over all assets (Makespan) is

minimized, while avoiding collisions among themselves. We for-

malize the Route Planning Problem (RPP) in Section 2 as a team

decision-making problem and describe the challenges in solving it.

Formalizing theRPP requires developing a principled model that

captures the nuances of simultaneous movement of the assets, along

with how that impacts the objectives and satisfaction of constraints.

At each step, the RPP solution produces the direction of move for

each asset and the corresponding speed (note that a speed of 0

corresponds to the waiting option) while accounting for its sensing

radius and the locations of other assets. For distributed assets, since

the locations of the other assets are known intermittently, each asset

has to anticipate the locations and moves of other assets through

an appropriate "internal model".

Contribution I: A Distributed RPP Model - We model the

RPP problem as a Team Discrete Markov Decision Problem (TD-

MDP) [20], where the states are the nodes in the grid and an asset’s
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Figure 1: MaMoRL Framework

action is the decision to transit to one of the neighboring grid points

at a particular speed or wait to avoid a collision. For each transition,

there exist vector rewards that capture the multiple objectives of

the team. Section 2 contains further details.

Contribution II: MaMoRL -We propose a Multi-agent Multi-
objective Reinforcement Learning (MaMoRL) framework for coopera-

tive route planning under constraints. We identify its data centric

challenges (Section 2.4). The MaMoRL framework contains a. Team-
mate Module (TMM) that captures the probability distribution of the

belief of each asset on the locations and actions of other assets

at each time step; b. An Action Selection Module (ASM) to enable

distributed decision making by each asset to optimize multiple

objectives, while satisfying constraints at each time step; and c.

Learning Module (LM) that allows each asset to incrementally learn

the functional approximations to the Q-functions (current best val-

ues of state-action pairs) from the environment and incorporating

that learning inside the other two modules. Section 3 contains

further details.

We also realize that solving MaMoRL exactly is infeasible in a real-

istic maritime setting, because the memory and CPU bottlenecks of

TMM and LM increase exponentially with the increase in the number

of assets, the number of nodes and neighbors of the assets, and the

cardinality of the set of speeds an asset can choose from.

We therefore develop two function approximation techniques

- one using Linear Regression and the other using a Neural Net-

work to effectively approximate the Teammate Module (TMM) and the
Learning Module (LM) [16]. The Linear Regression based approxi-

mate solution, Approx-MaMoRL, is shown to be more effective than

its Neural Network based counterpart NN-Approx-MaMoRL. It turns
out to be as effective as the exact MaMoRL, while overcoming both

the memory and CPU bottlenecks (refer to Section 4). The design
of Approx-MaMoRL involves extensive feature engineering efforts.

Contribution III: Evaluation and Deployment. We perform

an extensive experimental evaluation (Section 4) using multiple

real-world and synthetic grids and implement several baselines for

comparisons. We identify the computational bottlenecks of MaMoRL
(Section 4.3) and demonstrate how Approx-MaMoRL overcomes

those limitations. We design two variants of Approx-MaMoRL - one

with no knowledge of the destination and the other with partial

knowledge of the destination. The experimental results demon-

strate the superiority of Approx-MaMoRL compared to the base-

line solutions with a 95% statistical significance (Section 4.4). Our
results additionally demonstrate that the policy learned by the

Approx-MaMoRL is transferable to various sized grids (Section 4.6).
Finally, in Section 4.7, we describe how we deploy Approx-MaMoRL
inside TMPLAR [22], an existing tool for Multi-objective Planning

and Asset Routing used by NRL-MMD, Monterey, CA.

2 PRELIMINARIES AND PROBLEM
DEFINITION

2.1 Preliminaries
Let 𝑁 be a set of distributed assets. Each asset operates on a discrete

grid G =< 𝑉 , 𝐸 >. The weight of each directed edge 𝑒 (𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒))
between two nodes, 𝑣𝑝 → 𝑣𝑞 , denotes the distance between 𝑣𝑝
and 𝑣𝑞 . The assets explore the grid cooperatively to discover the

location of an object, represented as 𝑑 (𝑥,𝑦). Each asset 𝑖 ∈ 𝑁 is

represented as a quintuple:

𝑖 =< 𝑟𝑖 , 𝑠𝑝𝑖 , 𝑠𝑜𝑢𝑟𝑐𝑒𝑖 (𝑥,𝑦), 𝑐𝑢𝑟𝑡𝑖 (𝑥,𝑦), 𝑑𝑖 (𝑥,𝑦) >
where 𝑟𝑖 is the sensing radius of asset 𝑖 , 𝑠𝑝𝑖 is the maximum speed/

velocity, 𝑠𝑜𝑢𝑟𝑐𝑒𝑖 (𝑥,𝑦) is the starting point, 𝑐𝑢𝑟𝑡𝑖 (𝑥,𝑦) is the location
of asset 𝑖 at time 𝑡 , and𝑑𝑖 (𝑥,𝑦) is the destination from the viewpoint

of asset 𝑖 . All assets have the same destination, that is unknown in

the beginning, but gets revealed through exploration. Therefore,

𝑑𝑖 (𝑥,𝑦) = 𝑑 (𝑥,𝑦); ∀𝑖 ∈ 𝑁 .

2.2 Problem Setting and Definition
Each asset 𝑖 is characterized as follows:

• It moves at a speed ≤ 𝑠𝑝𝑖 .

• It observes the grid up to its sensing radius 𝑟𝑖 .

• It makes a decision on its next action at each step, i.e., which

neighboring node it moves to and at what speed or to wait.

Decisions are made only when 𝑖 is at a node in G.
• Two assets (𝑖, 𝑗) exchange their respective locations when
they communicate periodically every 𝑘 time steps or when

the destination 𝑑 (𝑥,𝑦) has been found.

Fuel Consumption Model: The fuel consumption of asset 𝑖

to move from node 𝑣𝑝 → 𝑣𝑞 at speed 𝑠𝑝 ′𝑖 ≤ 𝑠𝑝𝑖 is 𝑓 𝑢𝑒𝑙𝑖 (𝑣𝑝 →
𝑣𝑞, 𝑠𝑝

′
𝑖 ), where 𝑠𝑝𝑖 is the maximum allowable speed of asset 𝑖 . The

fuel consumption depends on the distance between 𝑣𝑝 , 𝑣𝑞 and the

speed 𝑠𝑝 ′𝑖 . There exist analytical models [3] for computing the fuel

consumption as a function of distance traveled and speed. Thus,

the fuel consumption of asset 𝑖 to explore G can be computed and

we denote it by 𝑇𝐹𝑢𝑒𝑙𝑖 .

Definition 1. Total fuel consumption 𝐹𝑡𝑜𝑡𝑎𝑙 : The overall fuel
consumption by the set of |𝑁 | assets while exploring G to discover
𝑑 (𝑥,𝑦) is ∑∀𝑖 𝑇𝐹𝑢𝑒𝑙𝑖 .

Time Model: The time taken for asset 𝑖 to move from node

𝑣𝑝 → 𝑣𝑞 at speed 𝑠𝑝 ′𝑖 ≤ 𝑠𝑝𝑖 is
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑝→𝑣𝑞 )

𝑠𝑝′𝑖
. Thus, the total time

taken by asset 𝑖 to explore G can be computed and is represented

by 𝑇𝑇𝑖𝑚𝑒𝑖 .

Definition 2. Overall time expended 𝑇𝑡𝑜𝑡𝑎𝑙 : The overall time
expended by |𝑁 | assets during exploration over G to discover 𝑑 (𝑥,𝑦)
is the maximum over 𝑇𝑇𝑖𝑚𝑒𝑖 , i.e.,𝑚𝑎𝑥∀𝑖𝑇𝑇𝑖𝑚𝑒𝑖 .

Session 21: ML for Data Management 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1519



Definition 3. Collision: Two assets 𝑖, 𝑗 collide if they are at the
same location simultaneously, i.e., 𝑐𝑢𝑟𝑡

𝑖
(𝑥,𝑦) = 𝑐𝑢𝑟𝑡

𝑗
(𝑥,𝑦)

Problem 1. (Route Planning Problem (RPP)) Plan routes of |𝑁 |
cooperative distributed assets (agents) with respective starting points
(asset 𝑖 with 𝑠𝑜𝑢𝑟𝑐𝑒𝑖 (𝑥,𝑦)) over G to discover an initially unknown
destination 𝑑 (𝑥,𝑦) to minimize 𝐹𝑡𝑜𝑡𝑎𝑙 and 𝑇𝑡𝑜𝑡𝑎𝑙 , while at no point
in time during the exploration, 𝑐𝑢𝑟𝑡

𝑖
(𝑥,𝑦) = 𝑐𝑢𝑟𝑡

𝑗
(𝑥,𝑦),∀𝑖, 𝑗, 𝑡 .

2.3 Toy Running Example
Consider a toy example involving two assets (Table 1), their re-

spective current positions, and their visited paths after 2 moves

in Figure 2. Each asset can sense up to its sensing radius which is

based on the distance and represented by double circled green and

blue nodes for Asset1 and Asset2, respectively.

𝑟𝑖 𝑠𝑝𝑖 𝑠𝑜𝑢𝑟𝑐𝑒𝑖 (𝑥,𝑦) 𝑐𝑢𝑟2
𝑖
(𝑥,𝑦) 𝑑𝑖 (𝑥,𝑦)

Asset1 2 3 (0,0) (0,4) (4,3)

Asset2 3 2 (8,7) (5,4) (4,3)

Table 1: A toy example using 2 assets

From starting location 𝑠𝑜𝑢𝑟𝑐𝑒1, Asset1 can go to one of its two

neighboring sensed nodes. It also can move at 3 different speeds,

(𝑠𝑝 ′
1
= 1, 2, 3 ≤ 𝑠𝑝

1
) or wait; so the number of possible actions

for Asset1 is 7. Evidently, without any further information, it is

beneficial to move in the direction that explores more of the not-

yet-sensed nodes, as long as collisions are avoided. Asset1 takes

action 𝑎0, because more nodes will be sensed from the new position

and moves at speed 2 based on Table 2. Its position is changed to

𝑐𝑢𝑟1
1
(𝑥,𝑦) = (0, 2). Similarly, Asset2 moves from 𝑠𝑜𝑢𝑟𝑐𝑒2 to node

(6, 6) by taking action 𝑎′
0
to sense 3 additional nodes. Moreover, it

chooses speed 2, because that minimizes the average of time and

fuel consumption (see Table 2).

Asset1 Asset2
Speed Time Fuel Average Speed Time Fuel Average

1 2 3.7664 2.8832 1 2.24 4.2184 3.2292

2 1 4.2714 2.6357 2 1.12 4.7840 2.9520
3 0.66 4.7286 2.6943 3 — — —

Table 2: Time and fuel consumption of the Assets

Figure 2: Assets’ traveled paths and positions after 2 moves

2.4 Data Centric Challenges
The proposed work falls under the broad category of data manage-

ment/engineering for efficient AI. Themajor data-centric challenges

to solve the RPP stem from two sources: (a) Model and reward

design; (b) Memory and CPU Bottlenecks.

2.4.1 Model and Reward Design. The problem of designing auto-

mated plans has been recently explored in several research works [2,

18, 21] that broadly fall under the umbrella of Exploratory Data

Analysis (EDA). These efforts investigate the design of RL agents to

discover user groups [21], to generate exploratory sessions for data

scientists [2], or to design complex recommendation tasks, such

as courses or trip plans [18]. Similar to these problems, we model

the RPP as a sequential decision-making/control problem, where

the fundamental model consists of a state-action pair for which an

appropriate reward function needs to be designed. Unlike existing

works, a state of the RPP corresponds to the current locations of

all |𝑁 | assets and an action constitutes deciding respective actions

of all of assets (including waiting). Moreover, the problem requires

the consideration of multiple objectives (fuel and time) and the

simultaneous planning of routes by multiple distributed assets in

a spatial domain with limited communication capabilities while

satisfying multiple constraints (avoiding collisions and intermittent

communication). Therefore, our proposed model MaMoRL, which
involves extensive data engineering for the reward design process is

significantly different from existing works. From a technical stand-

point, MaMoRL contains a Teammate Module (Section 3.2.1) that

captures the belief of each asset on the locations and actions of

other assets at each time step, which is unique to this distributed

planning problem and has not been studied in the aforementioned

prior efforts.

2.4.2 Memory and CPU Bottlenecks. As we shall describe in Sec-

tion 3.3, MaMoRL requires storing very large (multiple) 𝑃 and𝑄 tables

in memory, and the sizes of these tables increase exponentially with

the number of assets, grid size and the number of neighbors, and

the cardinality of the set of speeds an asset can choose from (refer

to Lemmata 1, 2), causing a memory bottleneck (refer to Table 6

for experimental results). We design two function approximation

methods (based on Linear Regression and a Neural Network) (Sec-

tion 3.3) that avoid pre-computing and storing these tables. The

CPU bottleneck arises from the need to learn effectively in a setting

with exponential number of environmental states and actions. To

the best of our knowledge, some existing works [2, 29] proposes

Deep Neural Network based RL framework to overcome the large

state space problem, but do not comprehensively evaluate the scal-

ability challenges. Naturally, the Neural Network based function

approximation requires more training data to be effective, which

is harder to obtain for the RPP, compared to the EDA problem

studied in [2].

3 PROPOSED SOLUTION
We present our proposed model, algorithms for TMM, LM and ASM,
and describe approximation opportunities.

3.1 Modeling
We model the RPP problem as a Team Discrete Markov Decision

Process (TDMDP) (𝑆,𝐴, 𝑅) [20]:
a. The state space 𝑆 = |𝑉 | |𝑁 | , where |𝑉 | is the number of nodes in

G. At a given time 𝑡 , state 𝑠𝑡 is the locations of all |𝑁 | assets.
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𝑠𝑡 ← {𝑐𝑢𝑟𝑡1 (𝑥,𝑦), 𝑐𝑢𝑟
𝑡
2
(𝑥,𝑦), ..., 𝑐𝑢𝑟𝑡|𝑁 | (𝑥,𝑦)}

b. 𝐴 is the set of actions. Given a state 𝑠 , where each asset 𝑖 is at

its corresponding node 𝑣𝑝𝑖 , an action 𝑎𝑖 corresponds to making

decisions to move along 𝑣𝑝𝑖 → 𝑣𝑞𝑖 at speed 𝑠𝑝
′
𝑖
≤ 𝑠𝑝𝑖 or staying at

𝑣𝑝𝑖 , i.e., 𝑣𝑝𝑖 → 𝑣𝑝𝑖 ; Let 𝑎 = [𝑎𝑖 ] denote the actions over all assets.
The effect of an action is a state transition 𝑇𝑟 , which is assumed to

be deterministic, that is, 𝑇𝑟 : 𝑆 × 𝐸 → 𝑆 , a new state is obtained by

taking an action at each state.

c. 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) is the reward obtained for transitioning from state

𝑠𝑡 to state 𝑠𝑡+1 by taking action 𝑎𝑡 .

3.1.1 Reward Design. The process of designing the reward must

be guided by the following intuition: (1) proportional to the number

of newly explored nodes by the assets, (2) inversely proportional to

the time taken, (3) inversely proportional to the fuel consumption.

1. Exploration Reward: of an action 𝑎 relates to how much of

the unexplored grid an asset can sense and is formulated as

𝑟𝑎
𝑒𝑥𝑝𝑙𝑜𝑟𝑒

=

∑ |𝑁 |
𝑖=1

𝑆𝑒𝑛𝑠𝑒𝑑 (𝑖)𝑎𝑖
𝐷𝑚𝑎𝑥 × |𝑁 |

(1)

where 𝑆𝑒𝑛𝑠𝑒𝑑 (𝑖)𝑎𝑖 is the number of newly sensed nodes by asset

𝑖 by taking action 𝑎𝑖 , normalized by 𝐷𝑚𝑎𝑥 , which is the maximum

out-degree in G. Using example in Section 2.3, the exploration

reward of taking the first action is 𝑟
𝑎0
𝑒𝑥𝑝𝑙𝑜𝑟𝑒

= 2+3
5×2 = 0.5

2. Time Reward: of an action 𝑎 over all assets is the inverse of

themaximum time each asset needs as part of𝑎 (where
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑝𝑖→𝑣𝑞𝑖 )

𝑠𝑝′𝑖
is the time asset 𝑖 needs for action 𝑎𝑖 )

𝑟𝑎𝑡𝑖𝑚𝑒 =
1

𝑚𝑎𝑥𝑖=1,..., |𝑁 |
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑝𝑖→𝑣𝑞𝑖 )

𝑠𝑝′𝑖

(2)

For the toy example, 𝑟
𝑎0
𝑡𝑖𝑚𝑒

= 1

𝑚𝑎𝑥 (1,1.2) = 0.83 for the first action

of the example in Section 2.3.

3. Fuel Reward: of an action 𝑎 is the inverse of the sum of fuel

consumed by all |𝑁 | assets.

𝑟𝑎
𝑓 𝑢𝑒𝑙

=
1∑ |𝑁 |

𝑖=1
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑝𝑖 → 𝑣𝑞𝑖 ) × 𝑓 𝑢𝑒𝑙𝑖 (1, 𝑠𝑝 ′𝑖 )

(3)

For our implementation, we use the following model [3] to cap-

ture fuel per unit distance.

𝑓 𝑢𝑒𝑙𝑖 (1, 𝑠𝑝 ′𝑖 ) = 0.2525 × 𝑠𝑝 ′𝑖
2 + 1.6307 × 𝑠𝑝 ′𝑖 (4)

Based on the model, the fuel reward of the initial set of actions

in the toy example is 𝑟
𝑎0
𝑓 𝑢𝑒𝑙

= 1

2×4.2714+2.24×4.784 = 0.052.

Evidently, at state 𝑠 , an action 𝑎 corresponds to two things: 1.

The assets should move to the neighboring nodes to maximize the

Exploration Reward (Equation 1); 2. The speed of each asset is to

be chosen to optimize the average of Fuel Reward (Equation 3) and

Time Reward (Equation 2).

3.2 Algorithm
Our proposed solution, Multi-agent Multi-objective Reinforcement

Learning or MaMoRL in short, contains three different interacting

modules (Figure 1) and is inspired by model free Reinforcement

Learning for multiple agents [28].

3.2.1 Teammate Module (TMM):. Assets are distributed and com-

municate among themselves intermittently. Consequently, when an

asset decides on its next move, it needs to have an internal model

that anticipates the current locations and moves of other assets.

The teammate module is designed to represent that internal model

of other team members. The purpose of this internal model is to

produce the probability distribution of actions of the remaining

|𝑁 | − 1 assets. This module is gradually updated as asset 𝑖 observes

the actions of asset 𝑗 (𝑎∗
𝑗
) ∀𝑗 ∈ 𝑁 \ {𝑖} for each executable action

𝑎 𝑗 in state 𝑠 , using the following formula:

𝑃𝑖𝑡 (𝑠, 𝑎 𝑗 ) =

𝑃𝑖 (𝑡−1) (𝑠, 𝑎 𝑗 ) + 𝛽𝑇−𝑡+1

∑
𝑎𝑡 ∈𝐴 𝑗 (𝑠)\{𝑎 𝑗 }

𝑃𝑖 (𝑡−1) (𝑠, 𝑎𝑡 ), 𝑎 𝑗 = 𝑎∗
𝑗

(1 − 𝛽𝑇−𝑡+1)𝑃𝑖 (𝑡−1) (𝑠, 𝑎 𝑗 ), otherwise

(5)

Here 𝛽 ∈ [0, 1] is the learning rate for determining the effect of

the previous action, 𝑇 is the iteration number, 𝐴𝑖 and 𝐴 𝑗 are the

sets of possible actions for assets 𝑖 and 𝑗 , respectively. Clearly, these

𝑃 values are to be stored and updated periodically while learning

from the environment.

Lemma 1. TMM has 𝑃 tables for (exploration, time, and fuel) rewards,
each with size

|𝑃 | = ( |𝑉 | |𝑁 | × |𝐴| × 𝑠𝑝).
where |𝑉 | is the size of the grid, |𝐴| is the number of actions, 𝑠𝑝 is

the max speed and |𝑁 | is the number of assets.

At the initial state, Asset1 and Asset2 take actions 𝑎0 and 𝑎
′
0
, re-

spectively, thus state 𝑠1 is obtained. At that time, for the exploration

reward, Asset1 updates the 𝑃1 (𝑠0, 𝑎′) values in the system for all

Asset2’s actions 𝑎′ in the action set using Equation 5 as follows:

𝑃11 (𝑠0, 𝑎′𝑗 ) = (1 − 0.3
(3−1+1)𝑃10 (𝑠0, 𝑎0))

= (1 − 0.33) × 0.2 = 0.1946, ∀𝑎′𝑗 ∈ 𝐴2 (𝑠0) \ {𝑎′0}
𝑃11 (𝑠0, 𝑎′0) = 0.2216

We consider 𝑇 = 3 and 𝛽 = 0.3 in our example. Asset2 also does

the same for updating 𝑃 values of Asset1’s actions.

3.2.2 Learning Module (LM):. After the transition
(𝑠, 𝑎1, ..., 𝑎𝑖 , ...., 𝑎 |𝑁 |) → (𝑠 ′, 𝑟 ),

asset 𝑖 will update its Q-function table using the following equation:

𝑄 (𝑠, 𝑎1, ..., 𝑎𝑖 , ...., 𝑎 |𝑁 |) = (1 − 𝛼)𝑄 (𝑠, 𝑎1, ..., 𝑎𝑖 , ...., 𝑎 |𝑁 |)
+ 𝛼 (𝑟 + 𝛾 max

𝑎′∈𝐴𝑖

𝑄 (𝑠, 𝑎′
1
, ..., 𝑎′𝑖 , ...., 𝑎

′
|𝑁 |))

(6)

where 𝑎′
𝑗
= argmax

𝑏∈𝐴 𝑗

𝑃𝑖 (𝑠 ′, 𝑏); 𝑗 = 1, ..., 𝑖 − 1, 𝑖 + 1, ..., |𝑁 |

Clearly, LM must leverage TMM, and update it periodically.

Lemma 2. There exist different𝑄 tables, one for each reward in LM,
and each of size

|𝑄 | = ( |𝑉 | × |𝐴| × 𝑠𝑝) |𝑁 | .

In example 2.3, the 𝑄 values are initialized as

𝑄 (𝑠, 𝑎, 𝑎′) = 1

|𝐴(𝑠) | |𝐴′ (𝑠) | = 0.0286, ∀𝑎 ∈ 𝐴,∀𝑎′ ∈ 𝐴′,∀𝑠 ∈ 𝑆
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Here, we take 𝛼 = 0.9 and 𝛾 = 0.8. After Asset1 and Asset2 take

actions 𝑎0 and 𝑎′
0
, respectively, the new state 𝑠1 and exploration

reward 𝑟 = 2+3
5×2 = 0.5 are obtained. Then, at 𝑡 = 1, Asset1 will

update its𝑄 value for actions 𝑎0 and 𝑎
′
0
using Equation 6 as follows:

𝑄 (𝑠, 𝑎0, 𝑎′
0
) = (1 − 0.9) × 0.0286 + 0.9(0.5 + 0.8 ∗ 0.0286) = 0.47

3.2.3 Action Selection Module (ASM):. Asset 𝑖 uses a greedy

policy for selecting the next action using the following equation:

𝑎∗𝑖 = argmax

𝑎𝑖 ∈𝐴𝑖

𝑉 (𝑎𝑖 |𝐴∗) (7)

where 𝐴∗ = {𝑎∗
1
, ..., 𝑎∗

𝑖−1, 𝑎
∗
𝑖+1, .., 𝑎

∗
|𝑁 |} and𝑉 (𝑎𝑖 |𝐴

∗) is the condi-
tional expectation of an action given by:

𝑉 (𝑎𝑖 |𝐴∗) =


∑
∀𝑗≠𝑖

𝑃 (𝑠, 𝑎 𝑗 )𝑄 (𝑠, 𝑎∗
1
, ..., 𝑎𝑖 , ..., 𝑎

∗
|𝑁 |), 𝑡 ≤ 𝑇

(argmax

∀𝑗≠𝑖
𝑃 (𝑠, 𝑎∗

𝑗
))𝑄 (𝑠, 𝑎∗

1
, ..., 𝑎𝑖 , ..., 𝑎

∗
|𝑁 |), 𝑡 > 𝑇

(8)

Here, 𝑇 represents an iteration threshold. In order to see which

action Asset1 is going to take in state 𝑠1 (Figure 2) in example 2.3,

we calculate the conditional expectation for all possible actions

that Asset1 can take in the current state using the first formula in

equation 8 considering 𝑇 = 3 and 𝑡 = 1:

𝑉1 (𝑎𝑖 |{𝑎′𝑗 }) = 4 × (0.1946 × 0.0286) + 0.2216 × 0.0286 = 0.0286

𝑉1 (𝑎0 |{𝑎′𝑗 }) = 4 × (0.1946 × 0.0286) + 0.2216 × 0.47 = 0.1264

For 𝑖 = 1, ..., 6 and 𝑗 = 0, ..., 4. Thus, Asset1 chooses action 𝑎0 for

the next step and state 𝑠2 is obtained (see Figure 2).

3.3 Function Approximation
It is infeasible to compute MaMoRL exactly in a realistic setting

simply because of the exponential size of the 𝑃 and 𝑄 tables (Re-

fer to Lemmas 1 and 2). Indeed, the computational bottlenecks

lie in exactly computing or traversing TMM and LM. Therefore, we
study function approximations for TMM and LM. The approximate

solution, Approx-MaMoRL, is designed with extensive feature en-

gineering efforts to effectively approximate TMM and LM without

actually building it, and the assets make decisions based on that

approximation.

3.3.1 Function Approximation for TMM.

1. Linear Regression. : As opposed to computing 𝑃𝑖𝑡 (𝑠, 𝑎 𝑗 ), the
action of each teammate 𝑗 at state 𝑠 and time 𝑡 by asset 𝑖 is approxi-

mated as a linear function [5, 24]
ˆ𝑓𝑖,𝑎 𝑗 ,𝑠 , given by

ˆ𝑓𝑖,𝑎 𝑗 ,𝑠 = 𝜔1𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣 𝑗 , 𝑠) + 𝜔2𝜃 (𝑣 𝑗 , 𝑠) + 𝜔3𝛼 (𝑎 𝑗 , 𝑠)
+ 𝜔4𝛽 (𝑎 𝑗 , 𝑑, 𝑠) + 𝜔5 (𝑠𝑝 𝑗 , 𝑠)

(9)

where:

1. 𝑣 𝑗 = latest location of asset 𝑗 ,

2. 𝜃 (𝑣 𝑗 , 𝑠) = 1 if there is another asset within𝑚 hops, else 0,

3. 𝛼 (𝑎 𝑗 , 𝑠) is 1, if 𝑎 𝑗 leads to unsensed nodes; else 0,

4. 𝛽 (𝑎 𝑗 , 𝑑, 𝑠) = 1, if 𝑎 𝑗 leads to 𝑑 ; else 0,

5. 𝑠𝑝 𝑗 = speed of asset 𝑗 ,

6. 𝜔𝑙 ∈ [0, 1], 𝑙 = 1, ..., 5 are weights of the features.

The function approximation considers features that are useful

before the goal is discovered (all features excluding 𝛽), and ones

that are only useful afterward (all excluding 𝛼). 𝛽 in Equation 9 is

designed for the latter purpose.

Training: In the absence of the historical data, we obtain a

sample of the original (𝑃𝑖𝑡 (𝑠, 𝑎 𝑗 ) values) coming from MaMoRL to

approximate TMM. The features are hand-crafted and the goal here is
to learn the weights 𝜔𝑙 that minimize the following error function:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁
∀𝑖,𝑎 𝑗 ,𝑠

[𝑓𝑖,𝑎 𝑗 ,𝑠 − ˆ𝑓𝑖,𝑎 𝑗 ,𝑠 ]2 (10)

Route Planning: During the actual route planning, at a given
state 𝑠 by asset 𝑖 , an action is simply considered to be the action 𝑎 𝑗
for asset 𝑗 that has the highest 𝑃𝑖𝑡 (𝑠, 𝑎 𝑗 ) value per Equation 9.

2. Neural Network: Using the same training instance as that of

Linear Regression, a Neural Network is trained by collecting the 𝑃

values and the concomitant feature values for each possible action-

state pair. The trained Neural Network model is then used to predict

the 𝑃 values for each possible action in order to predict the action

𝑎 𝑗 with the highest 𝑃𝑖𝑡 (𝑠, 𝑎 𝑗 ) in route planning.

3.3.2 Function Approximation of LM..

1. Linear Regression. : Similarly, as opposed to storing the entire

𝑄 table, asset 𝑖 learns a reward function as a linear combination of

features:

𝑟𝑖,𝑎𝑖 ,𝑠 = 𝜔1𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣𝑖 , 𝑠) + 𝜔2𝜃 (𝑣 𝑗 , 𝑠) + 𝜔3𝛼 (𝑎𝑖 , 𝑠)
+ 𝜔4𝛽 (𝑎𝑖 , 𝑑, 𝑠) + 𝜔5 (𝑠𝑝𝑖 , 𝑠) + 𝜔6𝑠𝑝

′
𝑖

(11)

Here, 𝑠𝑝 ′
𝑖
is the speed of asset 𝑖 that causes collision and the

remaining features are as described in Equation 9.

Training: Similar to the function Approximation for the TMM,
we sample from the training grid to learn 𝜔𝑙 by minimizing the

least squares objective function:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁
∀𝑖,𝑎𝑖 ,𝑠

[𝑟𝑖,𝑎𝑖 ,𝑠 − 𝑟𝑖,𝑎𝑖 ,𝑠 ]2 (12)

Route Planning: During route planing, the reward for each

action 𝑎𝑖 is calculated using Equation 11 and the action resulting

in the highest 𝑟𝑖,𝑎𝑖 ,𝑠 is chosen by asset 𝑖 at state 𝑠 .

2. Neural Network: Using the same training data as that of func-

tion approximation using Linear Regression of LM, a Neural Network
is also trained.

4 EXPERIMENTAL EVALUATION
Most of the experiments are run on OS Big Sur with 2.4 GHz Quad-

Core Intel Core i5 Processor and 16 GB RAM. Experiments in Table 6

are run on a 64-bit OS server with 3.5 GHz 11th Gen Intel Core i9

and 128 GB RAM. Our code and data are available on GitHub.
1
All

results are presented as an average of 10 runs.

4.1 Experimental Setup
4.1.1 Datasets. I. Real World Data. A discrete grid of the entire

world is produced by taking high-resolution shoreline data from

the GSHHG data set and generating a mesh using Gmsh over the

world’s oceans[12][26]. In this graph, each node has an out-degree

1
https://github.com/RoutePlanningProblem/MaMoRL
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of at most 6. To represent the greater amount of navigational ad-

justments necessary near land, the mesh is generated such that

regions closer to coastlines have a higher resolution than those in

the middle of the ocean. This grid is then split into three datasets

of increasing resolution: the Caribbean Grid, the North America

Shore Grid, and the Atlantic Grid (refer to Table 3).

Datasets Region |𝑉 | |𝐸 |
1 Caribbean Grid 710 1684

2 North America Shore Grid 3291 7811

3 Atlantic Grid 14655 35061

Table 3: Datasets Description

II. Synthetic Data.We use the NetworkX library in Python to

generate grids by varying one of the three parameters at a time. (a)

number of nodes; (b) number of edges; (c) max out-degree.

4.1.2 Implemented Algorithms. We implement Approx-MaMoRL,
NN-Approx-MaMoRL, MaMoRL and compare them with several base-

lines. Additionally, we implement MaMoRL with partial knowledge,

which works as follows:

1. MaMoRL with partial knowledge: We assume that under partial
knowledge, the destination is inside a specified region (described

by a bounding box of lat, long) that the assets are aware of, but

the exact location (lat, long) is unknown. For that, all assets make

use of Dijkstra’s Shortest Path [9] algorithm to find the shortest

path to the boundary of the region containing the destination. Then

the assets leverage MaMoRL solutions inside the region to reach the

destination.

2. Baseline-1:Assets plan their routes one-by-one in a non-simulta
neous round robin fashion. The reward functions are identical to

that of the ones described in Section 3.1.1. The baseline is likely to

require less fuel for the assets to reach the destination (i.e., smaller

𝐹𝑡𝑜𝑡𝑎𝑙 ) because of their long wait at the nodes and no unnecessary

moves at the expense of taking a longer time, thereby giving rise

to a larger 𝑇𝑡𝑜𝑡𝑎𝑙 value.

3. Baseline-2: In this RL based implementation, assets use the

same reward functions as before but plan their routes indepen-

dently, without taking into account the actions of others. This fully

distributed planning is akin to the ALOHA protocol and is prone

to collisions.

4. Random Walk-Baseline: The implementation designs a random

walk based solution, where an action in each step and the assets’

speed are decided randomly from a uniform probability mass func-

tion (for actions) and density (for speed).

Experimentation Goals. Our effort attempts to answer the

following questions:

Q1. How function approximation methods Approx-MaMoRL and

NN-Approx-MaMoRL compare with each other?

Q2. What are the bottlenecks of implementing the proposed

solutions and the baselines?

Q3. How effective Approx-MaMoRL is with or without partial

knowledge w.r.t. different baselines and parameters?

Q4. The Accuracy vs. Speed Trade off of Approx-MaMoRL.
Q5. How effective is Approx-MaMoRL in Transfer Learning?

Table 4 contains default values for the parameters that are part of

MaMoRL. We present 𝑇𝑡𝑜𝑡𝑎𝑙 , 𝐹𝑡𝑜𝑡𝑎𝑙 , relative improvement in objec-

tive function values (defined in Section 4.4), memory usage, and

running time of the corresponding solution for evaluation purposes.

Comparison results are presented with paired t-test [13] with 95%

statistical significance.

4.1.3 Summary of Results. Our first and foremost observation is

that the Linear Regression based function approximation Approx-Ma
MoRL requires less training time (15× faster) and less training data

and ismore effective than its Neural Network counterpart NN-Appro
x-MaMoRL (Refer to Section 4.2). Hence the rest of our results pri-

marily focus on Approx-MaMoRL. Consistent with our theoretical

analysis, in Section 4.3, we demonstrate thememory andCPU bottle-

necks of MaMoRL and compare that with Approx-MaMoRL along with
other baselines (Table 6). These results demonstrate that MaMoRL
is not a practical solution beyond a small grid with only 2 assets,

whereas Approx-MaMoRL produces reasonable performance to the

exact model while being an order of magnitude faster. Baseline-2
results in asset collisions for more than 97% of the runs, due to its

unique design choice, making it infeasible in practice. Next, from

extensive synthetic data experiments, we observe in Section 4.4

that the proposed solution Approx-MaMoRL with or without par-
tial knowledge is effective and robust to problem settings. We

also observe that Approx-MaMoRL returns the pareto front which

is better at optimizing both fuel and time when compared to the

baselines. Then, in section 4.5, we explore the trade-off between

training time and accuracy of Approx-MaMoRL. Our results demon-

strate that Approx-MaMoRL is effective as a real world solution,

making substantial improvement on 𝑇𝑡𝑜𝑡𝑎𝑙 with a 95% statistical

significance with a moderate compromise on 𝐹𝑡𝑜𝑡𝑎𝑙 . In section 4.6,

we demonstrate that our proposed model is suitable for transfer

learning.

4.2 Function Approximation Methods
We compare Approx-MaMoRL with NN-Approx-MaMoRL from two

standpoints - training time, and objective function values. The

training data is obtained from MaMoRL on a small grid (50 nodes, 93

edges) for 2 assets. Additional information is presented in Table

5. These results demonstrate that, unsurprisingly, for the same

amount of training data, Approx-MaMoRL is more effective than

NN-Approx-MaMoRL and is 15x faster in training time (Figure 3).

In fact, the Neural Network based approximation requires large

amount of training data to be effective which is hard to obtain for

our problem since MaMoRL could only be run on small instances

because of its memory and CPU bottlenecks. For the remainder of

the paper, we therefore primarily focus on Approx-MaMoRL.

(a) Objective Time (b) Objective Fuel (c) Training Time

Figure 3: Approx-MaMoRL vs. NN-Approx-MaMoRL
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Parameters #Nodes(|𝑉 |) #Edges(|𝐸 |) #Neighbors(𝐷𝑚𝑎𝑥 ) #Assets(|𝑁 |) Speed of Assets(𝑠𝑝) #Episodes(𝑇𝐵) Communication Frequency(𝑘)
Default Value 400 846 9 6 5 10 3

Table 4: Default Parameters Values

Parameters # Layers # Nodes Activation Function Batch Size # Epoch

Default Value 2

Layer 1 Layer 2 Layer 1 Layer 2
1000 10000

5 1 ReLU Linear

Table 5: Neural Network Parameters Setting

4.3 Bottlenecks of the Implemented Solutions
We compare Approx-MaMoRL with the exact model (MaMoRL) and
the baselines. We present the objective function values as well

as CPU time and memory usage (instances that could not be run

are represented as N/A in Table 6). Consistent with our theoret-

ical analysis, Table 6 shows that MaMoRL suffers from significant

memory and CPU bottlenecks. These bottlenecks are fully averted

in Approx-MaMoRL through a “lightweight” function approxima-

tion, whereas, the objective function values of Approx-MaMoRL are

very close to their exact counterpart in MaMoRL. Unsurprisingly,
Baseline-2 results in a majority of collisions (more than 97%).

These results demonstrate that Approx-MaMoRL is indeed a suitable
alternative to the intractable exact solution.

Scenario Algorithm 𝑇𝑡𝑜𝑡𝑎𝑙 𝐹𝑡𝑜𝑡𝑎𝑙 CPU Time Memory Usage

|𝑉 | = 704

|𝑁 | = 2

𝐷𝑚𝑎𝑥 = 7

MaMoRL N/A N/A N/A 205 GB
Approx-MaMoRL 158.85 46482.9 0.8 min 1056 B

Approx-MaMoRL with Partial Knowledge 177.94 49353.8 0.9 min 1056 B

Baseline-1 255.5 38912.75 0.8 min 576 B

Baseline-2 N/A N/A 0.6 min 576 B

Random Walk-Baseline 995.3 54391070.5 N/A N/A

|𝑉 | = 400

|𝑁 | = 3

𝐷𝑚𝑎𝑥 = 9

MaMoRL N/A N/A N/A 17000 TB
Approx-MaMoRL 87.8 28891.4 1.9 min 2304 B

Approx-MaMoRL with Partial Knowledge 69.74 13338.7 1.9 min 2304 B

Baseline-1 128.2 19528.7 1.8 min 864 B

Baseline-2 N/A N/A 0.95 min 576 B

Random Walk-Baseline 153.9 987406.5 N/A N/A

|𝑉 | = 400

|𝑁 | = 2

𝐷𝑚𝑎𝑥 = 6

MaMoRL 317.7 80898.4 208 min 38.5 GB
Approx-MaMoRL 508.1 126919.5 0.8 min 1056 B

Approx-MaMoRL with Partial Knowledge 623.3 163528.6 0.85 min 1056 B

Baseline-1 746.3 113666.9 0.8 min 576 B

Baseline-2 N/A N/A 0.6 min 576 B

Random Walk-Baseline 2442.55 58416741.8 N/A N/A

|𝑉 | = 200

|𝑁 | = 2

𝐷𝑚𝑎𝑥 = 9

MaMoRL 36.3 8306.1 57 min 40 GB
Approx-MaMoRL 48.9 12907.5 0.8 min 1056 B

Approx-MaMoRL with Partial Knowledge 48.95 12139.9 0.8 min 1056 B

Baseline-1 75.4 11479.6 0.8 min 576 B

Baseline-2 N/A N/A 0.6 min 576 B

Random Walk-Baseline 115.1 460182.9 N/A N/A

Table 6: Comparison Among Implemented Algorithms

4.4 Effectiveness of Approx-MaMoRL
In these experiments, we vary a large number of parameters sys-

tematically that are part of our proposed solution (see Table 4). Fig-

ure 4 shows that our proposed framework is capable of returning

pareto-front based on both the objectives 𝐹𝑡𝑜𝑡𝑎𝑙 and 𝑇𝑡𝑜𝑡𝑎𝑙 , where

Approx-MaMoRL convincingly outperforms the baselines. Addition-

ally, we measure the percentage of relative improvement (𝑅𝐼 (.))
of 𝐹𝑡𝑜𝑡𝑎𝑙 and 𝑇𝑡𝑜𝑡𝑎𝑙 for Approx-MaMoRL with or without partial

knowledge w.r.t other baselines using the following measure.

𝑅𝐼 (𝑂𝑏 𝑗𝑡𝑜𝑡𝑎𝑙 ) =
𝑂𝑏 𝑗𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡𝑜𝑡𝑎𝑙
−𝑂𝑏 𝑗Approx−MaMoRL

𝑡𝑜𝑡𝑎𝑙

𝑂𝑏 𝑗𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑡𝑜𝑡𝑎𝑙

× 100

As demonstrated in Figure 5(a) with increase in the number of

nodes, Approx-MaMoRL has around 60% relative improvement for

Time w.r.t other baselines. However, it also has negative improve-

ment for Fuel w.r.t Baseline-1 which is understandable. Similar

observation holds when the number of edges is increased in Fig-

ure 5(b). Figures 5(c) and 5(e) show that having more neighbors or

moving assets at different speeds does not change the % relative

improvement drastically. By increasing the number of assets in

Figure 5(d), the % relative improvement for Time is positive while

it is negative for Fuel. According to Figure 5(f), assets take better

actions leading to an increase in relative improvement percentage

for both objective values, when they are trained more. When assets

communicate more often, the objective values improve in general,

as a result, % relative improvement of Approx-MaMoRL w.r.t other
baselines does not increase as shown in Figure 5(g). Figure 6 shows

Approx-MaMoRL with partial knowledge behaves in a similar way.

Baseline-2 results are omitted in Figures 5 and 6, since it results

in asset collisions for 97% of the runs.

(a) Varying Number of Edges (b) Varying Number of Neighbors

Figure 4: Pareto Front of 𝐹𝑡𝑜𝑡𝑎𝑙 and 𝑇𝑡𝑜𝑡𝑎𝑙
Overall, these figures demonstrate the suitability and superiority

of Approx-MaMoRL as a real world solution.

4.5 Accuracy and Speed Trade off
In these experiments, we measure the route planning time of our

model and the baselines as seen in Figure 7. We do not include

the Random Walk-Baseline as it fails to exhibit consistent behav-

ior in optimizing 𝐹𝑡𝑜𝑡𝑎𝑙 and 𝑇𝑡𝑜𝑡𝑎𝑙 . We consistently observe that

Approx-MaMoRL convincingly outperforms Baseline-1 in running

time, especially for larger problem settings. These Figures 7(a-g)

demonstrate that Approx-MaMoRL is an effective and realistic model

to deploy inside TMPLAR.

4.6 Transfer Learning
We present the effectiveness of Approx-MaMoRL in transfer learning.
We learn a policy on the Caribbean Grid and use it for navigating

the assets in the North America Shore Grid and vice versa. Fig-

ure 8 presents these results that corroborate that Approx-MaMoRL
is highly effective in transfer learning, i.e., 𝑇𝑡𝑜𝑡𝑎𝑙 and 𝐹𝑡𝑜𝑡𝑎𝑙 of the

transferred model are close to those calculated in the original grid.

4.7 Deployment inside TMPLAR
MaMoRL inside TMPLAR [22][4] enables simultaneous route plan-

ning formultiple assets that are robust to uncertainty under multiple

contexts (mission, environment, asset, and threat). It has two views:

a global view, to facilitate the holistic planning of all the assets
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(a) Varying Number of Nodes (b) Varying Number of Edges (c) Varying Number of Neighbors

(d) Varying Number of Assets (e) Varying Speed of Assets (f) Varying Number of Episodes (g) Varying Communication Frequency

Figure 5: 𝐹𝑡𝑜𝑡𝑎𝑙 and 𝑇𝑡𝑜𝑡𝑎𝑙 Varying Parameters for Approx-MaMoRL

(a) Varying Number of Nodes in Grid (b) Varying Number of Edges in Grid (c) Varying Number of Neighbors in Grid

Figure 6: 𝐹𝑡𝑜𝑡𝑎𝑙 and 𝑇𝑡𝑜𝑡𝑎𝑙 Varying Parameters for Approx-MaMoRL with Partial Knowledge

simultaneously, as well as a local view designed for single asset

planning. The developed interface is designed through extensive

user studies involving human subjects. It is fast, intuitive, logical,

and designed to abstract the complex nature of the underlying so-

lution. TMPLAR is written in Python and is intended to be used

as a back-end service with JavaScript Object Notation (JSON) ob-

jects. MaMoRL is deployed as a docker container simplifying and

accelerating the application workflow while giving developers the

freedom to innovate with their choice of tools, application stacks,

and deployment environments. The efficacy of the tool is evaluated

in the Naval Postgraduate School considering different contexts,
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(a) Varying Number of Nodes (b) Varying Number of Edges (c) Varying Number of Neighbors

(d) Varying Number of Assets (e) Varying Speed of Assets (f) Varying Number of Episodes (g) Varying Communication Frequency

Figure 7: Running Time Results

Figure 8: Transfer Learning

hazards, and threats and is now being analyzed by studying the

click and eye tracking data of the users, to quantify and compare

its ease-of-use and robustness in multi-asset decision making.

5 RELATEDWORKS
Reinforcement Learning. Reinforcement Learning (RL) has a

broad range of applications in dynamic and uncertain environments

[19] [15][10], including traffic lights control and monitoring[25] ,

exploratory data analysis [2], user group discovery [21], and com-

plex task planning [18]. Authors in [14] and [11] study Markov

Decision Problems (MDPs) for a single agent considering multiple

objectives with constraints and propose a weighted RL. In [14], au-

thors introduce a Lagrange function for solving utility constrained

MDPs. In [27], the author discusses the inefficiencies associated

with sample cost in Reinforcement Learning.

Multi-Agent RL. Coordinating multiple agents in a dynamic en-

vironment is a complicated problem - some recent efforts have been

made to solve this problem using RL [7][8][28][6][23]. [28] stud-

ies a cooperative Multi-Agent RL by using a teammate model and

reward allotment. [7] considers multiple agents in a task-oriented

environment as a Decision-Theoretic Planning (DTP) problem and

adapts RL for solving it. [8] shows how to adapt Generalized Learn-

ing Automata (GLA) in multi-agent systems. [6] sheds light on

the potential applications of Multi-Agent Reinforcement Learning

(MARL) in a variety of different areas from robotics to different

static games, whilst raising concerns about scalability. [23] points

out the absence of existing work where agents reuse knowledge

acquired from one another.

Path Planning. Path Planning for ships and aerial vehicles has

been studied extensively in [1] [4][22][1][17]. In [4], authors lever-

age Q-factor as an approximate dynamic programming method for

navigating ships in uncertain environments. TMPLAR [22] is devel-

oped as a system for Multi-objective Planning and Asset Routing.

We non-trivially adapt these works to address a problem of significant
interest to maritime navigation involving multiple distributed assets,
objectives, and constraints, as well as study scalability challenges.

6 CONCLUSION
We study the Route Planning Problem (RPP), which is formalized as

a Team Discrete Markov Decision Process and we propose a Multi-
agent Multi-objective Reinforcement Learning (MaMoRL) framework

for solving it. We demonstrate why exact MaMoRL is computationally

expensive and study approximation opportunities. As an ongoing

work, we are analyzing the post-deployment data collected through

click and eye tracking behavior of the users to quantify its ease-of-

use, flexibility, and robustness in multi-asset decision making.
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