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We propose a new clustering approach, called optimality-based clustering, that clusters data points based 
on their latent decision-making preferences. We assume that each data point is a decision generated by 
a decision-maker who (approximately) solves an optimization problem and cluster the data points by 
identifying a common objective function of the optimization problems for each cluster such that the 
worst-case optimality error is minimized. We propose three different clustering models and test them in 
the diet recommendation application.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is a technique that groups objects (e.g., data points) into clusters such that the objects in the same cluster are more similar 
to each another than to those in other clusters based on some similarity measure [9]. Most clustering approaches fall into one of the 
following categories: centroid-based clustering, distribution-based clustering, and density-based clustering. In centroid-based clustering, 
each object is assigned to a cluster based on its similarity to a representative object called a centroid (e.g., K-means clustering) [10,13,17]. 
In density-based clustering, a density measure, e.g., the number of objects within a certain distance, is used to detect areas with high 
density, in which the objects are grouped into the same cluster [7,12]. Distribution-based clustering groups the objects based on whether 
or not they belong to the same distribution [18].

Often, data points correspond to decisions generated by decision-makers (DMs) who are assumed to solve some kind of decision-
making problems (DMPs). Although traditional clustering approaches for such decision data may indicate which decisions are similar to 
each other, this similarity does not necessarily imply that the DMs whose decisions are in the same cluster have similar preferences. 
For example, suppose the DMPs can be formulated as optimization problems where the DM’s preferences are encoded in the objective 
function parameters. Even when two DMs’ decisions are geometrically close to each other, they might have been generated by two DMPs 
with completely different objective function parameters under different feasible regions, which traditional clustering cannot capture. The 
focus of this paper is to cluster decision data based on the similarity in the DM’s decision-making preferences, captured by parameters in 
their underlying DMPs.

Clustering based on decision-making preferences can help create targeted, group-based decision support tools. For example, by cluster-
ing patients based on their health-related preferences (e.g., health benefit vs. cost saving) using their past disease screening decisions, one 
can create a group-based yet easily implementable screening guideline that is consistent with the patients’ preferences (e.g., increased use 
of telemedicine for a specific group of patients). Similarly, when developing a diet recommendation system, clustering individuals based on 
their food preferences and inferring a common objective function for each cluster can help create a group-specific diet recommendation 
framework. A post-hoc analysis can be done to further identify association of the preference clusters with other factors such as health 
conditions and socio-demographic factors.

Since this clustering problem requires inferring objective function parameters of the DMPs from decision data, it inherently involves 
inverse optimization. Given an observed decision from a DM who solves an optimization problem, inverse optimization infers parameters 
of the problem that make the decision as optimal as possible (e.g., [1,2,4–6,11]). Solving the DM’s optimization problem with these 
inferred parameters then leads to a decision that is close to the observed one. Previous inverse optimization models assume that decision 
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data is collected from either a single DM or a group of DMs whose preferences are known to be similar, for which the same, single set of 
parameters is inferred [2,3,6,15].

In this paper, we develop a new clustering approach that clusters decision data (hence DMs) based on their latent decision-making 
preferences. In particular, inspired by inverse optimization, we propose the clustering problem that simultaneously groups observed de-
cisions into clusters and finds an objective function for each cluster such that the decisions in the same cluster are rendered as optimal 
as possible for the assumed DMPs. We use optimality errors associated with the decisions with respect to the inferred objective function 
as a measure of similarity; hence we call this problem “optimality-based clustering.” We further enhance the problem by incorporating 
the notion of cluster stability, measured for each cluster by the worst-case distance between the decision data in the cluster and optimal 
decisions achieved by the DMPs using the inferred objective function for the cluster. The stability-driven, optimality-based clustering prob-
lem is computationally challenging. We derive mixed-integer programs (MIPs) that provide upper and lower bound solutions for the true 
clustering problem as well as heuristics that approximately solve this problem. Finally, we demonstrate the proposed clustering approach 
in the diet recommendation application to cluster individuals based on their food preferences. Unless otherwise stated, proofs are in the 
appendix.

2. Preliminaries

In this section, we present an initial formulation for the optimality-based clustering problem and a simple example to demonstrate 
the idea. We then define the notion of cluster stability in the context of optimality-based clustering, which we later use to propose an 
enhanced clustering formulation.

2.1. A general clustering problem

We focus on a centroid-based clustering problem where the similarity of a data point to a cluster is assessed by the distance between 
the data point and a centroid of the cluster. Given a dataset X̂ = {x̂1, . . . , ̂xK } with the index set K = {1, . . . , K }, let {G�}�∈L be a collection 
of L clusters where G� ⊆ K and L = {1, . . . , L}. For each cluster G� , the dissimilarity among the members of the cluster is measured by ∑
k∈G�

d(x̂k, x�), where x� denotes the centroid of the cluster and d(x̂k, x�) represents the distance between observation x̂k and its cluster 

centroid x� , e.g., d(x̂k, x�) = ‖x̂k − x�‖r for some r ≥ 1. Based on the above definition, a centroid-based clustering problem seeks clusters 
{G�}�∈L such that the sum of dissimilarities over all clusters is minimized, i.e.,

minimize
{G�}�∈L,{x�}�∈L

∑
�∈L

∑
k∈G�

d(x̂k,x�).

2.2. Optimality-based clustering: the initial model

We assume that each data point x̂k ∈ X̂ is an observed decision from DM k (denoted by DMk) who approximately solves the following 
optimization problem as a decision-making problem (DMPk):

DMPk(c) : minimize
x

{c′x |Akx ≥ bk},

where c ∈ Rn, x ∈ Rn , Ak ∈ Rmk×n , and bk ∈ Rmk , for each k ∈ K. For each DM k ∈ K, let Ik = {1, . . . , mk} and J = {1, . . . , n} index the 
constraints and variables of DMPk , and aki ∈ Rn be a (column) vector corresponding to the i-th row of Ak . We let X k be the set of 
feasible solutions for DMPk , assumed bounded, full-dimensional, and free of redundant constraints, and X ki = {x ∈ X k | aki ′x = bki }, i ∈ Ik . 
Let X k∗(c) = argminDMPk(c). Without loss of generality, we assume that each aki is normalized a priori such that ‖aki‖1 = 1.

Given a set of observed decisions X̂ , the goal of optimality-based clustering is to group the observations into L < K clusters {G�}�∈L
and find a cost vector c� for each cluster � such that each observation x̂k in cluster � (i.e., for k ∈ G�) is as close as possible to an optimal 
solution to DMPk(c�). This problem can be formulated as follows:

minimize
{xk}k∈K,{(c�,G�)}�∈L

d(X̂ , {xk}k∈K) (1a)

subject to xk ∈ X k∗(c�), ∀k ∈ G�, � ∈ L, (1b)

‖c�‖1 = 1, ∀� ∈ L. (1c)

The objective of the above problem is to minimize the distance between the observations X̂ and solutions xk ’s that are optimal for their 
respective DMPs with respect to c� for k ∈ G�; e.g., d(X̂ , {xk}k∈K) =

∑
�∈L

∑
k∈G�

‖x̂k − xk‖. Constraint (1c) prevents the trivial solution c� = 0

from being feasible. Note that the above problem is analogous to centroid-based clustering problems in that c� can be seen as the centroid 
of cluster �, representing the shared decision preference of the observations assigned to cluster �. We use the following simple example 
to demonstrate the idea.

Example 1. Suppose three DMs solve the following problem with their own objective functions:

maximize {c1x1 + c2x2 | x1 ≤ b1, x2 ≤ b2, x1, x2 ≥ 0}.

x1,x2
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Fig. 1. Observations from DMs k = 1,2, and 3 and their respective feasible regions.

Let (b1, b2) = (1.5, 1) for DMs k = 1, 2 and (b1, b2) = (2.5, 2.5) for DM k = 3 (see Fig. 1 for the feasible regions). We assume the following 
decisions are observed from the DMs: x̂1 =

[
1.2
1

]
, x̂2 =

[
1.5
0.6

]
, and x̂3 =

[
2.5
0.3

]
(see Fig. 1). If the desired number of clusters is two (i.e., 

L = 2), traditional K-means clustering based on the Euclidean distance finds {x̂1, ̂x2} and {x̂3} to be optimal clusters. However, if the goal 
is to group the decisions based on the preferences encoded in the corresponding DMPs, clustering should be done differently. In particular, 
given their respective feasible regions, x̂2 and x̂3 share the same preference as they are optimal for their respective DMPs based on the 
same cost vector c =

[
1
0

]
; on the other hand, x̂1 is optimal to the DMP with respect to a completely different cost vector c =

[
0
1

]
. As a 

result, an optimal clustering is {x̂2, ̂x3} and {x̂1}.

2.3. Cluster instability

In this subsection, we show that the initial model (1) is often subject to an instability issue due to the structure of the DMP formulation 
and propose a measure of instability in the context of optimality-based clustering. Given an optimal cost vector c�∗ for some cluster �
achieved by model (1), we note that DMPk(c�∗) often leads to xk ∈ X k∗(c�) that is far from the observations assigned to the cluster. For 
illustration, consider the same example in Fig. 1, where model (1) finds G2 = {x̂1} (i.e., x̂1 assigned to cluster � = 2) and c2∗ =

[
0
1

]
. While 

the desirable forward optimal solution with respect to this cost vector is supposed to be close to x̂1, solving DMP1(c2∗) can lead to an 
optimal solution x∗ =

[
0
1

]
, which is far from x̂1. Note that this cluster instability issue is different from the cluster assignment instability 

issues considered in the traditional clustering literature [14,16]; it is rather associated with the argmin set of the DMP for a certain cost 
vector. This type of instability is also discussed in Shahmoradi and Lee [15] in the context of inverse linear programming.

We now formally define a notion of cluster stability, which we then use to propose an enhanced clustering problem formulation that 
improves on the initial model (1) in the next section. Given that the instability issue is caused by x ∈ X k∗(c) being too far from x̂k , we 
assess the instability of a cost vector c associated with each x̂k via the worst-case distance between x̂k and X k∗(c):

max {d(x̂k,xk) |xk ∈ X k∗(c)}.
Then, the instability of cluster G� with its cost vector c� is measured by the following measure:

max
k∈G�

max {d(x̂k,xk) |xk ∈ X k∗(c�)}. (2)

In other words, cluster � is said to be more stable if its cost vector c� leads to a smaller worst-case distance between x̂k and the set of 
optimal solutions for DMPk(c�) over all data points in the cluster. For brevity, from here on out we combine the two max terms in (2) and 
simply write it as max

k∈G�
{d(x̂k, xk) | xk ∈X k∗(c�)}.

3. Models

In this section, we first propose an enhanced optimality-based clustering problem that addresses the cluster instability issue by incor-
porating the stability measure (2). We also propose two heuristics that approximately solve the problem by separating it into two stages: 
the clustering stage and the cost vector inference stage. We then analytically compare the performances of these approaches.

3.1. The stability-driven clustering model

To address the cluster instability issue in model (1), we replace its objective function with the stability-incorporated dissimilarity 
measure in (2). This leads to the following, which we call the stability-driven clustering (SC) model:

SC(K, L) : minimize
{(c�,G�)}�∈L

max
�∈L max

k∈G�
{d(x̂k,xk)} (3a)

subject to xk ∈ X k∗(c�), ∀� ∈ L,k ∈ G�, (3b)

‖c�‖1 = 1, ∀� ∈ L, (3c)

where now the objective is to maximize stability for all clusters by minimizing the worst-case distance between x̂k and the argmin set 
X k∗(c�) over all observations and clusters. Since each DMPk is a linear program (LP), we utilize the LP optimality conditions to reformulate 
model (3) as follows:
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minimize
{(c�,G�)}�∈L,{(xk,yk)}k∈K

max
�∈L max

k∈G�
{d(x̂k,xk)} (4a)

subject to Ak ′
yk = c�, ∀� ∈ L,k ∈ G�, (4b)

yk ≥ 0, ∀k ∈ K, (4c)

Akxk ≥ bk, ∀k ∈ K, (4d)

c�′
xk = bk

′
yk, ∀� ∈ L,k ∈ G�, (4e)

‖c�‖1 = 1, ∀� ∈ L. (4f)

Constraints (4b)–(4e) represent the LP optimality conditions for solutions {xk}k∈G� with respect to c� for each cluster � ∈ L: constraints 
(4b)–(4c) enforce dual feasibility where yk ∈ Rmk represents the vector of dual variables corresponding to DMPk , constraint (4d) corre-
sponds to primal feasibility, and constraint (4e) ensures strong duality. Note that problem (4) is non-convex due to its objective function 
and constraints (4e) and (4f). In Section 4, we analyze its solution structure and propose MIP formulations that provide lower and upper 
bounds on the optimal objective value of problem (4). Our subsequent analysis for the rest of this paper focuses on d(x̂, x) = ‖x̂ − x‖r for 
r ≥ 1, though similar analysis can be derived for other distance functions.

3.2. Heuristics: two-stage approaches

While (4) provides an exact reformulation of the SC problem, it is computationally challenging. Instead, one naive view on this problem 
would be to treat the clustering and cost vector inference parts separately. In this subsection, we propose two heuristics based on this 
separation idea.

The first algorithm applies traditional K-means clustering to cluster dataset X̂ a priori based on some distance function, e.g., Euclidean 
distance, followed by applying inverse optimization post-hoc to derive a cost vector for each of the predetermined clusters. This approach, 
which we call the cluster-then-inverse (CI) approach, can be written as follows.

CI(K, L) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Stage 1. Find {G�
CI}�∈L ∈ argmin

{G�}�∈L

{∑
�∈L

∑
k∈G�

d(x̂k,x�
cen)

∣∣∣∣x�
cen is the centroid of G�

}

Stage 2. Find c�
CI ∈ argmin

c�

{
max
k∈G�

CI

d(x̂k,xk)

∣∣∣∣xk ∈ X k∗(c�),‖c�‖1 = 1

}
, ∀� ∈ L.

(5)

In Stage 1, clusters {G�
CI}�∈L are obtained by solving a traditional clustering problem on X̂ . Then, Stage 2 finds a cost vector for each of 

the clusters that minimizes cluster instability. Note that Stage 2 of the CI approach solves a “reduced” version of the SC problem that finds 
a stability-maximizing cost vector for each � ∈ L with respect to the observations assigned to cluster �; i.e., SC(G�

CI, L = 1) where L = 1
implies that no further clustering happens.

Alternatively, the second approach finds a cost vector ck∗ for each data point k ∈ K a priori such that max{d(x̂k, xk) | xk ∈ X k∗(ck∗)} is 
minimized. Then, the cost vectors are clustered post-hoc into L groups via traditional clustering. We call this approach inverse-then-cluster 
(IC):

IC(K, L) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Stage 1. Find ck∗ ∈ argmin
ck

{
max d(x̂k,xk)

∣∣∣∣xk ∈ X k∗(ck), ‖ck‖1 = 1

}
, ∀k ∈ K

Stage 2. Find {G�
IC}�∈L ∈ argmin

{G�}�∈L

{∑
�∈L

∑
k∈G�

d(ck∗, c�
cen)

∣∣∣∣ c�
cen is the centroid of G�

}
.

(6)

Note that, similarly, Stage 1 of the above IC approach can be seen as solving a reduced version of SC, i.e., SC({k}, L = 1), which finds a “per-
observation” cost vector ck∗ that maximizes stability associated with each observation x̂k . However, once the cost vectors are clustered in 
Stage 2, it is the resulting centroid cost vector, i.e., c�

cen, that represents the preferences for the observations assigned to cluster �, which 
does not necessarily retain the same level of stability achieved by the per-observation cost vectors (i.e., ck∗ ’s) in Stage 1. To address this, 
once the clustering is done, one may solve the SC problem for each cluster again to find a “corrected” cost vector; i.e., SC(G�

IC, L = 1) for 
each � ∈L. We denote such a post-processed cost vector by c�

IC, � ∈L.

3.3. Model comparison

Next, we compare the performance of the SC model (i.e., (3)) and the CI and IC approaches.

Proposition 1. Given X̂ , let {G�
SC, c

�
SC}�∈L denote an optimal solution to model (3), and {G�

CI, c
�
CI}�∈L and {G�

IC, c
�
IC}�∈L be the clusters and corre-

sponding cost vectors achieved by the CI and IC approaches, respectively. Then we have

(i) max
�∈L,k∈G�

SC

{d(x̂k, xk) | xk ∈X k∗(c�
SC)} ≤ max

�∈L,k∈G�
CI

{d(x̂k, xk) | xk ∈X k∗(c�
CI)}, and

(ii) max
�∈L,k∈G�

{d(x̂k, xk) | xk ∈X k∗(c�
SC)} ≤ max

�∈L,k∈G�
{d(x̂k, xk) | xk ∈X k∗(c�

IC)}.

SC IC
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Proof. Since {G�
SC, c

�
SC}�∈L is an optimal solution to (3), we have

max
�∈L,k∈G�

SC

{d(x̂k,xk) | xk ∈ X k∗(c�
SC)} = min

{(c�,G�)}�∈L

{
max

�∈L,k∈G�
{d(x̂k,xk) | xk ∈ X k∗(c�)}

∣∣∣∣‖c�‖1 = 1

}
,

where the right hand side corresponds to model (3).

For part (i), consider {G�
CI, c

�
CI}�∈L generated by CI. Recall from (5) that c�

CI ∈ argmin
c�

{
max
k∈G�

CI

{d(x̂k, xk) | xk ∈ X k∗(c�)} 
∣∣∣∣‖c�‖1 = 1

}
for the 

given cluster G�
CI for each �. Thus, max

�∈L,k∈G�
CI

{d(x̂k, xk) | xk ∈ X k∗(c�
CI)} = max

�∈L
min
c�

{
max
k∈G�

CI

{d(x̂k, xk) | xk ∈ X k∗(c�)} 
∣∣∣∣‖c�‖1 = 1

}
. Then it follows 

that

max
�∈L,k∈G�

SC

{d(x̂k,xk) |xk ∈ X k∗(c�
SC)} = min

{(c�,G�)}�∈L

{
max

�∈L,k∈G�
{d(x̂k,xk) |xk ∈ X k∗(c�)}

∣∣∣∣‖c�‖1 = 1

}

≤ max
�∈L min

c�

{
max
k∈G�

CI

{d(x̂k,xk) |xk ∈ X k∗(c�)}
∣∣∣∣‖c�‖1 = 1

}
= max

�∈L,k∈G�
CI

{d(x̂k,xk) |xk ∈ X k∗(c�
CI)},

as desired.
Proof for part (ii) is similar. Consider {G�

IC, c
�
IC}�∈L generated by IC. Recall from (6) and its post-processing step that

c�
IC ∈ argmin

c�

{
max
k∈G�

IC

{d(x̂k, xk) | xk ∈ X k∗(c�)} 
∣∣∣∣‖c�‖1 = 1

}
. That is, max

�∈L,k∈G�
IC

{d(x̂k, xk) | xk ∈ X k∗(c�
IC)} =

max
�∈L

min
c�

{
max
k∈G�

IC

{d(x̂k, xk) | xk ∈X k∗(c�)} 
∣∣∣∣‖c�‖1 = 1

}
. Thus, we have

max
�∈L,k∈G�

SC

{d(x̂k,xk) |xk ∈ X k∗(c�
SC)} = min

{(c�,G�)}�∈L

{
max

�∈L,k∈G�
{d(x̂k,xk) |xk ∈ X k∗(c�)}

∣∣∣∣‖c�‖1 = 1

}

≤ max
�∈L min

c�

{
max
k∈G�

IC

{d(x̂k,xk) |xk ∈ X k∗(c�)}
∣∣∣∣‖c�‖1 = 1

}
= max

�∈L,k∈G�
IC

{d(x̂k,xk) |xk ∈ X k∗(c�
IC)},

as desired. �
While Proposition 1 implies that the SC model performs at least as well as CI and IC in terms of stability, the SC model is typically 

computationally more challenging than CI and IC. In the next section, we analyze the solution structure of the SC model, which we use to 
derive MIP formulations that provide lower and upper bounds on the optimal value of the SC model.

4. Solution structure and bounds

The reformulation of the SC model (i.e., (4)) is non-convex due to the normalization constraint (4f) as well as the objective function: 
for a given k ∈ K and arbitrary c, max{d(x̂k, xk) | xk ∈ X k∗(c)} is a maximization of the convex function d over the convex region X k∗(c). 
Both the CI and IC approaches also face the same computational challenges because they also involve solving the SC formulations albeit 
of smaller size; i.e., Stage 2 of the CI approach solves SC(G�

CI, L = 1) for each � ∈L and Stage 1 of the IC approach solves SC({k}, L = 1) for 
each k ∈ K. In this section, we analyze the solution structure of the SC model, which leads to MIP formulations that provide lower and 
upper bound solutions for the SC problem.

Theorem 2. There exists an optimal solution 
({(c�∗, G�∗)}�∈L, {(xk∗, yk∗)}k∈K

)
to (4) such that for each cluster � ∈L:

(i) aki
′
xk∗ = bki for i ∈ Ik∗ ⊆ Ik where |Ik∗| = n for all k ∈ G�∗ , and

(ii) c�∗ ∈ cone({aki}i∈Ik∗ ) for all k ∈ G� where cone(·) denotes the conic hull of the given vectors, i.e., cone({aki}i∈Ik∗ ) = {∑i∈Ik∗ γiaki | γi ≥ 0}.

Proof. Consider an optimal solution 
({(c�∗, G�∗)}�∈L, {(xk∗, yk∗)}k∈K

)
to (4). Due to constraints (4b)–(4e), we have xk∗ ∈X k∗(c�∗) for each 

� ∈ L and k ∈ G�∗ . Note that any point in X k∗(c�∗) can be represented by a convex combination of extreme points of X k∗(c�∗). Let 
ext(X k∗(c�∗)) be the set of extreme points of X k∗(c�∗), Qk = ∣∣ext(X k∗(c�∗))

∣∣, and Qk = {1, . . . , Qk}, i.e., ext(X k∗(c�∗)) = {x̄1, . . . , ̄xQk }, for 
each k ∈K. Then, there exists λ̄ ∈ RQk+ such that xk∗ = ∑

qk∈Qk λ̄qk x̄
qk and 

∑
qk∈Qk λ̄qk = 1.

Now we prove part (i). Let q∗
k ∈ argmax

qk∈Qk
{‖x̂k − x̄qk‖r}. That is, we have ‖x̂k − x̄q

∗
k ‖r ≥ ‖x̂k − x̄qk‖r for all qk ∈ Qk . Multiplying both sides 

of the inequality by λ̄qk yields λ̄qk‖x̂k − xq
∗
k ‖r ≥ λ̄qk‖x̂k − x̄qk‖r for all qk ∈ Qk , and thus 

∑
qk∈Qk

λ̄qk‖x̂k − x̄q
∗
k ‖r ≥

∑
qk∈Qk

λ̄qk‖x̂k − x̄qk‖r . Note 

that, from 
∑

k

λ̄qk = 1 we have 
∑

k

λ̄qk‖x̂k − x̄q
∗
k ‖r = ‖x̂k − x̄q

∗
k ‖r . This leads to
qk∈Q qk∈Q
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‖x̂k − x̄q
∗
k ‖r ≥

∑
qk∈Qk

λ̄qk‖x̂k − x̄qk‖r =
∑

qk∈Qk

‖λ̄qk x̂
k − λ̄qk x̄

qk‖r

≥ ‖
∑

qk∈Qk

λ̄qk x̂
k −

∑
qk∈Qk

λ̄qk x̄
qk‖r = ‖x̂k −

∑
qk∈Qk

λ̄qk x̄
qk‖r = ‖x̂k − xk∗‖r,

where the second inequality holds due to Minkowski inequalities. Also, from the optimality of xk∗ , we have ‖x̂k − x̄q
∗
k ‖r ≤ ‖x̂k − xk∗‖r . 

Thus, it must be that ‖x̂k − x̄q
∗
k ‖r = ‖x̂k − xk∗‖r . This means that the solution 

({(c�∗, G�∗)}�∈L, {(x̄q∗
k , yk∗)}k∈K

)
is also optimal to (4). Since 

x̄q
∗
k is an extreme point, there must exist Ik∗ ⊆ Ik such that aki ′x̄q∗

k = bki for all i ∈ Ik∗ and |Ik∗| = n.

We prove part (ii) using the same above optimal solution 
({(c�∗, G�∗)}�∈L, {(x̄q∗

k , yk∗)}k∈K
)
to (4). First, note that for each � ∈ L, c�∗

satisfies (4f), which means for all k ∈ G�∗ there exists at least one i ∈ Ik∗ for which yk∗i > 0. Moreover, because aki ′x̄q∗
k > bi for i ∈ Ik \Ik∗

and yk∗i is the associated dual variable, it must be that yk∗i = 0 for all i ∈ Ik \ Ik∗ . Thus, from (4b) we have c�∗ =
∑
i∈Ik

yk∗i aki =
∑
i∈Ik∗

yk∗i aki , 

or equivalently c�∗ ∈ cone({aki}i∈Ik∗ ), for all k ∈ G�∗ . �
The following result characterizes the solution structure of the SC model under the special case where all DMs solve the same DMP.

Corollary 3. Assume Ak = A and bk = b for all k ∈ K and let I be the index set for rows of A. Then there exists an optimal solution ({(c�∗, G�∗)}�∈L, {(xk∗, yk∗)}k∈K
)
to (4) such that c�∗ ∈ cone+({ai}i∈I∗ ) for each cluster � ∈ L, where I∗ ⊆ I , |I∗| = n, and cone+(·) denotes 

the interior of the conic hull of given vectors, i.e., cone+({ai}i∈I∗ ) = {∑i∈I∗ λiai | λi > 0, ∀i ∈ I∗}.

4.1. Lower bound formulation

Theorem 2 states that there exists an optimal solution to the SC model where xk∗ is an extreme point of X k for all k ∈ K. Also, 
if k ∈ G�∗ then c�∗ must be a conic combination of aki ’s for i such that aki ′xk∗ = bki . Based on this observation, we propose an MIP 
formulation that explicitly finds an extreme point xk∗ for each X k , clusters the data points, and constructs c�∗ for cluster � as a conic 
combination of aki ’s for k assigned to cluster � and for i such that aki ′xk∗ = bki . We then show that the optimal value of this MIP is a 
lower bound on that of the SC problem:

SC-LB(K,L) : minimize
{(xk,vk,λk)}k∈K,α

{(c�,c�+,c�−,z�)}�∈L,u

max
k∈K

{d(x̂k,xk)} (7a)

subject to Ak ′
λk − M1(1− uk�) ≤ c�

≤ Ak ′
λk + M1(1− uk�), ∀� ∈ L,k ∈ K, (7b)

λk
i ≤ M2v

k
i , ∀k ∈ K, i ∈ Ik, (7c)

bki ≤ aki
′
xk ≤ bki + M3(1− vki ), ∀k ∈ K, i ∈ Ik, (7d)∑

i∈Ik

vki = n, ∀k ∈ K, (7e)

∑
�∈L

uk� = 1, ∀k ∈ K, (7f)

c� = c�+ − c�−, ∀� ∈ L, (7g)

c�+ ≤ z�, ∀� ∈ L, (7h)

c�− ≤ e− z�, ∀� ∈ L, (7i)

e′(c�+ + c�−) = 1, ∀� ∈ L, (7j)

vk ∈ {0,1}n,u ∈ {0,1}K×L, z� ∈ {0,1}n, ∀k ∈ K, � ∈ L, (7k)

λk, c�+, c�− ≥ 0, ∀k ∈ K,∀� ∈ L, (7l)

where parameters M1, M2, and M3 are sufficiently large positive constants. Using the result of Theorem 2, constraints (7b)–(7c) enforce 
each c� to be a conic combination of some aki ’s; which aki is selected is dictated by binary variables vki and uk� . If uk� = 1, data point x̂k

is assigned to cluster � and (7b) holds with equality. The variables λk
i in (7b) are then controlled by (7c) using binary variable vki , i.e., if 

vki = 0 then λk
i = 0 and thus preventing aki from being a basis vector for the conic hull constructing c� . Constraints (7d)–(7e) enforce each 

xk to be an extreme point of X k , i.e., satisfying aki ′xk ≥ bki with equality for n number of i’s ensured by (7e). Constraint (7f) ensures that 
each observation is assigned to only one cluster. Finally, constraints (7g)–(7j) replace the non-convex normalization constraint (4f). The 
following result shows that the optimal value of the above problem is a lower bound on the optimal value of the SC problem, i.e., (4).

Proposition 4. Let ρ∗ and β∗ denote the optimal objective values of problems (4) and (7), respectively. Then, we have (i) β∗ ≤ ρ∗ , and (ii) β∗ = ρ∗
if there exists ({ṽk}k∈K, ̃u, {c̃�}�∈L) optimal for (7) such that c̃� ∈ cone+({aki} ˜k ˜ ) for each � ∈L.
i,k:vi =1,uk�=1
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Table 1
Performance of IC, CI, and SC approximated by upper and lower bounds.

Worst-case distance Time (s)

(n,m) K IC CI UB LB IC CI UB LB

(10,30) 30 14.71 11.67 1.92 1.92 36.48 39.01 70.77 13.36
40 13.09 13.97 1.78 1.77 112.55 174.39 273.01 20.31
50 14.58 14.26 2.01 1.86 147.84 216.58 5707.04 27.75

(10,40) 30 9.51 9.57 1.97 1.97 74.84 94.52 238.45 16.43
40 10.81 11.17 1.50 1.50 158.76 119.01 470.01 26.47
50 12.27 12.15 2.09 1.99 575.92 321.21 1667.48 40.78

(20,60) 100 17.04 15.40 2.03 1.97 675.62 443.55 4441.23 426.37
115 16.13 19.40 2.08 1.98 789.73 517.47 3417.01 589.38
130 17.86 16.27 2.01 1.97 917.40 549.12 4323.03 691.85

(20,80) 100 15.20 13.31 2.03 1.85 833.62 609.72 2874.12 807.51
115 14.98 17.41 2.11 1.92 885.66 739.27 4404.16 991.61
130 14.50 13.85 2.06 2.00 1667.74 1165.07 5720.49 1141.38

Proposition 4 suggests that the optimal value of model (7) is a lower bound on that of the SC model. Proposition 4 also implies that 
once model (7) is solved, we can check the condition in Proposition 4(ii) to determine whether (7) achieves the exact optimal value of 
the SC model.

4.2. Upper bound formulation

Proposition 4 states that if formulation (7) finds a solution such that each c� , � ∈ L, is a strict conic combination of the selected aki
vectors, then its optimal value is equal to that of the SC model. Based on this observation, we add a constraint to (7) that enforces this 
condition and show that the following modified problem provides an upper bound on the optimal value of the SC model:

SC-UB(K,L) : minimize
{(xk,vk,λk)}k∈K,α

{(c�,c�+,c�−,z�)}�∈L,u

max
k∈K

{d(x̂k,xk)} (8a)

subject to (7b)− (7l), (8b)

λk
i ≥ vki α̂, ∀k ∈ K, i ∈ Ik, (8c)

where α̂ is a small positive constant. For each � ∈ L, k ∈ G� , and i ∈ Ik , if vki = 1 then λk
i ≥ α̂ > 0, which enforces c� to be a strict conic 

combination of n selected aki vectors (i.e., for which vki = 1; see (7d)–(7e)). If there exists an optimal solution to the SC problem whose 
c� vectors satisfy the strict conic combination condition then (8) with an appropriate α̂ generates the optimal solution for the SC model; 
otherwise, the optimal value of (8) is an upper bound on the optimal value of the SC model. We formalize this in the following result.

Proposition 5. Given α̂, let ρ∗ and β∗ denote the optimal objective values of problems (4) and (8), respectively. Then, we have ρ∗ ≤ β∗ .

While SC-LB(K, L) and SC-UB(K, L) provide bounds for the SC problem, i.e., SC(K, L), these problems are typically large-scale MIPs 
and thus can be computationally challenging. The online appendix shows how the CI and IC approaches can be used to create initial 
feasible solutions for these MIPs and reduce the computational burden.

5. Numerical results

In this section, we first examine the performance of the proposed clustering approach using various-sized instances and discuss the 
computational benefits and limitations. We then present the results of the application of the proposed approach in the diet recommenda-
tion context to cluster DMs based on the similarity of their food preferences, which can be found in the online appendix.

We use various-sized randomly generated instances to demonstrate the CI, IC, and SC approaches. For small instances we chose K ∈
{30, 40, 50} and generated LP instances with n = 10 and mk =m ∈ {30, 40}, ∀k = 1, . . . , K . For large instances we used K ∈ {100, 115, 130}, 
n = 20, and mk = m ∈ {60, 80}, ∀k = 1, . . . , K . To generate dataset X̂ for each instance, we generated K random cost vectors, solved K
DMPs to generate optimal solutions, and added random noise to the solutions. All optimization problems were solved by Gurobi 9.1 [8]
with a 16-core 2.9 GHz processor and 512 GB memory.

Table 1 shows the worst-case distances and solution times achieved by the IC and CI approaches as well as the upper and lower 
bound formulations for the SC problem (i.e., SC-UB(K, L) and SC-LB(K, L), respectively). Although the IC and CI problems involved solving 
smaller versions the SC problem, which were approximated by solving their respective smaller versions of both SC-UB and SC-LB problems, 
for brevity Table 1 only presents the IC and CI results approximated by the smaller version of SC-UB. Columns labeled UB in Table 1 show 
the results for SC-UB(K, L), which were obtained using an initial solution achieved by the IC and CI results presented in this table (see 
the appendix); thus, the solution time for UB is the time for finding an initial solution via either IC or CI (whichever gives a smaller 
worst-case distance) plus the time for the solver to improve the initial solution and find an optimal solution. Columns labeled LB show 
the results for SC-LB(K, L). For each instance (n, m, K ), the reported worst-case distance values and times in the table were averaged over 
two sub-instances with L = 3 and L = 5. For all instances, we can see that the UB and LB values were close to each other or identical, 
indicating that the solutions from both the upper and lower bound formulations are close to the optimal solutions to the SC model. Since 
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the SC model considers a minimization of the worst-case distance, our suggestion is to use the clusters and cost vectors achieved by the 
upper bound formulation so as not to underestimate the true cluster instability. Additional results on the performance of IC, CI, and SC 
can be found in the online appendix.

6. Conclusion

In this paper we introduced a new clustering approach, called optimality-based clustering, that clusters DMs based on similarity of 
their decision preferences. We formulated the clustering problem as a non-convex optimization problem and proposed MIP formulations 
that provide lower and upper bounds. We also proposed two heuristics that can be efficient in large instances and perform comparably to 
solving the problem exactly in certain instances. We used the proposed clustering models in the diet recommendation context to cluster 
DMs based of their food preferences. The future research includes extending the idea of optimality-based clustering to other types of 
DMPs such as non-linear, mixed-integer, and multi-objective optimization problems.
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