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Abstract—The challenge of quantum computing is to combine
error resilience with universal computation. There are many
finite sets of gates that are universal, and a standard choice
is to augment the set of Clifford gates by a non-Clifford unitary
such as the T gate. Given a CSS code, we introduce a method
of synthesizing all possible diagonal physical gates that preserve
the codespace and induce a target logical gate. We denote an
[[n, k = k1 − k2, d]] CSS code C by CSS(X, C2;Z, C⊥

1 ), where the
[n, k2] binary code C2 determines the X-stabilizers in C, and the
[n, n−k1] binary code C⊥

1 determines the Z-stabilizers in C. The
diagonal entries of a diagonal physical gate are indexed by binary
vectors in Fn

2 . We show that a diagonal physical gate preserves
the CSS codespace if and only if entries from the same coset
of C2 in C1 (same X-logical) are identical. We also show that
the target logical operator only specifies 2k1 out of 2n diagonal
entries of the diagonal physical gate. The remaining degrees of
freedom can be used to optimize implementation of the physical
gate within a particular quantum computing infrastructure. This
encompasses optimization with respect to locality of the physical
gate, a criterion that is essential to fault tolerance. When the
target logical operator is the identity, the physical gates that
preserve the CSS code represent noise operators to which the
codespace is oblivious. We illustrate our method by providing
several examples of code-gate pairs for which the target logical
gate is a non-Clifford unitary. The framework is extended to
stabilizer codes in https://arxiv.org/abs/2109.13481.

Index Terms — Quantum Computing, Diagonal Gates, Clif-
ford Hierarchy, CSS codes, Generator Coefficient Framework

I. INTRODUCTION

Quantum error-correcting codes (QECCs) protect informa-
tion as it is transformed by logical gates. The objective of
fault-tolerance suggests designing QECCs that implement log-
ical operators through transversal physical gates. A transver-
sal gate [1] is a tensor product of unitaries on individual code
blocks. Although the Eastin-Knill Theorem reveals that no
QECC can implement a universal set of logical gates through
transversal physical gates alone, magic state injection [2],
[3] circumvents this restriction by consuming magic states
to implement non-Clifford gates. State injection is usually
applied with magic state distillation (MSD) [4]–[13], which
provides high-fidelity magic states from multiple low-fidelity
ones.

MSD protocols employ CSS codes [14], [15] that support
a fault-tolerant non-Clifford [2] logical gate induced by a
transversal physical gate. In particular, Bravyi and Haah
introduced triorthogonal codes [6] - a class of CSS codes that
are preserved by the transversal physical T gate, inducing the
transversal logical T gate up to some logical Clifford gates.
Recently, Vasmer and Kubica [16] morphed the color codes
[17], [18] to obtain the hybrid color-toric (HCT) codes that
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implement fault-tolerant logical T gates through a transversal
implementation of mixed diagonal physical gates. They also
analyzed how these new HCT family of codes perform in MSD
by mixing different input magic states.

The interaction of transversal diagonal gates and induced
logical gates depends very strongly on the signs of Z-
stabilizers in the CSS code C [19]–[21], and this degree of
freedom is relatively unexplored. The signs are given by a
character of the Z-stabilizer group, so are determined by a
binary vector y, and we denote C by CSS(X, C2;Z, C⊥

1 ,y).
A diagonal physical gate UZ has 2n diagonal entries, each
indexed by a binary vector v in Fn

2 . We introduce our
generator coefficient framework in Section III, and use it to
show that UZ preserves C if and only if diagonal entries dv and
dw are identical when v and w belong to the same coset of
C2+y in C1+y. The induced logical gate is determined by 2k

diagonal entries corresponding to a set of coset representatives
for C2+y in C1+y. Note that by constraining only 2k1 out of
2n diagonal entries (those indexed by C1 + y), we are able to
guarantee not only that UZ preserves the codespace but also
to completely specify the induced logical operator. Note that
the effect of changing the signs of Z-stabilizers (changing the
vector y) is to shift the subset of diagonal entries that influence
the interaction of UZ with the CSS code C.

The approach taken in prior work is to fix a transversal
diagonal physical gate UZ and a target logical gate UL, then
to derive sufficient conditions on a CSS code C for which
UZ preserves C and induces UL. The families of triorthogonal
codes [6] and quantum Reed Muller codes [8], [9], [11] were
derived in this way. In contrast we fix a CSS code and use
our generator coefficient framework to assemble all possible
diagonal physical gates that induce a target logical gate. Our
approach supports fault-tolerant architecture by enabling sys-
tematic analysis of the locality of diagonal physical operators.
Note that the degree of freedom by choosing signs of Z-
stabilizers does not change the locality. Our framework also
makes it possible to derive conditions on a CSS code C that are
both necessary and sufficient for a diagonal physical gate UZ

to preserve C and induce a target logical gate UL. In Section III
we apply our framework to the broad class of Quadratic Form
Diagonal (QFD) gates [22], which includes as a special case
the physical gates considered in prior work. We characterize
all CSS codes, determined by classical Reed Muller codes,
that are fixed by transversal Z-rotation through an angle π/2l.

When the target logical operator is the identity, the physical
gates preserving the CSS code represent idling noise to which
the codes is oblivious. For example, we apply the generator
coefficient framework to show that a CSS(X, C2;Z, C⊥

1 ,y)
code is oblivious to the coherent noise with homogeneous Z-
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rotation angle on each phsyical qubit if and only if all the
Hamming weights in C1+y are identical (see [19], [23], [24]
for more details). This new perspective helps to design CSS
codes mitigating other idling correlated noise.

II. PRELIMINARIES AND NOTATION

A. The Pauli Group

Let ı :=
√
−1 be the imaginary unit. Any 2× 2 Hermitian

matrix can be uniquely expressed as a real linear combination
of the four single qubit Pauli matrices/operators

I2 :=


1 0
0 1


, X :=


0 1
1 0


, Z :=


1 0
0 −1


, (1)

and Y := ıXZ. The operators satisfy X2 = Y 2 = Z2 =
I2, XY = −Y X, XZ = −ZX, and Y Z = −ZY.

Let F2 = {0, 1} denote the binary field. Let n ≥ 1 and
N = 2n. Let A ⊗ B denote the Kronecker product (tensor
product) of two matrices A and B. Given binary vectors a =
[a1, a2, . . . , an] and b = [b1, b2, . . . , bn] with ai, bj = 0 or 1,
we define the operators

D(a, b) := Xa1Zb1 ⊗ · · · ⊗XanZbn , (2)

E(a, b) := ıab
T mod 4D(a, b). (3)

Note that D(a, b) can have order 1, 2 or 4, but E(a, b)2 =

ı2ab
T

D(a, b)2 = ı2ab
T

(ı2ab
T

IN ) = IN . We define the n-
qubit Pauli group

PN := {ıκD(a, b) : a, b ∈ Fn
2 , κ ∈ Z4}, (4)

where Z2l = {0, 1, . . . , 2l − 1}. The n-qubit Pauli matrices
form an orthonormal basis for the vector space of N × N
complex matrices (CN×N ) under the normalized Hilbert-
Schmidt inner product ⟨A,B⟩ := Tr(A†B)/N [1].

The symplectic inner product is ⟨[a, b], [c,d]⟩S = adT +
bcT mod 2. Since XZ = −ZX , we have

E(a, b)E(c,d) = (−1)⟨[a,b],[c,d]⟩SE(c,d)E(a, b). (5)

We use the Dirac notation, |·⟩ to represent the basis states
of a single qubit in C2. For any v = [v1, v2, · · · , vn] ∈ Fn

2 , we
define |v⟩ = |v1⟩⊗ |v2⟩⊗ · · ·⊗ |vn⟩, the standard basis vector
in CN with 1 in the position indexed by v and 0 elsewhere.
We write the Hermitian transpose of |v⟩ as ⟨v| = |v⟩†.

B. The Clifford Hierarchy

The Clifford hierarchy of unitary operators was introduced
in [2]. The first level of the hierarchy is defined to be the
Pauli group C(1) = PN . For l ≥ 2, the levels l are defined
recursively as

C(l) := {U ∈ UN : UPNU
† ⊂ C(l−1)}, (6)

where UN is the group of N×N unitary matrices. The second
level is the Clifford group, and it in combination with any
unitary from a higher level can be used to approximate any
unitary operator arbitrarily well [25], [26]. Hence, they form a
universal set for quantum computation. A widely used choice
for the non-Clifford unitary is the T gate in the third level
defined by T = Z

1
4 ≡ e−

ıπ
8 Z .

Let DN be the N × N diagonal matrices, and C(l)
d :=

C(l) ∩ DN . The diagonal gates at each level in the hierarchy

form a group, but for l ≥ 3, the gates in C(l) no longer form a
group. Note that C(l)

d can be generated using the “elementary"
unitaries C(0)Z

1

2l , C(1)Z
1

2l−1 , . . . ,C(l−2)Z
1
2 , C(l−1)Z [27],

where C(i)Z
1

2j :=


u∈Fi+1
2

|u⟩⟨u|+eı
π

2j |1⟩⟨1| and 1 ∈ Fi+1
2

denotes the vector with every entry 1.

C. Stabilizer Codes
We define a stabilizer group S to be a commutative sub-

group of the Pauli group PN , where every group element
is Hermitian and no group element is −IN . We say S has
dimension r if it can be generated by r independent elements
as S = ⟨νiE(ci,di) : i = 1, . . . , r⟩, where νi ∈ {±1}
and ci,di ∈ Fn

2 . Since S is commutative, we must have
⟨[ci,di], [cj ,dj ]⟩S = cid

T
j + dic

T
j = 0 mod 2.

Given a stabilizer group S , the corresponding stabilizer
code is the fixed subspace V(S) := {|ψ⟩ ∈ CN : g|ψ⟩ =
|ψ⟩ for all g ∈ S}. We refer to the subspace V(S) as an
[[n, k, d]] stabilizer code because it encodes k := n − r
logical qubits into n physical qubits. The minimum distance
d is defined to be the minimum weight of any operator in
NPN

(S) \ S . Here, the weight of a Pauli operator is the
number of qubits on which it acts non-trivially (i.e., as X, Y
or Z), and NPN

(S) denotes the normalizer of S in PN .
For any Hermitian Pauli matrix E (c,d) and ν ∈ {±1},

the operator IN+νE(c,d)
2 projects onto the ν-eigenspace of

E (c,d). Thus, the projector onto the codespace V(S) of the
stabilizer code defined by S = ⟨νiE (ci,di) : i = 1, . . . , r⟩ is

ΠS =

r
i=1

(IN + νiE (ci,di))

2
=

1

2r

2r
j=1

ϵjE (aj , bj) , (7)

where ϵj ∈ {±1} is a character of the group S, and is deter-
mined by the signs of the generators that produce E(aj , bj):
ϵjE (aj , bj) =


t∈J⊂{1,2,...,r} νtE (ct,dt) for a unique J .

A CSS code is a particular type of stabilizer code with
generators that can be separated into strictly X-type and
strictly Z-type operators. Consider two classical binary codes
C1, C2 such that C2 ⊂ C1, and let C⊥

1 , C⊥
2 denote the dual codes.

Note that C⊥
1 ⊂ C⊥

2 . Suppose that C2 = ⟨c1, c2, . . . , ck2⟩ is an
[n, k2] code and C⊥

1 = ⟨d1,d2 . . . ,dn−k1⟩ is an [n, n − k1]
code. Then, the corresponding CSS code has the stabilizer
group

S = ⟨ν(ci,0)E (ci,0) , ν(0,dj)E (0,dj)⟩i=k2; j=n−k1

i=1; j=1

= {ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) : a ∈ C2, b ∈ C⊥
1 },

where ν(ci,0), ν(0,dj), ϵ(a,0), ϵ(0,b) ∈ {±1}. We capture sign
information through character vectors y ∈ Fn

2/C1, r ∈ Fn
2/C⊥

2

such that for any ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) ∈ S, we have
ϵ(a,0) = (−1)ar

T

and ϵ(0,b) = (−1)by
T

. If C1 and C⊥
2 can

correct up to t errors, then S defines an [[n, k = k1 − k2, d]]
CSS code with d ≥ 2t + 1, which we will represent as
CSS(X, C2, r;Z, C⊥

1 ,y). If G2 and G⊥
1 are the generator ma-

trices for C2 and C⊥
1 respectively, then the (n−k1+k2)×(2n)

matrix
GS =


G2

G⊥
1


(8)

generates S.
Since we consider diagonal gates, the signs of X-stabilizers

do not matter, and we assume r = 0 throughout this paper.
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III. GENERATOR COEFFICIENTS

We now introduce the Generator Coefficient Framework
which describes the evolution of stabilizer code states under a
physical diagonal gate UZ =


u∈Fn

2
du|u⟩⟨u| (See [21] for

more details). Note that |u⟩⟨u| = 1
2n


v∈Fn

2
(−1)uvT

E(0,v).
Alternatively, we may expand UZ in the Pauli basis

UZ =

v∈Fn

2

f(v)E(0,v), (9)

where

f(v) =
1

2n


u∈Fn

2

(−1)uvT

du. (10)

The Hadamard gate H2n connects the coefficients in the
standard basis with those in the Pauli basis as follows

[f(v)]v∈Fn
2
= [du]u∈Fn

2
H2n , (11)

where H = 1√
2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|) and H2n =

H ⊗H2n−1 = H⊗n is the Hadamard gate.
We consider the average logical channel induced by UZ

on an [[n, k, d]] CSS(X, C2;Z, C⊥
1 ,y) code resulting from the

four steps : (1) preparing any code state ρ1; (2) applying a
diagonal physical gate UZ to obtain ρ2; (3) using X-stabilizers
to measure ρ2 (we only consider Z-errors as the same reasons
in [4], [6]), to obtain the syndrome µ with probability pµ,
and the post-measurement state ρ3; (4) applying a Pauli
correction to ρ3, to obtain ρ4. The correction might induce
some undetectable Z-logical ϵ(0,γµ)E(0,γµ) with γ0 = 0.
Let Bµ be the effective physical operator corresponding to
the syndrome µ. Then the evolution of code states can be
described as

ρ4 =


µ∈Fn
2 /C⊥

2

Bµρ1B
†
µ. (12)

The generator coefficients Aµ,γ are obtained by expanding
the logical operator Bµ in terms of Z-logical Pauli operators
ϵ(0,γ)E(0,γ),

Bµ = ϵ(0,γµ)E(0,γµ)


γ∈C⊥
2 /C⊥

1

Aµ,γ ϵ(0,γ)E(0,γ), (13)

where ϵ(0,γµ)E(0,γµ) models the Z-logical Pauli correction
introduced by a decoder. For each pair of an X-syndrome µ ∈
Fn
2/C⊥

2 and a Z-logical γ ∈ C⊥
2 /C⊥

1 , the generator coefficient
Aµ,γ corresponding to UZ is

Aµ,γ :=


z∈C⊥
1 +µ+γ

ϵ(0,z)f(z), (14)

where ϵ(0,z) = (−1)zy
T

is the sign of the Z-stabilizer
E(0, z). The chosen Z-logicals and X-syndromes are not
unique, but different choices only differ by a global phase.
Generator coefficients use the CSS code to organize the Pauli
coefficients of UZ into groups and to balance them by tuning
the signs of Z-stabilizers. We use (10) to simplify (14) as

Aµ,γ =
1

2n


u∈Fn

2


z∈C⊥

1 +µ+γ

(−1)zy
T

(−1)zu
T

du

=
1

|C1|

u∈C1

(−1)(µ⊕γ)uT

du⊕y, (15)

where |C1| = 2k1 is the size of C1. We organize the generator
coefficients in a matrix M(Fn

2 /C⊥
2 ,C⊥

2 /C⊥
1 ) with rows indexed

by X-syndromes and columns by Z-logicals,

M(Fn
2 /C⊥

2 ,C⊥
2 /C⊥

1 ) =


[Aµ=0,γ ]γ∈C⊥

2 /C⊥
1

[Aµ=µ1,γ ]γ∈C⊥
2 /C⊥

1

...
[Aµ=µ

2k2−1
,γ ]γ∈C⊥

2 /C⊥
1


µ∈Fn

2 /C⊥
2

.

(16)

For fixed µ ∈ Fn
2/C⊥

2 ,

[Aµ,γ ]γ∈C⊥
2 /C⊥

1
=

1

|C1|
[du⊕y]u∈C1

Hµ

(C1,C⊥
2 /C⊥

1 )
, (17)

where Hµ

(C1,C⊥
2 /C⊥

1 )
= [(−1)(µ⊕γ)uT

]u∈C1,γ∈C⊥
2 /C⊥

1
.

Theorem 1. The physical gate UZ =


u∈Fn
2
du|u⟩⟨u|

preserves a CSS(X, C2;Z, C⊥
1 ,y) codespace if and only if

γ∈C⊥
2 /C⊥

1

|A0,γ |2 =


γ∈C⊥
2 /C⊥

1

A0,γA0,γ = 1. (18)

Here, | · | denotes the complex norm.

Proof. Invariance of the codespace is equivalent to requiring
the effective physical operator corresponding to the trivial
syndrome Bµ=0 to be unitary. See [21, Theorem 7]. ■

Note that (18) is also equivalent to [Aµ̸=0,γ ]γ∈C⊥
2 /C⊥

1
= 0

[21, Theorem 6]. The induced logical operator is

UL
Z =


α∈Fk

2

A0,g(α)E(0,α)

=
1

|C1|

α∈Fk

2


u∈C1

(−1)g(α)uT

du⊕yE(0,α), (19)

where g : Fk
2 → C⊥

2 /C⊥
1 is a bijective map defined by g(α) =

αGC⊥
2 /C⊥

1
, and GC⊥

2 /C⊥
1

is one choice of the generator matrix
of the Z-logicals (coset representatives of C⊥

2 /C⊥
1 ).

Example 1. The [[15, 1, 3]] punctured quantum Reed-Muller
code [4] is a CSS(X, C2;Z, C⊥

1 ,y = 0) code, where C2 is gen-
erated by the degree one monomials, x1, x2, x3, x4, and C⊥

1 =
⟨x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4⟩, with the
first coordinate removed in both C2 and C⊥

1 . It’s also a tri-
orthogonal code for which a physical transversal T gate, UZ =

u∈Fn
2


eıπ/4

wH(u) |u⟩⟨u|, induces a logical transversal T
gate up to some Clifford gates. Here, wH(u) = uuT denotes
the Hamming weight of the binary vector u. Note that C1
here is the classical punctured RM(1, 4) code with weight
distribution given in Table I below.

TABLE I
THE WEIGHT DISTRIBUTION OF C1 FOR THE [[15, 1, 3]] CODE

weight 0 7 8 15
frequency 1 15 15 1

Then, du = 1 for u ∈ C1 for which wH(u) = 0 or 8, and
du = e−ıπ/4 for u ∈ C1 for which wH(u) = 7 or 15. Since
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the Z-logical γ = 1, the all-one vector, it only changes the
signs of du with odd weight. It follows from (19) that the
induced logical operator is

UL
Z =

16

32
(1+e−ıπ/4)E(0, 0)+

16

32
(1−e−ıπ/4)E(0, 1) = T †.

(20)

Remark 2. It follows from (19) that the induced logical
operator is completely specified by |C1| diagonal entries in
the physical gate UZ . If we choose a CSS code and target
a particular logical gate, then the constraints on the corre-
sponding physical gates only apply to the diagonal elements
corresponding to the coset C1 + y.

A. Quadratic Form Diagonal (QFD) Physical Gates

QFD gates are diagonal untaries of the form

τ
(l)
R =


v∈Fn

2

ξvRvT mod 2l

l |v⟩⟨v|, (21)

where l ≥ 1 is an integer, ξl = eı
2π

2l , and R is an n × n
symmetric matrix with entries in Z2l , the ring of integers
modulo 2l. Note that the exponent vRvT ∈ Z2l . When
l = 2 and R is binary, we obtain the diagonal Clifford
unitaries. Rengaswamy et al. [22] proved that QFD gates
include all 1-local and 2-local diagonal unitaries in the Clifford

hierarchy. When R = I2n , τ (l)R =

Z1/2l−1

⊗n

represents
the transversal Z-rotation through angle π/2l. The following
theorem simplifies the results of Theorem 1 in the case when
UZ = τ

(l)
R is a QFD gate.

Theorem 3. Consider a CSS(X, C2;Z, C⊥
1 ) code, where y is

the character vector of the Z-stabilizers. Then, a QFD gate
τ
(l)
R =


v∈Fn

2
ξvRvT mod 2l

l |v⟩⟨v| preserves the codespace
V(S) if and only if

2l | (v1Rv
T
1 − v2Rv

T
2 ) (22)

for all v1,v2 ∈ C1 + y such that v1 ⊕ v2 ∈ C2.

Proof. It follows from (15) and Theorem 1 that
γ∈C⊥

2 /C⊥
1

|A0,γ |2 =
1

|C1|2

v∈C1

s(v,y)


γ∈C⊥
2 /C⊥

1

(−1)γv
T

,

(23)

where

s(v,y) :=


v1∈C1+y

ξ
v1RvT

1 −(v⊕v1)R(v⊕v1)
T mod 2l

l . (24)

We simplify (18) using (23) to obtain

1 =


γ∈C⊥
2 /C⊥

1

|A0,γ |2

=
1

|C1|2

v∈C1

s(v,y)


γ∈C⊥
2 /C⊥

1

(−1)γv
T

=


v∈C2


v1∈C1+y ξ

v1RvT
1 −(v⊕v1)R(v⊕v1)

T mod 2l

l

|C1||C2|
,

(25)

which requires each term to contribute 1 to the summation.
We complete the proof by setting v2 = v ⊕ v1. ■

Note that (22) implies that the divisibility conditions cor-
responding to successive levels only differ by a factor of 2.
Given a CSS code for which a transversal diagonal physical
gate at level l induces a logical operator at the same level, we
introduced climbing techniques in [28] to obtain a CSS code
for which a transversal diagonal physical gate at level l + 1
induces a logical operator also at level l + 1.

When the QFD gate is a transversal Z-rotation through
angle π/2l ( R = I2n ), we have simplified (22) to characterize
all possible CSS codes fixed by τ

(l)
I2n

that are determined by
two classical Reed-Muller codes.

Theorem 4. Consider Reed-Muller codes C1 = RM(r1,m) ⊃
C2 = RM(r2,m) with r1 > r2. The [[n = 2m, k =r1

j=r2+1


m
j


, d = 2min{r2+1,m−r1}]] CSS(X, C2;Z, C⊥

1 ,y =

0) code is preserved by τ (l)I2n
if and only if

l ≤



m−1
r1


+ 1, if r2 = 0,

min


m−r2−1
r1


+ 1,


m−r1
r2


+ 1


, if r2 ̸= 0.

(26)

Proof. See [21, Theorem 14]. ■

B. Working Backwards from A Logical Operator

Given a CSS code, the generator coefficient framework not
only represents when a physical diagonal gate preserves the
codespace, but it also characterizes all the possible physical
gates that realizes a target diagonal logical gate. We start from
the simplest case when the logical operator is the identity.

Lemma 5. The physical gate UZ =


u∈Fn
2
du|u⟩⟨u| acts as

the logical identity on the CSS(X, C2;Z, C⊥
1 ,y) codespace if

and only if du⊕y are the same for all u ∈ C1.

Proof. It follows from (19) that UL
Z = I2k if and only if

|Aµ=0,γ=0| =

 1

|C1|

u∈C1

du⊕y

 = 1, (27)

which is equivalent to requiring that 2k1 diagonal entries of the
physical gate UZ indexed by the set C1 + y are identical. ■

The mapping from a physical gate that preserves a given
CSS code to the induced logical operator is a group homo-
morphism. The kernel of this homomorphism is the group of
physical gates that induce the logical identity.

Remark 6. Given a CSS code, Lemma 5 characterizes all
the diagonal physical gates that induce the identity on the
codespace. This enables code design within a decoherence-
free subspace (DFS) for a particular noise system. For homo-
geneous coherent noise (same angle on each physical qubit),
we consider

UZ =


1 0
0 eıθ

⊗n

=

u∈Fn

2


eıθ

wH(u) |u⟩⟨u|, (28)

with θ ∈ (0, 2π). We design CSS codes that are oblivious to
all such gates by making sure all the Hamming weights in the
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coset C1 + y are the same (a new perspective on the results
in [19], [23], [24]). For coherent noise with inhomogeneous
angles, this perspective enables code design to mitigate these
correlated errors.

To realize a non-trivial diagonal logical gate on a given CSS
code, we characterize and represent all possible physical gates
in terms of the target logical gate.

Theorem 7. Given a CSS(X, C2;Z, C⊥
1 ,y) code, the diagonal

physical gate UZ =


u∈Fn
2
du|u⟩⟨u| induces the logical gate

UL
Z =


α∈Fk

2
eıθα |α⟩⟨α| if and only if

du⊕y = eıθα for GC⊥
2 /C⊥

1
uT = αT . (29)

Proof. It follows from (19) that the Pauli coefficients of the
logical operator are the same as the generator coefficients
corresponding to the trivial syndrome,

[A0,γ ]γ∈C⊥
2 /C⊥

1
=


eıθα


α∈Fk

2
H2k , (30)

where H2k = 1
2k


(−1)αβT


α,β∈Fk

2

is the normalized Walsh-

Hadamard matrix. Now, we refer back to the definition of
generator coefficients in (17) to simplify (30):

1

|C1|
[du⊕y]u∈C1

Hµ=0

(C1,C⊥
2 /C⊥

1 )
= [eıθα ]α∈Fk

2
H2k , (31)

where

Hµ=0

(C1,C⊥
2 /C⊥

1 )
=


(−1)γu

T

u∈C1,γ∈C⊥

2 /C⊥
1

=


(−1)

βGC⊥
2 /C⊥

1
uT


u∈C1,β∈Fk

2

(32)

has 2k1 = |C1| rows and 2k = |C⊥
2 /C⊥

1 | columns. We permute
the entries in [du⊕y]u∈C1

and the rows in Hµ=0

(C1,C⊥
2 /C⊥

1 )
to

group together elements in the same coset of C2 in C1 so that

Hµ=0

(C1,C⊥
2 /C⊥

1 )


Hµ=0

(C1,C⊥
2 /C⊥

1 )

T

=


B

B
. . .

B

 , (33)

where B is a 2k1−k × 2k1−k block with all entries being 2k,
and there are 2k blocks B. For w ∈ C1/C2, we define the
averaging sum over the coset C2 +w as

SC2
(w) :=

1

2k1−k


u∈C2+w

du⊕y. (34)

Then, multiplying both sides of (31) on the right by
Hµ=0

(C1,C⊥
2 /C⊥

1 )

T

gives

[SC2
(w)]w∈C1/C2

⊗ 12k1−k = [eıθα ]α∈Fk
2
K, (35)

where 12k1−k denotes the vector of length 2k1−k with every
entry 1 and

K = H2k


Hµ=0

(C1,C⊥
2 /C⊥

1 )

T

=

 1

2k


β∈Fk

2

(−1)
β


αT⊕GC⊥

2 /C⊥
1
uT


α∈Fk

2 ,u∈C1

. (36)

Comparing the two sides of (35), for w ∈ C1/C2, we have

SC2
(w) =

1

2k


α∈Fk

2

eıθα

β∈Fk

2

(−1)
β


αT⊕GC⊥

2 /C⊥
1
uT


(37)

= eıθα(u) , for α(u)T = GC⊥
2 /C⊥

1
uT . (38)

The result now follows, since the norm of the averaging sum
|SC2(w)| = 1 and |du⊕y| = 1 for all u ∈ C2 + w (to be
unitary). ■

Corollary 8. Set C2 = {u0,u1, . . . ,u2k2−1}. A diago-
nal physical gate UZ =


u∈Fn

2
du|u⟩⟨u| preserves the

CSS(X, C2;Z, C⊥
1 ,y) codespace if and only if for each

fixed w ∈ C1/C2, du0⊕w⊕y = du1⊕w⊕y = · · · =
du

2k2−1
⊕w⊕y. The induced logical operator is UL

Z =
α∈Fk

2
du0⊕αGC1/C2

⊕y|α⟩⟨α|.

Proof. Note that GC1/C2
GT

C⊥
2 /C⊥

1
= Ik. Follows Theorem 1

and Theorem 7. ■

Remark 9. It is possible to prove sufficiency by considering
explicit code states. Corollary 8 implies that a CSS code with
more Z-stabilizers (smaller |C1|) can be preserved by more
physical diagonal gates, which is consistent with [29, Theorem
2].

Referring back to Table I, all the weight-0 and weight-8
vectors are in C2 while all the weight-7 and weight-15 vectors
are in the coset C2 + 1. Recall from Example 1 that diagonal
entries in the same coset of C2 in C1 are identical. Finally, we
provide a 4-qubit example that targets the logical T gate.

Example 2. We first revisit the construction of the [[5, 1, 2]]
code [16] starting from the stabilizer generator matrix (y = 0)

GS =


1 1 0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 1 0

 . (39)

The only non-trivial X-logical is w = [1, 1, 1, 0, 0] ∈ C1/C2.
We have C2 = {0, [1, 1, 0, 1, 0], [0, 1, 1, 0, 1], [1, 0, 1, 1, 1]}
and C2 + w = {w, [0, 0, 1, 1, 0], [1, 0, 0, 0, 1], [0, 1, 0, 1, 1]}.
Consider the physical diagonal gate UZ = P⊗P †⊗P⊗CZ =

u∈F5
2
du|u⟩⟨u|, we have

1 = d0 = d[1,1,0,1,0] = d[0,1,1,0,1] = d[1,0,1,1,1], (40)

eı
π
2 = dw = d[0,0,1,1,0] = d[1,0,0,0,1] = d[0,1,0,1,1]. (41)

It follows from Corollary 8 that UZ preserves the codespace,
inducing the logical Phase gate. To demonstrate fault-
tolerance, we first calculate the set of undetectable Z-errors,

Ue = {[1, 1, 1, 0, 0], [0, 0, 1, 1, 0], [1, 0, 0, 0, 1], [0, 1, 0, 1, 1]}.

Since the only two weight-2 undetectable errors are not
confined to the support of 2-local physical gate CZ, the logical
Phase gate is fault-tolerant.

ACKNOWLEDGMENT

This work was supported in part by the NSF under Grant
CCF-2106213 and Grant CCF-1908730.

2022 IEEE International Symposium on Information Theory (ISIT)

1233Authorized licensed use limited to: Duke University. Downloaded on August 22,2022 at 14:27:02 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] D. Gottesman, Stabilizer codes and quantum error correction. Cali-
fornia Institute of Technology, 1997.

[2] D. Gottesman and I. L. Chuang, “Demonstrating the viability of
universal quantum computation using teleportation and single-qubit
operations,” Nature, vol. 402, no. 6760, pp. 390–393, 1999.

[3] X. Zhou, D. W. Leung, and I. L. Chuang, “Methodology for quantum
logic gate construction,” Phys. Rev. A, vol. 62, no. 5, p. 052316, 2000.

[4] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal
Clifford gates and noisy ancillas,” Phys. Rev. A, vol. 71, no. 2, p. 022316,
2005.

[5] B. W. Reichardt, “Quantum universality from magic states distillation
applied to css codes,” Quantum Inf. Process, vol. 4, no. 3, pp. 251–264,
2005.

[6] S. Bravyi and J. Haah, “Magic-state distillation with low overhead,”
Phys. Rev. A, vol. 86, no. 5, p. 052329, 2012.

[7] H. Anwar, E. T. Campbell, and D. E. Browne, “Qutrit magic state
distillation,” New J. Phys., vol. 14, no. 6, p. 063006, 2012.

[8] E. T. Campbell, H. Anwar, and D. E. Browne, “Magic-state distillation
in all prime dimensions using quantum Reed-Muller codes,” Phys. Rev.
X, vol. 2, no. 4, p. 041021, 2012.

[9] A. J. Landahl and C. Cesare, “Complex instruction set computing
architecture for performing accurate quantum z rotations with less
magic,” arXiv preprint arXiv:1302.3240, 2013.

[10] E. T. Campbell and M. Howard, “Unified framework for magic state
distillation and multiqubit gate synthesis with reduced resource cost,”
Phys. Rev. A, vol. 95, no. 2, p. 022316, 2017.

[11] J. Haah and M. B. Hastings, “Codes and protocols for distilling t,
controlled-s, and toffoli gates,” Quantum, vol. 2, p. 71, 2018.

[12] A. Krishna and J.-P. Tillich, “Towards low overhead magic state distil-
lation,” Phys. Rev. Lett., vol. 123, no. 7, p. 070507, 2019.

[13] C. Vuillot and N. P. Breuckmann, “Quantum pin codes,” arXiv preprint
arXiv:1906.11394, 2019.

[14] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes
exist,” Phys. Rev. A, vol. 54, pp. 1098–1105, Aug 1996.

[15] A. M. Steane, “Simple quantum error-correcting codes,” Phys. Rev. A,
vol. 54, no. 6, pp. 4741–4751, 1996.

[16] M. Vasmer and A. Kubica, “Morphing quantum codes,” arXiv preprint
arXiv:2112.01446, 2021. [Online]. Available: https://arxiv.org/abs/2112.
01446

[17] H. Bombin and M. A. Martin-Delgado, “Topological quantum distilla-
tion,” Phys. Rev. Lett., vol. 97, no. 18, p. 180501, 2006.

[18] H. Bombin and M.-A. Martin-Delgado, “Topological computation with-
out braiding,” Phys. Rev. Lett., vol. 98, no. 16, p. 160502, 2007.

[19] J. Hu, Q. Liang, N. Rengaswamy, and R. Calderbank, “Mitigating
coherent noise by balancing weight-2 z-stabilizers,” IEEE Trans. Inf.
Theory, pp. 1–1, 2021.

[20] D. M. Debroy, L. Egan, C. Noel, A. Risinger, D. Zhu, D. Biswas,
M. Cetina, C. Monroe, and K. R. Brown, “Optimizing stabilizer parities
for improved logical qubit memories,” arXiv preprint arXiv:2105.05068,
2021.

[21] J. Hu, Q. Liang, and R. Calderbank, “Designing the quantum channels
induced by diagonal gates,” arXiv preprint arXiv:2109.13481, 2021.

[22] N. Rengaswamy, R. Calderbank, and H. D. Pfister, “Unifying the
Clifford hierarchy via symmetric matrices over rings,” Phys. Rev. A,
vol. 100, no. 2, p. 022304, 2019.

[23] Y. Ouyang, “Avoiding coherent errors with rotated concatenated stabi-
lizer codes,” npj Quantum Information, vol. 7, no. 1, pp. 1–7, 2021.

[24] J. Hu, Q. Liang, N. Rengaswamy, and R. Calderbank, “Css codes that
are oblivious to coherent noise,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), July 2021, pp. 1481–1486.

[25] P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan, “On
universal and fault-tolerant quantum computing: a novel basis and a
new constructive proof of universality for shor’s basis,” in 40th Annual
Symposium on Foundations of Computer Science (Cat. No. 99CB37039).
IEEE, 1999, pp. 486–494.

[26] G. Nebe, E. M. Rains, and N. J. Sloane, “The invariants of the clifford
groups,” Des. Codes Cryptogr., vol. 24, no. 1, pp. 99–122, 2001.

[27] B. Zeng, X. Chen, and I. L. Chuang, “Semi-Clifford operations, struc-
ture of Ck hierarchy, and gate complexity for fault-tolerant quantum
computation,” Phys. Rev. A, vol. 77, no. 4, p. 042313, 2008.

[28] J. Hu, Q. Liang, and R. Calderbank, “Climbing the diagonal clifford
hierarchy,” arXiv preprint arXiv:2110.11923, 2021. [Online]. Available:
https://arxiv.org/abs/2110.11923

[29] N. Rengaswamy, R. Calderbank, M. Newman, and H. D. Pfister, “On
optimality of CSS codes for transversal T ,” IEEE J. Sel. Areas in Inf.
Theory, vol. 1, no. 2, pp. 499–514, 2020.

2022 IEEE International Symposium on Information Theory (ISIT)

1234Authorized licensed use limited to: Duke University. Downloaded on August 22,2022 at 14:27:02 UTC from IEEE Xplore.  Restrictions apply. 


