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Abstract: Predisaster damage predictions and postdisaster damage assessments often inadequately capture the intensity and spatial–
temporal complexity of natural hazard-caused damage. Accurate identification of areas with the greatest need in the wake of a disaster
requires assessment of both the hazards and community vulnerabilities. This study evaluated the contribution of eight hazard and vulnerability
drivers of structural damage due to Hurricane María in Puerto Rico, including wind, flood, landslide, and vulnerability measures via ensemble
decision tree algorithms. Results from the algorithms indicate that vulnerability measures, including a structural vulnerability index and a
social vulnerability index, were the leading predictors of damage, followed by wind, flood, and landslide measures. Therefore, it is critical
to consider community vulnerabilities in damage pattern analyses and targeted, predisaster mitigation efforts. DOI: 10.1061/(ASCE)
NH.1527-6996.0000460. This work is made available under the terms of the Creative Commons Attribution 4.0 International license,
https://creativecommons.org/licenses/by/4.0/.

Introduction

Hurricanes are becoming increasingly hazardous events, resulting
in more severe impacts on communities (Walsh et al. 2016). Politi-
cal and economic trends have also led to underregulated and/or
unregulated housing development in at-risk regions, potentially ex-
acerbating hurricane-related damage (Dahl et al. 2018). The effect
of unchecked development on disaster impacts can be quantified by
assessing the increasing number of people or assets exposed to haz-
ards. However, the traditional approach of quantifying disasters in
terms of the physical world has gradually been expanded to address
the inherent social nature of disasters, leading to more complete
assessments of risk and impacts. For example, Hurricane Katrina
exposed the particular importance of race, social class, gender, and
age, among a host of other indelible factors, to both the severity of
household impacts as well as recovery rates (Hartman and Squires
2006). However, the influence of societal inequalities on the inten-
sity of disaster impacts is difficult to evaluate because of the inher-
ent complexity and qualitative nature of the challenges introduced.
Similar to Katrina, Hurricane María also revealed preexisting

inequalities that may have intensified storm impacts for certain
populations; however, the extent of this influence has been difficult
to assess because of the challenge in quantifying such topics.

As the third costliest storm in US history (Pasch et al. 2018), Hur-
ricane María offers an opportunity to gain an understanding of the
underlying social factors and structural inequalities that contributed
to its damage. As the first comprehensive, quantitative analysis of the
social and physical drivers of María’s damage, this research comple-
ments surrounding qualitative studies and discussions. This case
study also exemplifies a unique application of machine learning
algorithms to illustrate the importance of holistic data analyses that
incorporate human variables in traditionally physical analyses. A
holistic conceptual framework (Fig. 1) guided this quantitative as-
sessment and data collected in this study represent each facet of the
conceptual framework. Interpretable machine learning algorithms
were used to predict damage, analyze relationships amongst varia-
bles, and unveil important predictors of damage.

Background

General Context

Disasters affect different demographic groups with immense dis-
parity. While physical hazards often remain the leading contribu-
tors to damage intensity, studies have demonstrated that social
factors also significantly contribute. Namely, vulnerability, or the
collective factors influencing a community’s susceptibility to dam-
age, can intensify disaster impacts and inhibit postdisaster recovery
(Fothergill and Peek 2004; Chakraborty et al. 2005; Flanagan et al.
2011; Chakraborty et al. 2014; Rumbach et al. 2020). Vulnerability
can be quantified using either inductive or deductive statistical
methods to create indices focused on socioeconomic, structural
(i.e., built environment), and/or comprehensive (e.g., Cutter’s
Social Vulnerability Index) measures (Cutter et al. 2003; Flanagan
et al. 2011; Holand et al. 2011). Some studies elect to analyze
vulnerability via individual raw indicators as opposed to indices;
however, other studies have concluded that vulnerability is a
multidimensional phenomenon (Morrow 1999) and individual
indicators may misrepresent this broader concept (Cutter et al.
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2003; Flanagan et al. 2011). An example of a widely accepted,
comprehensive social vulnerability index includes the pioneering
work completed by Cutter et al. (2003) which, through factor analy-
sis, incorporates numerous variables affecting vulnerability, rang-
ing from income to percentage of mobile home housing units. In an
effort to distinguish population and infrastructure effects, Holand
et al. (2011) adapted the work by Cutter et al. (2003) to fit their
Norwegian case study. They separately created a socioeconomic
vulnerability index that focused on living conditions and popula-
tion characteristics as well as a structural vulnerability index that
represented housing characteristics and structural quality.

Evident across many scales, vulnerability and disaster resilience
have been shown to be correlated from a nationwide (Ward and
Shively 2017) to household level (Highfield et al. 2014). A review
by Fothergill and Peek (2004) concluded that socioeconomic status
consistently emerges as a contributing factor in structural damage
for a variety of disasters. Furthermore, they found that vulnerable
populations often reside in homes with structural qualities that
cause them to be more susceptible to wind and flood forcings re-
sulting in higher levels of damage incurred during a hurricane. Van
Zandt and Rohe (2011) hypothesized that this may be because the
houses that are affordable to lower income groups are often older
and poorly maintained due to the lack of spare financial resources
to fund needed repairs and updates, thus increasing their risk of
damage. A study of Hurricane Ike by Highfield et al. (2014) con-
firmed that, while controlling for other factors, cheaper and/or older
homes received higher levels of damage than newer, more expen-
sive homes. Another study of Hurricane Ike and Hurricane Andrew
by Peacock et al. (2014) concluded that social factors, such as in-
come, were important determinants of both residential building
damage and recovery since houses in wealthier neighborhoods re-
tained a higher relative percentage of their home value postdisaster
and recuperated their value more quickly.

As a result of the increased availability of disaster data and rec-
ognized importance of community vulnerability, natural hazards
studies have begun incorporating machine learning algorithms into
their analyses. In addition to being highly interpretable, ensemble
decision tree strategies, including random forest (RF) and stochas-
tic gradient boosting tree (SGBT) algorithms, can address all facets
of disaster risk or impact conceptual frameworks because they are
highly flexible, nonparametric, and can accommodate nonlinear,
multidimensional data sets from a variety of sources and formats—
allowing both continuous numeric as well as categorical data within
the same model (Breiman 1996, 2001; Friedman 2002).

Owing to the complex nature of the phenomena, many flood
studies in particular have embraced machine learning (Wang
et al. 2015; Chapi et al. 2017; Shafizadeh-Moghadam et al. 2018;

Sadler et al. 2018), as well as landslide (Trigila et al. 2015; Hong
et al. 2016), and earthquake (Tesfamariam and Liu 2010) studies.
However, these studies did not account for vulnerability. Several
studies have recently emerged that apply machine learning algo-
rithms to explore the societal role in disasters. An RF assessment
of wildfire damage in Portugal by Oliveira et al. (2017) concluded
that purchasing power and housing quality were significantly
correlated with the extent of wildfire damage and that certain
demographic groups, such as the elderly and households with lower
education levels, were relatively more vulnerable to wildfire im-
pacts. Merz et al. (2013) studied the correlation between flood
damage and voluntary precautionary measures across German
households, finding that households with resources to implement
mitigation actions sustained lower structural losses. They also con-
cluded that ensemble decision trees more accurately predicted dam-
age than traditional impact models. By leveraging household-level
damage assessments in Bangladesh, another flood study comparing
linear regression, RF, and artificial neural networks concluded
that larger households and higher education levels were associated
with lower flood damage (Ganguly et al. 2019). This study uses
ensemble decision tree algorithms, specifically RF and SGBT, to
quantitatively explore the relative role that societal factors played
in the structural damage caused by Hurricane María.

Case Study

Hurricane María was a Category 5 storm that made landfall in
Puerto Rico on September 20, 2017, and devastated the island for
months to follow. María is the third costliest storm in US history,
after Hurricanes Katrina (2005) and Harvey (2017), with total
approximate damages in the US Virgin Islands and Puerto Rico
of $90 billion (Pasch et al. 2018). Two weeks prior to María’s land-
fall, Hurricane Irma skirted the island 50 km north, weakening the
island’s infrastructure.

In addition to the storm’s intensity, the severity of María’s impact
could have been influenced by the preexisting social disparities that
have been exacerbated in the previous two decades by the economic
downturn in Puerto Rico (Santiago-Bartolomei 2018). With a pov-
erty rate of 44%, Puerto Rico has a much higher low income pop-
ulation than the national average (poverty rate of 13%) as well as a
higher percentage of the population is aged 65 and over (18%) com-
pared to the national average (15%) (US Census Bureau 2017). The
influence of these disparities is reflected in mortality statistics;
Santos-Burgoa et al. (2018) determined that the 2,975 fatalities
caused by María were concentrated in areas of low socioeconomic
status as well as areas with the highest ratios of men over age 65.

While María’s effect on infrastructure in Puerto Rico was wide-
spread, one of the most critical sectors hit was housing, which has
suffered from a shortage of resilient low-income housing (Santiago-
Bartolomei 2018). Affluent residents of Puerto Rico often reside in
concrete structures built to code by licensed contractors; however,
many lower income populations only have access to substandard
houses that have not been updated or are informally self-built,
resulting in an uneven distribution of structural resiliency across
demographic groups (RSF 2018). Informal housing refers to struc-
tures that are self-built without proper titles or permitting and do
not comply with zoning and building regulations. A 2018 report by
the Puerto Rico Home Builders Association estimated that 45% of
structures on the island are informal (Asociación de Constructores
de Puerto Rico 2018). However, these areas of vulnerable housing
were difficult to prioritize in postdisaster response and recovery
efforts because these structures lacked legal documentation and
are not included in government housing databases (FEMA 2018a).
Given the widespread prevalence of these structures, existing

Fig. 1. Conceptual framework illustrating that disaster impacts result
from the nexus between natural hazards, exposure, and vulnerabilities.
This principle guides the analysis, with damage indices representing
impact normalized by exposure and predictive features represented
by hazard and vulnerability data.
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government structural databases are incomplete and could not be
solely utilized to accurately model traditional structure-damage
functions across the island.

Damage patterns produced by wind events specifically are
indicators of structural and socioeconomic vulnerability (Eaton
1980). Since Hurricane María passed diagonally across the center
of Puerto Rico, all structures were exposed to some degree of wind
forcing, revealing areas of poor infrastructure investment and high
structural vulnerability. Ma and Smith (2020) analyzed Individual
Assistance data from the Federal Emergency Management Agency
(FEMA) and determined that María’s wind was the cause of 99%
of the destroyed homes in Puerto Rico. They also concluded that
renters and lower income populations sustained higher levels of
damage than homeowners or higher income households.

Although Cutter et al. (2003) established that lack of wealth and
housing quality are primary contributors to hazard vulnerability,
societal factors have not yet been extensively used as a proxy to
analyze correlations between areas with high concentrations of
community vulnerability with damage due to hurricanes. This is
especially vital for the case of Hurricane María, given the high pov-
erty rate and housing challenges experienced by Puerto Rico. While
it has been the focus of many qualitative discussions, the role of
vulnerability as it pertains to Hurricane María’s impact on Puerto
Rico remains to be quantitatively constrained in a robust manner. In
this study, resultant damage patterns are hypothesized to be a func-
tion of both hazardous forcings and preexisting vulnerabilities.

Methods

Data

The widely recognized disaster risk assessment model defines risk
as a function of hazards, exposure, and vulnerability. This frame-
work was adapted for a postevent application by proposing that
impact is a function of hazards, exposure, and vulnerability (Fig. 1).
Best available data represented the components of this conceptual
framework, including impact (number of buildings damaged), ex-
posure (total number of buildings), natural hazards (wind, flooding,
landslides), and vulnerabilities (socioeconomic and/or structural).
Table 1 provides a summary of all variables produced by data gath-
ering and processing, indicating their relation to the conceptual
framework.

An aerial damage assessment database from FEMA documented
María’s impact on structures across the island (FEMA 2018b). A
total of 53,664 structures were visually designated as “Affected”
(49,972) or “Destroyed” (3,692); however, the data did not capture
damage to the sides of structures and residential versus nonresiden-
tial structures are often indistinguishable because nadir imagery
was used to generate the data set. A total of 1,500,308 building
footprint polygons, created by OpenStreetMap (OSM), delineated
all structures exposed across Puerto Rico (OpenStreetMap 2019).

Hurricane María’s hazardous forces included wind, flooding,
and landslides. For wind hazards, Applied Research Associates
provided modeled measures of peak gusts (m/s) and maximum
sustained winds (m/s) at 10 m elevation over flat terrain (Applied
Research Associates 2017; Vickery et al. 2000). The National
Hurricane Center (NHC) best track data for María charted the
center path of the storm (NHC 2017). Using gauge and topographic
data, FEMA created flood event depth grids. These data repre-
sented the inundation extent and intensity produced by Hurricane
María (FEMA 2017a, b). Puerto Rico’s National Flood Insurance
Program (NFIP) Special Flood Hazards Area (SFHA) database
(FEMA 2018c) provided an additional measure of general flood
risk, depicted by the 1-percent-annual-chance flood polygons,
which is widely used for floodplain management and establishes
the program’s flood insurance rates (FEMA 2019). A United States
Geological Survey (USGS) data set documented the spatial density
of landslides triggered by Hurricane María using posthurricane
imagery and a grid-based landslide intensity classification system,
visually validated with aerial helicopter surveys (USGS 2019;
Bessette-Kirton et al. 2019).

Since vulnerability is an inherently multidimensional concept,
the present study incorporated vulnerability indices. Four data
sets represented vulnerability in this study: two represented com-
prehensive measures (with both socioeconomic and structural
factors), one focused on socioeconomic factors, and one focused
on structural factors. The Center for Disease Control (CDC) created
a comprehensive social vulnerability index (SVI) for Puerto Rico
in 2017 (CDC 2017) that incorporates multiple themes including
socioeconomic status, language, housing, and transportation,
using deductive methods from Flanagan et al. (2011). Puerto
Rico’s Infrastructure Financing Authority (IFA) created a shapefile
of special communities that delineates the spatial extent of
713 identified disadvantaged communities throughout the
island (Oficina del Coordinador General para el Financiamiento

Table 1. Summary of all data included in this analysis, including all predictive (P) and target (T) variables

Category Measure Type Source Abbreviation

Wind Distance from hurricane center (deg) P NHC (2017) HurTrack
Peak gust (m=s) P ARA (2017) PeakGust

Max sustained winds (m=s) P ARA (2017) MaxSusWinds

Flood Proportion of flooded area P FEMA (2017a) PropFA
Average depth of flooding (m) P FEMA (2017a) AveDepth
Max depth of flooding (m) P FEMA (2017a) MaxDepth

Proportion of SFHA P FEMA (2018c) PropSFHA

Landslide Average landslide density code P USGS (2019) AveLS

Vulnerability Proportion of special communities P IFA (2008) PropSC
Social vulnerability P CDC (2017) CDCVuln

Structural vulnerability P Eroglu et al. (2020) StrVI
Socioeconomic vulnerability P Eroglu et al. (2020) SeVI

Damage/ Baseline damage index T FEMA (2018b) and OSM (2019) DI1

Exposure DI1, excluding highest outlier T FEMA (2018b) and OSM (2019) DI2
DI1, excluding 0 damage tracts T FEMA (2018b) and OSM (2019) DI3

© ASCE 04021028-3 Nat. Hazards Rev.
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Social y la Autogestión 2008). Eroglu et al. (2020) developed a
socioeconomic vulnerability index and a structural vulnerability
index at the census tract scale for Puerto Rico by adapting the in-
ductive statistical methods used by Cutter et al. (2003). The socio-
economic vulnerability index includes variables that represent the
characteristics of the census tract’s population (e.g., average in-
come, age, ethnicity, etc.) while the structural vulnerability index
focuses on the general resilience of physical infrastructure in the
tract, (e.g., average age of construction, size of homes, etc.).

Census tracts are widely used for public policy and urban plan-
ning that specifically promote socioeconomic well-being and
equality (Krieger 2006) and, therefore, provide an appropriate level
of analysis for stakeholders interested in this study. The hazards and
vulnerability data were spatially processed to the census tract scale
following methods detailed in Szczyrba et al. (2020). The baseline
damage index (DI1) created for this study measured the total num-
ber of “Affected” (NAffected) or “Destroyed” (NDestroyed) structures
(impact) normalized by total number of structures (NTotal) in each
census tract (exposure):

DI1 ¼ NAffected þ NDestroyed

NTotal
ð1Þ

0 30 60 Kilometers15

(a) (b)

Fig. 3. Summary of the (a) spatial; and (b) statistical distribution of baseline damage index (DI1) values.

Fig. 2. Schematic summary of the data and modeling process.

Table 2. Spearman correlation matrix of all predictive and target variables used in the analysis

Variable HurTrack PeakGust MaxSusWinds PropFA AveDepth MaxDepth PropSFHA AveLS PropSC CDCVuln StrVI SeVI DI1 DI2 DI3

HurTrack 1 — — — — — — — — — — — — — —
PeakGust −0.18 1 — — — — — — — — — — — — —
MaxSusWinds −0.17 0.99 1 — — — — — — — — — — — —
PropFA −0.11 −0.13 −0.11 1 — — — — — — — — — — —
AveDepth −0.17 −0.19 −0.18 0.82 1 — — — — — — — — — —
MaxDepth −0.18 −0.20 −0.19 0.84 0.98 1 — — — — — — — — —
PropSFHA 0.25 −0.04 −0.02 0.41 0.28 0.28 1 — — — — — — — —
AveLS −0.22 −0.24 −0.26 −0.02 0.14 0.12 −0.26 1 — — — — — — —
PropSC 0.04 −0.09 −0.09 0.01 0.03 0.02 0.04 0.06 1 — — — — — —
CDCVuln 0.01 −0.24 −0.24 0.01 0.01 0.01 0.05 0.06 0.30 1 — — — — —
StrVI −0.23 −0.39 −0.40 0.14 0.24 0.25 −0.11 0.24 0.20 0.32 1 — — — —
SeVI −0.10 0.10 0.09 0.01 0.00 0.00 −0.06 0.02 −0.21 −0.49 −0.13 1 — — —
DI1 −0.22 −0.01 0.01 0.13 0.17 0.17 0.03 0.06 0.21 0.16 0.23 −0.17 1 — —
DI2 −0.22 −0.01 0.01 0.13 0.17 0.17 0.02 0.06 0.21 0.16 0.23 −0.17 1.00 1 —
DI3 −0.24 −0.08 −0.06 0.13 0.19 0.20 0.02 0.12 0.26 0.25 0.31 −0.24 1.00 1.00 1

© ASCE 04021028-4 Nat. Hazards Rev.
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following similar methods as Burton (2010) and Ganguly et al.
(2019). Three additional variations from DI1 were calculated to re-
duce noise: the second index (DI2) removed the highest outlying
data point—value of 0.36, seen in Fig. 3(b), the third index (DI3)
excluded 117 census tracts that contained no damage.

After all predictive variables were processed and aggregated, a
Spearman correlation analysis identified and eliminated colinear
variables with very strong correlations, that is, variables containing
redundant statistical relationships with correlations greater than 0.9
(Schober et al. 2018). This feature selection effort promoted the
interpretability of model results (Karagiannopoulos et al. 2007).

Ensemble Decision Tree Algorithms

After gathering the data set, RF and SGBT regression algorithms,
sourced from Python’s scikit-learn machine learning package
(Pedregosa et al. 2011), were trained to assess the relative influen-
ces of hazards and vulnerabilities on structural damage due to

Hurricane María in Puerto Rico. These algorithms were selected
for their high interpretability compared to other machine learning
algorithms and their ability to quantify relative importances of pre-
dictive features.

RF is a common ensemble decision tree algorithm that con-
structs a group of independent classification or regression trees
and leverages the majority vote of trees to determine the resultant
prediction or the average prediction per data sample, respectively
(Breiman 1996, 2001). On the other hand, SGBT iteratively gen-
erates a series of classification or regression trees, each improving
upon the performance of the previous (Friedman 2002).

Before applying the algorithms on the data, the scikit-learn
“train, test, split” function created a randomized division with the
created a training set containing 80% of the data and an evaluation
set containing the remaining 20% of data, following commonly ac-
cepted procedures, (e.g., Suthaharan 2016). Data stratification upon
division ensured that the distribution of the two data sets were
similar. The resultant training set included 705 census tracts while

Table 3. Performance comparison of all models run in this study using consistent training and evaluation data sets

Algorithm Measure DI1 DI2 DI3 Average

RF R2 evaluation 0.29 0.32 0.27 0.29
R2 training 0.89 0.89 0.89 0.89

ME −0.0029 −0.0023 −0.0015 −0.0022
MAE 0.019 0.019 0.020 0.019

SGBT R2 evaluation 0.33 0.37 0.36 0.35
R2 training 0.71 0.85 0.70 0.76

ME 0.0026 0.0018 0.0020 0.0021
MAE 0.018 0.018 0.018 0.018

(a) (b)

(c) (d)

Fig. 4. True and predicted DI2 values for (a) RF training data; (b) RF evaluation data; (c) SGBT training data; and (d) SGBT evaluation data.
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the evaluation set contained 177. Automated optimization tech-
niques, including randomized search cross validation and grid
search cross validation, tuned the model to the ideal hyperpara-
meters. Randomized search cross validation subdivided the training
data set into five folds and, using internal cross validation, identi-
fied the range of ideal hyperparameter values. Then, grid search
cross validation exhaustively tuned the model within the identified
ranges. The ratio of variation explained by the model to total varia-
tion (R2), mean absolute error (MAE), and mean error (ME) were
calculated on the evaluation set to assess model performance.

Three measures were used to assess the importance of each
predictive feature. The default importance calculation provided
by scikit-learn—mean decrease in mean square error (MSE)—
represented one measure of the importance of each predictive fea-
ture (Pedregosa et al. 2011). However, this measure can potentially
be biased toward favoring features with high-cardinality (Strobl
et al. 2007); therefore the importance of each predictive feature

was also calculated by permuting, or randomly shuffling, each
feature’s values while measuring changes in R2 before and after
permutation (Breiman 2001). If shuffling one feature resulted in
a sharp increase in model variance (i.e., sharp decrease in model
performance), the feature is considered important. However, if the
permuted feature correlated with another, the relationship would be
retained, thus reducing the perceived measure of importance. To
mitigate this effect, related groups of features were also permuted
in tandem to determine how correlated variable categories affected
the model (Koch et al. 2019). Variable groupings are indicated
in Table 1.

While feature importance measures indicate which features are
most-valuable to model performance, they provide little informa-
tion in terms of how or why features are important. Learned partial
dependencies demonstrate the marginal effect each predictive fea-
ture exhibits on the damage index (Friedman 2001), represented by
the following equation from Liaw and Wiener (2012):

0 40 80 Kilometers20

> 0.2
> 0.1 - 0.2

Damage Index (DI2)

Municipalities

> 0.05 - 0.1

0 damage
> 0 - 0.025
> 0.025 - 0.05

Error
-0.049 - -0.03

> -0.03 - -0.01
> -0.01 - 0.01
> 0.01 - 0.03
> 0.03

(a)

(b)

(c)

(d)

Fig. 5. Spatial representation of (a) true DI2 values compared to (b) the predicted SGBT model output. Errors (true DI2 values—SGBT model
predicted output) are displayed in (c) along with the (d) error histogram.
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~fðxÞ ¼ 1

n

XN

i¼1

fðx;XiCÞ ð2Þ

where x is the predictive feature of interest among the other pre-
dictive features fX1C

;X2C
· · · XNC

g used in the machine learning
model ~f of n samples. The function explains, for a given value x,
the marginal effect it has on the prediction by creating an average
prediction for each value of x over the distribution of XiC . The par-
tial dependence for each predictive feature along with the feature
distribution were plotted to determine the marginal relationship that
each predictive feature exhibited with damage. In summary, the
workflow involved selecting and processing appropriate data, train-
ing the algorithms with a subset of the database, tuning the model
hyperparameters, evaluating the accuracy of the model with an

evaluation data set, and, lastly, finalizing and applying the model
to analyze variable importance (Fig. 2).

Results

Damage Index

Damage was distributed and areas of highest damage appear to
loosely follow the center path of Hurricane María [Fig. 3(a)]. DI1
ranged from 0 to 0.36 and is skewed toward lower values, with a
mean of 0.032 [Fig. 3(b)].

Table 2 displays all Spearman correlation values (variable name
abbreviations can be found in Table 1). Correlations with DI1 were

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Feature importance analysis from the RF algorithm models for (a–c) DI1; (d–f) DI2; and (g–i) DI3. The default measure of mean decrease
in MSE shown in (a), (d), and (g); the permutation measure of the percentage decrease in R2 shown in (b), (e), and (h); and the group permuta-
tion measure of the percentage decrease in R2 shown in (c), (f), and (i) each provide a unique indication of the important predictive features in each
model.
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strongest with StrVI (0.23), HurTrack (−0.22), and PropSC (0.21).
DI3 exhibited the strongest correlations with all predictive features.
The correlation analysis also found that two pairs of features, Max-
Depth and AveDepth as well as MaxSusWinds and PeakGust, had
Spearman correlation values higher than 0.9. Therefore, one feature
from each pair was selected, resulting in a total of 10 predictive
features incorporated into the machine learning analysis.

Model Performance

Model performance results after tuning and optimization are sum-
marized in Table 3. On average, the RF algorithm obtained an R2 of
89% on the training data and 29% on the evaluation data, with an

average ME of −0.0022 and MAE 0.019 on the evaluation data
across all damage indices. The SGBT algorithm, on average, ob-
tained an R2 of 76% on the training data and 35% on the evaluation
data, with an average ME of 0.0021 and MAE 0.018 of on the
evaluation data across all indices. The best performing model ap-
plied the SGBT algorithm to target DI2.

Both algorithms performed best when trained with DI2, perfor-
mance plots of these model predictions against the true data values
are included in Fig. 4. It can be seen from this plot that the models
appear to locally overpredict at low DI2 values and underpredict at
high DI2 values on both training and evaluation data. Predictive
maps generated by the top performing model (SGBT-DI2) reveal
the spatial patterns in model performance, seen in Figs. 5(a–d).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Feature importance analysis from the SGBT algorithm models for (a–c) DI1; (d–f) DI2; and (g–i) DI3. The default measure of mean decrease
in MSE shown in (a), (d), and (g); the permutation measure of the percentage decrease in R2 shown in (b), (e), and (h); and the group permutation
measure of the percentage decrease in R2 shown in (c), (f), and (i) each provide a unique indication of the important predictive features in each model.
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The model’s overall spatial distribution of damage is representative
[Figs. 5(a and b)], areas with high error follow diagonally across the
island [Fig. 5(c)], and errors center around 0 [Fig. 5(d)].

Role of Vulnerability

Results from the feature importance analysis are summarized in
Figs. 6(a–i) and 7(a–i). All models indicated that a vulnerability
measure contributed the most predictive information. In the best-
performing model (SGBT-DI2), StrVI was the leading predictive
feature [Figs. 7(d–f)]. Randomly permuting the individual predic-
tive variables revealed an interesting nuance. The CDCVuln var-
iable became less important compared to the default measure of
feature importance in all models while PropSC became more im-
portant in five of the six models. The four least informative fea-
tures were often different orders of the three flood measures and
AveLS. PropFA was the least predictive feature in all models.

When permuting predictive features categorically and measur-
ing the subsequent drop in model variance, all six models indicated
that vulnerability was the leading predictive category, followed by
wind, flood, and landslide [Figs. 6(c, f, i) and 7(c, f, i)]. Permuting
the vulnerability variables in tandem resulted in approximately an
80% drop in model R2, with wind reducing R2 by approximately
50%, flood 25%, and landslide 10%.

The learned marginal impact of each predictive feature
and the damage indices demonstrate a variety of relationships
[Figs. 8(a–j)]. PropSFHA [Fig. 8(a)], PropFA [Fig. 8(c)], and
AveLS [Fig. 8(d)] exhibit relatively flat, horizontal relationships,
indicating no relational pattern between variables and damage. For
the majority of values, AveDepth [Fig. 8(b)] appears to also be
horizontal, but sharply increases at the variable’s highest values.
However, this could be an over-interpolation due to sparse data
availability at these high values. The predicted damage index de-
creases as HurTrack increases, although this relationship is more
complex at very short distances away from the center of the storm
[Fig. 8(e)]. Expected damage increases as PeakGust [Fig. 8(f)],
PropSC [Fig. 8(g)], StrVI [Fig. 8(h)], and CDCVuln [Fig. 8(j)]
increase. Damage appears to increase exponentially as StrVI in-
creases [Fig. 8(h)]. Interestingly, SeVI exhibits a negative relation-
ship with damage [Fig. 8(i)], also seen in the Spearman correlation
values (Table 2).

Discussion

Vulnerability features correlated with Hurricane María’s damage
patterns and provided leading information to the machine learning
models above all other wind, flood, and landslide variables. By cal-
culating importance with multiple different methods and algo-
rithms, these results do not rely upon misinterpretations due to
inherent biases of a single method. Strobl et al. (2007) pointed
out that the mean decrease in MSE method inflates the importance
of variables with high cardinality. Upon permutation, the CDCVuln
feature drops in importance and the PropSC feature increases in
importance [Figs. 6(a–i) and 7(a–i)], possibly due to their distribu-
tions [Figs. 9(a and b)]. CDCVuln exhibits higher cardinality than
PropSC, potentially resulting in an exaggerated importance mea-
sure of CDCVuln when using the default method of mean decrease
in MSE. Therefore, the findings of this study support previous
assertions that the mean decrease in MSE measure may be biased
and that using multiple strategies to calculate feature importance is
essential.

Results from the partial dependency analysis are open to some
interpretation. One possible cause for the sharp drop at the end
of the CDCVuln curve seen in Fig. 8(j) could be due to areas of

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 8. Partial dependence plots extracted from SGBT—DI2, where the
y-axis is the change in the damage index prediction as function of dif-
ferent predictive features. Rug plots are provided for each feature to
indicate data distribution: (a) PropSFHA; (b) AveDepth; (c) PropFA;
(d) AveLS; (e) HurTrack; (f) PeakGust; (g) PropSC; (h) StrVI; (i) SeVI;
and (j) CDCVuln.
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high vulnerability that did not receive damage in geographically
sheltered areas. Therefore, they do not conform to the general pat-
tern of increased damage with increased vulnerability because of
exposure to hazards of lower intensity. Similarly, the sharp drop
at the high values of PeakGust [Fig. 8(f)] could be due to areas
that were exposed to intense hazards but were structurally very
resilient.

The partial dependency analysis also revealed that SeVI exhib-
ited a negative relationship with DI1 [Fig. 8(i)] and, furthermore,
the Spearman analysis (Table 2) showed negative correlations with
all damage indices (−0.17, −0.17, and −0.24 for DI1, DI2, and
DI3, respectively), PropSC (−0.21), StrVI (−0.13), and a strong
negative correlation with CDCVuln (−0.49). Puerto Rico specifi-
cally may not be suitable for socioeconomic vulnerability quanti-
fication with the traditional methods used by Eroglu et al. (2020)
due to the high rates of emigration and prevalence of informal hous-
ing (US Census Bureau 2017; Asociación de Constructores de
Puerto Rico 2018). Therefore, census measurements and traditional
methods of vulnerability calculation may not capture accurate in-
formation on the most socioeconomically vulnerable areas and care
needs to be taken before applying and interpreting these measures
against damage data (Holand 2015; Bakkensen et al. 2017). In or-
der to improve the existing measures of Puerto Rican vulnerability,
future work is needed developing a place-based methodology to
create representative vulnerability indices (Ahmed and Kelman
2018).

The reported model performance metrics indicate that SGBT
outperforms RF; however, both algorithms are struggling to gen-
eralize the data (Table 3). This may be due to the imbalanced
distribution in target variable values and the small number of data
samples. Generalizability is challenging on disproportionately dis-
tributed data with many outliers since machine learning algorithms
optimize to reflect average conditions (He and Garcia 2009). This
may be why DI2 performed best. Previous studies with similarly
distributed targets have indicated that this is a common challenge
(Sadler et al. 2018).

The high amount of variance in this data set may be influenced
by other possible factors, such as the large scale of the analysis,
coarse data resolution, passage of Hurricane Irma to the north of
the island just weeks before Hurricane María, as well as the dearth
of basic structural and building material data. Furthermore, the spa-
tially diagonal pattern in the errors [Fig. 5(c)], which appear to
coincide with the center track of the storm [Fig. 3(a)], could be
indicative of the lack of topographic effects in the wind data
(such as wind speed up through mountainous terrain). Given these

limitations, a predictive performance of 37% on evaluation data is
adequate (Koch et al. 2019).

Conclusions

This study provides evidence that, at the census tract level, vulner-
able communities in Puerto Rico suffered higher levels of damage
due Hurricane María and that vulnerability measures were more
predictive of damage than wind, flood, and landslide hazards.
Hazardous forces alone do not sufficiently explain damage patterns
and impact assessment models must include social factors as input
variables to accurately depict areas of priority for decision makers,
improve resource allocation, and, ultimately, ensure a more effi-
cient and equitable response effort. Furthermore, it is advantageous
for policymakers to prioritize underprivileged areas for predisaster
mitigation investment to avoid heightened postdisaster losses.

Various disaster impacts may be reduced if prevailing vulner-
abilities are addressed proactively before an event brings them to
the fore. However, this can be challenging in data-scarce regions,
which often coincide with areas of fewer resources. This study
showed that different methods of quantifying vulnerability indi-
cated different correlations with damage and that traditional meth-
ods of quantifying socioeconomic vulnerability in particular can be
misleading. It is especially pertinent in regions with fewer resources
that existing methods of demographic data collection and vulner-
ability quantification are continuously refined to accurately re-
present the most vulnerable communities.

Data availability provides an opportunity for researchers to
implement statistical learning approaches and studies that seek to
provide situational awareness throughout the life cycle of a disaster
may find these approaches helpful. This study demonstrated that
these emerging methods can analyze diverse data sets representing
multiple drivers of disaster impacts, including social factors, and
provide valuable, holistic estimates of damage patterns and inten-
sities as well as quantify the influence of vulnerability variables.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request (raw data as well as the following variables partitioned
to the census tract level: HurTrack, PeakGust, MaxSusWinds,
PropFA, AveDepth, MaxDepth, PropSFHA, AveLS, PropSC,
CDCVuln, StrVI, SeVI, DI1, DI2, DI3).

(a) (b)

Fig. 9. (a) CDCVuln feature exhibits a wider and more evenly spaced distribution than (b) PropSC feature.
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