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Abstract—We consider autocorrelation-based low-complexity
decoders for identifying Binary Chirp codewords from noisy
signals in NV = 2™ dimensions. The underlying algebraic structure
enables dimensionality reduction from N complex to m binary di-
mensions, which can be used to reduce decoding complexity, when
decoding is successively performed in the m binary dimensions.
Existing low-complexity decoders suffer from poor performance
in scenarios with strong noise. This is problematic especially in a
vector quantization scenario, where quantization noise power can-
not be controlled in the system. We construct two improvements
to existing algorithms; a geometrically inspired algorithm based
on successive projections, and an algorithm based on adaptive
decoding order selection. When combined with a breadth-first
list decoder, these algorithms make it possible to approach the
performance of exhaustive search with low complexity.

I. INTRODUCTION

Subspaces of unit norm complex valued vectors modulo
overall phase rotations are of interest in many information
processing tasks, ranging from non-coherent wireless com-
munication [1], [2], [3] and activity detection [4] to vector
quantization of Channel State Information (CSI) [5], [6], [7], [8]
and deep learning [9], while also being the fundamental objects
of interest in finite dimensional quantum mechanics [10]. For
communication [2], [3], quantization [5], [7], [8] and quantum
coding [11] scenarios, codebook based approaches are essential.

Binary Chirps (BCs) [12] are codebooks of complex unit
norm vectors in [N = 2™ dimensions. BCs have been explicitly
used for CSI quantization in both multiuser [6] and single
user [13] scenarios. In a communication scenario, transmitting
codewords describing subspaces is justified in a non-coherent
setting, when the channel is unknown to the receiver, so that
information cannot be transmitted with the overall phase or
amplitude of the signal. In this context, BCs, a.k.a. Reed-Muller
sequences, have been recently used both for unsourced [2] and
massive [14] random access.

The algebraic structure of BCs enables low-complexity de-
coding algorithms with complexity O(m(m + 1)N). These
algorithms are based on sequential search in the m binary
dimensions. Unfortunately, in scenarios with strong noise, the
low-complexity algorithms are prone to error. Thus, if BCs
were to be used in, e.g., vector quantization, where noise is
very strong, the low-complexity decoding algorithms of prior
art cannot be used.

It is the objective of this paper to improve the low-complexity
decoding algorithms such that they can cope with strong noise.
We first develop a geometric successive projection algorithm,

which reduces the noise contribution when decoding proceeds
sequentially in the m binary dimensions. We also devise an
algorithm to select the order to search over the binary dimen-
sions. Finally, to increase the probability of finding the correct
combination in the sequential search, we develop a breadth first
tree search [15] algorithm to address BC decoding.

II. SYSTEM MODEL

We consider a signal model of the form
Z=WwW+n, (D)

where the codeword w is an N = 2™-dimensional unit norm
complex vector, while n represents noise. The model covers
both a quantization and a non-coherent communication sce-
nario. The codewords come from a Binary Chirp codebook,
discussed below. The phase and amplitude of w, and thus of z
are irrelevant. The codewords thus live in complex projective
space CPV~1, or equivalently, they represent complex Grass-
mannian lines living in G¢ (N, 1). In a communication scenario,
a typical signal model would be z = hw +n, where he C is a
random complex number. As we concentrate on non-coherent
communication, and detecting a single user, h is suppressed
here. In a communication scenario, the noise n would typically
be modeled as Additive White Gaussian Noise (AWGN), and
z would not be unit norm. In a quantization scenario, z is a
unit norm complex vector, and quantization noise n would be
uniformly distributed on a Voronoi cell.

The relevant metric in Gc(N,1) is the chordal distance
de(ur,u2) = /1 - [ull uy|?, and the quality of a Grassmannian
codebook C c G¢ (N, 1) is measured by the minimum chordal
distance.

The objective of a decoder, both in the communication and
quantization scenario, is to find the closest codeword to z:

wo = argmind.(z,w). 2)

wel
The closest codeword can be found by exhaustive search, which
performed blindly, is of order O(N x|C|). For binary chirps, the

5+log, N
complexity would be O(v/ N s ). For real-time operations,
a low-complexity decoding algorithm is a must.

III. BINARY CHIRPS

Binary Chirps (BCs) [12] are unit norm vectors in CV
with many desirable algebraic and geometric features. They
are constructed in terms of binary objects in m = log, NV
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dimensions as follows. For an m x m binary symmetric matrix
S € Sym(m;2) and a binary vector b € FJ*, a BC is defined as

ivSvT+2vbT

3)

:IVEFEH

Wep = — [
S,b N

We see that BCs are made of two parts: a mask sequence [7]
mg = [iVSVT] corresponding to the quadratic form Qg : v —
vSv' and a Hadamard sequence hy, = [(—1)"bT]. Overall,
the exponents in (3) are evaluations (modulo 4) of degree 2
polynomials in m variables, and therefore the collection of BCs
is just an exponentiated second order Reed-Muller code.

The algebraic properties of BCs arise from their connection
to the Heisenberg-Weyl group HWy in N dimensions, gen-
erated by the N x N hermitian Pauli matrices E(x,y), which
are parametrized in terms of two m-dimensional binary vectors
x,y € F', see the Appendix. A binary symmetric matrix S
defines a maximal commutative subgroup of HWj:

Ss = {E(x,xS) |xeF}'}. 4)

The subgroup Sg can be generated by the m Pauli matrices
E(e,,s;) forr=1,...,m, where {ey,...,e,,} is the standard
basis of F7’, and s, is row 7 of S. A BC parametrized by a
symmetric S is a simultaneous eigenvector of Sg, and thus of
these m Pauli matrices. This is the main feature that enables a
low-complexity decoding algorithm.

The codebook of binary chirps Cenirp has excellent distance
properties. If w; and w, are BCs with different mask se-

quences, then
dC(W17W2)Z v 1_2_Ta (5)

where r = rank(S; — So) [12], from which we see that
dc(Cehirp) = 1/v/2. On the other hand, since a BC is
parametrized by a symmetric matrix and a binary vector, it
follows that [Cenirp| = 2™™+3)/2 In [16], [17] we expand Cepirp
to a codebook of size approximately 2.4 times larger, while
keeping the minimum chordal distance intact. On the other
hand, the codebook Cchirp contains a maximal set of mutually
unbiased bases with minimum chordal distance /(N —1)/N,
corresponding to the Kerdock symmetric matrices [18].

IV. Low-COMPLEXITY DECODING OF BINARY CHIRPS

Exploiting the underlying algebraic structure, one can de-
code (1) using the algorithm of Howard et al. [12], which is of
order O (N (logs N)Q).

By definition, [w"E(x,y)w| < 1 for any Pauli matrix
E(x,y), and it would be maximized for the stabilizer Sg
of w. We define an autocorrelation sequence related to shift
e.,r=1,...,m as

fr(Y) = ZHE(era y)z (6)
= wlE(e,,y)w+2% (WHE(e,,, y)n)+nHE(er, y)n.

These are elements of N-dimensional vectors f,, indexed by
the m-dimensional binary vector y € F3'. The Pauli matrix
E(e,,y) is given in (28). Here, there is a wanted signal
component, a cross-term between wanted signal and noise,
and a noise component. If there were no noise, the largest
absolute value of f,. would directly single out the row s, in S,

corresponding to the E(e,,y) which has w as an eigenvector.
Thus, from |f.|, » = 1,...,m, one may find S. Comparing to
cross-correlations, the noise contributions in the autocorrelation
sequences are larger. Direct computation of cross correlations
would, however, have exhaustive search complexity.

Computing the autocorrelation sequences (6) directly would
consume O(mN?) operations. In [12], complexity is reduced
by computing each of the vectors |f.| with an N-dimensional
Hadamard transform, consuming O(mN') operations. This will
be detailed in Section V below.

If the noise is strong, the algorithm as described may not
output a symmetric matrix. To enforce a symmetric output, once
rows 1,...,r of S are found, the search for row r + 1 has to be
performed on an (m — r)-dimensional subspace commensurate
with the previously reconstructed rows.

With S in hand, the algorithm of [12], continues to estimating
b by dechirping. Essentially, the b generating the Hadamard
sequence hy, = [(—1)"bT] is found by performing a Hadamard
transform. The overall decoding complexity thus becomes
O((m+1)mN). This will also be detailed in Section V.

If the noise is strong, the algorithm rarely finds the closest
codeword. In a communication scenario, the signal-to-noise
ratio can be controlled by, e.g., using more energy to transmit
the codewords. In a quantization scenario, we cannot affect the
level of quantization noise—noise is uniformly distributed near
and far from the codewords.

Our prime goal is to develop improved low-complexity
decoding algorithms for BCs that solve (2) with high probability
even in scenario with strong noise.

V. GEOMETRY OF BINARY CHIRPS

In [16] we provide a novel direction to understand BC geom-
etry. This leads to an improved understanding of the decoding
problem, and reveals possibilities for improving decoders.

We think of the mask sequence mg as a diagonal unitary
matrix Gp(S) in the unitary group U(N). Such diagonal
matrix has the desirable property that it fixes the Heisenberg-
Weyl group under conjugation [19]:

Gp(S)E(x,y)Gp(S)! = tE(x,y +x8S). (7

Unitary matrices that fix the Heisenberg-Weyl group under
conjugation, that is, the normalizer of HWy in U(N) form
the so-called Clifford group [11].

We denote the standard computational basis of C? as |0) =
[1,0]T and |1) = [0,1]T. The corresponding row-vectors are
denoted by (0|, (1. Basis vectors in CV = (C2?)®™ can then be
expressed in terms of vectors v = (v1,...,v,,) € F5* of m bits.
Defining |v) := [v1) ® - ® |vy,), the set {|v) | v € F5'} is the
standard basis of column vectors in C¥, i.e., the columns of
the /N-dimensional identity matrix.

The Hadamard sequence is then a column of the Hadamard
matrix, which can be written in terms of a binary sum as

1 T
TN L2, ST v (8)

which also fixes HWy by conjugation:

Hy -

;
HyE(x,y)Hy =i7 E(y, x), 9)
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and thus belongs to the Clifford group. Combining all together,
a BC wg p, is the bth column of the matrix Gp(S)Hy. Next,
the bth column of Hy is wo p, and for all x € F7* we have

S e 3 (-1 )

E(x,0)wop = ——
veFD?

\/N uelF7*
1

T T
= ﬁ Z (—1)Vb [v+x) = (—1)Xb W0,b-
Ve

That is, wop, is an eigenvector of E(x,0) with eigenvalue
(~1)*®". Combining this with (7), we have that the BC wsg p,
is an eigenvector of E(x,xS) for all x € F5* with corresponding
eigenvalues +1. Using (30) and (31) we see that the set (4) is a
collection of N commuting matrices closed under multiplica-
tion, that is, a maximal stabilizer. As such, these matrices can
be simultaneously diagonalized, and interestingly, G p(S)Hy
does the job. The collection of chirps with the same mask
sequence {wsp, | b € F3'} is thus the common eigenspace of
Ss. Since Sg is a group, it is sufficient to work with a generating
set. We use the canonical choice {E(e,,s;) | r =1,...,m},
and refer the reader to [16], [17] for more details.

Using this, we can compute autocorrelations of the code-

(10)

words w of (3), needed in decoding. For each r = 1,...,m,
consider
WHE(eT,y)W:z'e*yT > (—1)vaw(v)w(v+er) (11)
veFm
i« o T
=5 S (~1)lerSv (12)
veFD®

for all y € F5*. We used (28) for the first equality. The exponent
a in (12) can be explicitly computed but for our purposes is
irrelevant. The largest value is achieved when e,.S +y = 0, that
is, y = s,—the rth row/column of S.

Recalling (8), it directly follows from the first equality that
the vector f, with elements f,.(y) = z"'E(e,,y)z (6) indexed
by the binary vector y, can be computed as

f, =i Hy (z © E(e,,0)z") , (13)

where ® is the elementwise product. The vector f of auto-
correlations can thus be computed with one N-dimensional
Hadamard transform.

The dechirping operation of [12] to find b while knowing S
works similarly. We compute

1 T
wE(0,y)ws 0=+ 3 (-1)tr+P (14)

veFT
for all y € F5*. This has a maximum at y = b.

We can now compute the eigenvalues of wgy wrt the
commuting Pauli matrices defined by the rows s, of S as

5T Z (—1)VSIiVSVT+2bVT|V+er>

)
Vv N velF3*

" Z (_1)(e,ﬂ—v)sIZ-(er+v)S(eT+v)T+2b(er+v)T|v)

\/N veF

—1)br
:( ) Z Z-VSVT+2va|V> _ (—l)bTWS7b,

\/N veFD?

E(er7 ST)WS,b =

5)

where the rth diagonal entry of S is s, = eTSI = eTSeI and

the rth entry of b is b, = e, b'. Thus Wwg b 1S an eigenvector
of E(e,,s,) with eigenvalue (-1)* for all r=1,... ,m.

VI. IMPROVED DECODING ALGORITHMS

Throughout the process, we will decode a BC w by finding
a maximal set of commuting Paulis E such that z is close to
a common eigenvector of these; Ew = (-1)°w. As discussed
above, in a noiseless situation we need to find only a generating
set {E(e,,s, )}, for which

E(e,,s.)w = (-1)"w, (16)
see (15). The rows of S are then given by s,., while the elements
in b are b,. The m signs (~1)° completely determine the
column vector b, and thus dechirping is automatically taken
care of.

As in [12], we estimate parametrizing symmetric matrix S
one row at a time. The generic problem at hand is to determine
row r of S and element b, = ¢, conditioned on a set R of
previously determined rows. Let S be the partial symmetric
matrix determined by the rows in R. The search space for
E(e,,y) is then restricted to

Vo={yelFy |y, =5, forallie R}, 17
commensurate with S. This will guarantee S to be symmetric
and decoding within the codebook. We are thus searching for
a Pauli E = E(e,,y) with y € ), to be commensurate with
previously determined Paulis, and a sign o = (-1)%, such that
Ew=0w.

A. Decoding Metric & Half-space Projections

Pauli matrices are in one-to-one correspondence to a set
of half-space projection operators, see (29). Thus, from an
estimated E(e,,s,.), a projection operator

1
Hr,s = 5 (IN + (_1)EE(eT7ST)) ; (18)
can be constructed, for which we have
wWsp, ife=b,
II, = ’ 19
eWSb {0, if £ % by (19)

This operator projects to an N /2-dimensional subspace.

For decoding, we consider autocorrelation sequences (6),
retaining the sign information. These can be reinterpreted in
terms of the projectors (19). For any Pauli matrix E(e,,y) and
binary e, we can construct a projector of the form (19). The
length of z projected with this operator is

2 H 1 H €
|, 2|2 = 2" T, .2 = 5(z 2+ (-1)°f(y)). 0
We thus see that finding the largest absolute value of the

autocorrelation (6), together with its sign, directly finds the half-
space to which the projection of z is largest.
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Algorithm 1 Decoding row r in S.

Algorithm 2 Selecting decoding order.

Input: Vector z and metric = |z||?, partial estimate S,
Vector of sign-bits b, rows estimated R,
Row to estimate r.

1. Compute f.(y) = z"E(e,,y)z for y € FJ* using (6).

2. Find search set ), c F5* from R, § and r using (17).

3. Find ordered set of yj, € V. with K largest |f,.(y)|-

4. for k=1,....K

Estimate Sy, is S with row given by yg.

Metric is . = 5 (1 + | fr (y1)])-

Sign is o = signf(yx)-

Sign-bit vector by, is b with b, = (1 +0y)/2.

9.  Projector is Il = % (I+orE(e;ryx)).

10. Projected vector is zy = I} z.

11. end

Output: List of K partial estimates Sk, projected vectors

Zj, sign vectors by and metrics .

®© W

B. Decoder with Consecutive Projectors

We proceed in a sequential manner, finding S and b row-by-
row, defining a projector IL,. for each row. If we have found
the correct II,., projecting z with it, results in

II,z=w+1II,n, 21

as II, does not affect w. Such a projection, however, directly
reduces the expected noise energy. Assume that the noise is
circularly symmetric and i.i.d across dimensions. This means
that the noise probability distribution is unitarily invariant:
p(n) = p(Un) for any unitary U. This assumption holds
for circularly symmetric AWGN, and approximately for the
problem of quantizing vectors to the BC codebook, when the
quantization source is uniformly distributed. Then, the expected
noise energy is halved for any half-space projection:

& {|TLn|?} = [p(n) n"'II, n dndn*
= /p(n) nHUHIN/QVNUn dndn* = %E{HHHQ}

where Iy /o n is the identity with the latter half-diagonal 0,
representing the eigenvalues of the projector IL,., and U are
the eigenvectors of the projector. For this reason, once a
candidate row and sign is found, we project the input with
the corresponding projector, before proceeding with decoding
the next row. This directly reduces the noise components in (6)
when decoding the consequent rows.

The resulting algorithm is summarized as Algorithm 1.
To be prepared for list decoding, discussed below, the algo-
rithm is formulated as keeping track of K strongest estimates
{y1,...,¥K} for row r in the search space ). The dominant
complexity of this algorithm is in the computation of f,(y),
which is done with a Hadamard transform, as in (13). The
projections on Step 10 can be computed in O(N). Note
that both terms in (20) are already pre-computed, thus this
step does not contribute any added complexity. The overall
complexity of decoding one row in S with the algorithm is
thus O((m + K)N), and with K = 1, the complexity is
O(m(m+1)N), which coincides with the complexity of [12].

Input: Vector z.

l.forr=1,....m

2. Compute f.(y) = z"E(e,,y) z for y € F* using (6).

3. pr=max|f(y)|.

4. end

5. Sort {yu,}7, in descending order.
The resulting ordering is O.

Output: Decoding order O.

Algorithm 1 defines a function

N = {(gk,zk,bk,uk)}’il = DecodeRowK(g,z,b,u,R,r) ,

(22)
which gives a set with K elements consisting of a partial
estimate, a projected input, and the corresponding metric. The
Howard et al. algorithm, in essence, calls the function (22), for
rows r =1,...,m with K =1, but does not execute Step 10 of
Algorithm 1. Then it proceeds with dechirping, which in our
case is not necessary.

C. Decoding Order Selection

The Howard et al. algorithm finds the rows of the parametriz-
ing symmetric matrix in a canonical order, starting from first
to last. The first row is most prone to errors, since the search
space is the largest. With Algorithm 1, the first decoded row
is equally prone to errors. When proceeding to other rows,
Algorithm 1 reduces noise power, and eases decoding. Recall
that the projector is applied after a row (and sign) is found,
which directly reduces the noise affecting the next rows.

In reduced complexity sequential search algorithms, the
search order is often adaptively chosen, a prominent ex-
ample being Ordered Successive Interference Cancellation
(OSIC) [20]. In the problem at hand, the wanted signal is
corrupted by random noise. It thus makes sense to choose the
decoding order to be one that has the smallest expected noise
contribution. For this, inspired by OSIC, we choose decoding
order as in Algorithm 2.

D. Breadth-First List Decoding

Finally, to increase decoding probability in a sequential
search, keeping multiple candidate states alive during the se-
quential search process improves performance. For this, we
apply Breadth-First Search List Decoding (BFS-LD) [15].
BFS has been widely used in multi-antenna communication
receivers [21], [22]. One could also perform a Depth-First
Search as suggested in [2], but here we use breadth-first due to
its deterministic complexity.

The breadth-first search method applied is summarized in
Algorithm 3. It keeps K alternatives alive in the search tree.
At each stage i = 2,...m, when a new row is decoded, KK’
candidate branch states are produced by calling Algorithm 1
K times. The K branches with the highest decoding metric
are chosen as starting points for the next round. As the search
space is reduced according to (17), when more rows have been
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Algorithm 3 Breadth-First list decoding of S.

Input: Vector z, decoding order O.

Initialize: Set of previously decoded rows R = @,
candidate list C = {(0,,,2,0, |z]?)}.

l.fori=1,...,m

2 The row to decode is r = O(4)

3. Initialize empty new candidate list N = @.

4. Number of branches K’ = min(K,2™m ).

5 for each (§c,zc,bc,uc) eC

6 Compute new candidates using (22):

N, = DecodeRowKr(gc, Ze,be, e, R, r).

7. N=NuUN,.

8. end

9. ifi<m

10. C is K-element subset of A with largest 1.
11. Update decoded rows R =R U {r}.

12. else

13. Find element j in N with largest 1.

14. end

15. end

Output: Estimates S = §j and b = b;, metric p = ;.

estimated, it may be that K is larger than the search space. In
Step 4, the list size is accordingly chosen as K'.

Note that when calling Algorithm 1 in Step 6 of Algorithm 3,
the output decoding metric is directly the length of

z= (H Hsr,br)z

reR

(23)

with R the updated set from Step 11. That is, the metric is the
norm of the projection of z to the subspace determined by the
candidate rows S, and the sign-bits b, for r € R.

To compute complexity, we define the parameters

o [logy, K|, if K<N,
T m, else |

K = 2" -2 and K = min(K,N). The overall decoding
complexity of BFS-LD with projections is then

0((m+f(+(mz—m)K+(m—k)K2+Kf()N).

The BFS-LD algorithm can be used with or without pro-
jections in Algorithm 1, as well as with or without order
selection as in Algorithm 2. This gives us four candidate
algorithms for each K. However, if the algorithm is used
without projections, the metric applied is only a heuristic. For
BFS-LD to improve the performance of an algorithm without
projections, the halving in the metric computation in Step 6
of Algorithm 1 has to be removed. Then, the contribution of
each row was the same weight in the sum. Also, if projections
are not used, the output of Algorithm 3 should not be selected
based on the heuristic metric. Once all rows are decoded, the
corresponding BSs can be constructed. Instead of selecting the
largest metric, the vector having the largest inner product with
z is chosen. This increases the complexity of BFS-LD without
projections with a factor of O(2K N) per row of S.

=
E
S
2
o
=
=
2
& —%— Vanilla, m =5 )
—&— with order, m =5 e
with projections, m = 5
| |——with projections and order, m = 5 i,
107 [ | Vanilla, m = 4
ey with order, m = 4 e,
with projections, m=4 | Tw
------ e with projections and order, m = 4 %
0 0.2 0.4 0.6 0.8 1

K/N

Fig. 1. Decoding error of the vanilla algorithm [12] of Howard et al. compared
to the improved algorithms of this paper, in a quantization setting in N = 16
and 32 dimensions.

Note that Algorithm 1 performs exhaustive search over the
new alternatives emerging on row r, given the selections done
for earlier rows. Thus vanilla decoding with K = 1 performs
exhaustive search over the first row. If K = N, all alternatives
from the first row are retained when going for the second,
leading to exhaustive search over the two first rows.

VII. PERFORMANCE ANALYSIS

We concentrate on the vector quantization problem, as it has
a most unfriendly noise distribution. Geometric analysis is in-
tractable, due to the complex structure of the high-dimensional
Voronoi cells. Accordingly, we analyze the performance of the
considered algorithms with Monte Carlo integration.

The decoding error probability is of generic interest. It is
indicative of algorithm performance in communication scenar-
ios with heavy noise, in addition to the simulated quantiza-
tion scenario. We simulate performance for m = 4, N = 16
and m = 5/ N = 32. These are of practical interest for
vector quantization of Frequency Division Duplexing massive
MIMO communication, where first the antenna dimensionality
is reduced by identifying an eigenspace, followed by vector
quantization in a lower-dimensional subspace [8].

The error probabilities of the different decoders are plotted
in Figure 1. We have four basic decoders: the vanilla algorithm
of [12], the consecutive projection algorithm, the order selection
algorithm, and an algorithm with both order selection and
consecutive projections. All four are combined with Breadth-
First Search with K = 1,..., N, and plotted against K/N.
Successive projections and order selection provide considerable
gain for small K, and these gains are almost additive. For
m = 4, ordering becomes counterproductive when approaching
K = N. This is understandable as K = N performs exhaustive
search over the two first rows, which given the ordering
principle are the easiest to decode. For larger m more rows
remain to be decoded in an non-exhaustive manner for X = N,
and ordering still provides gain.

VIII. CONCLUSIONS

We have considered low-complexity autocorrelation decoders
for identifying Binary Chirp codewords from noisy signals,
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based on sequential search over the m binary dimensions
describing the N-dimensional codeword. We have considered
a geometrically inspired projection decoder that reduces noise
for subsequent decoder stages, an ordering function which
selects the order in which binary dimensions are considered,
and breadth-first list decoding. These improvements make it
possible to approach low error probability with manageable
complexity. Comparing to [12], the performance improvements
are achieved without added complexity for a given breadth K of
the search. Moreover, the decoder with consecutive projections
is directly amenable to finding higher dimensional subspaces.

Note that the use of the constructed BC decoding algorithms
based on dimensionality reduction from N to logy, N dimen-
sions is not limited to the BC codebook. These algorithms can
be used as modules when decoding a generic Grassmannian
codebook in IV = 2" dimensions. Assume a codebook C’ with
larger cardinality than the BC codebook. A low-complexity
decoding algorithm can be constructed by dividing C’ into cells
centered at BC codewords w. One first decodes in the BC
codebook, using the low-complexity decoders. Next, one can
decode within the identified cell of C'.

In future work we shall explore the geometry of the Voronoi
cells in the quantization problem, and closed form performance
analysis. We shall also expand this work to quantization of
points in Euclidean space to Barnes-Wall lattice points.
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APPENDIX
A. The Heisenberg-Weyl Group
Fix m e N and put N =2". The Pauli matrices are

0 1 1 0 .
I, Ux"[l 0], Uz"[o _1], Oy =1050,. (24)

For a,b e FJ* put D(x,y) :=02'0%* ® --- ® 02mc¥™. Directly
by definition we have

D(x,0)|v) =|v +a) and D(0,y)|v) = (—1)y"T|V), (25)

and thus, the former is a permutation matrix whereas the latter
is a diagonal matrix. Then

D(a,b)D(x,y) = (-1)>™ D(a+x,b+y).  (26)
Thanks to (26), the set
HWy = {i*D(x,y) | x,y e FI', k= 0,1,2,3} (27)

is a subgroup of U(N), the Heisenberg-Weyl group. Its elements
are Pauli matrices. The Hermitian Pauli matrices are of form
E(x,y) := ixyTD(x,y), where the exponent is taken modulo
4. Combining this with (25) and (26) we obtain

E(x,y) = 3 (1) [v+x)(v].

m
velFy

(28)
Being Hermitian, E(x,y) has eigenvalues +1. Moreover, for

¢ €{0,1}, we have the projectors

I = % (In + (-1 E(x,y)) (29)

onto the (—1)®-eigenspaces of E(x,y). From (26) we have

D(a,b)D(x,y) = (-1)™ ** ' D(x,y)D(a,b).  (30)
In turn, D(a,b) and D(c,d) commute iff
(a,b|x,y)s:=bx" +ay' =0. (31)

The above defines a symplectic inner product on F2™, which as
we see, captures the commutativity of the Pauli matrices [11].
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