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Abstract

Diversifying recommendations on a sequence of sets (or sessions) of items captures a variety of applications. Notable examples
include recommending online music playlists, where a session is a channel and multiple channels are listened to in sequence,
or recommending tasks in crowdsourcing, where a session is a set of tasks and multiple task sessions are completed in
sequence. Item diversity can be defined in more than one way, e.g., as a genre diversity for music, or as a function of reward
in crowdsourcing. A user who engages in multiple sessions may intend to experience diversity within and/or across sessions.
Intra session diversity is set-based, whereas Inter session diversity is naturally sequence-based. This novel formulation gives
rise to four bi-objective problems with the goal of minimizing or maximizing Inter and Intra diversities. We prove hardness
and develop efficient algorithms with theoretical guarantees. Our experiments with human subjects on two real datasets show
that our diversity formulations do serve different user needs and yield high user satisfaction. Our large-scale experiments
on real and synthetic data empirically demonstrate that our solutions satisfy our theoretical bounds and are highly scalable,
compared to baselines.

Keywords Recommendation systems - Diversity algorithms - Combinatorial optimization - Data management models

1 Introduction

Diversity aims to improve user experience by addressing the
problem of over-specialization, where a user receives recom-
mendations that are often too similar to each other. To create
online music playlists, users organize songs into channels and
listen to a few songs within the same channel before switch-
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ing to the next channels to listen to other artists in the same
genre or to experience different music styles. On crowdsourc-
ing platforms, workers complete a small set of tasks at a time
(session) and sequences of sessions within a finite time (for
example, half a day). Diversifying recommendations inside
(Intra) and across (Inter) sessions is natural for such appli-
cations to improve user satisfaction and engagement.

Recommending playlists during a long drive may need
to minimize both Intra and Inter session diversities to gen-
erate songs by the same artist within a channel and similar
beats across channels. Contrarily, designing playlists for a
theme party is best done by composing songs from the same
period within a channel (1990s, 1960s, etc.) and different
styles across channels (thereby minimizing Intra diversity
on release date within a session and maximizing Inter diver-
sity on style across sessions). Similarly, in crowdsourcing,
it may be ideal to recommend tasks requiring similar skills
within a session and different completion times across ses-
sions, whereas workers who have multiple expertise may be
recommended tasks with different skills in a session and dif-
ferent rewards across sessions. More generally, applications
may require minimization or maximization of Intra and Inter
diversities.
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These aforementioned scenarios have three things in com-
mon: first, diversity needs to be accounted for in the design
of a sequence of sets of recommendations. Second, both
minimization and maximization of diversity are meaning-
ful. Finally, the dimensions on which Infra and Inter session
diversities are expressed are item features that may not
be related—hence they cannot be combined. We present
a framework that satisfies all three requirements focusing
purely on diversity and assuming that the items consumed
by the framework are always suitable (relevant) to the user.

Our goal is to develop an algorithmic framework for Inter
and Intra session diversities in tandem with the goal to rec-
ommend & sessions to a user, with a small number [ of relevant
items in each, yielding a total of N = k x [ items.! Intra and
Inter diversities can be either minimized or maximized which
gives rise to a bi-objective formalism to express four prob-
lem variants (Sect. 2.2). We also study the relaxed version of
our proposed framework where the sessions are of varying
lengths and the total number of items recommended to the
user is a subset of N items. 7o the best of our knowledge, our
work is the first attempt to combine set and sequence diversi-
ties, two problems extensively studied individually in search
and recommendation [2,6,13,22,28,29,34,37-39,45,48-51].

Our second contribution is theoretical. We first study
each of the Intra and Inter diversity optimization problems
individually and find that irrespective of minimization or
maximization, the Inter problem is NP-hard (Sect. 2.3). We
also prove that the /ntra minimization problem can be opti-
mally solved in polynomial time. However, the complexity
of each bi-objective problem remains NP-hard (because Inter
optimization is NP-hard).

Our third contribution is algorithmic (Sect. 3). We design
principled solutions with provable guarantees for Infra and
Inter problems individually. Algorithm Ex-Min-Intra
runsin O (Nlog N) time and produces an exact solution of the
Min-Intra problem. For Min-Inter and Max-Inter, algorithms
Ap-Min-Inter and Ap-Max-Inter achieve 4 — 2/k-
and %-approximation factors, respectively. We also design an
efficient ﬁ-approximation algorithm Ap-Max-Intra
to solve the Max-Intra problem.

Additionally, we investigate an alternative formulation
(Sect. 2.4) of all four problems to a corresponding con-
strained optimization problem, with the goal of obtaining one
point from the Pareto front. The idea is to optimize Inter diver-
sity, subject to constraining Intra diversity. The constraint
on Intra is obtained by solving the Intra optimization first.
There exists more than one benefit to this approach. First, in
one of the two cases (i.e., Minimization) Intra is tractable
and easier to solve; therefore, finding the optimal constraint
value is computationally efficient. More importantly, the con-

1" A preliminary version of this work has got accepted in The Web
Conference, 2021 [20].
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strained optimization problem aims at finding one point in
the Pareto front, which is perfectly acceptable, as the points
in the Pareto front are qualitatively indistinguishable (unless
further information is available). When Inter problems are
optimized subject to constraining Intra, the combined solu-
tions hold guarantees for 2 out of the 4 problems (Sect. 3.4).
Tables 2 and 3 summarize our theoretical and algorithmic
results.

Our last contribution is experimental. We consider two
real world applications and conduct multiple experiments
involving 400 human subjects, as summarized in Table 4, for
music and task recommendation. We additionally perform
large scale experiments using real and simulation data to
validate the properties of our designed algorithms. In music
recommendation (Sect. 4.1), our results highlight, with sta-
tistical significance, that user satisfaction is higher when
playlists are recommended considering diversity and the pre-
ferred diversity scenario depends on the underlying context.
In task recommendation, our results show the benefit of diver-
sification in task sessions across different session gaps or time
intervals between sessions. Our algorithms achieve higher-
quality and worker satisfaction with statistical significance
than a baseline with No diversity in all the specified session
gaps.

Section 4.2 investigates approximation factors and the
scalability of our algorithms against several non-trivial base-
lines. We observe that in most cases, our algorithms produce
approximation factors that are very close to 1. For the cases
where the approximation factor is slightly worse, the solution
is close enough. Finally, we also observe that our approach
is faster and highly scalable when varying the number of
items and the number of sessions considering different data
distributions.

We present related works in Sect. 5 and conclude in Sect. 6.

2 Formalism and problem analysis

For the purpose of illustration, we describe a simple running
example on recommending task sessions in crowdsourcing.
Same example could be used for the streaming music.

Example 1 Consider a set of N = 12 tasks, which are most
relevant to a specific worker. Table 1 shows two dimensions
of these tasks. The first dimension is the skill requirement of
the task as provided by the requester. The second dimension
is the task reward. We want to recommend 4(= k) sessions,
each containing 3(= /) tasks.

2.1 Data model

Item An item has a set of dimensions. tl.d represents the dth
dimension of the ith item. Using Example 1, task #; is rep-
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Table 1 Task skill and reward

Task Skill Reward Task Skill Reward Task Skill Reward
t1 0.5 0.3 17} 0.51 0.4 t3 0.54 0.49

tg 0.59 0.50 ts 0.6 0.23 te 0.63 0.4

t7 0.69 0.1 ts 0.7 0.60 to 0.79 0.36
t1o 0.8 0.12 ti 0.89 0.55 t12 0.93 0.34

resented by two dimensions, < 0.5, 0.30 >. In the case of a
song, examples of dimensions are artist, vibe, genre, etc.

Session A session s consists of a set of / items that can be
consumed in any order.

Sequence A sequence of sessions is an ordering of k ses-
sions § =< s1, 52, .. ., S > where sessions are presented to
a user one after another.

Intra Diversity Given a dimension d, the diversity of a set
of items in a single session s is referred to as Intra and defined
by capturing how each item in that session deviates from the
average, considering d, and taking an aggregate over [ items
as follows:

l
Intra®(s) = Z(tid — Mf)z (D

i=1

where tid is the value of dimension d of item # and u? is
the average of d values of items in session s. Intra essen-
tially captures variance of a set of items for a dimension d.
Following Example 1, if the session s consists of {71, 3, #5},
then Intra** (s;) = 0.005.

Inter Diversity The diversity of items between two con-
secutive sessions is referred to as Inter and is defined for two
consecutive sessions for a dimension d as follows:

Interd(si, Sip1) = (/‘21,- - “fm)z @

which captures the difference between the average of two
consecutive sessions. Given S =< {t1, 13, t5}, {2, 14, 6},
{t7, 13, 19} >, Inter®eward(§) = (0.34—0.433)% +(0.433 —
0.35)% = 0.015 using Example 1.

Changing the aggregation function from square to exact
definition of variance (i.e., divide it by the number of items
in the session), taking square root of the current defini-
tion, or changing the solutions to standard deviation will not
require any changes in the solution and approximation factor,
because these definitions are technically equivalent. In fact,
the approximation factors remain unaltered for many popular
distance functions that are part of the Minkowski family, such
as, L1, Ly, and L. Other set-based [2] and sequence-based
[51] definitions could be considered in future work.

For the simplicity of illustration, we use one dimension ata
time to model diversity. For all practical purposes, both Intra
and Inter dimensions could be designed to reflect multiple
attributes by combining them and allowing overlap.

We explicitly chose to handle one attribute at a time
because we believe that diversity becomes more difficult to
perceive by users when combining several attributes. That
is further exacerbated by the fact that users have to perceive
Intra and Inter diversities at once. The use of a single attribute
for Intra and for Inter allowed us to focus on the algorithmic
and theoretical contributions. There is however a workaround
to reduce any number of dimensions to one for each type of
diversity by combining their values with a weighted linear
function as in MMR [11].

2.2 Problem definitions

We formalize our problems and propose to do that in two
stages: we first focus on producing Fixed Length Sessions
that consume all input items (Sect. 2.2.1); we then relax our
problem to produce Variable Length Sessions that consume
only a subset of input items (Sect. 2.2.2). This allows us
to study Fixed and Variable Length Sessions in conjunction
to consuming all versus some input items. The problems of
Fixed Length Sessions with all input items and the problem
of Variable Length Sessions with subset of input items are
omitted as they are subsumed by the ones formalized in this

paper.
2.2.1 Fixed Length Sessions

Given N items, we are interested in finding a sequence S =<
S1,...,S8 > of k sessions, each consisting of / items. We
consider 4 problem variants all of which are instances of a
general problem formalized as follows:

Optimize-Intra, Optimize-Inter Given a set of N items
with two dimensions of interest d and d’ on Intra and Inter,
respectively, we are interested in creating a sequence S =<
S1, ..., 8k > of k sessions, each containing [ items, s.t. N =
k x [ and
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k
optimize Z(Intrad(si))
S =1
k—1
optimize Z(Interd (i, 8i41)) &)
i=1
S.t.
IS| =k, Isil =1, N =k x1

2.2.2 Variable Length Sessions

Given N items, we are interested in finding a sequence § =<
S1,...,8 > of k sessions, with length L =< Iy, ..., >
s.t. l; <1I; Vi =1,...,k. We consider 4 problem variants
all of which are instances of a general problem formalized
as follows:

Optimize-Intra, Optimize-Inter Given a set of N items
with two dimensions of interest d and d’ on Intra and Inter,
respectively, we are interested in recommending a subset of
items by creating a sequence S =< s1, ..., ¢ > of k ses-
sions with length L =< [1,..., Iy > s.t. [; <1I; Vi =
1,....,k,and N =k x [

k
optimize Z(lntrad (si))
N

i=1
k—1
opti;nize Z(Interd (i, 8i41)) (4)
i=1
S.t.
S| =k, Isil =1, i <1, Y li <N, N=kxI
Vi

We refer to Sect. 4.2.5 for further details.

2.3 Analysis of the problems considering Fixed
Length Sessions

We analyze the complexity of Intra and Inter diversities. This
exercise allows us to analyze the nature of these problems and
sheds light on designing principled solutions.

2.3.1 Intra diversity optimization

Theorem 1 Min-Intra is polynomial time solvable.

Proof Minimizing Intra diversity is akin to grouping a set of
points in a line to produce the smallest aggregated variance.
This requires sorting the points based on the Intra dimension
d and grouping every [ points to create a session. Clearly,
this is polynomial time solvable. O
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Theorem 2 Optimizing Max-Intra is NP-Hard.

Proof The proof of this theorem uses another claim that we
prove later (Theorem 6). This latter theorem formally proves
that Max-Intra happens ( Zf:l (Intra(s;)) is maximized) if
the mean of each session is equal (or very close) to the global
mean of all N items for the specific dimension d. We omit
the superscript d from the proof, and ¢; is considered as the
value of the item ¢#; for dimension d. Since groups have the
same size /, the problem is akin to finding groups of items
whose sum is equal:

Y=Y ti=-= 0 (5)

SN €Sy 1; €Sk

To prove NP-hardness we reduce an instance of the
k-Equal Subset Sum of Equal Cardinality Problem (k-
ESSEC) [14] to an instance of Max-Intra, as follows. Given
aninstance of k—-ESSEC with P = {ay, ..., ay} whichare N
positive integers and k, we set the items #; = a; and k remains
the same. A solution to the k-ESSEC with k disjoint subsets,

each with equal value sum (s1) = sum(sy) = ... = sum(sy)
occurs, iff a solution of the Max-Intra exists with [ = N /k
Ei}\;lai
and by, = Wsgppy = — 35— -
O

2.3.2 Inter diversity optimization

The Inter diversity problem aims to find a sequence of k
sessions of length / that will optimize the aggregated Inter
distance computed on a dimension d over all k sessions in
that sequence.

Theorem 3 Inter Problem (both Min and Max) is NP-Hard.

Proof (Sketch) We show the NP-hardness for the Min-Inter
case, and the maximization works analogously. To prove the
NP-hardness of the Min-Inter problem, we reduce an instance
of the known NP-hard problem Hamiltonian Path problem
[23] to an instance of the Min-Inter problem. Consider an
instance of the Hamiltonian Path problem with G = (V, E),
where V is the set of nodes and E is the set of edges. Each
node v; € V represents / items with the same value on the
dimension of interest. Essentially, these / items form a ses-
sion. For assigning the Infer diversity of two sessions, we first
deal with the non-edges in G. For each edge (v;,v;) ¢ E,
we set the i, and p; such that ||y, — s, |l > X (where
X is an integer) and for each edge (v;, v;) € E, we create
s, — Ws; || < X.This creates an instance of Min-Inter prob-
lem with | V| (i.e., k for Min-Inter) sessions, each with  items.
Clearly, this reduction can be done in polynomial time. Fig-
ure 1 shows such a reduction from an example graph, where
X = 15. Now a Hamiltonian Path exists in G, iff Min-Inter
value is < X2 x |V]. m]
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Fig.1 Reduction: Hamiltonian Path to the Inter problem

Theorem 4 The bi-objective optimization problems combin-
ing Intra and Inter diversity are all NP-Hard.

Proof (Sketch) We omit the formal proof for brevity—but it
is easy to show that the NP-hardness remains for each of the
4 bi-objective problems, since the individual optimization
problems are NP-hard. O

2.4 Modified problem definitions of Fixed Length
Sessions

As proved in Theorem 4, each of the 4 bi-objective optimiza-
tion problems are NP-hard. In fact 2 ((Min-Inter, Max-Intra)
and (Max-Inter, Max-Intra)) out of the 4 problems are
NP-hard on both objectives. Upon careful investigation,
we propose an alternative formulation of each of these
bi-objective problems to a corresponding constrained opti-
mization problem, with the goal of obtaining one point from
the Pareto front. The idea is to optimize Inter diversity, sub-
ject to the constraint of Intra diversity.

The constraint on Intra is obtained by solving the Intra
optimization first. There exists more than one benefit to this
approach. First, in one of the two cases (i.e., Minimiza-
tion) Intra is tractable and easier to solve, therefore, coming
up with the optimal value of the constraint is computation-
ally efficient. More importantly, the constrained optimization
problem aims at finding one point in the Pareto front, which
is perfectly acceptable, as the points in the Pareto front are
qualitatively indistinguishable (unless further information is
available).

k—1
min(max) Y ~(Inter® (si, si41))
i=1
s.t.
(6)

k

> Untra(s))x <= OPT,,, .
i=1
IS| =k, |sil =1, N =k xI

where O P Tj,rq 1s the optimal solution of the Intra problem.
Using Example 1, the sequence

S =< {15, 16, t7}, {t1, 12, 13}, {to, t10, t11} >

Skill score but at the same time maxi-

score, whereas

minimizes the Intra
mizes the InterReward

S =< {11, 1, 3}, {19, t10, t11}, {t5, 16, 17} >

Skill Reward

minimizes the Intra and minimizes the Inter

3 Optimization algorithms

We design optimization algorithms for the Intra and Inter
problems individually, following which we study how to
solve constrained optimization problem (Equation 6). Table 2
summarizes our technical results.

3.1 Algorithm Min-intra
3.1.1 Fixed Length Sessions

The objective here is to design k sessions, each of length /,
such that the aggregated Intra diversity over the k sessions is
minimized. Specifically, if there are [ values associated with
a dimension in a session, the Intra diversity is the variance
of those points that is to be minimized here.

With an abstract representation, once sorted, the dimen-
sion values of N items, fall on a line, as shown in Fig. 2.
Therefore, if the aggregated variance is to be minimized, it
is intuitive that the sessions need to be formed by grouping /
values that are closest to each other.

Table2 Optimization algorithms and results for Fixed Length Sessions

Algorithm Running time Approx factor
Ex-Min-Intra O(NlogN) Exact
Ap-Max-Intra O(NlogN + NI) IE
Ap-Min-Inter O(NIogN + k* + logk) 4—2/k
Ap-Max-Inter O(NlogN + k* + logk) 1/2

@ Springer



S. Nikookar et al.

.5.51 .54
—eoo—0——00—o

.59.6 .63 69.7 .79||.8 .89 .93
- 0——0— @ L

Skills of the 12 tasks sorted in increasing order

Fig.2 Sorted Intra diversity of skills

Thus our proposed Exact-Min-Intra algorithm for
minimizing Intra diversity first sorts the values of the dimen-
sion of interest. After that, it starts from the smallest value
and finds each consecutive / points to form a session.

Theorem 5 Algorithm Exact-Min-Intra is exact.

Proof (Sketch) Let us assume that our algorithm does not
produce an exact solution. That means there exists another
algorithm which produces a solution with smaller Intra diver-
sity than that of Exact-Min-Intra. Suppose this other
algorithm uses another way to create the sessions. Of course,
this is different from sorting the items in increasing value of
the dimension of interests and grouping each [ of them start-
ing from the smallest one. However, that is a contradiction
because then the latter algorithm will have larger Min-Intra
value, as [ non-consecutive points will have higher variance
than consecutive ones. Hence the proof. O

Lemma 1 Algorithm Exact-Min-Intra runs in

O(NlogN).

Proof Since the only required operation is sorting, the run-
ning time of the algorithm will take O (NlogN). O

3.1.2 Variable Length Sessions

For the Variable Length Sessions problem, we group the
items depending on the specified input length after sort-
ing them. To clarify more, in Example 1, if we are given
[2, 3, 2, 3] as the sessions’ length input, we choose the first
two items after sorting as the first session, then the following
three items as the second session, and so on.

3.2 Algorithm Max-intra

As proved in Sect. 2.3, Max-Intra is NP-hard. What makes
it computationally intractable is that when the objective is to
maximize variance, the search space has to be combinatori-
ally explored.

We show that Max-Intra is optimized when all sessions
have the same mean, which is equal to the global mean
Mglobal- This proof is critical, as it helps us design our solu-
tion. Theorem 6 has the formal statement.

Theorem 6 Zf-;l (Intra(s;)) is maximized when
//Lf] = M5d~25 el = Mfk = Mglobal @)
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Proof The theorem states that the objective is maximized
when the means of all sessions are equal, which in turn are
equal to the global mean. It is indeed true that when ,u‘fl =

d d 1 N d
Ky - - = Mg, » the global mean pigropar = & ijl(tj) =
kxig g

k — s

Our intention is to prove that Zf; (Untra(s;)) is maxi-
mized when this aforementioned scenario occurs. For ease
of exposition, we omit the superscript d from the proof.

We do the proof by the method of contradiction. Con-
sider two different sets of k sessions, S and S'. For § =
S1. 82, ..., 8k we have g, = 13, ¢ and similarly for
other 5; € S. For §" = 51,5}, ..., s, where

1
s = Mgy = ... = Ky = Hglobal = m Zt 3
We also assume, Intra(S) > Intra(S’).

Intra(S) =Y Intra(s;)

- Z(’ — 1s))? +...+Z(t — 1g)?

tes] tesy

N
=D = 1ud g, 4t i)
i=1

&)

N
Intra(S')y =Y 17 — ki3 10pa (10)

i=1

According to our assumption, Intra(S) > Intra(S’) this
means that

N N
SR —lud ol A ul) > ) =kl
i=1 i=1

(11
which after considering (top; = W—Jr—w”‘ we get,
W A ud + ok <0 (12)
which is a clear contradiction, hence the proof. O

3.2.1 Fixed Length Sessions

Theorem 6 provides a useful insight, that is, to maximize
the Intra, we need to form the k sessions in such a way that
the means of all the sessions are equal or very close to each
other. Algorithm Ap-Max-Intra is iterative and greedy,
and it relies on this principle to create sessions that satisfy
this property. First, it creates [ bins, and each has k different
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slots. The bins are then initialized so that each contains a
subset of k items from the set of items that are sorted in
ascending order. Then, in the third step, each of the / bins
is scored using a scoring function described in Definition 1,
which captures the maximum difference between the average
of all items and the ones in each bin. Finally, it merges the
two bins with the highest and lowest scores greedily. The final
two steps are repeated iteratively. This process is repeated for
| — 1 times.

Definition 1 (Score of the i-th bin:)

d(bi) = max{|fgiobar — argmaxy; bijl, |igiobal
— argminy i bijl}

This scoring function captures the largest difference
between items in a bin and the global average, allowing the
highest and lowest scoring bins to be merged. If we do this,
as we proved in Theorem 6, the sessions created at the last
step have an average near to tg/opq/, Which maximizes the
Intra value.

To illustrate the solution further, b;; represents the jth
slot in bin i, which is kept as a placeholder for jth session.
To initialize the bins, we first sort the items in an increas-
ing order on the dimension of interests. Next, in the ith
bin 1 < i < I, we put the sorted items #()sx+; in bjj.
Using Example 1, this amounts to creating 3 bins of tasks
where by = {[11], [©2], [#3], [14]}, b2 = {[#5], [#6], [27], [281},
and b3 = {[m9], [t10], [t11], [t12]}. In step 3, each bin is
scored, based on d(b;), as presented in Definition 1. Then
two bins i and j are merged that have the largest and small-
est score, respectively. Going back to Example 1, the scores
are calculated as follows d(b;) = 0.18, d(by) = 0.08, and
d(b3) = 0.25 and by and b3 are merged. Figure 3 details
these steps.

To merge b with b’, where b has the largest score and b’
has the smallest score, we create a new bin b"¢"8¢ such that

T = {0.5,0.51,0.54,0.59,0.6,0.63,0.69 ,0.7,0.79,0.8,0.89,0.93}

[[] []}
Step 1: b=|[i =~ i
0 -0

[0.5] [0.51] [0.54] [0.59]
Step 2: bixie = | [0.6] [0.63] [0.69] [0.7]
[0.79] [0.8] [0.89] [0.93]

d(b;) = max({]0.68 — 0.59],]0.68 — 0.5[}) = 0.18
Step 3: d(b,) = max({]0.68 — 0.6,10.68 — 0.7]}) = 0.08
d(bs) = max({]0.68 — 0.79],]0.68 — 0.93]}) = 0.25

[0.5] [0.51] [0.54] [0.59]

Step 4: Merge by, bs) [0.6,0.93] [0.63,0.89] [0.69,0.8] [0.7,0.79]

Fig.3 Ap-Max-Intra steps on Example |

b!"*¢ contains the mth smallest items of b and mth largest

items of ' (I < m < k). Considering Example 1, the new
bin »™¢"8¢ is created by combining b, and b3, such that

b™er8¢ = {[1s, t12], [t6, t111, [17, t10], [13, 101}

This process is then repeated until only a single bin is left.

Algorithm 1 Algorithm Ap-Max-Intra
Require: N, Number of sessions &, Length of session /

: Mglobal < Average of all items

. Initialize / bins each with k slots <
2 bi < {bi1 = [ti+1], biz = [ti42, ...
: while number of bins > 1 do

pick b; and b; with the largest and smallest scores
b"¢"8¢=merge b; and b;

Delete b; and b

number of bins </ — 1

: Return the final merged bin

s bie = [ty 1}

Theorem7 Ap-Max-Intra runsin O(NlogN + NI).

Proof Getting the average of the items takes O (N). The par-
titioning of items into k bins takes O (Nlog N) which is done
by sorting items first and then putting each item in their cor-
responding bin by iterating over them once more. Now there
are [ — 1 iterations of the algorithm to merge the bins. Each
bin merge takes at most O (k/) since there are k sessions with
at most / members which means for / — 1 iterations we will
have O (kI?). Overall, the running time of the algorithm will
be O(NlogN + NI) O

Theorem 8 Algorithm Ap-Max-Intra has ﬁ approx-
imation factor.

Proof (Sketch) The detail proof of this problem makes use
of an approximation-preserving reduction. Basically the idea
of an approximation-preserving reduction is as follows:
we need to show that an instance of Ap-Max-Intra is
reducible to an instance of another known NP-hard problem,
Balanced Number Partitioning problem [33] and by apply-
ing Algorithm BLDM, which is an approximation algorithm
for the latter problem produces a solution for the problem
Ap-Max-Intra. The proof sketch makes use of two argu-
ments: the first is that an instance of Max-Intra could be
reduced to an instance of the Balanced Number Partition-
ing problem [33] in polynomial time. Then, it can be shown
that the BLDM algorithm has one-on-one correspondence
with Ap-Max-Intra. Ap-Max-Intra will accept ﬁ
approximation factor, since BLDM holds 2 — 1/k approxima-
tion factor. O
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3.2.2 Variable Length Sessions

The solution of Max-Intra for Variable Length Sessions is
identical to aforementioned one, except the last step. If the
length of each of the k bins is smaller than the length of the
input variable, we merge them; otherwise, we skip that one
and move on to the next one to merge. To clarify, if we want
to merge one more time after step 4 in Fig. 3, we skip the
first column because the first session must have length 2, but
we merge [0.51] and [0.63, 0.89] in the second column to
get a session with length 3 as specified in the input length
[2,3,2,3].

3.3 Algorithm Min(Max)-Inter
3.3.1 Fixed Length Sessions

Optimization of Inter diversity, both minimization and max-
imization variants, is NP-hard, and they bear remarkable
similarity to each other. Given a set of N items, the
Min(Max)-Inter problems will try to find an ordering of k
sessions, each with / items, such that the aggregated differ-
ences between the average of two consecutive sessions are
minimized (maximized). To better understand these prob-
lems, we break them into two steps. We only present these
steps for the Max-Inter problem and note that the Min-Inter
version works analogously, only by inverting the optimiza-
tion goals inside the algorithm. For example, for optimizing
Max-Inter, our goal is to find a sequence of sessions that
maximizes Equation 2. One intuition is that Infer diversity
increases if the means of individual sessions (on the dimen-
sion of interest) are highly different from each other. Indeed,
if the k sessions have the same exact mean, no matter how
one orders them, Inter diversity will be zero. As we prove
in Lemma 2, this relates to forming a set of k sessions with
the goal to minimize Intra diversity. So, the first step of our
algorithm is to produce a set of sessions with the smallest
Intra diversity. The next step is to order these sessions, such
that the resulting sequence has the Infer value maximized.
This is our guiding principle in creating the algorithms to
solve this problem.

Our proposed solution Ap-Max-Inter for Max-Inter
works as follows: we first find k sessions obtained by running
Algorithm Ap-Min-Intra. This is needed, since it will
generate sessions with means as different from each other as
possible. After that, we create a graph of k nodes; each repre-
sents one of the k sessions. The weight of each edge (s;, s;)
is defined as w(s;, s;) = (Us; — Us j)2. After that, the goal
is to run an algorithm for the longest path problem for Max-
Inter. Since the graph is complete with positive weights on the
edges, the longest path problem could be solved by replacing
the positive weights with negative values and running a trav-
eling salesman problem (TSP) over it. In our implementation,
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we use the simple yet effective 2-approximation algorithm
for TSP in metric space, described in [32,36]. The algorithm
starts by finding the Minimum Spanning Tree of the input
graph using Prim’s algorithm. Next, it lists the nodes in Min-
imum Spanning Tree in a pre-order walk and adds the edge to
the starting vertex to the end. This path will create an order-
ing of sessions by following from the starting vertex s; to the
ending vertex s;. This algorithm runs in O (k*logk) which is
dominated by the running time of the Prim’s algorithm. We
further improve this running time by using Fibonacci heaps
and obtain O (k% + logk).

Inversely, Algorithm Ap-Min-Inter,designed for Min-
Inter, first solves the Min-Inter problem to create sessions
with the largest Intra diversity. Then, we create the graph
same as we have done in Ap-Max-Inter, but the edge
weights do not need to be negated. Finally, we run TSP
[36] to generate a sequence of sessions for minimizing Inter
diversity of those sessions. For both problems, the obtained
solution is a cycle and has one extra edge. We simply remove
the edge with the smallest (largest) value in the solution. This
produces an ordering of the sessions. Algorithm 2 presents
the pseudocode of Max-Inter algorithm.

Algorithm 2 Algorithm Ap-Max-Inter

Require: N items, Number of sessions k, Length of session /

2 Sinit < Min — Intra(N, k,[)

: G = (S, E) < complete graph with k nodes

D w(sins)) = (g — is;)?

: Run Longest path algorithm on G

: Longest path contains the ordering of the sessions.

L O R S

Theorem 9 Both Ap-Max-Inter and Ap-Min-Inter
run in O(NlogN + k* + logk).

Proof The running time of the algorithm Ap-Max-Inter
is dominated by the first step which is getting the solution of
Min-Intra (for Ap-Min-Inter it is Max-Intra). The algo-
rithm for TSP takes O (k?+1 ogk). This means that the overall
running time will be O (NlogN + k? + logk). O

Lemma 2 Given a set of N items forming k sessions (each
with [ items), when defined on the same dimension of inter-
est, Inter diversity of the k sessions is maximized (minimized),
when Intra diversity of those k sessions is minimized (maxi-
mized).

Proof (Sketch)

Inter Minimization Case: For the case of Max-Intra, the
solution will require the averages of all groups to be the same
(recall Theorem 6). This results in having Min-Inter with
value 0, leading to the optimal solution. Hence the proof.
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Fig.4 Relationship between Min-Intra and Max-Inter when defined on
the same dimension (1) If S =< s, 51, s3 > is the Min-Intra solution
and pt5, < [s, < Mg, the Inter value reaches its maximum value,
which is @ + B; (2) if a task is swapped between sessions s1 and s, the
Inter value for the new sessions will be & + B — 3x which is smaller
and cannot be the solution of Max-Inter

Inter Maximization Case: We prove by contradiction for
Min-Intra and Max-Inter, for k = 3. For the purpose of
illustration, consider the sequence S =< s7, 51, 53 > where
Ws; < s, < Ws,. Consider s1, 52, 53 are the solution of Min-
Intraand g, — s, = « and g, — s, = B. Figure 4 presents
one such solution. Now consider that we swap a task between
s1 and s. After this swap, the value of 5, will increase by
x amount and the value of jy, will decrease by the same x.
Now it is easy to see that if the value of Inter is o + B for
the solution of Min-Intra, then the value of the new solution
will be & + 8 — 3x which is smaller. This argument extends
tok > 3. O

Theorem 10 Ap-Max-Inter produces an answer that is
at least 1/2 of the the optimal solution.

Proof The approximation of Ap-Max-Inter occurs in
step 2, while solving the longest path problem (Since
Min-Intra has an exact solution)). Since the longest path
algorithm has the 1/2 approximation factor, the overall algo-
rithm Ap-Max-Inter has 1/2 approximation factor. O

Theorem 11 Algorithm Ap-Min-Inter has4—2/k approx-
imation factor.

Proof Similar to the proof of Ap-Max-Inter, using
Lemma 2, the first step of Ap-Max-Inter is finding a
set of sessions which are closest to each other. Using algo-
rithm Ap-Max-Intra provides these sessions with2 —1/k
approximation. The next step multiplies this error by a factor
of 2 since the composition of the groups is not changed and
we only find an ordering over the fixed groups. This yields
an approximation factor of 4 — 2 /k. O

3.3.2 Variable Length Sessions

The Inter solution of the Variable Length Sessions is the
same as Fixed Length Sessions for both minimization and
maximization problem.

3.4 Optimizing Inter with Intra as constraint for
Fixed Length Sessions

We now develop algorithms for the constrained optimiza-
tion problems defined in Sect. 2.4. When the values of the
item dimension used for Intra diversity are all unique, two of
these four algorithms have provable approximation factors.
Table 3 provides the summary of our technical results.

To optimize Inter with Min-Intra as a constraint, we
design two algorithms Alg-Min-Intra, Min-Inter and Alg-
Min-Intra, Max-Inter. For both, we start from the solution of
the Min-Intra problem using algorithm Ex-Min-Intra.
This solution is an exact algorithm for solving Min-Intra
and gives a set of k sessions as the output. After that,
we run Ap-Max-Inter in Alg-Min-Intra, Min-Inter and
Ap-Min-Inter in Alg-Min-Intra, Max-Inter.

On the other hand, to optimize Inter with Max-Intra as a
constraint, we start from the solution of the Max-Intra using
algorithm Ap-Max-Intra. This solution is an approxima-
tion algorithm for solving Max-Intra and returns a set of k
sessions. After that, we run Ap-Max-Inter for Max-Intra,
Max-Inter and Ap-Min-Inter for the Max-Intra, Min-
Inter. Using Example 1, to solve Alg-Min-Intra, Max-Inter
where the Intra dimension is on Skill and Inter dimension
is on Skill as well, we first call the Exact-Min-Intra
subroutine which sorts N items and group these items that
are close to each other and obtain the following sessions,
s1 = {13}, 52 = {ta, 15,16}, 53 = {t7,13, 10}, and
sS4 = {l‘]o, i, t]z} where sy = 0.516, MUy = 0.6066,
sy = 0.726, and g, = 0.873 (see Fig. 2). Given the solu-
tion of these 4 sessions, we then create a complete graph
(Fig. 5) by considering each session as a node. The weight of
each edge in this graph is the Infer value of adjacent sessions
on the Skill dimension that are calculated using Equation 2.
The Ap-Max-Inter is then akin to the longest path prob-
lem. We convert these positive weights to negative weights
by introducing a minus sign and then apply our proposed
2-approximation algorithm for the traveling salesman prob-
lem (TSP) on metric space that gives us the following tour
T = {s1 —> s4 > s — s3 — s1}. We remove the edge
s» — s3 since it has the smallest weight. The solution of
Max-Inter is hence the sequence S =< s2, 54, 51, 53 >.

Alg-Min-Intra, Min-Inter problem is solved in a similar
manner by following the steps outlined above. The only dis-
tinction is that we do not have to convert weight to negative
weight.
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Fig.5 Ap-Max-Inter graph of Example 1

Algorithm 3 presents the generic pseudocode. These two
algorithms are based on heuristics and may not have any
provable bounds.

Algorithm 3 Algorithm for maximizing Inter with Intra as

a constraint
Require: N items, Number of sessions k, Length of session /, dimen-
sions d and d»

1: Sinir < k sessions of / items each, obtained by running Intra opti-
mization algorithm on d

2: G = (V, E) < complete graph with nodes of S;,;; and edge weights
are calculated based on d, values between a pair of sessions

3. Call Subroutine Ap-Max-Inter or Ap-Min-Inter on G

Theorem 12 Algorithm Alg-Min-Intra, Max-Inter has (1, 1/2)
approximation factor Min-Intra,Max-Inter problem, and
Alg-Min-Intra, Min-Inter has (1,4 — 2/k) approximation
factor Min-Intra,Min-Inter problem, as long as items in Intra
dimension have unique values.

Proof (Sketch) We provide the proof for Alg-Min-Intra,
Max-Inter and the proof of Alg-Min-Intra, Min-Inter works
analogously. Ex-Min-Intra is optimal. Since items have
unique values on Intra diversity dimension, there exists one
and only one set of ksessions that minimizes Intra diversity
values. The second step of the algorithm Alg-Min-Intra, Max-
Inter creates an ordering over these sessions. In that subset
of the search space, i.e., containing only solutions that start
with the sessions of Ex-Min-Intra where the Min-Intrais
optimal, our Max-Inter algorithm produces a solution which

is 1/2 the optimal solution. Hence the (1, 1/2) approximation
factor holds for Min-Intra,Max-Inter problem. Similarly, the
(1,4 — 2/k) approximation factor holds for Min-Intra, Min-
Inter problem. O

4 Experimental evaluations

We first conduct experiments involving human subjects on
music playlist recommendation and task recommendation
in crowdsourcing to observe the effect of diversity on user
satisfaction (in both applications) and worker performance
(in crowdsourcing). Then, using large-scale real data and
synthetic data, we examine the quality of our algorithms in
comparison with baselines and evaluate the scalability of our
approach.

Except for Sect. 4.2.5, which is related to the Variable
Length Sessions, the rest of the section focuses on the Fixed
Length Sessions.

4.1 Experiments with human subjects

We validate our framework in two applications: music rec-
ommendation, where we generate music playlists, and task
recommendation in crowdsourcing, where we generate task
sessions. These experiments are summarized in Table 4.

4.1.1 Music recommendation

We generate music playlists for users and consider different
contexts namely music for long drive, theme party, Sunday
morning, and learning a new music style, to observe how
diversity affects user satisfaction in different contexts. Each
playlist contains 5 distinct channels, each with 10 songs.
Dataset The dataset consists of 727 songs from 54 albums,
47 artists, and 10 genres. The songs are from albums that won
the Grammy Best Album of the Year Award between 1961
and 2020. The list of albums and their corresponding gen-
res are from Wikipedia, while the other information such as
artist, period, popularity, tempo, and duration is from Spotify.
Experiments flow We first collect preferred genres and
artists from users to form their profiles. We then generate
5 music playlists for each user. Each playlist has 5 chan-
nels, and each channel has 10 songs. The first 4 playlists are

Table 3 Optimization

algorithms and results for Fixed Algorithm

Running time Approximation factor

Length Sessions Alg-Min-Intra,Min-Inter

Alg-Min-Intra, Max-Inter
Alg-Max-Intra, Min-Inter
Alg-Max-Intra, Max-Inter

O(NlogN + k%) (OPT,4—2/k)
O(NlogN + k%) (OPT,1/2)
O(NlogN + NI + k%) heuristic
O(NLogN + NI+ k?) heuristic
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Table4 Summary of experiments with human subjects

Experiment # of workers  Setup Observed data Findings
1. Music 200 Users rate playlists. Each User satisfaction no. of User satisfaction, no. of selected songs,
Recommendation playlist has 5 channels. Each selected songs diversity and diversity rating are higher in
channel has 10 songs rating diversified playlists
2. Task 200 (total) ~ Workers complete and rate task  Worker satisfaction quality =~ Worker satisfaction and quality are higher
Recommendation sessions. Each task session throughput in diversified task sessions
has 5 task sets. Each task set
has 10 tasks
2.1. Controlled 102 Workers complete task sessions Workers’ preference Worker satisfaction is higher in diversified

Session Gap in session gaps of 1 min, 5

min, and 10 min

2.2. Random Session 98
Gap

Workers complete tasks
anytime

(diverse vs. similar task
sessions) factors affecting
workers’ satisfaction
(diversity, relevance,
others)

task sessions across all session gaps and
peaks at the 5-min session gap. Quality
is higher in diversified task sessions
across all session gaps. Workers prefer
diverse sessions diversity is the main
factor in 55% of the workers’ ratings

generated using the algorithms in Table 3, with dimensions
specified for each context in Table 5. The 5th playlist rep-
resents the baseline with No diversity. It consists of similar
songs randomly selected from the same dimension. Specif-
ically, in this case, all songs from the period 2000s. Lastly,
users evaluate the playlists by selecting songs they would
actually listen to, rating how much they like diversity in the
sessions, and providing an overall rating of the entire playlist.
The ratings are based on a 5-pt Likert scale where 1 is the low-
est and 5 is the highest. We measure user satisfaction using
the overall rating provided by users. We recruit 200 workers
(50 per context) from Amazon Mechanical Turk (AMT). We
pay the workers $0.10 for profile collection and $1.00 for
their evaluations.

Summary of results We observe in Table 6 that user sat-
isfaction in diversified playlists (Scenarios 1 — 4) is higher
compared to the No diversity baseline. This observation is sta-
tistically significant at p = 0.10 using a one-way analysis of
variance (ANOVA) [42]. The results are consistent with other
measures: workers select the smallest number of songs from
the No diversity playlist and the No diversity playlist receives
the lowest average diversity ratings. Moreover, these observa-
tions extend to different contexts, as shown in Tables 7, 8, and
9. These results are summarized in Table 4—-Experiment 1.
The sample size of 200 workers from the estimated 200, 000
workers in AMT [17] gives our results a 99% confidence
level and a 10% error margin (based on the Central Limit
Theorem [44]). In summary, our music experiment clearly
shows that diversity is preferred over No diversity. Addition-
ally, diversity definitions depend on context, as observed in
Tables 7, 8, and 9.

4.1.2 Task recommendation

In these experiments, we recommend task sessions to workers
in crowdsourcing. Each task session consists of 5 sets and
each set consists of 10 tasks.

Dataset The dataset consists of 20, 000 tasks from figure
Eight’s open data library [1]. Each task belongs to one of 10
types such as tweet classification, image transcription, and
sentiment analysis. Each task type is represented as a set
of keywords that best describe required skills. Additionally,
each task has a creation date, an expected completion time
(Iess than a minute), and a reward that varies between $0.01
and $0.05.

Experiments flow We collect a total of 200 user profiles
where workers indicate (from 1 to 5) their interest in complet-
ing tasks, which are described by a given set of keywords.
For each user profile, we generate task sessions using the
algorithms in Table 3 and a combination of the following
dimensions: skill, reward, duration, and creation date. We
also generate a No diversity baseline session. In this session,
we randomly pick a task type and randomly select similar
tasks belonging to that type. Next, workers complete and rate
the recommended sessions. We measure worker satisfaction,
quality of the completed tasks with respect to a ground truth,
and task throughput.

Satisfaction refers to how satisfied workers are with the
task sessions (a rating from 1 to 5 provided by each worker).
Quality refers to the percentage of correct answers from the
tasks completed by a worker. To measure quality, we use
the answers obtained from the dataset as the ground truth.
We use a naive script that relies on basic equality to evaluate
answer correctness. Throughput refers to the average number
of tasks completed per minute.

@ Springer



S. Nikookar et al.

Table 5 Diversity dimensions

per context Long drive Theme party Sunday morning Learn music
Intra Tempo Period Popularity Genre
Inter Popularity Genre Genre Tempo
:2(?::5631cﬁ)\;zr:ﬁeczﬁgﬁiOn Scenario No. of selected songs Diversity rating User satisfaction
1 Min-Intra, Min-Inter 15.16 3.57 3.54
2 Min-Intra, Max-Inter 15.05 3.66 3.66
3 Max-Intra, Min-Inter 14.71 3.59 3.71
4 Max-Intra, Max-Inter 14.66 3.69 3.71
5 No diversity 12.83 3.35 3.44

Maximum values among all algorithms (in each column) are in bold italic

Table 7 Average number of
selected songs per context

Scenario Long drive Theme party Sunday morning Learn music
1 Min-Intra, Min-Inter 16.58 14.86 14.76 14.42
2 Min-Intra, Max-Inter 15.82 15.06 14.12 15.20
3 Max-Intra, Min-Inter 16.52 13.64 14.30 14.38
4 Max-Intra, Max-Inter 16.24 13.96 15.04 13.40
5 No diversity 14.10 11.92 13.62 11.68

Maximum values among all algorithms (in each column) are in bold italic

We also investigate the impact of session gap, the time
interval between completing sessions, in our proposed algo-
rithms. We conduct Experiment 2.1 in Table 4 where we
assign 102 of the 200 workers to complete the sessions in 3
fixed time intervals of 1, 5, and 10 minutes between ses-
sions (34 workers for each fixed time interval). We also
ask these workers their preference between diversified and
non-diversified sessions and to indicate which factor mainly
affects their satisfaction.

In total, we recruit 200 workers, pay each $0.03 for profile
collection and at least $0.35 for task completion.

Summary of results Table 10 presents the average worker
satisfaction, quality, and throughput in the task recommen-
dation experiments. We observe that worker satisfaction and
quality in diversified sessions are higher compared to the
No diversity baseline. This observation is statistically sig-
nificant at p = 0.01 using a one-way analysis of variance
(ANOVA) [42]. On the other hand, throughput is marginally

Table 8 Average diversity
rating per context

Scenario Long drive Theme party Sunday morning Learn music
1 Min-Intra,Min-Inter 3.64 3.52 3.64 3.46
2 Min-Intra, Max-Inter 3.70 3.50 3.82 3.61
3 Max-Intra, Min-Inter 3.70 3.54 3.58 3.54
4 Max-Intra, Max-Inter 3.84 3.68 3.58 3.64
5 No diversity 3.34 3.30 3.46 3.30

Maximum values among all algorithms (in each column) are in bold italic

Table 9 Average user
satisfaction per context

Scenario Long drive Theme party Sunday morning Learn music
1 Min-Intra, Min-Inter 3.62 3.88 3.34 3.32
2 Min-Intra, Max-Inter 3.76 3.72 3.66 3.50
3 Max-Intra, Min-Inter 3.86 3.98 3.56 3.44
4 Max-Intra, Max-Inter 3.76 3.80 3.70 3.58
5 No diversity 3.60 3.42 3.46 3.28

Maximum values among all algorithms (in each column) are in bold italic
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Table 10 Task recommendation

sessions Session type Worker satisfaction Quality (%) Through put
1 Min-Intra(creation date), Min-Inter(skill) 4.26 0.67 7.72
2 Min-Intra(skill), Max-Inter(reward) 4.30 0.68 7.85
3 Max-Intra(skill), Min-Inter (reward) 4.29 0.66 7.60
4 Max-Intra(duration), Max-Inter (skill) 4.28 0.68 7.71
5 No diversity 4.01 0.62 7.92

Maximum values among all algorithms (in each column) are in bold italic

Table 11 Throughput, quality, and worker satisfaction of diversified
and non-diversified sessions with different session gaps

Session type Session gap (min)

1 5 10
Worker satisfaction Diversified 3.76 4.30 4.21
Non-diversified 348  4.09 391
Quality Diversified 0.68  0.64 0.65
Non-diversified 0.62 0.55 0.59
Throughput Diversified 8.50  8.82 8.01

Non-diversified 8.57 10.67 8.18

higher for the No diversity case. This observation confirms
previous studies where workers get more proficient in com-
pleting similar (and hence not diverse) tasks, allowing them
to become faster at task completion [18].

In Table 11, we present the average worker satisfaction,
quality, and throughput grouped by session gap. The values
are from the 102 workers in the Experiment 2.1 in Table 4
where we control the session gap. For each session gap (1, 5,
10 minutes), 34 workers complete the 5 session types listed
in 10. The Diversified rows in Table 11 show the aggre-
gated values obtained in the 4 task sessions generated by our
algorithms, while the Non-diversified rows show the values
obtained in the baseline or the No diversity session.

Our findings show that quality and worker satisfaction are
better in the diversified tasks sessions generated by our pro-
posed algorithms across all session gaps. These observations
are significant at p = 0.10 using a 7-test [15]. Moreover, it
is interesting to note that worker satisfaction peaks at the 5-
minute session gap as seen in Fig. 6. For the task sessions, 5
minutes may be the ideal break time workers need to alleviate
fatigue or boredom [41]. We also note that our findings are
consistent with the 102 workers’ responses where 72.5% of
the workers prefer diversified sessions over non-diversified
sessions; 55% of the workers consider diversity in their rat-
ings, 23.3% consider relevance, and 21.7% consider other
factors.

In summary, our task recommendation experiments clearly
show the benefit of diversity in the workers’ satisfaction and
the quality of crowdsourced tasks.

4.2 Large data experiments

The goal here is to evaluate our algorithms with appropriate
baselines (including exact solutions) and compare them qual-
itatively (approximation factors, objective function value)
and scalability-wise (running time). All algorithms are imple-
mented in Python 3.6 on a 64-bit Windows server machine,
with Intel Xeon Processor, and 16 GB of RAM. All num-
bers are presented as the average of five runs. For brevity we
present a subset of results that are representative.

4.2.1 Datasets

a. 1-Million Song: We use the Million Songs Dataset [9] that
has 1 million songs (please note the Spotify dataset used in
Sect. 4.1 is small in scale). We have normalized the data
to be between [0, 1]. This dataset also includes artist pop-
ularity and hotness, genre, release date, etc. The presented
results are representative and consider tempo and loudness
as dimensions.

b. Synthetic dataset: The presented results on this are the
ones that vary distributions of the underlying dimensions. We
sample from three distributions: Normal, Uniform, and Zip-
fian. For Normal distribution, data are sampled with mean and
standard deviation, u = 250, = 10. For Uniform, datasetis
sampled from Uniform distribution between [0,500], and for
Zipfian distribution default exponent is set to o« = 1.01. We
produce a pool of 239 items for each of our three distributions.
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Fig.6 Worker satisfaction in varying session gaps
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4.2.2 Implemented baselines

In addition to Random where we generate random sequences,
we implement different baselines and compared the perfor-
mance of our algorithms.

Optimal. The optimal baseline is based on an Integer
Programming (IP) algorithm that solves the problem opti-
mally on small instances. The rationale behind implementing
IP is to verify the theoretical approximation factors of our
algorithms against the optimal solution. We used Gurobi as
the solver.?

Baseline-MMR. This baseline is inspired by the MMR
algorithm [11] used in diversifying web search results. MMR
takes a search query and returns relevant and diverse results.
Hence, our mapping to MMR optimizes Intra session diver-
sity only. At each iteration, Baseline-MMR considers an
item to be included or not in the result and calculates two
scores: the Intra score of adding a new item to a session and
the max (resp., min Inter) score of a new session to all other
sessions in the case of Max-Inter (resp., Min-Inter). It then
picks the highest or the lowest weighted sum of these two
scores based on the Intra part of the problem. The item with
that score is chosen to be added to the session. This process
is repeated until there is no item left.

Baseline-Constrained-KMean. Thisisacluster-
ing technique similar to the one proposed in [10], which uses
the K-Mean Clustering approach to produce a set of £ clus-
ters, each containing exactly / items. Following that, these
clusters are sorted by increasing mean to generate a sequence
of sets as the final result.

4.2.3 Summary of results

Overall, for our problems, where both Intra and Inter
diversity are to be optimized, our algorithms are the unan-
imous choice considering both quality and scalability.
When the Intra and Inter diversity is studied individually,
our algorithms outperform all the baselines and empir-
ically produce approximation factors close to 1, across
varying k, N, and different distributions. The only excep-
tion to this latter observation is Baseline-MMR, which
performs better in maximizing Inter diversity (while per-
forming very poorly for Intra optimization), which is due
to its focus on optimizing Infer diversity only. Moreover
Baseline-Constrained-KMean performs poorly for
the maximization problems; our algorithm convincingly
outperforms it in both Intra and Inter minimization and
maximization. This baseline also exhibits poor scalability.
Contrarily, our algorithms are highly scalable and are much
more efficient compared to the baselines.

2 https://www.gurobi.com/resource/switching-from-open-source/.

@ Springer

4.2.4 Quality evaluation

We vary k (the number of sessions), N (the number of items),
and the data distribution. The default values are N=2!3 and
k=27 with a uniform distribution.

Comparison against optimal Table 12 shows the approx-
imation factors for our algorithms for two default settings:
(N =28,k =2% and (N = 2!°, k = 27) using 1-Million
Song dataset. We can see that our algorithms produce an
approximation factor equal to 1 when Intra diversity is min-
imized and a factor very close to 1 when Intra diversity is
maximized.

When Inter diversity is minimized, the resulting approxi-
mation factors are close to 1. However, when Inter diversity is
maximized, the approximation factors are slightly low as our
algorithm solves the Intra part of the problem before ordering
the sessions to maximize Inter diversity. It is hence bound by
the constraints of the solution to Intra. Nevertheless, the solu-
tion formulated by our algorithm for Min-Intra,Max-Inter
and Min-Intra,Min-Inter is able to produce a point on the
Pareto Front in the optimal solution region which meets both
the Intra and Inter objectives. The synthetic dataset mimics
this trend as well.

Based on the approximation factor results and the above
analysis, we conclude that our algorithms produce good and
in some cases the best possible solution for the 4 problems
we attempt to optimize.

Varying N Figures 7 and 8 show how Inter scores
change as we vary N from 2'° to 2!¢ for Baseline-MMR,
Baseline-Constrained-KMean, Random and our
algorithms for 1-Million Song and synthetic dataset, respec-
tively. Figures 7a, ¢ and 8a, ¢ confirm that our algorithm
performs best when Infer diversity is minimized. The objec-
tive function improves with increasing N. On the other hand,
as seen in Figs. 7b, d and 8b, d, when Infer diversity is max-
imized, Baseline-MMR outperforms our algorithm with
increasing N. This is because our algorithm is subject to
the constraints imposed by optimizing Intra diversity first
then maximizing the Inter diversity, while Baseline-MMR
focuses on the Inter dimension only.

We also compare Intra scores while varying N. Tables 13
and 14 showcase the approximation factors of our algorithm’s
Intra considering Optimal for N < 23 and N > 213,
A ratio of 1 means that the algorithm produces the best or
optimal solution. These results showcase that our solutions
achieve even better bound empirically compared to the the-
oretical bounds. Tables 13 and 14 also show that although
Baseline-MMR performs better in Max-Inter problem, but
it performs poorly for both Min-Intra and Max-Intra prob-
lems.

Interestingly, Random often times produces approxima-
tion factor close to 1 for N > 2'3 when maximizing Intra.
This is due to the fact that /nfra is maximized when the vari-
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Table 12 Approximation
factors on 1-Million Song
dataset

Our scenarios

N =8192,k =16

N =1024,k =128

Intra Intra Intra Inter
Min-Intra, Min-Inter 1 1.05 1 1
Min-Intra, Max-Inter 1 0.35 1 0.49
Max-Intra, Min-Inter 0.99 1.06 0.98 1.04
Max-Intra, Max-Inter 0.99 0.58 0.95 0.69

ance of the sessions is maximized which is one of the side
effects of Random algorithm. However, Baseline-MMR
and Random produce very poor approximation factors when
minimizing Intra. Contrarily, our solutions stay close to 1
approximation factor for both minimization and maximiza-
tion of Intra diversity. As N increases, the Intra scores do not
see any drastic change in approximation factors and always
stays close to 1.

Varying k Figures 9 and 10 present how Inter scores
evolve as we vary k between 2* and 2!! for different base-
lines compared to our algorithms. We keep N constant at
213 We observe Figs. 9a, ¢ and 10a, c that our algorithm per-
forms significantly better than other baselines in minimizing
Inter diversity. For Figs. 9b, d and 10b, d, our observation
is similar to the case of varying N; Baseline-MMR per-
forms slightly better. Overall, Inter diversity increases for all
4 scenarios as k increases. This is because of the fact that
when more sessions are present, it allows for more diversity
between each session.

We present approximation factors of Intra in Tables 15
and 16 and observe similar trend as to when we vary N.
Also, similar to varying N for Intra scores, the approximation
factors here also stay close to 1 for our algorithm (Tables 15
and 16).

Varying distribution Figures 11 and 12 present how our
algorithm and other baselines perform as we vary data dis-
tributions. We set N to 23 and & to 27.

Considering Intra scores, our algorithm performs the best
using Uniform distribution for all 4 scenarios. However, Nor-
mal performs slightly worse at times with our algorithm when
we attempt to maximize Intra.

When we compare Inter scores, our algorithm per-
forms best with Uniform distribution. In Figures 11(b), (d),
Basel ine-MMR outperforms our algorithm due to the same
reasons mentioned in the varying k and N section of this
paper.

Baseline-Constrained-KMean outperforms our
algorithms for minimizing Intra and Inter when using the
Zipf distribution.

We also observe that across all 4 scenarios, Zipf produces
scores much larger in magnitude than Normal or Uniform
distribution. This is due to the range of values in Zipf,
which results in larger Intra and Inter scores. Overall, our

algorithms stand out to be the best choice, with its best per-
formance being on Uniform distribution.

4.2.5 Variable Length Sessions

We relaxed two limitations of the Fixed Length Sessions
problem in this section: a. session lengths varies; b. just a
subset of items is recommended. The complexity of the Min-
Intra problem remains unchanged, while the NP-hardness of
Max-Intra still holds. Finally, Inter problems’ NP-hardness
remains intact. We vary k between 2% and 2! and keep N as
its default value for different baselines compared to our algo-
rithms. These experiments incorporate an extra input that is
generated at random and indicates the length of each session
as a list of k values between 2 and /. In Example 1, N = 12
and k = 4, therefore / = 3. As a consequence, [2, 3, 2, 3]
is the length list containing random integers between 2 and
3, which is our /. As we have 8192 items in our experiments
for each k value, averaging the items that are recommended
in each scenario yields 4568 items out of 8192.

The results are presented in Fig. 13 and Table 17. When
maximizing Intra, Random produces an approximation fac-
tor close to 1 for k < 128. This is due to the same reason
that is explained in the varying k section that when Intra is
maximized, the variance of the sessions is also maximized.
Except for the Alg-Max-Intra, Min-Inter problem, all of the
scenarios follow the same trend of Fixed Length Sessions.
In comparison with the other baselines, Variable Length Ses-
sions achieve a higher Intra approximation factor, as shown
in Table 17.

Since Baseline-MMR could not finish in reasonable
time for scenario when k is 21!, we leave it blank in Fig. 13.

4.2.6 Scalability evaluation

Figures 14, 15 and 16 and 17 compare the running time of
the three algorithms for 1-Million Song and synthetic dataset.
The running time of Baseline-Constrained-KMean
was not included in these figures since some scenarios took
many days to complete. Naturally, as N increases, the running
time of our algorithms increase. We also observe that as we
vary N with k = 27, our algorithms are the fastest in all
diversity scenarios.

@ Springer
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Fig. 13 Inter scores with varying k for 1-Million Song dataset for Variable Length Sessions

Table 13 Intra approximation factors varying N on 1-Million Song dataset

N Algorithms
MMR Random Constrained-KMean Ours
Min-Intra (minimizing & maximizing Inter) <8192 0.008 6.41E—05 0.165 1
> 8192 0.002 5.42E—05 0.167 1
Max-Intra (minimizing & maximizing Inter) <8192 0.22 0.98 0.0173 0.99
> 8192 0.021 0.92 0.0187 0.99
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Table 14 [Intra approximation factors varying N on synthetic dataset

N Algorithms
MMR Random Constrained-KMean Ours
Min-Intra (minimizing & maximizing Inter) <8192 0.006 7.53E—05 0.018 1
> 8192 0.005 6.56E—05 0.0086 1
Max-Intra (minimizing & maximizing Inter) <8192 0.19 0.94 0.007 0.99
> 8192 0.019 0.99 0.0076 0.99
Table 15 Intra approximation factors varying k on 1-Million Song dataset
k Algorithms
MMR Random Constrained-KMean Ours
Min-Intra (minimizing & maximizing Inter) <128 0.011 0.0021 0.263 1
> 128 0.0012 4.95E—-06 0.069 1
Max-Intra (minimizing & maximizing Inter) <128 0.035 0.92 0.05 0.99
> 128 0.29 0.85 0.0027 0.99
Table 16 Intra approximation factors varying k on synthetic dataset
k Algorithms
MMR Random Constrained-KMean Ours
Min-Intra (minimizing & maximizing Inter) <128 0.035 0.0013 0.03 1
> 128 0.0008 5.05E—406 0.0045 1
Max-Intra (minimizing & maximizing Inter) <128 0.055 0.99 0.03 0.99
> 128 0.42 0.85 0.001 0.99
Table 17 Intra approximation factors varying k on 1-Million Song dataset for Variable Length Sessions
k Algorithms
MMR Random Constrained-KMean Ours
Min-Intra (minimizing & maximizing Inter) <128 0.215 0.0127 0.39 0.725
> 128 0.0485 0.0001 0.058 0.76
Max-Intra (minimizing & maximizing Inter) <128 0.435 0.98 0.033 0.714
> 128 0.39 0.78 0.0013 0.79
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Fig. 14 Running times varying N for 1-Million Song dataset
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In Figs. 16 and 17, we vary k and set N to 213 'We observe
that our algorithms scale very well but is sometimes slightly
slower than Random. This is unsurprising, as Random does
not even have to do much work to generate sessions (recall
that however it performs poorly qualitatively). However, we
observe that our algorithm is consistently faster with increas-
ing values of k. The scalability evaluation plots for relaxed
problem experiments closely resemble those of the original
problem for the 1-Million Song dataset, as seen in Fig. 18.
Overall, we find that our algorithms are highly scalable and
produce results within a few seconds for very large values of
Nand k,while some of the baselines take hours to complete.

5 Related work

Applications Diversity has been extensively studied in rec-
ommendation and search applications [2,6,13,22,28,29,34,
37-39,45,47-51], to return items that are relevant as well
as cover full range of users interests. The goal is to achieve
a compromise between relevance and result heterogeneity.
Existing works [26,46] have also acknowledged the need
for diversity and sequence-based modeling in different rec-
ommendation applications. Recent works in crowdsourcing
[21,35] have demonstrated the importance of diversity in
task recommendation. Task diversity is grounded in orga-
nization theories and has shown to impact the motivation of
the workers [12]. Amer-Yahia et al. [5] propose the notion
of composite tasks (CT), a set of similar tasks that match
workers’ profiles, comply with their desired reward and task
arrival rate. Their experiments show that diverse CTs con-
tribute to improving outcome quality. A recent work has
studied Intra and Inter-table influence in web table match-
ing [21] involving crowd. Even though completing similar
tasks lead to faster completion time [18], but such compo-
sition leads to fatigue and boredom, and task abandonment
[16,25,27]. Aipe and Gadiraju [3] empirically observe that
workers who perform similar tasks achieve higher accuracy
and faster task completion time compared to workers who
worked on diverse tasks. However, they find that these work-
ers experience fatigue the most. Alsayasneh et al. integrate
the concept of diversity in composite tasks and empirically
find a positive effect of diversity in outcome quality [4].
In [43], the authors investigated a sequential group recom-
mender that is aware of the group’s previous interactions
with the system by adding the concept of satisfaction, which
characterizes how relevant the recommended items are to
each group member.

For all of these applications, diversity is studied set-based
or sequence-based only.

These applications call for a deeper examination of diver-
sity and a powerful framework to capture its variants, which
is our focus here.

@ Springer

Set and Sequence Diversities Existing works on diver-
sification could be classified as set-based only [2,22,34,37,
38,45] or sequence-based only [6,13,29,31,51]. As an exam-
ple, in [51], the authors study sequence-based diversity that
is defined as the diversity of any permutation of the items.
Another example is [6], in which taxonomies are used to sam-
ple search results to reduce homogeneity. In [2], the authors
proposed an algorithm with a provable approximation fac-
tor to find relevant and diverse news articles. In the database
context, Chen and Li [13] propose to post-process structured
query results, organizing them in a decision tree for easier
navigation. In [8,30] the notion of diversity is used in the
results of queries to produce closest results such that each
answer is different from the rest. In recommender systems,
results are typically post-processed using pair-wise item sim-
ilarity to generate a list that achieves a balance between
relevance and diversity. For example, in [19], recommenda-
tion diversity was formulated as a set-coverage problem. By
distinguishing between item and user diversity and focusing
on various definitions of each, [31] investigated a diversity-
aware recommender system for a single user or a group of
users.

To the best of our knowledge, existing works have focused
on achieving diversity in a single set. We solve set-based
and sequence-based diversities in tandem and develop algo-
rithms with guarantees.

6 Conclusion

We initiate the study of a formal and algorithmic frame-
work to address diversity for s sequence of sets that has
natural recommendation applications (from song playlists
to task recommendations in crowdsourcing). The combina-
tion of Intra and Inter session diversities gives rise to four
bi-objective optimization problems. We propose algorithms
with guarantees. Our extensive empirical evaluation, con-
ducted using human subjects, as well as large-scale real and
simulated data, shows the need for diversity to improve user
satisfaction and the superiority of our algorithms against mul-
tiple baselines.

In addition to theoretical questions, this work opens up
interesting directions that are of empirical interests: an imme-
diate extension of our work is to observe users as they
consume items and learn how diversity dimensions and their
respective definitions could be personalized for different
users. Similarly, we are empirically exploring how to choose
the preferred diversity dimensions depending on the underly-
ing context for different applications. Finally, an interesting
open problem is to understand how time affects underlying
contexts and fine tune diversified recommendations based on
that.
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In terms of other widely used diversification functions,
there exist diversity functions that consider radius (maxi-
mum/minimum distance) [24] or sum (sum of distance). One
can maximize or minimize these based on the underlying
optimization goal. Many of these problems relate to the Facil-
ity Allocation Problem [7] and its variants, as well as Graph
Partitioning problems [40]. These problems are known to be
NP-hard. Our produced greedy solutions could be adapted to
solve these variants. However, whether these solutions would
be just heuristic or they would accept provable approxima-
tion factors would require revisiting and analyzing each of
them and that can be studied in the future work.

We are also going to study the approximation factors of
the proposed algorithms for the Variable Length Sessions in
the future.
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