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Abstract. Inverse linear programming (LP) has received increasing attention because of its
potential to infer efficient optimization formulations that can closely replicate the behavior
of a complex system. However, inversely inferred parameters and corresponding forward
solutions from the existing inverse LP methods can be highly sensitive to noise, errors, and
uncertainty in the input data, limiting their applicability in data-driven settings. We intro-
duce the notion of inverse and forward stability in inverse LP and propose a novel inverse
LP method that determines a set of objective functions that are stable under data imperfec-
tion and generate forward solutions close to the relevant subset of the data. We formulate
the inverse model as a large-scale mixed-integer program (MIP) and elucidate its connec-
tion to biclique problems, which we exploit to develop efficient algorithms that solve much
smallerMIPs instead to construct a solution to the original problem.We numerically evalu-
ate the stability of the proposed method and demonstrate its use in the diet recommenda-
tion and transshipment applications.

Funding: This work was supported by the National Science Foundation Division of Civil, Mechanical
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1. Introduction
Given a set of observed decisions as input data, inverse
optimization infers parameters of a “forward” optimi-
zation problem, for example, objective function coeffi-
cients, thatmake the given decisions optimal or near op-
timal. By doing so, inverse optimization allows the
forward problem to capture the preferences or utilities
of the decisionmaker (DM) and reproduce the decisions
accordingly. Inverse optimization has recently found
numerous applications, including finance (Bertsimas
et al. 2012), transportation (Bertsimas et al. 2015), the
electricity market (Birge et al. 2017, Saez-Gallego and
Morales 2017), incentive design (Aswani et al. 2019),
and healthcare (Erkin et al. 2010, Lee et al. 2013).

Various inverse optimization models have been de-
veloped for different types of forward problems, in-
cluding network optimization (e.g., Ahuja and Orlin
2001, Heuberger 2004), linear programs (Ahuja and
Orlin 2001, Troutt et al. 2008, Chan et al. 2014, Ghate
2015), conic programs (Iyengar and Kang 2005), con-
vex programs (Keshavarz et al. 2011), integer and
mixed-integer programs (MIPs) (Schaefer 2009, Wang
2009, Lamperski and Schaefer 2015), and multicriteria
optimization (Chan and Lee 2018, Naghavi et al. 2019).
The underlying assumption of these studies is that the
choice of the inverse model depends on which type of

the forward problem is to be used for reproducing the
decisions; for example, if the user wants to derive a lin-
ear programming (LP) formulation that can replace a
complex decisionmodel, inverse LP is used to fit a line-
ar objective function to the observed decisions.

As the goal of inverse optimization is to fit a model
to given data, recent studies naturally reveal and le-
verage the connection between inverse optimization
and regression. Aswani et al. (2018) highlight that the
residuals used in their inverse model are similar to
those in regression and propose a loss function analo-
gous to the sum of squared errors in ordinary least
squares. Bertsimas et al. (2015) propose nonparametric
inverse optimization motivated by kernel methods in
nonparametric regression. Chan et al. (2019) study the
similarity between inverse LP and linear regression
and propose a goodness-of-fit measure for inverse LP,
analogous to the R-squared measure in regression.

Inverse LP has received particular attention among
different types of inverse problems because of its poten-
tial to find an LP formulation—whether the true
decision-generating system is linear or not—which is
easy to solve while closely replicating the system. Al-
though inverse optimization for more complex (e.g.,
nonconvex) forward problems might lead to a better fit,
the resulting forward problems can be computationally
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burdensome. Inverse LP has also been used for inferring
LP formulations customized to different DMs or prob-
lem instances, which can replace a complex formulation
in a personalized or distributed manner, for example,
different LP cancer therapy planning formulations in-
ferred for different types of patients, thus enabling per-
sonalized treatmentmodeling (Boutilier et al. 2015).

However, such potential of inverse LP often does
not translate well into situations in which the ob-
served decisions are subject to noise, measurement er-
rors, and uncertainty. In particular, objective functions
(or cost vectors) obtained by the existing inverse LP
methods can be very sensitive to small changes in the
data. For example, suppose that the DM’s true deci-
sions turn out slightly different from the observed
ones because of measurement errors, or some of them
are simply outliers because of the DM’s inconsistent
behavior. The cost vector inferred by the existing
methods often changes substantially in response to
such errors and outliers, leading to substantially dif-
ferent forward solutions; also, the forward solutions
are often far removed from the observed decisions,
making it hard to predict the performance of the in-
ferred cost vector (see Section 2 for a detailed illustra-
tion). Such instability can limit the applicability of in-
verse LP in data-driven settings.

In this study, we propose a novel inverse LP frame-
work that addresses the instability issues caused by
noise, errors, and uncertainty in data. We formally de-
fine stability measures in inverse optimization and
propose a new inverse model that improves on the
previous methods. Inspired by least quantile linear re-
gression, our model infers a cost vector based on a
quantile statistic of optimality errors associated with
the observed decisions. Furthermore, we aim to find a
set of cost vectors that are guaranteed to generate sol-
utions within a specified distance from the relevant
subset of the data. The presentation of our method in
this paper focuses on the setting in which the con-
straint matrix of the forward problem remains the
same although observed decisions may vary. This set-
ting can find various real-world applications, for ex-
ample, diet problems in which nutritional factors for
each food do not change and network optimization
problems in which the geographical configuration
(i.e., nodes and arcs) remains the same. We also dis-
cuss how this method can be extended when such as-
sumptions do not hold.

1.1. Relevant Literature
Recent studies in inverse optimization focus on data-
driven settings in which a large (potentially noisy) data
set collected over a period of time or from many DMs
is used for inferring the objective functions. Keshavarz
et al. (2011) formulate an inverse model based on
relaxed Karush–Kuhn–Tucker (KKT) conditions and

impute a convex objective function that minimizes the
KKT residuals with respect to the input solutions. Bert-
simas et al. (2015) consider inverse variational inequali-
ty with noisy data and find model parameters that
minimize the optimality gap associated with the data.
Similarly, Esfahani et al. (2018) develop a distribution-
ally robust inverse optimization model to infer an
objective function from noisy data. Aswani et al. (2018)
introduce the notion of risk consistency in inverse opti-
mization and propose a model that finds an objective
function that replicates the data in a statistically consis-
tent manner. Inverse optimization has also been used
for online learning with which the inferred objective
function is updated adaptively as new data are avail-
able over time (Bärmann et al. 2017, Dong et al. 2018).
Although these inverse convex programming frame-
works can be specialized to inverse LPs, they are rath-
er focused on generic convex programs with assump-
tions that preclude the aforementioned instability
issues (e.g., strictly convex feasible regions) and, thus,
are not designed to address these particular issues in
inverse LP.

Although several recent inverse LP methods ac-
commodate data that may not be optimal, these
works focus on the development of closed-form sol-
utions or efficient algorithms under often limiting
assumptions (Chan et al. 2014, Ghobadi et al. 2018,
Babier et al. 2021). As a result, how the obtained cost
vectors actually work in the presence of data imper-
fection has received little attention. In particular, the
previous studies exploit the polyhedral nature of the
underlying forward LP and develop algorithms that
find a cost vector orthogonal to one of the constraint
vectors. Although such algorithms are efficient, the
resulting cost vector is highly sensitive to outliers or
small data shifts.

Our modeling approach to address the instability is-
sues follows in spirit the line of work in the robust lin-
ear regression literature. Robust regression aims to in-
fer a model that is stable against outliers or data shifts
by increasing the stability measure of the fitted model,
known as the breakdown point, which is defined as
the fraction of the data that can be altered arbitrarily
without making the model arbitrarily bad. Various ro-
bust regression techniques have been proposed, in-
cluding least median of squares (Rousseeuw 1984),
least trimmed squares (Rousseeuw and Van Driessen
2006, Hubert et al. 2008), and least quantile of squares
methods (Bertsimas and Mazumder 2014). In these
techniques, a parameter indicating the fraction of the
data to be “trimmed” is prespecified based on the
user’s application-specific knowledge and preferen-
ces, and model-fitting is done by minimizing a certain
quantile error statistic, excluding the residuals associ-
ated with data points that are deemed to be outliers.
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1.2. Contributions and Organization of the Paper
Our contributions are as follows.

1. We introduce the notion of forward and inverse
stability in inverse optimization and show that the pre-
vious inverse LP methods are often unstable in the face
of data noise, uncertainties, and outliers. We then pro-
pose a new inverse LP method that improves on the
previous methods in terms of inverse and forward sta-
bility measures and provides bounds for both measures.

2. We formulate the new inverse LP model as a
large-scale MIP and formally characterize the set of all
feasible cost vectors. By establishing a new connection
between the inverse model and a class of biclique prob-
lems, we develop efficient algorithms that solve many
smaller MIPs (often in parallel) instead of directly solv-
ing the large MIP. We show that one of the algorithms
is exact with a condition that is easy to check, and other
heuristics are useful for very large instances.

3. We demonstrate two settings in which the pro-
posed inverse model is relevant: (i) the user observes
decisions from an unknown system and aims to infer
an LP formulation that can make new decisions similar
to the observations; (ii) the user provides an LP formu-
lation to the DMs as a signal and collects their decisions
as a response, and these are then used for inferring
their objective functions for the LP. For the former, we
demonstrate our method in the diet recommendation
problem to quantify an individual’s diet preferences
from noisy and inconsistent data. For the latter, we use
the transshipment problem to infer costs perceived by
the DMs from a sequence of noisy data sets.

The rest of the paper is organized as follows. In
Section 2, we illustrate how the previous inverse LP
can be sensitive to data noise and outliers and formal-
ize the notion of stability in inverse optimization. In
Section 3, we present the new inverse LP model that
addresses the instability issues as well as its MIP refor-
mulation. In Section 4, we discuss the connection be-
tween the proposed model and biclique problems and
propose efficient solution approaches. In Section 5, we
examine the performance of our model in terms of sta-
bility using various LP instances and demonstrate its
use in the diet recommendation and transshipment
problems. We conclude in Section 6. Unless otherwise
stated, proofs are in the appendix (Appendix C).
Throughout this paper, vectors are column vectors and
a′ denotes the transpose of vector a, e denotes the vec-
tor of ones, cone(·) denotes the set of conic combina-
tions of given vectors, and cone+(·) denotes the set of
strict conic combinations of given vectors.

2. Preliminaries
In this section, we first present the forward LP problem
we consider and the previous inverse LP model. We
then provide illustrative examples for the instability

issues of the previous model and formally define a no-
tion of stability in inverse LP.

2.1. Forward Linear Program
We consider the following forward optimization (FO)
problem:

FO(c) : minimize
x

{c′x | Ax ≥ b}, (1)

where c ∈ R
n,x ∈ R

n, A ∈ R
m×n, and b ∈ R

m. Let I �
{1, : : : ,m} index the constraints, J � {1, : : : ,n} index
the variables, and ai ∈ R

n be a (column) vector corre-
sponding to the ith row of A. Let X be the set of feasi-
ble solutions for the FO problem, assumed bounded,
full-dimensional, and free of redundant constraints,
and X i � {x ∈ X | ai′x � bi}, i ∈ I . Without loss of gen-
erality, we assume that ai for each i ∈ I is normalized
a priori such that ‖ai‖p � 1 for some p ≥ 1.

2.2. Previous Inverse Linear
Programming Method

Consider a set of K data points (or observations) X̂ �
{x̂1, : : : , x̂K} with the index set K � {1, : : : ,K}. We make
no assumption on the feasibility or optimality of the
observations for the forward problem (1). Previous
inverse LP methods with suboptimal or infeasible ob-
servations aim to find a c vector that can generate a for-
ward optimal solution that is closest to the observations
{x̂k}k∈K under some distance metric, thus closely
“reproducing” the data (Bertsimas et al. 2015, Aswani
et al. 2018, Chan et al. 2019). In LP, using the general
ℓ-norm as a distance metric, such an inverse model
can be written as follows (Aswani et al. 2018, Babier
et al. 2021):

minimize
c, {�k}k∈K,y

∑
k∈K

‖�k‖ℓ (2a)

subject to A′y � c, (2b)
y ≥ 0, (2c)

A(x̂k − �k) ≥ b, ∀k ∈K, (2d)

c′(x̂k − �k) � b′y, ∀k ∈K, (2e)
‖c‖p � 1, (2f)

where ℓ ≥ 1, p ≥ 1, and �k denotes a perturbation vec-
tor for observation x̂k. Given observations {x̂k}k∈K, the
problem finds a c vector that makes each perturbed
solution x̂k − �k satisfy dual feasibility (2b) and (2c),
primal feasibility (2d), and strong duality (2e), thus
rendering it optimal, and the perturbations (i.e.,
“optimality errors” associated with the observations)
are minimized in the ℓ-norm in the objective function
(2a). The normalization constraint (2f) prevents a trivi-
al, all-zero cost vector from being feasible.

Note that existing inverse convex programming
models (e.g., Aswani et al. 2018) can be written equiv-
alently as (2) when the underlying forward problem is

Shahmoradi and Lee: Quantile Inverse Optimization
2540 Operations Research, 2022, vol. 70, no. 4, pp. 2538–2562, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

36
.1

42
.1

59
.2

1]
 o

n 
22

 A
ug

us
t 2

02
2,

 a
t 0

8:
55

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



exactly (1). Although the preceding problem is non-
convex, recent works propose an efficient, exact algo-
rithm for the problem by exploiting the solution struc-
ture (Chan et al. 2019, Babier et al. 2021), namely, that
an optimal cost vector c∗ is orthogonal to one of the
hyperplanes defining polyhedron X (i.e., c∗ � ai for
some i ∈ I ).

2.3. Instability Issues in Inverse LP
When the data set X̂ contains noise or measurement
errors, the previous inverse model (2) can be unstable
in terms of both the cost vector c∗ it produces as well
as the forward solution that c∗ generates (i.e., x∗ ∈
argminFO(c∗)). The following examples illustrate
such instability issues.

Example 1. Consider the forward LP minimizex
{c′x | Ax ≥ b}, where a1 � 0

−1
[ ]

, a2 � −1
0

[ ]
, a3 � 0

1

[ ]
, and

a4 � 1
0

[ ]
are the rows of A (written as column vectors),

and b � [−2:5, − 2:5, 0, 0]′ with four data points x̂1 �
2
2:3

[ ]
, x̂2 � 2:2

2:3

[ ]
, x̂3 � 2:2

2

[ ]
, and x̂4 � 2

2

[ ]
(see Figure 1(a)).

The previous inverse model (2) with ‖ · ‖ℓ � ‖ · ‖∞ finds
c∗ � a1 � 0

−1
[ ]

as the unique optimal cost vector with

the objective value of 1.4
(
�1 � 0

−0:2
[ ]

, �2 � 0
−0:2
[ ]

, �3 �
0

−0:5
[ ]

, and �4 � 0
−0:5
[ ])

. Suppose that x̂2 and x̂3 are

shifted to 2:3
2:2

[ ]
and 2:3

1:9

[ ]
, respectively (shown in gray).

Even with these small shifts, the optimal cost vector
changes from c∗ � 0

−1
[ ]

(which now leads to the objec-

tive value of 1.6) to a substantially different vector

c∗ � a2 � −1
0

[ ]
with the objective value of 1.4

(
�1 � −0:5

0

[ ]
,

�2 � −0:2
0

[ ]
, �3 � −0:2

0

[ ]
, and �4 � −0:5

0

[ ])
.

Example 2. Consider the same initial data points from
Example 1. Suppose that an outlier x̂5 � 2:2

0:3

[ ]
is intro-

duced (see Figure 1(b)). The optimal cost vector then

changes from c∗ � a1 � 0
−1
[ ]

to a substantially different

vector c∗ � a2 � −1
0

[ ]
with the objective value of 1.9

�1 � −0:5
0

[ ]
, �2 � −0:3

0

[ ]
, �3 � −0:3

0

[ ]
, �4 � −0:5

0

[ ](
, and �5 � −0:3

0

[ ])
.

The previous solution now has the objective value of 1:4 +
‖ 0

−2:2
[ ]‖∞ � 3:6 and, hence, is no longer optimal.

Example 3. Consider the five data points from Exam-
ple 2 with which the optimal cost vector is c∗ �
a2 � −1

0

[ ]
. Although a desirable forward solution is

supposed to be close to the relevant subset of the data
without the outlier, Figure 1(c) shows that using this
cost vector for the forward LP can lead to a solution x∗
that is far from the majority of the data set.

Examples 1 and 2 show that the previous inverse
model is sensitive to outliers or small data shifts,
which we refer to as being inverse-unstable. On the oth-
er hand, Example 3 shows that solving the forward
problem with a cost vector from the previous model
can lead to a solution that is (unexpectedly) far from
the relevant subset of the data, which we refer to as
being forward-unstable.

We note that these instability issues are common in
general inverse LP settings. For example, if a data-
generating system produces errors 10% of the time,
the inferred cost vector can still be heavily dragged to-
ward these errors spread far from the majority of the
data regardless of the size of the data set, leading to a
cost vector that would have not been chosen if only
the pristine data (the remaining 90%) was used. Also,
when small shifts occur in multiple data points accord-
ing to the same distribution (e.g., the DM’s behavior
changes gradually over time), the cost vector can also
suddenly change to a substantially different vector,
leading to a substantially different forward solution. In
general, these instability issues depend heavily on the
spatial distribution of the data in relation to polyhe-
dron X , for example, the distance between each data
point and each facet of X .

Figure 1. (Color online) Instability Issues of the Previous Inverse LPMethod

(a) (b) (c)

Notes. (a) Inverse instability resulting from data shift. (b) Inverse instability resulting from outliers. (c) Forward instability.
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2.4. Stability Measures for Inverse LP
In this section, we formally define a notion of stability
in inverse LP and propose measures that we use to as-
sess the stability of an inverse LP model. Given a data
set X̂ and a certain inverse LP model, let C(X̂ ) be the
set of cost vectors obtained by the model with X̂ as
input.

First, we propose to measure inverse stability of an
inverse LP model (or solutions to the model) by the
minimum tolerable data shift in X̂ until the model
loses all of its initial solutions in C(X̂ ). We measure
such tolerable shift via some distance function
d(X̂ , X̃ ), where X̃ denotes data shifted from X̂ ; for ex-
ample, d(X̂ , X̃ ) �max {‖x̂ − x̃‖ℓ | x̂ ∈ X̂ , x̃ ∈ X̃ } and
d(X̂ , X̃ ) � ∑

k∈K‖x̂k − x̃k‖ℓ, ℓ ≥ 1, if X̂ and X̃ are in one-
to-one correspondence.

Definition 1 (Inverse Stability). Given some distance
function d and data set X̂ , inverse stability of an inverse
LP model (or cost vectors obtained by the model) is
measured by

min
X̃

{d(X̂ , X̃ ) | C(X̂ ) ∩ C(X̃ ) � ∅}: (3)

That is, given two distinct sets of cost vectors C1(X̂ )
and C2(X̂ ) obtained by two inverse models (models 1
and 2, respectively) with the same input X̂ , model 1
(C1(X̂ )) is said to be more inverse-stable than model 2
(C2(X̂ )) if minX̃ {d(X̂ , X̃ ) | C1(X̂ ) ∩ C1(X̃ ) � ∅} >minX̃

{d(X̂ , X̃ ) | C2(X̂ ) ∩ C2(X̃ ) � ∅}.
This definition of inverse stability suggests that, ide-

ally, a stable inverse model should maintain some
cost vectors when reasonably small changes occur in
the data as quantified by the preceding measure. Note
that this measure is analogous to the stability measure
in regression, that is, the finite-sample breakdown
point, defined as the fraction of the data that can be al-
tered without spoiling the inferred model completely
(Yohai 1987).

Next, we define forward stability in inverse LP. Sup-
pose we select ĉ ∈ C(X̂ ) and find a set of forward opti-
mal solutions X ∗(ĉ) � argmin FO(ĉ). How unstable this
cost vector ĉ can be is assessed by how far a forward
solution x ∈ X ∗(ĉ) can be from the given observations
X̂ , that is, the worst-case distance between X ∗(ĉ) and
X̂ via a distance function defined similarly as before.

Definition 2 (Forward Stability). Given some distance
function d, data set X̂ and cost vector ĉ, we measure
how forward-unstable the cost vector ĉ is by

max
x∈X ∗(ĉ)

{d(X̂ ,x)}: (4)

That is, given two distinct cost vectors ĉ1 and ĉ2, ĉ1 is
said to be more forward-stable than ĉ2 if maxx∈X ∗(ĉ1){d(X̂ ,x)} <maxx∈X ∗(ĉ2){d(X̂ ,x)}.

Definition 2 suggests that, to guarantee a reasonable
level of forward stability, an inverse model should
identify a cost vector that is guaranteed to produce
an optimal solution that is reasonably close to the
observations.

The inverse and forward stability measures often
conflict with each other. For example, a cost vector
whose components are all zeros, if feasible for a certain
inverse model (e.g., when the normalization constraint
is not used; Dong et al. 2018, Naghavi et al. 2019), can
be highly inverse-stable as some arbitrary data set X̃ ⊂
X can still be optimal for the forward problem with re-
spect to such an all-zero cost vector (e.g., any solutions
on the boundary of X ), yet using this vector for the for-
ward problem likely leads to a solution far from the
given data, that is, highly forward-unstable. Also, one
might attempt to include as many cost vectors as pos-
sible in C(X̂ ) just to make it less vulnerable to data
shifts (i.e., more inverse-stable), yet which of these vec-
tors is truly forward-stable then becomes less clear.
Another challenge is that neither of these measures
lends itself to a tractable inverse optimization problem.
In the next section, we provide a tractable inverse LP
framework that improves both inverse and forward
stability as quantified by these measures.

3. Models
In this section, we first propose a new inverse LP
model that improves the inverse stability of the previ-
ous model (2). We then analyze the solution structure
of the model, which we exploit to reformulate the
model as an MIP and characterize the set of all feasible
cost vectors. Finally, we introduce a specific objective
function for the MIP that can serve as a proxy for the
forward stability measure and leads to a cost vector
with improved forward stability.

3.1. Inverse LP for Quantile Statistics: Improving
Inverse Stability

As discussed, inverse instability is caused by the vul-
nerability of inferred cost vectors to data shifts or out-
liers. Our modeling strategy to address this is inspired
by the close relationship between the least squares
method in regression and inverse optimization: the pre-
vious inverse model (2) is similar to the least squares
method in that it fits the LP model by minimizing the
sum of optimality errors (Chan et al. 2019). In regres-
sion, one way to address data imperfection is to mini-
mize the θ quantile statistic where θ ∈ [0, 1] (i.e.,
(θ × 100)-th percentile) instead of the sum of the
squared errors, which is known as the least quantile of
squares method (Koenker and Hallock 2001, Bertsimas
and Mazumder 2014) or least trimmed quantile regres-
sion (Rousseeuw 1984, Rousseeuw and Van Driessen
2006).
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We adopt this idea and propose a generalized in-
verse framework in which a cost vector is inferred
based on the θ quantile optimality error, that is, associ-
ated with a data point that induces the �θK
th smallest
optimality error with respect to the cost vector. Instead
of minimizing this θ quantile error as was done in Bert-
simas and Mazumder (2014), we find a set of cost vec-
tors such that the �θK
th smallest optimality error is no
greater than a certain threshold τ. That is, such cost vec-
tors render a relevant subset of the data (of cardinality
�θK
) within the threshold optimality error. This prob-
lem, which we call the quantile inverse optimization
(QIO) problem, can be written as follows:

QIO(K,τ,θ) : minimize
c, {�k}k∈K,y,S

0 (5a)

subject to A′y � c, (5b)
y ≥ 0, (5c)

A(x̂k − �k) ≥ b, ∀k ∈ S,
(5d)

c′(x̂k − �k) � b′y, ∀k ∈ S,
(5e)

‖�k‖ℓ ≤ τ, ∀k ∈ S, (5f)

|S |≥ θK, (5g)

S ⊆K, (5h)

‖c‖p � 1: (5i)

Constraints (5b) and (5c) represent dual feasibility, and
(5d) and (5e) enforce primal feasibility and strong du-
ality associated with the perturbed solutions x̂k − �k for
a subset of the data S ⊆K whose cardinality is en-
forced to be no less than θK by (5g). Constraint (5f)
then ensures that optimality error for each chosen ob-
servation is within τ. Clearly, these constraints ensure
that the �θK
th smallest optimality error is no greater
than τ. Note that this problem is written as a feasibility
problem; we later introduce an objective function that
leads to a specific subset of the feasible cost vectors
(see Section 3.2). We call cost vectors that are feasible
for (5b)–(5i) “inverse-feasible” cost vectors. Similar to
quantile-based regression, the choice of θ depends on
the application context or user preference; for example,
θ can be chosen based on the user’s belief about the
fraction of outliers and can also be adjusted post hoc
depending on the result from the model. Or it can be
set to 50% if one is interested in the median error-
based inverse problem. This problem is referred to as
QIO(K,τ,θ) or QIO(X̂ ,τ,θ) interchangeably, depend-
ing on which is more convenient for the context.

A strong advantage of this modeling framework is
that it generalizes the previous model (2); given the same
data set X̂ , there exists τ, say τ̄, such that QIO(X̂ , τ̄,θ)

with θ � 100% produces the same set of feasible cost vec-
tors as (2). Furthermore, given such τ̄, as θ decreases, the
set of feasible cost vectors from QIO(X̂ , τ̄,θ) contains
the cost vectors from the previous model because the
strong duality constraint (5e) is allowed to hold with
fewer data points. That is, in the presence of data shift
or additional outliers, QIO(X̂ , τ̄,θ) does not lose all of
its initial inverse-feasible solutions until the previous
model does; that is, it is at least as stable as the previous
model as quantified by inverse stability measure (3).
Note that it is straightforward to find such τ̄: we can ei-
ther set it to a sufficiently large number (e.g., based on
Appendix A.1) or solve the previous model (2) via an
efficient algorithm in the literature and set τ̄ to be no
less than the maximum optimality error across all data
points obtained by Model (2). The following result fur-
ther generalizes this observation and shows that, for
any given X̂ and τ, the inverse stability measure (3) is
nondecreasing as θ decreases.

Proposition 1. Let Ĉ(θ) be the set of inverse-feasible cost
vectors for QIO(X̂ ,τ,θ). Given X̂ and τ, the inverse sta-
bility measure (3) for Ĉ(θ) is nondecreasing as θ decreases.

We later further show that a solution to QIO(X̂ ,
τ,θ) provides a lower bound on the inverse stability
measure. In the following, we first analyze the solu-
tion structure ofQIO(X̂ ,τ,θ).

3.1.1. Solution Structure and MIP Reformulation. The
QIO problem is nonconvex because of Constraint (5e)
and, thus, is hard to solve. We analyze the solution
structure of this problem, which leads to an MIP
reformulation and a lower bound on the inverse
stability measure.

Proposition 2. If QIO(K,τ,θ) is feasible, then there ex-
ists a feasible c for QIO(K,τ,θ) such that c � ai for some
i ∈ I .

Proposition 2 implies that the feasibility of the QIO
model can be checked by evaluating at most m con-
straint vectors, that is, ai, i � 1, : : : ,m. For example, re-
visiting Example 1 (Figure 1(a)), for the QIO problem
with ‖ · ‖ℓ � ‖ · ‖∞, θ � 0:5, and τ � 0:3, both c � a1 and
c � a2 are feasible: c � a1 leads to ‖�1‖∞ � ‖�2‖∞ � 0:2
and c � a2 leads to ‖�2‖∞ � ‖�3‖∞ � 0:3, both satisfying
the threshold τ � 0:3. Proposition 2 also suggests that,
if there is no c � ai feasible for (5) for any i ∈ I , then
there exists no cost vector that can make at least �θK

observations within τ-optimality. In this case, users
could decrease θ or increase τ to make the model feasi-
ble. Or τ can be set by adding a reasonable margin to
the minimum possible value of τ that keeps the model
feasible (see Appendix A.1 for more details). With an
appropriate threshold τ, the set of inverse-feasible cost
vectors that are orthogonal to some hyperplanes
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defining X can be found efficiently by evaluating each
hyperplane i (see Algorithm 1).

Algorithm 1 (Finding Inverse-Feasible Solutions of the
Form c¼ ai, i 2 I )

Result: C � {ai}i∈A
Input: A,b, X̂ ,τ,θ

1. Si ←∅ ∀i ∈ I ;A←∅
2. for i ∈ I do
3. for k ∈K do
4. if ∃x ∈ X i such that ‖x̂k − x‖ℓ ≤ τ then
5. Si ← Si

⋃{k};
6. end
7. end
8. if | Si |≥ θK then
9. A←A ∪ {i}

10. end
11. end

Note that Algorithm 1 returns the set of ai’s that are
inverse-feasible, that is, A, which is only a subset of
the set of all inverse-feasible solutions. We extend the
results in Proposition 2 and Algorithm 1 and derive
the following result, which further identifies other
inverse-feasible cost vectors.

Lemma 1. If there exists x̄k ∈ ∩i∈ĀX i for some set Ā ⊆A

such that ‖x̄k − x̂k‖ℓ ≤ τ for all k ∈ S̄ ⊆K, where | S̄ |≥ θK,
then c ∈ cone({ai}i∈Ā ) such that ‖c‖p � 1 is inverse-feasible.

Lemma 1 suggests that we can check each subset Ā
of A to see if a conic combination of ai’s for i ∈ Ā is
also inverse-feasible. Using this observation, we pro-
pose the following MIP:

minimize
v,u, {�k}k∈K

0 (6a)

subject to bi ≤ ai
′ (x̂k − �k) ≤ bi +M1(1− vi),

∀i ∈ I , ∀k ∈K, (6b)

‖�k‖ℓ ≤ τ+M2(1− uk), ∀k ∈K, (6c)∑K
k�1

uk ≥ θK, (6d)

vi,uk ∈ {0, 1}, ∀i ∈ I , ∀k ∈K, (6e)

where vi � 1 if ai
′ (x̂k − �k) ≥ bi holds with equality (i.e.,

x̂k − �k ∈ X i) for all k ∈K and vi � 0 otherwise, and uk �
1 if observation x̂k is “chosen” and uk � 0 otherwise.
Parameters M1 and M2 denote sufficiently large con-
stants; Appendix A.2 shows how to find appropriate
values for them. In Formulation (6), inverse-feasible
ai’s are identified by letting vi � 1; the hypothesis of
Lemma 1 is then explicitly written as constraints to
further identify a conic combination of the chosen ai’s
that is also inverse-feasible (the set I in (6b) and (6e)
can be replaced by A without losing any feasible solu-
tion because vi can be one only for i ∈A ⊆ I anyway;
we use I in (6) and subsequent formulations for

notational clarity). The following result establishes the
equivalence between Problem (6) and QIO(K,τ,θ) in
terms of the set of achievable inverse-feasible cost vec-
tors given the same data set X̂ .

Theorem 1. A cost vector c is feasible for QIO(K,τ,θ) if
and only if there exists a feasible solution (v̄ ≠ 0, ū,
{�̄k}k∈K) for Model (6) such that c ∈ cone({ai}i:v̄ i�1) and
‖c‖p � 1.

Thus, an inverse-feasible cost vector for QIO(K,
τ,θ) can be obtained by finding a feasible solution
(v̄, ū, {�̄k}k∈K) for Model (6) and creating a conic com-
bination of ai’s for i such that v̄i � 1. In fact, without
having to normalize c post hoc, for any conic combi-
nation of such ai’s, there is an inverse-feasible cost
vector for QIO(K,τ,θ) that generates the same for-
ward optimal solutions. That is, if we let CQIO be the
set of all inverse-feasible c vectors for QIO(K,τ,θ)
and CMIP � ⋃

v∈V̂ cone({ai}i:vi�1), where V̂ is the set of
feasible nonzero v vectors for Model (6), we have⋃

c∈CQIO
argminFO(c) � ⋃

c∈CMIP
argminFO(c). The fol-

lowing result formally characterizes the set of all
inverse-feasible solutions for QIO(K,τ,θ) (proof is
straightforward from the proof of Theorem 1 and,
thus, is omitted).

Corollary 1. Let Π(X̂ ) denote the feasible region of Model
(6). Then, the set of all inverse-feasible cost vectors, Ĉ, can be
characterized by V̂ � Projv(Π(X̂ ))\{0}. That is, Ĉ � ⋃

v∈V̂
cone({ai}i:vi�1):

3.1.2. Lower Bound on the Inverse Stability Measure.
Finally, we show that a solution to (6) provides a lower
bound on the inverse stability measure (3) for
QIO(K,τ,θ). To do so, we make the following assump-
tions: (i) data noise in X̂ is in the form of point-wise shift,
that is, a shifted data point is expressed as x̃k � x̂k + δk for
each k ∈K; (ii) d(X̂ , X̃ ) � ∑

k∈K‖x̂k − x̃k‖ℓ for some ℓ ≥ 1.

Proposition 3. Let ξ∗ be the inverse stability value for
QIO(K,τ,θ). Let (v̄ ≠ 0, ū, {�̄k}k∈K) be a feasible solution
to (6), Ī � {i ∈ I | v̄i � 1}, d∗ik �minx∈X i{‖x̂k − x‖ℓ},
i ∈ Ī , k ∈K, and d∗i[k] denote the kth largest value of d∗ik,
k ∈K. Then, we have maxi∈Ī {∑�(1−θ)K�+1

k�1 max (0,τ−
d∗i[k])} ≤ ξ∗.

Given K and τ, we note that the lower bound in-
creases as θ decreases, which reinforces the role of θ
in increasing inverse stability. Our numerical results
show that the lower bound is nontrivial and close to
the numerically estimated inverse stability measure.

Although Problem (6) leads to the set of cost vectors
with improved inverse stability, which cost vector among
them to use for the forward problem is an important
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consideration to improve forward stability. In the next
section, we introduce an objective function for Problem
(6) to find a c vector with improved forward stability.

3.2. Finding the Maximal Dimension Inverse-
Feasible Set: Improving Forward Stability

Because it is hard to model forward stability measure
(4) as a tractable objective function, we propose a sur-
rogate, tractable function that can be used as an objec-
tive function for the QIO model. Recall that the for-
ward stability measure for a cost vector c represents
the worst-case distance between X ∗(c) � argminx
FO(c) and the data. We compute forward stability
only in terms of the data points that are actually used
by the model and consider c to be forward-stable if
the worst-case distance is no greater than the error
threshold τ for the relevant subset of the data of cardi-
nality �θK
 (i.e., excluding those deemed to be out-
liers). We first make the following observation.

Proposition 4. If a feasible solution (v̄, ū, {�̄k}k∈K) for
Problem (6) satisfies

∑
i∈I v̄i � n, then c̄ ∈ cone+({ai}i:v̄ i�1)

satisfiesmaxx∈X ∗(c̄){‖x̂k − x‖ℓ} ≤ τ, ∀k : ūk � 1.

Proposition 4 implies that, if c is a strict conic combi-
nation of n ai’s chosen by (6) (i.e., such that v̄i � 1),
then FO(c) has a unique optimal solution that is within
τ-distance from all chosen data points (Mangasarian
1979, Tavaslioğlu et al. 2018), and thus, the forward
stability measure is guaranteed to be no greater than
the prespecified threshold. Furthermore, the following
result shows that, given a set of data points chosen to
be nonoutliers, as we assign more ones to the compo-
nents of a solution v in Problem (6) (i.e., adding more
basis vectors to the conic combination), the resulting c
vector can improve forward stability.

Proposition 5. Given X̂ , let (v1, ū) and (v2, ū) be two
distinct solutions feasible for Problem (6). Let C1 �
cone({ai}i:v1i �1) and C2 � cone({ai}i:v2i �1). If v1 ≥ v2, then
for any c2 ∈ C2 there exists c1 ∈ C1 such that maxx∈X ∗(c1)
{‖x̂k − x‖ℓ} ≤maxx∈X ∗(c2){‖x̂k − x‖ℓ}, ∀k : ūk � 1; that is,
there exists c1 ∈ C1 that is at least as forward-stable as any
c2 ∈ C2.

We also show that adding more basis vectors to the
conic combination also improves inverse stability.

Proposition 6. Given X̂ , let v1 and v2 be two distinct sol-
utions feasible for Problem (6). Let C1 � cone({ai}i:v1i �1)
and C2 � cone({ai}i:v2i �1). If v1 ≥ v2, then minX̃ {d(X̂ , X̃ ) |
C1 ∩ C(X̃ ) � ∅} ≥minX̃ {d(X̂ , X̃ ) | C2 ∩ C(X̃ ) � ∅}, where
C(X̃ ) denotes the set of inverse-feasible cost vectors for X̃ ;
that is, C1 is at least as inverse-stable as C2.

Propositions 4–6 imply that we can add the objec-
tive function of maximizing the number of nonzero

vi’s to Problem (6) to find which cost vector to eventu-
ally use for the forward problem to further improve
forward stability without compromising inverse sta-
bility. This leads us to the following mixed-integer
quantile inverse optimization (MQIO) model:

MQIO(K, τ,θ) : maximize
v,u, {�k}k∈K

∑
i∈I

vi
∣∣∣ (6b)–(6e){ }

: (7)

Our numerical results show that, even when the opti-
mal value of (7) is not n but close to n, the MQIO mod-
el is more forward-stable than the previous inverse
model. Computing forward stability is inherently
challenging as it involves finding the maximum dis-
tance between the data set and some face of polyhe-
dron X . An upper bound for the forward-stability
measure may be computed if some geometric infor-
mation about the polyhedron is given, for example,
the minimum volume ellipsoid or other size measure
for some faces of X , yet obtaining such information it-
self is not easy in general. In Appendix A.4, we show
that an optimal solution to the MQIO model leads to
an upper bound on the forward stability measure if
such information is available.

Appendix A.5 provides extensions to the MQIO
model that can accommodate situations in which
(A,b) varies over different data points, (A,b) is sub-
ject to uncertainty, or the cost vector is constrained.
The MQIO problem is a large-scale MIP in general
and, thus, is computationally challenging. In the next
section, we provide efficient solution approaches by
exploiting the problem structure.

4. Solution Approaches
In this section, we develop efficient solution ap-
proaches to the MQIO problem. In Section 4.1, we first
show that the MQIO problem is NP-hard by establish-
ing its equivalence to a biclique problem. We then pro-
vide a formal biclique representation of a feasible solu-
tion to the QIO (hence, MQIO) problem in Section 4.2,
which indicates that algorithms designed for biclique
problems can be adapted to solve the MQIO problem.
Finally in Section 4.3, utilizing the biclique representa-
tion, we propose an exact algorithm and its heuristic
variants for the MQIO problem in which K smaller
MIPs (or relaxations of them) are solved to construct a
bipartite graph that leads to a feasible solution to the
MQIO problem.

4.1. Problem Complexity and Connection to
Biclique Problems

We show that MQIO(K,τ,θ) is NP-hard by establish-
ing its connection to biclique problems, which we later
use to develop alternative algorithms for the problem.
To do so, we first show that there exists an optimal
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solution to MQIO(K,τ,θ) with exactly �θK
 observa-
tions selected.

Lemma 2. IfMQIO(K,τ,θ) is feasible, then there exists an
optimal solution (v∗,u∗, {�k∗}k∈K) such that ∑K

k�1u
∗
k � �θK
.

Proposition 7. The problemMQIO(K,τ,θ) is NP-hard.

To prove Proposition 7, we first introduce the
maximum κ-subset intersection (MSI) problem. Con-
sider a ground set G � {g1, : : : ,gN} and a set of its sub-
sets 5 � {R1, : : : ,RQ}, that is, Rq ⊆ G, q � 1, : : : ,Q.
Given a positive integer κ, MSI finds κ subsets in 5
whose intersection has maximum cardinality. MSI
problems are known to be NP-hard (Dawande et al.
2001, Xavier 2012).

Proof of Proposition 7. Consider the following feasi-
bility problem for each k ∈K.

maximize
v,�

0 (8a)

subject to bi ≤ ai
′ (x̂k − �) ≤ bi +M(1− vi), ∀i ∈ I ,

(8b)

‖�‖ℓ ≤ τ, (8c)

vi ∈ {0, 1}, ∀i ∈ I : (8d)

Let (vk,�k) be a feasible solution to (8) with respect to
x̂k and Ak � {i ∈ I | vki � 1} be a subset of I for each
k ∈K, and construct the set of subsets ! � {A1, : : : ,
AK}. Finding exactly �θK
 subsets in ! such that their
intersection has maximum cardinality is equivalent to
solving MSI with κ � �θK
. Note that, for each k ∈K,
there can be multiple solutions for vk satisfying (8),
each leading to a different Ak. As a result, ! may not
be unique. Thus, MQIO(K,τ,θ) is equivalent to solv-
ing the MSI problem multiple times with different !
s and finding the maximum cardinality. Therefore,
MQIO(K,τ,θ) is at least as hard as MSI. w

Dawande et al. (2001) show that a general MSI
problem can be reformulated as a version of the bicli-
que problem (called the maximum one-sided edge
cardinality problem).

4.2. Biclique Representation of the Solution
Motivated by its connection to the MSI problem, we
also cast the MQIO problem as a biclique problem
with a bipartite graph constructed as follows. We first
create a node k in V1 for each data point x̂k and a node
i in V2 for each ai. With every node k ∈ V1 and i ∈ V2,
we associate an edge e � (k, i) ∈ E if vki � 1, where vk de-
notes a feasible solution to Problem (8) with respect to
x̂k. Then, we define a biadjacency matrix D̄ ∈ {0,1}K×m
associated with graph G � (V1

⋃
V2,E) as follows.

D̄ki � 1, if e � (k, i) ∈ E,
0, otherwise:

{
(9)

Matrix D̄ can be built by solving Problem (8) for
each k ∈K to find a feasible solution vk and letting the
kth row of D̄ be vk

′
. The following result shows how

an inverse-feasible solution can be found from the D̄
matrix.

Proposition 8. If there exists D̄ that satisfies (9) and has
an all-one submatrix whose rows and columns correspond
to S̄ and Ā, respectively, where S̄ ⊆K, | S̄ |≥ θK, and
Ā ⊆ I , then there exists a solution (c̄, {�̄k}k∈K, ȳ, S̄) feasible
forQIO(K,τ,θ), where c̄ ∈ cone({ai}i∈Ā ).

Proposition 8 suggests that, if we can find a matrix
D̄ that has an all-one submatrix with at least �θK

rows, there exists a corresponding inverse-feasible
cost vector for the QIO (hence, MQIO) problem. The
following example further illustrates this.

Example 4. Consider Example 3 again (see Figure 2(a))
and the QIO model with the following parameters:
τ � 1, θ � 0:8, ‖ · ‖ℓ � ‖ · ‖∞, and ‖ · ‖p � ‖ · ‖∞. Let (v̄k, �̄k)
be a feasible solution to Problem (8) for each data point
k: we have v̄k � [1, 1, 0, 0]′ for k � 1, 2, 3, 4, with �̄1 �
−0:5
−0:2
[ ]

, �̄2 � −0:3
−0:2
[ ]

, �̄3 � −0:3
−0:5
[ ]

, and �̄4 � −0:5
−0:5
[ ]

, respectively,

and v̄5 � [0, 1, 1, 0]′ with �̄5 � −0:3
0:3

[ ]
. Then, we can con-

struct a bipartite graph, shown in Figure 2(b), in which
each edge identifies (i, k) such that v̄ki � 1 and the corre-
sponding D̄ matrix in Figure 2(c). Note that this D̄ has
an all-one submatrix with rows and columns corre-
sponding to S̄ � {1, 2, 3, 4} and Ā � {1, 2}, respectively
(the shaded rectangle), and | S̄ |� 4 ≥ θK. Now, consid-
er a cost vector c̄ � 0:5a1 + 0:5a2 � −0:5

−0:5
[ ]

∈ cone({ai}i∈Ā ).
We can see that c̄ is inverse-feasible because (c̄,
{�̄1, : : : , �̄5}, ȳ, S̄), where ȳ � [0:5, 0:5, 0, 0]′ is feasible
forQIO(K,τ,θ).

Furthermore, Proposition 8 implies that the number
of columns in the all-one submatrix corresponds to the
objective function value of MQIO(K,τ,θ), which is to
be maximized. Thus, it is important to find a submatrix

Figure 2. Illustrative Example for the Construction of D̄ and
Its All-One Submatrix

(a) (b) (c)

Notes. (a) Forward problem geometry. (b) Bipartite graph. (c) Matrix
D̄ and all-one submatrix.
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with as many columns as possible. Building on these
observations, in the next section, we propose specific
algorithms to find an all-one submatrix of D̄ with at
least �θK
 rows and as many columns as possible.

4.3. Algorithms
Although matrix D̄ is constructed using {vk}k∈K ob-
tained by solving Problem (8) for each data point k,
because there may be multiple solutions for (8), there
may be multiple D̄ matrices achievable. Thus, it is im-
portant to find a D̄ matrix that can lead to an all-one
submatrix of a desirable size as described, which
eventually leads to a desirable feasible solution to
MQIO(K,τ,θ). In this section, we now present our
main algorithms: we first present an exact algorithm
that solves modifications of (8) repeatedly until a D̄
matrix leading to an optimal solution to the MQIO
problem is found, followed by two heuristic variants
in which modifications of (8) or their relaxations are
solved only K times to more efficiently construct a D̄
matrix that leads to a reasonably good feasible solu-
tion to the MQIO problem.

4.3.1. Exact Algorithm. Our first idea is that we solve
Problem (8) with a weighted objective function for each
k such that resulting solutions {vk}k∈K are similar to
each other, thus leading to similar rows of D̄. For each
data point k, consider the following modification to (8):

maximize
v,�

∑
i∈I

wk
i vi (10a)

subject to bi ≤ ai
′ (x̂k − �) ≤ bi +M(1− vi), ∀i ∈ I ,

(10b)
‖�‖ℓ ≤ τ, (10c)
vi ∈ {0, 1}, ∀i ∈ I : (10d)

For the first data point, that is, k � 1, we solve Problem
(10) with respect to x̂1, where wk

i � 1 for all i ∈ I (i.e.,
equal initial weights), which finds a solution v1 with
as many as ones as possible. For k ≥ 2, we solve Prob-
lem (10) with respect to x̂k with the updated weight
parameter wk � ϑk=‖ϑk‖ and ϑk

i � ∑(k−1)
ℓ�1 vℓi ; that is, we

assign a higher weight to column i for which vℓi was
assigned one more often for the previous data points
ℓ � 1, : : : , k− 1. The resulting vector vk

′
is then inserted

into the kth row of D̄. Note that, because the weights
are updated in a sequential manner, the order of the
data points can impact the resulting D̄. We assume
without loss of generality that the data points are
sorted in the increasing order of the sum of the distan-
ces to the rest of the data set (i.e.,

∑
k∈K‖x̂1 − x̂k‖ℓ

≤ : : : ≤ ∑
k∈K‖x̂K − x̂k‖ℓ); we find this ordering particu-

larly effective because starting with data points that

are closer to the rest of the data set leads to more simi-
lar vk s in subsequent iterations.

Next, because the construction of D̄ depends on the
solution v1 for Problem (10) with respect to the first
data point x̂1 and this problem may have multiple sol-
utions, it is important to consider different solutions
for this problem to place different “seeds” for D̄ (i.e.,
different first rows of D̄), which allows exploring dif-
ferent inverse solutions. To do so, once an optimal so-
lution to Problem (10) with respect to x̂1 is found, we
impose a cut to exclude the solution from the feasible
region and resolve the problem repeatedly.

Finally, once a certain D̄ matrix is found, its all-one
submatrix (i.e., a biclique in the bipartite graph corre-
sponding to D̄) with at least �θK
 rows and as many
columns as possible can be found (if it exists) by solv-
ing the associated maximum clique problem. Although
any existing algorithm for a general maximum clique
problem would work, we use an MIP formulation to
solve the problem exactly, which we call Clique(D̄,θ);
this formulation can be found in Appendix B.1.

This algorithm is formally presented in Algorithm 2.
In lines 4–9, Problem (10) is solved with updated
weights and cuts. To generate different first rows of D̄
(i.e., different v1’s), a cut defined in line 11 is added to
the problem in line 5. The following result shows that,
under a certain condition, this algorithm finds inverse-
feasible cost vectors that correspond to the optimal so-
lution toMQIO(K,τ,θ), hence, exact. We call this algo-
rithm D̄-Alg-Exact.

Proposition 9. Let (v∗,u∗, {�k∗}k∈K) be an optimal solution
to MQIO(K,τ,θ) and z∗ � ∑

i∈Iv
∗
i . Let Vz � {v1 ∈ {0,1}m |

∃(v1,�1) satisfying (10b)–(10d) with respect to x̂1, v1
′

e � z}. If u∗1 � 1, then Algorithm 2 returns zAlg � z∗ and
vAlg � v∗ in r ≤ ∑n

z�z∗ |Vz | iterations.
Once the algorithm is run, the condition u∗1 � 1 can

be easily checked by whether the first row of D̄r is
also included in its all-one submatrix, where r is the it-
eration at which the most recent vAlg was achieved.
Our numerical results show that the condition is met
in all instances for which the algorithm was run
completely (not interrupted by time limit). If this con-
dition is not met, although the algorithm may still
generate a reasonably good solution, the user may re-
order the data points to place a different data point in
the position of k � 1 and rerun the algorithm. Note
that the number of times Problem (10) for x̂1 with cuts
added should be solved in Algorithm 2 can grow ex-
ponentially in the size of the set I in (10) as it depends
on the number of feasible solutions for v1; however,
our numerical results show that Algorithm 2 still out-
performs solving the MQIO problem as a single large-
scale MIP.
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Algorithm 2 ( �D-Alg-Exact)
Result: zAlg, vAlg, CAlg

Input: A,b, X̂ ,τ,θ
1. r← 1, G1 ←∅, zAlg ←−∞
2. while | Gr |≥ zAlg do
3. w1 ← e, D̄r ← []
4. for k � 1, : : : ,K do
5.

Find

vk ∈ argmax
v

{wk′v | (10b)–(10d)},
if r � 1

vk ∈ argmax
v

{wk′v | (10b)–(10d),∑
i∈Gr′

vi ≤| Gr′ | −1, ∀r′ � 2, : : : , r},
otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
with x̂k as input data

6. Insert vk
′
to the kth row of D̄r

7. ϑk
i ← ∑k

ℓ�1v
ℓ
i for each i ∈ I

8. Update weightswk+1 ← ϑk=‖ϑk‖
9. end

10. Solve Clique(D̄r,θ) to find the all-one subma-
trix of D̄r. Define v̄r ∈ {0,1}m where ones cor-
respond to columns of the submatrix.

11. Gr+1 ←{i | v1i � 1 (i:e:, (1,i) entry of D̄r is 1)}
12. if v̄r′e > zAlg then
13. zAlg ← v̄r′e
14. vAlg ← v̄r

15. end
16. r← r+ 1
17. end
18. Construct the set of inverse-feasible cost vectors

CAlg � cone({ai}i:vAlgi �1)

4.3.2. Heuristics. The exact algorithm (Algorithm 2)
can be computationally burdensome as it solves Prob-
lem (10) for x̂1 repeatedly with cuts added. To reduce
the burden, we propose Algorithm 2 without the use
of cuts as a heuristic, that is, finding only one D̄ and
terminating Algorithm 2 after the first iteration. This
algorithm is faster than the exact algorithm as it solves
Problem (10) only K times, albeit not exactly; we call
this algorithm D̄-Alg-Heuristic.

We also propose an even faster heuristic in Appen-
dix B.2, which solves relaxations of (10) to more effi-
ciently construct an alternative biadjacency matrix
(i.e., instead of D̄). In this relaxed problem (RP), v is
relaxed to be a continuous variable (i.e., v ∈ [0,1]m),
and weighted ℓ1 minimization is employed to make

1− v sparse. We call this algorithm D̄
RP-Alg-Heuristic,

indicating that the underlying biadjacency matrix of
the algorithm is constructed via the RP formulation
(see Appendix B.2 for more details).

The proposed algorithm framework can lead to
many different variants depending on how the
weights are updated and how cuts are generated. For

example, the algorithms can be modified to accommo-
date a huge data set by applying the sequential weight
updating only to the first few MIPs (say K̄ of them),
which leads to the weight parameters wK̄ , and solving
the remaining (K− K̄) MIPs in parallel with the same
weightswK̄ . Also, the algorithms can be modified to in-
fer cost vectors in an online manner based on data sets
that become available through different time points
and (A,b) parameters changing over time; Appendix
B.3 shows more details about this algorithm.

5. Numerical Results
We examine the performance of the algorithms pro-
posed for the MQIO model using various sized LP in-
stances. We also assess forward and inverse stability
of the MQIO model as well as the previous inverse LP
method using the measures proposed in Section 2. Fi-
nally, we demonstrate the stability performance of the
MQIO model in the diet recommendation and trans-
shipment applications.

5.1. Performance of the Algorithms
We evaluate the performance of the proposed algo-
rithms for randomly generated LP instances with
n ∈ {15, 50}, m ∈ {100, 300}, K ∈ {35, 200,500}, and τ ∈
{3, 3:5, 4}. An instance is defined by a tuple (n,m,K,τ),
and each instance was solved twice with θ � 0:75 and
0.85. For each instance, as a preprocessing step, we ex-
cluded ai’s that were not inverse-feasible a priori from
the construction of c (see Algorithm 1). Table 1 shows
the results for the MQIO problem (7) obtained by the
Gurobi solver (Gurobi Optimization, LLC 2020) (la-
beled “MIP”), D̄-Alg-Exact, D̄-Alg-Heuristic, and
D̄RP-Alg-Heuristic, averaged over two results with θ �
0:75 and 0.85. Recall that the objective function value
represents the number of basis vectors (ai’s) to con-
struct the set of inverse-feasible cost vectors. All opti-
mization problems were solved by Gurobi 7.5 with a
four-core 3.6-GHz processor and 32 GB memory.

For small instances in which (n,m) � (15,100), the
exact MIP formulation found an optimal solution with-
in the time limit of 5,000 seconds for most cases. Note
that the solution time for MIP decreases as τ goes up;
we conjecture that this is because the problem becomes
easier as the threshold distance τ becomes more
“generous.” The exact algorithm achieved the same
objective values as the MIP values within significantly
less time. Both heuristics found objective values rea-
sonably close to the exact values and were even faster.
The computational benefit of the proposed algorithms
becomes more clear for larger instances; the MIP solver
failed to solve any instance with (n,m) � (50,300). As
expected, there is a clear trade-off between the algo-
rithms. In all instances, D̄-Alg-Exact returned the
greatest objective values but was the slowest, whereas
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D̄RP-Alg-Heuristic was the fastest algorithm, yet the
solution quality was not as good as the other two algo-
rithms. Although the results suggest that both heuris-
tics can be used for very large instances, because
D̄RP-Alg-Heuristic solves relaxations for each x̂k in-
stead of MIPs, we suggest using this algorithm for in-
stances with very large n and m.

5.2. Stability of MQIO
5.2.1. Forward Stability. To assess the forward stabili-
ty of our proposed MQIO model, we created an in-
stance with (n,m,K,τ) � (15, 100, 35,3) and θ � 0:75,
for which we know the true optimal objective value is∑

i∈Iv
∗
i � 15. To see the effect of the number of ai’s

used to form an inverse solution (i.e.,
∑

i∈Ivi) on for-
ward stability, we solved the inverse problem on this
instance repeatedly, each with a constraint

∑
i∈Ivi ≤ h,

h ∈ {1, 2, : : : , 15}. Each problem was solved exactly via
the MQIO formulation. Note that the case in which
h � 1 can be considered similar to the previous inverse
LP model (2) in that it finds a single cost vector identi-
cal to one of the ai’s. For each h, once the set of
inverse-feasible cost vectors, Ch, was found, we ran-
domly generated 50 cost vectors c ∈ Ch and computed
d(X̂ ,x∗(c)) �maxk∈Sh {‖x̂k − x∗(c)‖∞}, where Sh denotes
the set of chosen data points in iteration h and x∗(c) ∈
argmin FO(c) as an estimate for the forward stabili-
ty measure.

Figure 3(a) shows the resulting distances for each
h ∈ {1, 2, : : : , 15}: each box plot represents 50 values of
d(X̂ ,x∗(c)) from 50 different cost vectors. We observe
that, when h is low (i.e., few ai’s are used for generat-
ing a c vector), the distance d is significantly greater
than τ, hence, forward-unstable. In other words, if
this cost vector is used for the forward problem, the

resulting solutions may not be close to the input data.
On the other hand, as h increases (i.e., as more ai’s are
used) the cost vector produces a solution that is closer
to the data, eventually within the threshold distance τ
(indicated by the horizontal dashed line). The overall
decreasing trend of the distance d supports the idea of
maximizing

∑
i∈Ivi as a surrogate objective function to

maximize forward stability.

5.2.2. Inverse Stability. To evaluate the inverse stability
of MQIO, we investigated the effect of θ and τ on how
sensitive the inverse solution set is to changes in the data
set X̂ . Again, an instance with (n,m,K) � (15, 100, 35)
was considered. First, we considered the MQIO model
with different τ values increasing from two to three by
0.1 (the objective value of MQIO increases monotonical-
ly as τ increases). For each τ value, we first solved the
MQIOmodel with the given data set X̂ to find the initial
inverse-feasible set Ĉ. We then shifted �(1−θ)K� + 1
data points in X̂ : {x̂k +γk}k∈K, whereγk is uniformly dis-
tributed in [0,Γ]n if x̂k is chosen to be shifted, and γk � 0
otherwise. Given this shifted data, denoted by X̃ (Γ), we
resolved the MQIO problem to find the new inverse-
feasible set C̃. We repeated this process while increasing
Γ until C̃ had no common cost vector shared by the initial
set Ĉ, that is, Ĉ ∩ C̃ � ∅. When such a Γ value was
reached, we computed the distance d(X̂ , X̃ (Γ)) �∑

k∈K‖x̂k − x̃k(Γ)‖∞ as an estimate for the inverse stability
measure in Section 2.

Figure 3(b) shows the result of this experiment for
all τ values and θ � 0:75,0:85, and 1. For a fixed value
of θ, the distance d(X̂ , X̃ (Γ)) increases as τ increases
(i.e., more ai vectors are included in the inverse-
feasible set), which means the model becomes more
tolerant to changes in the data set and, hence, more

Table 1. MQIO Results via MIP Solver, D̄-Alg-Exact, D̄-Alg-Heuristic, and D̄RP-Alg-Heuristic

(n, m, K) τ

Objective function value Time, s

MIP D̄-Exact D̄-Heur D̄RP-Heur MIP D̄-Exact D̄-Heur D̄RP-Heur

(15, 100, 35) 3.0 14.00a 14.50 11.50 11.00 5,000.00 12.42 1.32 0.18
3.5 15.00 15.00 13.00 10.50 2,441.31 26.61 0.72 0.20
4.0 15.00 15.00 12.00 9.50 28.62 5.77 0.60 0.20

(15, 100, 200) 3.0 12.50a 12.50 11.00 11.50 5,000.00 103.03 2.77 0.90
3.5 15.00 15.00 14.00 10.50 766.59 77.94 2.35 1.05
4.0 15.00 15.00 15.00 13.00 426.08 2.18 2.18 0.88

(50, 300, 35) 3.0 26.50a 37.50 30.50 25.50 5,000.00 2,000.15 43.26 0.77
3.5 28.00a 44.50 36.50 27.00 5,000.00 3,511.62 34.28 0.83
4.0 24.50a 49.00 41.00 28.50 5,000.00 2,181.47 26.31 0.85

(50, 300, 200) 3.0 0.00a 33.00 27.00 20.00 5,000.00 1,393.53 145.27 4.23
3.5 0.00a 40.50 29.00 26.00 5,000.00 2,811.66 182.90 4.75
4.0 0.00a 47.50 33.00 27.00 5,000.00 2,705.12 140.94 5.33

(50, 300, 500) 3.0 27.00 27.00 10.50 5,000.00 384.28 384.28 10.23
3.5 35.00 29.50 13.50 5,000.00 775.12 375.80 12.21
4.0 43.50 37.00 15.50 5,000.00 3,027.96 186.59 12.84

Note. Empty cells indicate instances for which no feasible solutionwas foundwithin time limit.
aInstances not solved to optimality within the time limit (5,000 seconds).
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inverse-stable. For a fixed value of τ, Figure 3(b) also
shows that increasing θ decreases inverse stability,
reinforcing the idea that allowing for no or few out-
liers can lead to an “impatient” inverse model that
can easily switch its solutions affected by such data
imperfection.

Note that the estimated inverse stability values in
Figure 3(b) are, in fact, upper bounds on the true in-
verse stability values. To show this, we refer the reader
to Formulation (A.3) in Appendix A.3, whose optimal
value is the true inverse stability value for the MQIO
model. Because no initial cost vector in Ĉ remains
inverse-feasible given the shifted data X̃ , X̃ is a feasi-
ble solution to Formulation (A.3) with the objective
value of d(X̂ , X̃ ). Because (A.3) is a minimization prob-
lem, its optimal value (i.e., the true inverse stability
value) cannot be greater than d(X̂ , X̃ ). Figure 3(b)
shows that the lower bounds on the inverse stability
measure (based on Proposition 3) are nontrivial, and
because the estimated values are upper bounds, the
difference between the lower bounds and the true in-
verse stability values must be even less than shown in
Figure 3(b).

Finally, we conducted a similar experiment to assess
the inverse stability of the previous inverse model (2).
We solved Model (2) with X̂ to find an initial inverse
solution ĉ, resolved the problem repeatedly with X̃ (Γ)
with increasing Γ values until the resulting cost vector
was different from ĉ, and computed the distance be-
tween the original data set and the shifted one, which
is shown as a thick × marker in Figure 3(b). The result
is almost identical to the lowest inverse stability
achieved by the MQIO model (i.e., with θ � 1 and
smallest τ).

5.3. Diet Recommendation
Literature on diet prediction/recommendation using
historical data largely focuses on a “direct” replication
of diets for which the goal is to create diets that are
closest to the old diets in terms of some distance func-
tion (e.g., ℓ2 distance between new and old diet vec-
tors) (Darmon et al. 2006, Perignon et al. 2016). How-
ever, such an approach may not work if there is any
change in the constraints of the underlying diet prob-
lem, such as changes in nutritional requirements or
available foods. In this case, learning the objective
function that represents one’s preferences instead and
creating new diets “indirectly” is a more robust and
transferable way of learning the individual’s diet be-
havior (similar motivations can be found in learning
driving behaviors in Abbeel and Ng (2004)). More-
over, by doing so, the model can find an optimal diet
with respect to the inferred preferences, whereas rep-
licating the diets directly can inherit undesirable diet
patterns from the past.

We use the database from the National Health and
Nutrition Examination Surveys, which includes nutri-
tional requirements and nutrition facts per serving for
each food type, and build a diet problem for a subset of
the foods and nutrients from the database to keep the
experiment simple. We classify the foods into food
“types” (see Table D.1 in Appendix D.1). We assume
that, once the number of servings for each food type is
determined, more detailed decisions (e.g., specific me-
nus) can bemade by dietitians based on this.We believe
this is a realistic consideration as there exist myriad dif-
ferent menus.We first solve the diet problemwith some
arbitrary cost vector, assumed to reflect true preferences
of an individual, and find x∗ that represents the number

Figure 3. (Color online) Forward and Inverse Stability Performance of MQIO
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Notes. (a) Distances between the data set and solutions achieved by inverse-feasible cost vectors. (b) Data shift distance until no initial inverse-
feasible solution remains feasible.
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of servings for food type i per day. In practice, if the
data come from some unknown system, the assumed
forward LP feasible region may not “fit” the data well.
In this case, the user needs to tweak some parameters of
the forward LP (e.g., constraint parameters or the list of
variables), similar to linear regression.

Given x∗ with no noise, both the MQIO and previ-
ous models can find the true cost vector and generate
the same x∗ as a forward solution. However, as one’s
diet behavior is assumed inconsistent and noisy, to ex-
amine the impact of data noise on both models, we
generate multiple diets x∗ +γ, where γ is a normal-
distributed random noise vector γ ~N (0,σ2I), where I
is the identity matrix of an appropriate dimension,
which form the input data set X̂ .

We apply the MQIO model as well as the previous
inverse model (2) with the same data set X̂ as input
and compare the resulting recommended diets. For
MQIO, we find a set of inverse-feasible cost vectors C∗
and solve the forward diet problem 20 times each
with a different c vector selected from C∗ to generate a
set of diet recommendations. Because the previous in-
verse model finds a single cost vector, we solve the
diet problem with this vector only once. Figure 4(a)
shows diet recommendations obtained by the MQIO
model (circular markers) are much closer to the input
data (diamond-shaped markers; σ � 0:2 to create the
noisy data set X̂ ) than those from the previous inverse
model are (squared markers), reinforcing the im-
proved stability in the MQIO model. Also note that
the MQIO model leads to multiple such diet recom-
mendations based on the multiple cost vectors.

In Figure 4(b), we further increase the noise in the
input data by increasing σ from 0.2 to 1. Although the

previous model generates the same recommendation,
the MQIO model “adapts to” the increased variability
in the observations and generates more diverse rec-
ommendations for some food types; for example, food
types 5–7. In summary, the MQIO model generates
recommendations that are consistent with the individ-
ual’s past behavior and stable in the face of data noise;
thus, the objective function found by the model can
better predict one’s eating behavior.

Finally, we show that the MQIO framework is ame-
nable to the case in which data points are collected at
different time points and the goal of the inverse prob-
lem is to infer cost vectors based on more recent data
points. Let x̂t be a data point collected at time
t � 1, : : : ,T. We let the threshold parameter τt vary
over time: the more recent x̂t is, the smaller τt we im-
pose (i.e., the closer we want to make this data point
to optimality). Figure 5 shows the result of such a
modified model with time-stamped diet observations.
Darker diamond markers represent more recent ob-
servations. As more recent data were collected, the
modified MQIO model generates recommendations
(circular markers) that are closer to the more recent
ones. This result suggests that our MQIO framework
can offer modeling flexibility that can lend itself to
adaptive settings in which the preference function can
be updated over time.

5.4. Transshipment Problem
We demonstrate the use of our inverse model for on-
line learning in the transshipment application, in
which production and shipment costs are inferred
adaptively as batches of decisions are observed se-
quentially over time. We consider a transshipment

Figure 4. (Color online) Comparison of Diets Recommended by the MQIOModel and the Previous Inverse Model

(a) (b)

Notes. (a) σ � 0:2. (b) σ � 1:0.
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problem with one distribution node, two supply no-
des, and two demand nodes (see Appendix D.2). Sup-
pose, at each time t, demand dt is revealed, and the
DM makes a set of decisions on production (x(p)) and
transshipment (x(t)) to minimize the total cost
c(p)′x(p) + c(t)′x(t), where c(p) and c(t) denote production
and transshipment costs, respectively. Let c � [c(p); c(t)]
and x � [x(p);x(t)]. Let X̂ t denote the set of decisions
observed at time t. We assume that there is a true cost
vector ctrue (shown in Appendix D.2) and generate a
data set X̂ t by adding noise to an optimal solution
with respect to ctrue and randomly generated demand
dt ~U[0, 1:1].

We use an online learning extension to D̄-Alg-
Heuristic (see Appendix B.3) to infer the set of cost vec-
tors Ct at each time t from the data sets collected
through time t. We consider T � 600 (i.e., 600 sequen-
tial batches of data) and θ � 0:75. At each iteration
t � 1, : : : , 600, we randomly select 20 cost vectors ct ∈ Ct
and solve the corresponding forward problemwith de-
mand dt to obtain a forward solution x̄t. We assess the
performance of the algorithm at each time t in terms of
the distance between our forward solution x̄t and data
batch X̂ t, that is, d(X̂ t, x̄t) �maxx∈X̂ t

‖x− x̄t‖∞.
Figure 6(a) shows the average distance

∑t̄
t�1d(X̂ t, x̄t)=t̄ at iteration t̄ over 20 trials, that is, 20 randomly

selected cost vectors. Each light-color line shows each
distance per trial, and the dark line shows the average.
As t̄ grows, the average distance between the data set
and the forward solution converges. In fact, the inferred
set of cost vectors remains unchanged from iteration
415 onward, and importantly, this set includes ctrue.
That is, as more data are collected, the algorithm suc-
cessfully finds a set of cost vectors that represent the
preferences encoded in the true cost vector and generate
forward solutions close to the given data (hence, for-
ward-stable). Additional results on the comparison
between the objective function values achieved by our
forward solution x̄t and those from the given data are
available in Appendix D.2.

We also test the algorithm with different values of
θ ∈ {0:75,0:85,1}. Figure 6(b) shows that, as θ de-
creases, the algorithm takes more iterations to con-
verge, which is intuitive as fewer data points are con-
sidered relevant at each iteration, requiring the
algorithm to collect more data until it finally arrives at
a certain set of cost vectors. When θ � 1, although the

Figure 5. (Color online) Results of the MQIOModel for Diet
Behavior Changing over Time

Figure 6. (Color online) Results of the Online Learning Extension for the Transshipment Problem

100 200 300 400 500 600
0

1

2

3

4

5

6

Model (2)
=1
=0.85
=0.75

100 200 300 400 500 600
0

1

2

3

4

5

6

Per trial
Average

(a) (b)

Notes. (a) Distance between inversely optimized forward solution and the data set. (b) Performance of the algorithmwith different θ values and
Model (2).
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distance converges more quickly, the resulting inverse
set does not include the true cost vector because the
algorithm with θ � 1 is more susceptible to data noise.
This again supports the need to explicitly account for
potential outliers in inverse LP. Finally, Figure 6(b)
also shows the performance of the previous inverse
model (2) in this setting: at each iteration t̄, we find a
cost vector by solving (2) with all data points up to
time t̄. This model fails to find the true cost vector at
all iterations. Also, the distance between its corre-
sponding forward solution and the data is greater
than that from the MQIO model.

The performance of the online learning algorithm
(i.e., Algorithm B.2) also depends on the variability of
demand parameters. When the interval of the demand
distribution increases, the true vector is found more
slowly. We conjecture that this is because increased var-
iability in demands causes the feasible region of the for-
ward problem to vary more, rendering some constraints
redundant, and thus, the algorithm cannot detect some
of the ai’s needed to construct the true cost vector.

6. Conclusion
In this paper, we develop a new inverse LP method
that can capture noise, errors, and uncertainty in the
input data and infer cost vectors that are more stable
than those obtained by the previous methods. We for-
mulate the model as a large-scale MIP and develop ef-
ficient algorithms by exploiting its connection to the
well-known biclique problems. Our inverse method is
demonstrated in the diet recommendation and trans-
shipment applications in which past data used as in-
put can be noisy and inaccurate. Many directions for
future research exist. For example, preferences of a
large group of DMs can be clustered into smaller rep-
resentative groups using the quantile statistic-based in-
verse optimization approach. A goodness-of-fit mea-
sure that is amenable to the quantile inverse model
can be useful for assessing the validity of the assumed
forward LP, which remains our future work. Extend-
ing the inverse nonlinear programming techniques to
accommodate the quantile-based framework is also an
interesting future work, which can allow to assess our
proposed inverse model in a broader context.

Appendix A. Supplemental Materials for the
Inverse Model

A.1. Finding the Threshold Parameter t
The threshold parameter τ for the QIO model (i.e., (5))
can be set by adding a reasonable margin to the minimum
possible value that keeps the model feasible, which can be
found by solving the following problem in which τ is
now a variable:

minimize
τ, c, {�k}k∈K,y,S

{τ | (5b)–(5i)}: (A.1)

Problem (A.1) finds a cost vector such that the θ quantile
optimality error is minimized; this is similar to the struc-
ture of the least quantile method in the regression con-
text in Bertsimas and Mazumder (2014). The following
result shows the solution structure of an optimal cost
vector for the preceding problem (proof can be found in
Appendix C).

Proposition A.1. If Problem (A.1) is feasible, then there ex-
ists an optimal c for (A.1) such that c � ai for some i ∈ I .

Proposition A.1 suggests that the search for an optimal cost
vector for (A.1) can be done by evaluating each hyperplane
i � 1, : : : ,m, that is, solving Formulation (C.4) for each i and
each k (see proof of Proposition A.1 in Appendix C) and find-
ing i that induces the minimum τ∗; Formulation (C.4) is a con-
vex optimization problem and, thus, is straightforward to
solve.
To further illustrate the implication of Proposition A.1,

consider the forward feasible region and the initial data
points in Example 1 (Figure 1(a)) and Problem (A.1) with
θ � 0:5 and ‖ · ‖ℓ � ‖ · ‖∞. Cost vector c � a1 is the optimal
solution to Problem (A.1), leading to the objective value of
τ∗ � 0:2 with the optimality errors ‖�1‖∞ � ‖�2‖∞ � 0:2; the
objective function values for (A.1) achieved by c � a2,
c � a3, and c � a4 are 0.3, 2, and 2, respectively.

A.2. Finding Big M Parameters
For each k ∈K, consider the following formulation that
finds x ∈ X that has maximum ℓ∞ distance from x̂k:

maximize
x

{‖x− x̂k‖∞|x ∈ X}: (A.2)

Let dk denote the optimal value of (A.2) with respect to
x̂k. Given that X is bounded, dk is also bounded. To find
dk, we first reformulate (A.2) as maxj∈J maxx∈X {|xj − x̂kj |};
for each j ∈ J , if x̄ denotes an optimal solution to the in-
ner max problem, then max {| x̄j − x̂kj |} �max {x̄j − x̂kj ,
x̂kj − x̄j}. As a result, we have dk �maxj∈J max{maxx∈X {xj −
x̂kj }, maxx∈X {x̂kj − xj}}, that is, dk can be obtained by solv-
ing 2n LPs and selecting the largest objective value. Note
that M2 �maxk∈K {dk} is a sufficiently large number valid
for Constraint (6c). More efficiently, one may use a
constraint-specific parameter M2k � dk for each k ∈K.

To find M1, we use Cauchy–Schwarz and Minkowski
inequalities as follows. For each i ∈ I and k ∈K, by the
Cauchy–Schwarz inequality, ai

′ (x̂k − �k) ≤ ‖ai‖2(‖x̂k − �k‖2).
Using the Minkowski inequality, we have ‖x̂k − �k‖2 ≤
‖x̂k‖2 + ‖�k‖2 for each k ∈K. Moreover, for each vector

�k ∈ R
n, we have ‖�k‖2 �

�������������∑n
i�1 |εki |2

√
≤

�������������������������∑n
i�1(maxi{| εki |})2

√
�������������������������

n × (maxi{| εki |})2
√

� ��
n

√ ‖�k‖∞. It follows that ai
′ (x̂k − �k) − bi ≤

‖ai‖2(‖x̂k − �k‖2) − bi ≤ ‖ai‖2(‖x̂k‖2 + ‖�k‖2) − bi ≤ ‖ai‖2(‖x̂k‖2 +
��
n

√
‖�k‖∞) − bi. From the previous paragraph, we have ‖�k‖∞ ≤ dk
for each k ∈K. Hence, choosing M1 �maxi∈I {‖ai‖2}(maxk∈K
{‖x̂k‖2} +

��
n

√
maxk∈K{dk}) +maxi∈I {−bi} is valid for each con-

straint of (6d). As a more efficient and constraint-specific al-
ternative, one may choose M1ik � ‖ai‖2(‖x̂k‖2 +

��
n

√
dk) − bi for

constraint (6d) for each i ∈ I and k ∈K.
The M parameter in Formulation (8), with respect to

each k ∈K, can be calculated similarly to M1 with dk
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replaced by τ, that is, M �maxi∈I{‖ai‖2}(‖x̂k‖2 + τ
��
n

√ ) +
maxi∈I{−bi}.

A.3. Computing the Inverse Stability Measure
Recall that inverse stability measure (3) is defined as the
minimum distance of data shift such that all inverse-
feasible cost vectors are no longer feasible for the inverse
model with respect to the shifted data. Given a data set
X̂ , let Ĉ be the set of inverse-feasible cost vectors for
QIO(X̂ ,τ,θ). As Theorem 1 suggests, every inverse-
feasible cost vector c ∈ Ĉ is a conic combination of some
ai’s that are also inverse-feasible. The following result
shows that, to check whether all inverse-feasible cost vec-
tors in Ĉ are no longer feasible under the shifted data, it is
sufficient to check whether all inverse-feasible ai’s whose
conic hull forms Ĉ are no longer feasible.

Lemma A.1. Let Ĉ be the set of inverse-feasible cost vectors for
QIO(X̂ ,τ,θ) and Î � {i ∈ I | ai ∈ Ĉ}. Let X̃ denote the shifted
data set and C̃ the set of inverse-feasible cost vectors for
QIO(X̃ ,τ,θ). If no ai, i ∈ Î is inverse-feasible for QIO(X̃ ,τ,θ),
then no c ∈ Ĉ is inverse-feasible for QIO(X̃ ,τ,θ).

Lemma A.1 suggests that, to compute the inverse stabili-
ty measure for Ĉ given the original data set X̂ , all we need
is to find a minimally shifted set of the data points, X̃ such
that no ai, i ∈ Î is inverse-feasible for QIO(X̃ ,τ,θ). Given
Î , to make c � ai infeasible for QIO(X̃ ,τ,θ) for all i ∈ Î , we
need to ensure that there are more than �(1−θ)K� data
points in X̃ whose minimum distance from each X i, i ∈ Î ,
is strictly greater than τ. This observation leads to the fol-
lowing formulation.

minimize
{xk}k∈K, {Si}i∈Î

d(X̂ ,X) �∑
k∈K

‖xk − x̂k‖ℓ (A.3a)

subject to Di(xk) �min
z∈X i

{‖xk − z‖ℓ}, ∀i ∈ Î , k ∈K, (A.3b)

Di(xk) ≥ τ+ σ, ∀k ∈ Si, i ∈ Î , (A.3c)

|Si | ≥ �(1−θ)K� + 1, i ∈ Î : (A.3d)

In this formulation, variable xk is considered a shifted data
point from x̂k. In Constraint (A.3b),Di(xk) computes themin-
imum distance between some shifted data point xk and X i,
which is then ensured to be no less than τ+ σ for at least
�(1−θ)K� + 1 data points by Constraints (A.3c) and (A.3d),
where σ denotes an infinitesimal positive constant. The ob-
jective function minimizes the sum of distances between the
original data points and the shifted ones. As computing the
exact inverse stability value would require Di(xk) > τ in
place of Constraint (A.3c), the optimal value of the problem
is only infinitesimally greater than the exact inverse stability
value, and we treat this value as the true inverse stability
value (the inverse stability measure is defined on the one-
dimensional open set). Note that Problem (A.3) is always
feasible as one can let xk,k ∈K be arbitrarily far from each
X i, i ∈ Î . Problem (A.3) is nonconvex, and thus, it is still chal-
lenging to compute its optimal value exactly. However, we
use this formulation to compute the lower bound for the
true inverse stability value, which is easy to compute (see
Proposition 3 and its proof).

A.4. Upper Bound for the Forward Stability Measure
In this section, we show that an optimal solution to the
MQIO model leads to an upper bound on forward stabili-
ty measure (4). We make the following assumption: for
each i ∈ I , there exists a constant ρi such that ‖x1 − x2‖ℓ ≤
ρi for any x1,x2 ∈ X i and ℓ ≥ 1. The following result shows
that, if such ρi values are known a priori, an upper bound
for the forward stability measure for a cost vector found
by the MQIO model can be computed.

Proposition A.2. Let (v̄, ū, {�̄}k∈K) be a feasible solution to
MQIO(K,τ,θ), Ī � {i ∈ I | v̄i � 1}, S̄ � {k ∈K | ūk � 1}, and
c̄ � ∑

i∈Īλiai, where λi > 0 for all i ∈ Ī . Then, maxx∈X ∗(c̄){‖x̂k −
x‖ℓ} ≤minx∈∩i∈Ī X i{‖x̂k − x‖ℓ} +mini∈Ī {ρi} for all k ∈ S̄ .

Because maxx∈X ∗(c̄){‖x̂k − x‖ℓ} is bounded above for each
k ∈ S̄ , the forward stability measure given any distance
function d in (4), for example, maxk∈S̄maxx∈X ∗(c̄){‖x̂k − x‖ℓ},
is also bounded above.
Given the same inverse-feasible cost vector c̄ in Proposi-

tion A.2, if ℓ �∞, the exact forward stability measure (4) can
be written as maxk∈S̄ {maxx∈X ∗(c̄) {‖x− x̂k‖∞}}. The optimal
value of the inner max problem for each k can be obtained by
solving 2n LPs: z(1)kj �maxx∈X ∗(c̄) {xj − x̂kj } and z(2)kj �maxx∈X ∗(c̄)
{x̂kj − xj} for each j ∈ J � {1, : : : ,n} and selecting the largest
value among them, that is, maxj∈J {z(1)kj ,z

(2)
kj }. Thus, we have

the exact forward stability measure: maxk∈S̄ {maxx∈X ∗(c̄)
{‖x− x̂k‖∞}} �maxk∈S̄ maxj∈J {z(1)kj , z

(2)
kj }:

A.5. Extensions to the MQIO model
In Section 3, we assume the constraint parameters (A,b)
remain the same over different observations. However,
the proposed formulations can also apply when b varies
over k (i.e., bk for observation k) as they only exploit the
structure of A. Should A vary over k (i.e., Ak for observa-
tion k), an inverse-feasible cost vector can be obtained by
replacing Constraint (6b) by bki ≤ aki

′(x̂k − �k) ≤ bki +M1

(1− vki ), ∀i ∈ I , ∀k ∈K, constructing observation-specific
conic hulls Ck using vk similarly as in Section 3, and find-
ing the intersection of the multiple conic hulls (e.g., via
the following additional constraint: c � ∑

i∈Iλ
k
i a

ki and 0 ≤
λk ≤ vk for all k ∈ S).
Additionally, we note that the MQIO model is also

more stable than the previous inverse LP method when
the parameters (A, b) are subject to uncertainty (i.e., the
realized parameters may turn out to be different from the
assumed ones). Suppose that both the previous inverse LP
and our MQIO models are used to infer cost vectors given
some “nominal” parameters (Ā, b̄). Because the previous
model finds a cost vector that is identical to one of the
ai’s, a slight change in the corresponding ai can make the
inferred cost vector no longer inverse-feasible. On the oth-
er hand, if we let C̄ be the set of inverse-feasible cost vec-
tors from the original MQIO model, there exists c ∈ C̄ that
is still inverse-feasible for the realized MQIO problem
(with (Ã, b̃)≠ (Ā, b̄)) as long as there exists xk within
τ-distance from at least �θK
 data points such that xk ∈
∩i∈Ĩ X i for some set Ĩ ⊆ I and C̄ ∩ cone({ai}i∈Ĩ )≠ ∅. In
general, if (A,b) is subject to uncertainty, the MQIO prob-
lem lends itself to traditional robust optimization or sto-
chastic programming techniques as it is a linear MIP.
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Finally, should the cost vector be constrained, say
Dc ≤ d, the MQIO formulation can be rewritten as follows:

maximize
v,u,c,λ,{�k}k∈K

∑
i∈I

vi
∣∣∣Dc≤ d, c�∑

i∈I
λiai, 0≤ λ≤ v, (6b)–(6e)

{ }
,

(A.4)

where the first three constraints are added to ensure that the
resulting c satisfies the cost vector constraint and is still a
conic combination of some ai’s.

Appendix B. Supplemental Materials for
the Algorithms

B.1. The Biclique Problem Formulation
Let D̄ ∈ {0,1}K×m be the biadjacency matrix defined as (9).
The following MIP finds (if it exists) an all-one submatrix
of D̄ (i.e., a biclique) with at least �θK 
 rows (i.e., data
points) and as many columns (ai’s) as possible.

Clique(D̄,θ) : maximize
vclq,uclq

∑
i∈I

vclqi (B.1a)

subject to uclqk + vclqi ≤ 1, ∀(k, i) ∈K× I such that D̄ki � 0,

(B.1b)∑
k∈K

uclqk ≥ θK, (B.1c)

vclqi ,uclqk ∈ {0,1}, ∀i ∈ I , ∀k ∈K: (B.1d)

In (B.1), uclqk and vclqi are one if node k ∈ V1 and i ∈ V2 are se-
lected to be in the clique, respectively, and zero otherwise.
The objective function maximizes the number of nodes se-
lected from V2 (i.e., columns of the all-one submatrix of D̄).
Constraint (B.1b) ensures that at most one of the nodes can
be selected from k ∈ V1 and i ∈ V2 if there is no edge corre-
sponding to (k, i), and Constraint (B.1c) guarantees that at
least �θK
 nodes from V1 (i.e., rows of the submatrix) are
selected. Once Problem (B.1) is solved, the submatrix can be
retrieved by selecting rows and columns of D̄ correspond-
ing to {k ∈K | uclqk � 1} and {i ∈ I | vclqi � 1}, respectively.

B.2. Alternative Heuristic
The algorithms proposed in Section 4.3 can still be compu-
tationally burdensome because the construction of each D̄
requires solving the MIP problem (10) K times. To address
this, we propose a relaxation of Problem (10) using the
idea of weighted ℓ1 minimization (Candes et al. 2008). For
each k ∈K, we solve the following relaxed problem, which
has only continuous variables:

minimize
α,�

∑
i∈I

wk
iαi

subject to bi ≤ ai
′ (x̂k − �) ≤ bi +Mαi, ∀i ∈ I , (B.2a)

‖�‖ℓ ≤ τ, (B.2b)
α ≥ 0: (B.2c)

Then, we construct a matrix D̄RP ∈ {0,1}K×m:

D̄RP
ki � 1, if αk

i � 0,
0, otherwise;

{
(B.3)

where αk is a feasible solution to (B.2) with respect to x̂k.
Note that the construction of D̄RP is more efficient than that
of D̄. The following result shows the relationship between a
solution to Problem (B.2) and a solution to Problem (10).

Lemma B.1. Given an observation x̂k, let (ᾱk, �̄k) be a feasible
solution to Problem (B.2) and Ī � {i ∈ I | ᾱk

i � 0}. Then, there
exists a feasible solution (v̄k, �̄k) to Problem (10) with respect to
x̂k, where v̄ki � 1 for i ∈ Ī and v̄ki � 0 for i ∈ I \ Ī .

Next, similar to Proposition 8, the following result
shows how a feasible solution to the QIO (hence, MQIO)
model can be retrieved from D̄RP.

Proposition B.1. If there exists D̄RP that satisfies (B.3) and
has an all-one submatrix whose rows and columns correspond
to S̄ and Ā, respectively, where S̄ ⊆K, | S̄ |≥ θK, and Ā ⊆ I ,
then there exists a solution (c̄, {�̄k}k∈K, ȳ, S̄) feasible for
QIO(K,τ,θ) such that c̄ ∈ cone({ai}i∈Ā ).

We use the same instance provided in Example 4 to il-
lustrate the result of Proposition B.1.

Example B.1. Let (ᾱk, �̄k) denote the optimal solution to
Problem (B.2) associated with each data point k � 1, : : : , 5:
we have ᾱk � [0, 0, ᾱk

3 > 0, ᾱk
4 > 0]′ for k � 1,2, 3, 4, (with

�̄1 � −0:5
−0:2
[ ]

, �̄2 � −0:3
−0:2
[ ]

, �̄3 � −0:3
−0:5
[ ]

, and �̄4 � −0:5
−0:5
[ ]

), and ᾱ5 �
[ᾱ5

1 > 0, 0, 0, ᾱ5
4 > 0]′ (with �̄5 � −0:3

0:3

[ ]
). We then construct a

bipartite graph by defining node i for ai, node k for x̂k, and
edge (k, i) where ᾱk

i � 0, which leads to the same bipartite
graph in Figure 2(b). As a result, the corresponding biadja-

cency matrix D̄RP is identical to the D̄ matrix in Figure 2(c).
Similar to Example 4, we can obtain an inverse-feasible cost

vector from the all-one submatrix of D̄RP.
Similar to the algorithms in Section 4.3, there can be

multiple D̄RP s because there may be multiple optimal sol-
utions to Problem (B.2). We propose a heuristic, which we
call D̄RP-Alg-Heuristic (indicating that it is a variant of
D̄-Alg-Heuristic via the relaxed Problem (B.2)) via a simi-
lar weighting approach to find a matrix D̄RP and the same
clique problem to find the all-one submatrix of D̄RP (i.e.,
Clique(D̄RP,θ)). The pseudo-code for this heuristic can be
found in Algorithm B.1.

Algorithm B.1 (D̄RP-Alg-Heuristic)
Result: C∗
Input: A,b, X̂ ,τ,θ

1. w1 ← e, D̄RP ← []
2. for k � 1, : : : ,K do
3. Find αk ∈ argminα{wk′α | (16a)–(16c)}with x̂k as input data

4. D̄RP
ki ← 1 if αk

i � 0; D̄RP
ki ← 0 otherwise//D̄RP

ki :� (k, i) entry
of D̄RP

5. ϑk
i ← ∑k

ℓ�1D̄
RP
ℓi for each i ∈ I

6. Update weightswk+1 ← ϑk=‖ϑk‖
7. end

8. Solve Clique(D̄RP,θ) to find the all-one submatrix of D̄RP. De-
fine v∗ ∈ {0,1}m where ones correspond to columns of the
submatrix.

9. Construct the set of inverse-feasible cost vectors C∗ � cone
({ai}i:v∗i�1)
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B.3. Application to Online Learning
The assumption we make in Section 3 is that the data
points are available all at once in advance from a fixed for-
ward LP formulation. However, in many application do-
mains, data may become available through different time
points in separate batches. Moreover, some parameters of
the underlying forward LP formulation may change at
each time point as well. In this section, we show how our
inverse method can be extended for learning the cost vec-
tors adaptively over time in an online manner.

Suppose, at each time t ∈ T � {1, : : : ,T}, the DM ob-
serves an external signal b � bt as the right-hand side of
the forward problem and makes a set of decisions X̂ t

with the index set Kt of cardinality Kt. We assume that
the decisions can be noisy. The following formulation is a
modification to MQIO that finds inverse-feasible cost vec-
tors for the entire collection of batches ⋃

t∈T X̂ t:

maximize
v,u, {�kt}k∈Kt ,t∈T

∑
i∈I

vi (B.4a)

subject to bt ≤A(x̂kt − �kt) ≤ bt +M1(1− v),
∀k ∈Kt, ∀t ∈ T , (B.4b)

‖�kt‖ℓ ≤ τt +M2(1− ukt), ∀k ∈Kt, ∀t ∈ T ,
(B.4c)∑

t∈T

∑
k∈Kt

ukt ≥ θ
∑
t∈T

Kt, (B.4d)

vi,ukt ∈ {0,1}, ∀i ∈ I , ∀k ∈Kt, ∀t∈ T : (B.4e)

This formulation still aims to solve the inverse problem in
the traditional setting, which means it has to wait until all
data points are collected, leading to a large-scale MIP. In-
stead, we propose an online learning approach using a
modified version of D̄-Alg-Heuristic in Algorithm B.2.

In this algorithm, we start with an empty D̄ matrix and
update it at each time t by finding v∗ ∈ argmaxv{wt′v | (6b)–(6e)} with X̂ t as input data (where wt is an ap-
propriate weight vector at time t) and inserting v∗′ into
the next empty row of D̄. At each time t, given the up-
dated D̄, we find its largest all-one submatrix and let vt

be a binary vector with ones corresponding to the col-
umns of the submatrix. Recall that each column of this
matrix corresponds to each ai; thus, vt indicates which ai’s
should be used for creating the set of inverse-feasible cost
vectors at time t, that is, Ct � cone({ai}i:vti�1). We show in
the numerical results section that, with a sufficiently large
T, there exists c ∈ CT that is also inverse-feasible for the MIP
(B.4). Again, with such a large T and an excessive number
of data points, the MIP problem (B.4) would be computa-
tionally extremely challenging, whereas the online learning
approach is more efficient as it attempts to solve the prob-
lem in a distributed manner.

Algorithm B.2 (Online Algorithm to Find Inverse-
Feasible Solutions)

Result: CT
Input: A,τ,θ

1. w1 ← 1, D̄ ← []
2. for t � 1, : : : ,T do
3. Observe (bt, X̂ t)
4. Find v∗ ∈ argmaxv{wt′v | (6b)–(6e)} with X̂ t as input data

and b � bt

5. Insert v∗′ to the tth row of D̄
6. Solve Clique(D̄,θ) to find the all-one submatrix of D̄. De-

fine vt ∈ {0,1}m where ones correspond to columns of the
submatrix.

7. Construct the set of inverse-feasible cost vectors
Ct � cone({ai}i:vti�1)

8. Update weightswt+1 ← (1+ vt)=‖1+ vt‖
9. end

Appendix C. Proofs

Proof of Proposition 1. Given X̂ , τ, θ1, and θ2, let
Ĉ(θ1), Ĉ(θ2), C̃(θ1), and C̃(θ2) denote the set of cost vectors
obtained by QIO(X̂ ,τ,θ1), QIO(X̂ ,τ,θ2), QIO(X̃ ,τ,θ1),
and QIO(X̃ ,τ,θ2), respectively, where X̃ denotes some
shifted data set. To show that inverse stability measure (3)
for Ĉ(θ) is nondecreasing as θ decreases, we need to show
that, given θ1 and θ2, if θ2 ≤ θ1, then min X̃ {d(X̂ ,
X̃ ) | Ĉ(θ2) ∩ C̃(θ2) � ∅} ≥minX̃ {d(X̂ , X̃ ) | Ĉ(θ1) ∩ C̃(θ1) � ∅}.
Given θ2 ≤ θ1, we have Ĉ(θ1) ⊆ Ĉ(θ2) and C̃(θ1) ⊆ C̃(θ2).
Let Ĉdiff � Ĉ(θ2)\Ĉ(θ1) and C̃diff � C̃(θ2)\C̃(θ1). Then,

min
X̃

{d(X̂ , X̃ ) | Ĉ(θ2) ∩ C̃(θ2) � ∅}
�min

X̃
{d(X̂ , X̃ ) | (Ĉdiff ∪ Ĉ(θ1)) ∩ (C̃diff ∪ C̃(θ1)) � ∅}

�min
X̃

{d(X̂ , X̃ ) | (C̃diff ∪ C̃(θ1)) ∩ (Ĉdiff ∪ Ĉ(θ1)) � ∅}
�min

X̃
{d(X̂ , X̃ ) | (C̃diff ∩ (Ĉdiff ∪ Ĉ(θ1))) ∪
(C̃(θ1) ∩ (Ĉdiff ∪ Ĉ(θ1))) � ∅}

≥min
X̃

{d(X̂ , X̃ ) | C̃(θ1) ∩ (Ĉdiff ∪ Ĉ(θ1)) � ∅}
�min

X̃
{d(X̂ , X̃ ) | (C̃(θ1) ∩ Ĉdiff) ∪ (C̃(θ1) ∩ Ĉ(θ1)) � ∅}

≥min
X̃

{d(X̂ , X̃ ) | C̃(θ1) ∩ Ĉ(θ1) � ∅},

which completes the proof. w

Proof of Proposition 2. Let (c̄, {�̄k}k∈K, ȳ, S̄) be a feasible
solution to QIO(K,τ,θ). Note that ȳi > 0 for at least one
i ∈ I . Let Ī � {i ∈ I | ȳi > 0}. From (5b), c̄ � ∑

i∈Ī ȳia
i. From

(5e), for each k ∈ S̄ ,
∑

i∈Ī ȳia
i′ (x̂k − �̄k) � ∑

i∈Ī biȳi, and thus,∑
i∈Ī ȳi(ai′ (x̂k − �̄k) − bi) � 0. Because ȳi > 0, we have ai

′ (x̂k −
�̄k)− bi � 0, ∀i ∈ Ī . Now, pick any arbitrary ĩ ∈ Ī and let
ỹ � eĩ , where eĩ denotes the ĩ th unit vector. Then, from
(5b), we can construct a new cost vector c̃ � aĩ . By replac-

ing c̄ with this c̃ in (5e), (5e) becomes aĩ
′(x̂k − �̄k)−

bĩ � 0, ∀k ∈ S̄ , which still holds because ĩ ∈ Ī . It is clear
that (c̃ � aĩ , {�̄k}k∈K, ỹ � eĩ , S̄) also satisfies Constraints
(5b)–(5i) and, thus, is feasible for (5). w

Proof of Lemma 1. Given some sets Ā ⊆A and S̄ such
that | S̄ |≥ θK, let c̄ ∈ cone({ai}i∈Ā ) such that ‖c̄‖p � 1. Recall

that X i � {x ∈ X | ai′x � bi}, i ∈ I . We want to show that, if
there exists x̄k ∈ X i for all i ∈ Ā such that ‖x̄k − x̂k‖ℓ ≤ τ for
all k ∈ S̄ , then there exists {�̄k}k∈K and ȳ such that
(c̄, {�̄k}k∈K, ȳ, S̄) is feasible for QIO(K,τ,θ) (i.e., Formula-
tion (5)). Note that c̄ can be written as c̄ � ∑

i∈Ā λ̄iai, where
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λ̄i > 0 for at least one i ∈ Ā. Let λ̄i � 0 for i ∈ I \ Ā. Be-
cause x̄k ∈ X i, ∀i ∈ Ā, for each k ∈ S̄ , we have ai

′
x̄k � bi for

all i ∈ Ā. Multiplying both sides by λ̄i and summing over
all i ∈ Ā, we have

∑
i∈Ā λ̄iai

′
x̄k � ∑

i∈Ā λ̄ibi, and because
λ̄i � 0 for i ∈ I \ Ā, we further have

∑
i∈I λ̄iai

′
x̄k � ∑

i∈I λ̄ibi;
hence, c̄′x̄k � b′λ̄ for all k ∈ S̄ . By letting ȳ � λ̄, we have
A′ȳ � c̄ and ȳ ≥ 0, which satisfy Constraints (5b) and (5c),
respectively. For k ∈ S̄ , let �̄k � x̂k − x̄k; for k ∈K \ S̄ , let �̄k

be an arbitrary vector in R
n. Then, Constraint (5d) is satis-

fied because x̂k − �̄k � x̄k ∈ X , ∀k ∈ S̄ , and Constraint (5e)
is satisfied because c̄′(x̂k − �̄k) � c̄′x̄k � b′λ̄ � b′ȳ, ∀k ∈ S̄ .
Constraint (5f) is satisfied because ‖�̄k‖ℓ � ‖x̂k − x̄k‖ℓ ≤ τ,
∀k ∈ S̄ . Finally, (5g)–(5i) are satisfied as it was assumed
that S̄ ⊆K, | S̄ |≥ θK and ‖c̄‖p � 1. As a result, (c̄, {�̄k}k∈K,
ȳ, S̄) is feasible for QIO(K,τ,θ). w

Proof of Theorem 1. (⇒) Assume (c̄ ≠ 0, {�̄k}k∈K, ȳ, S̄) is
feasible for QIO(K,τ,θ), that is, Model (5). Then, from (5b),
c̄ � ∑

i∈Ī ȳia
i, where Ī � {i ∈ I | ȳi > 0}. Construct v̄ ∈ R

|I |

by setting v̄i � 1 for all i ∈ Ī and v̄i � 0 for all i ∈ I \ Ī . Also
define ū ∈ R

|K| such that ūk � 1 for k ∈ S̄ and ūk � 0 for
k ∈ S \ S̄ . Let �k � �̄k for k ∈ S̄ and �k � x̂k − x for k ∈K \ S̄ ,
where x ∈ X satisfying ai

′
x � bi, ∀i ∈ Ī . We want to show

that (v̄, ū, {�k}k∈K) is feasible for Model (6). From (5b) and
(5e), we have

∑
i∈Ī ȳia

i′ (x̂k − �k) � ∑
i∈Ī biȳi or, equivalently,∑

i∈Ī ȳi(ai′ (x̂k − �k) − bi) � 0 for each k ∈ S̄ . Because ȳi > 0 for
all i ∈ Ī , for each k ∈ S̄ , we have ai

′ (x̂k − �k) � bi for i ∈ Ī

(i.e., i : v̄i � 1) and ai
′ (x̂k − �k) ≥ bi for i ∈ I \ Ī (i.e., i : v̄i � 0).

Also, for each k ∈K \ S̄ , based on how �k is defined earlier,
we also have ai

′ (x̂k − �k) � bi for all i ∈ Ī and ai
′ (x̂k − �k) ≥ bi

for all i ∈ I . Therefore, {�k}k∈K and v̄ together satisfy (6b).
Because ū is constructed based on whether ‖�̄k‖ℓ ≤
τ, {�k}k∈K and ū clearly satisfy (6c). Also,

∑K
k�1ūk �∑

k∈S̄ ūk �| S̄ |≥ θK, satisfying (6d). Thus, (v̄, ū, {�k}k∈K) is
feasible for Model (6). Finally, from (5b), c̄ �A′ȳ � ∑

i∈Ī
ȳia

i � ∑
i:v̄ i�1ȳia

i, and therefore, c̄ ∈ cone({ai}i:v̄ i�1). Because
c̄ is feasible for QIO(K,τ,θ), ‖c̄‖p � 1.

(⇐) Assume (v̄ ≠ 0, ū, {�̄k}k∈K) is feasible for Model (6).
Let Ī � {i ∈ I | v̄i � 1} and S̄ � {k ∈K | ūk � 1} and consid-
er c̄ ∈ cone({ai}i∈Ī ) such that ‖c̄‖p � 1. We can write

c̄ � ∑
i∈Ī λ̄iai, where λ̄i ≥ 0 ∀i ∈ Ī . If we let ȳi � λ̄i for all

i ∈ Ī and ȳi � 0 for all i ∈ I \ Ī , then c̄ � ∑
i∈Ī ȳia

i �A′ȳ sat-
isfies (5b); because ȳ ≥ 0, (5c) is also satisfied. Because
ai

′ (x̂k − �̄k) ≥ bi holds for all i ∈ I ,k ∈K by (6b), (5d) is satis-
fied for all k ∈K. Also because Model (6) is feasible,
ai

′ (x̂k − �̄k) � bi for all i ∈ Ī and all k for which ūk � 1, that
is, k ∈ S̄ ; multiplying both sides by ȳi and summing over
all i ∈ I , we have

∑
i∈I ȳia

i′ (x̂k − �̄k) � ∑
i∈I ȳibi or equiva-

lently c̄′(x̂k − �̄k) � b′ȳ, satisfying (5e). Clearly, {�̄k}k∈K and
S̄ satisfy Constraints (5f)–(5h). Therefore, (c̄, {�̄k}k∈K, ȳ, S̄)
is feasible for QIO(K,τ,θ). w

Proof of Proposition 3. For this proof, we first refer the
reader to Appendix A.3 in which we show a formulation to
compute the true inverse stability measure; this formulation

is nonconvex, but we use it for this proof. Note that the
true inverse stability measure ξ∗ is the optimal value of
Problem (A.3) in Appendix A.3.

We first present a variant of (A.3) for each i ∈ Ī sepa-
rately (i.e., | Ī | of them) and show that the optimal objec-
tive value of (A.3), that is, ξ∗, is bounded below by the
largest optimal objective value among these | Ī | smaller
problems. Consider the following problem for each i ∈ Ī :

minimize
{xk}k∈K,Si

∑
k∈K

‖xk − x̂k‖ℓ (C.1a)

subject to Di(xk) �min
z∈X i

{‖xk − z‖ℓ}, ∀k ∈K, (C.1b)

Di(xk) ≥ τ+ σ, ∀k ∈ Si, (C.1c)

|Si | ≥ �(1−θ)K� + 1: (C.1d)

Let ζ∗i be the optimal value of this problem for each i ∈ Ī .
Note that, unlike in Formulation (A.3), in which con-
straints of Di(xk) ≥ τ+ σ in (A.3c) must be satisfied for all
i ∈ Î , Problem (C.1) requires Constraint (C.1c) to be satis-
fied for only one i ∈ Ī ⊆ Î . Hence, we have ζ∗i ≤ ξ∗ for all
i ∈ Ī or, equivalently, maxi∈Ī {ζ∗i} ≤ ξ∗. Problem (C.1) is still
nonconvex, and thus, finding ζ∗i is still a challenge. We
next show that its optimal objective value ζ∗i is equal to
the sum of the optimal objective values of even smaller
problems that can be efficiently solved. Given i ∈ Ī and
k ∈K, consider the following problem:

minimize
xk

‖xk − x̂k‖ℓ (C.2a)

subject to Di(xk) �min
z∈X i

{‖xk − z‖ℓ}, (C.2b)

Di(xk) ≥ τ+ σ: (C.2c)

Let ζ̃ik denote the optimal value of this problem. For a
given i, let ζ̃i[k] be the kth smallest value of ζ̃ik, k ∈K.

Then, we have ζ∗i � ∑�(1−θ)K�+1
k�1 ζ̃i[k]. Thus, maxi∈Ī {∑�(1−θ)K�+1

k�1
ζ̃i[k]} �maxi∈Ī {ζ∗i} ≤ ξ∗:
Next, we show how we can find the optimal value for

Formulation (C.2), that is, ζ̃ik. Let d∗ik �minx∈X i{‖x̂k − x‖ℓ}
and τ̄ � τ+ σ. Note that, when d∗ik ≥ τ̄, we have ζ̃ik � 0 be-
cause xk � x̂k satisfies both (C.2b) and (C.2c). Now, we
want to show that, if d∗ik < τ̄, ζ̃ik � τ̄ − d∗ik. To do so, we first
show that ζ̃ik ≥ τ̄ − d∗ik. Let x̄ ∈ argminx∈X i

{‖x̂k − x‖ℓ}. Sup-
posed to the contrary that there exists an optimal solution
x̃k that attains ζ̃ik < τ̄ − d∗ik. By the definition of d∗ik, we can
rewrite this inequality as ‖x̃k − x̂k‖ℓ < τ̄ − ‖x̂k − x̄‖ℓ or,
equivalently, ‖x̃k − x̂k‖ℓ + ‖x̂k − x̄‖ℓ < τ̄. Furthermore, by tri-
angular inequality the following is true: ‖x̃k − x̄‖ℓ ≤
‖x̃k − x̂k‖ℓ + ‖x̂k − x̄‖ℓ < τ̄. However, because x̄ ∈ X i, we
have Di(x̃k) �minz∈X i{‖x̃k − z‖ℓ} ≤ ‖x̃k − x̄‖ℓ < τ̄, which vio-
lates (C.2c) and, thus, contradicts the feasibility of x̃k.
Thus, it must be that ζ̃ik ≥ τ̄ − d∗ik. All we need now is to
show that there exists a feasible solution x̃k to Problem
(C.2) that attains the objective function value of τ̄ − d∗ik.
Note that, if a given x̃k is feasible for Problem (C.2), we
must have Di(x̃k) �minz∈X i ‖x̃k − z‖ℓ

{ }
bounded below by τ̄

(because of (C.2c)). Consider x̃k � τ̄
d∗ik
x̂k − τ̄

d∗ik
x̄ + x̄. Clearly,
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xk � x̃k and z � x̄ together satisfy all constraints in (C.2)
with equality because we have x̄ ∈ X i and

‖x̃k − x̄‖ℓ � ‖ τ̄

d∗ik
x̂k − τ̄

d∗ik
x̄ + x̄ − x̄‖ℓ (C.3a)

� τ̄

d∗ik
‖x̂k − x̄‖ℓ (C.3b)

� τ̄

d∗ik
d∗ik � τ̄: (C.3c)

Moreover, xk � x̃k leads to the objective value ζ̃ik �
‖x̃k − x̂k‖ℓ � ‖ τ̄

d∗ik
x̂k − τ̄

d∗ik
x̄ + x̄ − x̂k‖ℓ � τ̄−d∗ik

d∗ik
‖x̂k − x̄‖ℓ � τ̄ − d∗ik

and, thus, is an optimal solution to (C.2).
As a result, max i∈Ī {∑(�(1−θ)K�+1)

k�1 max (0, τ̄ − d∗i[k])} � max i∈Ī
{∑(‖(1−θ)K‖+1)

k�1 ζ̃i[k]} �max i∈Ī {ζ∗i } ≤ ξ∗. Clearly, because τ < τ̄,

we have max i∈Ī {∑ (�(1−θ)K�+1)
k�1 max (0,τ − d∗i [ k ])} ≤ ξ∗ as

desired. w

Proof of Proposition 4. Given a feasible solution
(v̄, ū, {�̄k}k∈K) for (6), let Ī � {i ∈ I | v̄i � 1} and S̄ � {k ∈K |
ūk � 1}. Because of Constraints (6b) and (6c), for each k ∈ S̄ ,
we have x̂k − �̄k ∈ {x ∈ X | ai′xk � bi, ∀i ∈ Ī } � ∩i∈Ī X i and
‖�̄k‖ℓ ≤ τ. Now, consider c̄ ∈ cone+({ai}i:v̄ i�1). This c̄ vector
leads to X ∗(c̄) � argmin FO(c̄) � ∩i∈Ī X i. Recall that
x̂k − �̄k ∈ ∩i∈Ī X i; this means that x̂k − �̄k ∈ X ∗(c̄) for all k ∈ S̄ .
Moreover, because X is an n-dimensional polytope and | Ī |�
n, X ∗(c̄) is a singleton, that is, X ∗(c̄) � {x̂k − �̄k}, ∀k ∈ S̄ and
x̂k − �̄k � x̂k

′ − �̄k
′
for all k, k′ ∈K. To complete the proof, for all

k ∈ S̄ , we have maxx∈X ∗(c̄){‖x̂k − x‖ℓ} � ‖x̂k − (x̂k − �̄k)‖ℓ �
‖�̄k‖ℓ ≤ τ. w

Proof of Proposition 5. Let H1 � {ai : v1i � 1} and
H2 � {ai : v2i � 1}. Because v1 ≥ v2, we have H2 ⊆H1, and
thus, C2 ⊆ C1. Given the data set X̂ , we want to show that,
for any c2 ∈ C2, there exists c1 ∈ C1 such that maxx∈X ∗(c1)
{‖x̂k − x‖ℓ} ≤maxx∈X ∗(c2){‖x̂k − x‖ℓ}, ∀k : ūk � 1. Suppose to
the contrary that there exists c∗ ∈ C2 such that
maxx∈X ∗(c∗){‖x̂k − x‖ℓ} <maxx∈X ∗(c){‖x̂k − x‖ℓ}, ∀c ∈ C1 for
some k : ūk � 1. This means c∗ ∈ C2\C1, and thus, C2\C1 ≠ ∅,
which contradicts C2 ⊆ C1. Thus, for any c2 ∈ C2, there ex-
ists c1 ∈ C1 such that maxx∈X ∗(c1){‖x̂k − x‖ℓ} ≤maxx∈X ∗(c2)
{‖x̂k − x‖ℓ}, ∀k : ūk � 1 as desired. w

Proof of Proposition 6. Let H1 � {ai : v1i � 1} and
H2 � {ai : v2i � 1}. Because v1 ≥ v2, we have H2 ⊆H1 and
C2 ⊆ C1. Because C2 ⊆ C1,

min
X̃

{d(X̂ , X̃ ) | C1 ∩ C(X̃ ) � ∅}

�min
X̃

{d(X̂ , X̃ ) | (C2 ∩ C(X̃ )) ∪ ((C1\C2) ∩ C(X̃ )) � ∅}

�min
X̃

{d(X̂ , X̃ ) | C2 ∩ C(X̃ ) � ∅ and (C1\C2) ∩ C(X̃ ) � ∅}

≥min
X̃

{d(X̂ , X̃ ) | C2 ∩ C(X̃ ) � ∅}, as desired: w

Proof of Lemma 2. Assume that there exists an optimal
solution (v̄, ū, {�̄k}k∈K) for MQIO(K,τ,θ) such that

∑K
k�1ūk >

�θK
. Without loss of generality let
∑K

k�1ūk � �θK
 + r, where
r > 0. Pick any r observations for which ūk � 1 and change
their values to zero, and denote this new vector by ũ. Then,
we can construct a new solution (v̄, ũ, {�̄k}k∈K), which is still
feasible for MQIO(K,τ,θ) because ‖�̄k‖ℓ ≤ τ+M2(1− ūk) ≤
τ+M2(1− ũk), ∀k ∈K and

∑K
k�1ũk � �θK
 ≥ θK, and gener-

ates the same objective value; hence, it is also an optimal
solution. w

Proof of Proposition 8. Consider a matrix D̄ constructed
as in (9). By definition, each row k ∈K of D̄ is a binary
vector vk

′
, and there exists �̄k such that (vk, �̄k) is feasible

for (10). Assume that there exists an all-one submatrix in
D̄ whose rows and columns correspond to S̄ and Ā, re-
spectively, such that S̄ ⊆K, | S̄ |≥ θK, and Ā ⊆ I . Define v̄
such that v̄i � 1 for all i ∈ Ā and v̄i � 0 otherwise. Then,
we have v̄ ≤ vk, ∀k ∈ S̄ , and thus, (v̄, �̄k) is also feasible for
(10) for all k ∈ S̄ . Define ū such that ūk � 1 for all k ∈ S̄

and ūk � 0 otherwise; note that
∑K

k�1ūk ≥ θK. Let �k � �̄k

for k ∈ S̄ and �k � x̂k − xk for k ∈ S \ S̄ , where xk is arbitrari-
ly chosen from {x ∈ X | ai′x � bi, ∀i ∈ Ā}. We first show
that the solution (v̄, ū, {�k}k∈K) constructed as before is fea-
sible for Problem (6). For all i ∈ Ā � {i | v̄i � 1}, we have
ai

′ (x̂k − �k) � ai
′
xk � bi for each k ∈K. Also, for all i ∈ I \ Ā

(i.e., {i | v̄i � 0}), we have ai
′ (x̂k − �k) � ai

′
xk ≥ bi for each

k ∈K. Thus, v̄ and {�k}k∈K satisfy (6b). Constraint (6c) is
satisfied because ‖�k‖ℓ � ‖�̄k‖ℓ ≤ τ for all k ∈ S̄ � {k | ūk � 1}.
Constraint (6d) is satisfied as we already know∑K

k�1ūk ≥ θK. As a result, (v̄, ū, {�k}k∈K) is feasible for (6).
Then, by Theorem 1, there must also exist a solution
(c̄, {�k}k∈K, ȳ, S̄) feasible for QIO(K,τ,θ), where c̄ ∈
cone({ai}i:v̄ i�1) � cone({ai}i∈Ā ) as desired. w

Proof of Proposition 9. Let P(r, k) denote the optimiza-
tion problem solved in line 5 of Algorithm 2 with respect
to x̂k, and (v(r,k),�(r,k)) ∈ argmax(v,�) P(r, k). We first show

that there exists r̄ ≤ ∑n
z�z∗ |Vz | such that v(r̄,1) � v∗ for prob-

lem P(r̄, 1) (i.e., with respect to the first data point x̂1). For
each iteration r ≥ 2, each cut only prevents the solution
found in the previous iteration r – 1, that is, v(r−1,1), from
being feasible for Constraints (10b)–(10d). This means that
P(r, 1) can be solved

∑n
z�1 |Vz | times with iteratively added

cuts to collect all solutions satisfying (10b)–(10d) with re-
spect to x̂1. Note that because (v∗,�k∗) satisfies (6b) for all
k ∈K and u∗1 � 1, (v∗,�1∗) satisfies Constraints (10b)–(10d)
with respect to x̂1. Thus, it is guaranteed that, for some
r̄ ≤ ∑n

z�1 |Vz |, we have v(r̄ ,1) � v∗. Furthermore, because the
value function of P(r, 1) is nonincreasing in r, for any
r >

∑n
z�z∗ |Vz |, the optimal value of P(r, 1) is less than z∗,

and thus, v∗ is not achievable. Therefore, r̄ must be no
greater than

∑n
z�z∗ |Vz |.

Next, we need to show that, when v(r̄ ,1) � v∗ at iteration
r̄, the algorithm achieves vAlg � v∗ and zAlg � z∗. To do so,
we first show that, when v(r̄ ,1) � v∗, lines 4–9 of the
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algorithm lead to D̄ r̄ with an all-one submatrix with z∗
columns and at least �θK
 rows. Let I ∗ � {i ∈ I | v∗i � 1}
and S∗ � {k ∈K | u∗k � 1}. For some given r and k, P(r, k)
has an optimal solution with v(r,k)i � 0 if wk

i � 0; also, based
on how the weight parameters wk are updated (see Sec-
tion 4.3), if v(r,k)i � 0 for k � 1, : : : , k′ − 1, we have wk′

i � 0.
Generalizing this observation, if v(r̄ ,1) � v∗, then for all
k � 2, : : : ,K, we have wk

i � 0 for all i ∈ I \ I ∗ and wk
i > 0 for

all i ∈ I ∗, and thus, the maximum of the objective function
of P(r̄, k) for each k, that is, wk′v, can be obtained when
v � v∗. Because (v∗,�k∗) satisfies all constraints of Problem
(10) as well as all cuts in P(r̄, k) generated up to iteration r̄
for all k ∈ S∗, we have (v∗,�k∗) ∈ argmaxv,�P(r̄,k). This
means, if v∗′ is assigned to the first row of D̄ r̄ , it is guaran-
teed that v∗′ is also assigned to rows k ∈ S∗ of D̄ r̄ . Clearly,
the submatrix of this D̄ r̄ with columns and rows corre-
sponding to i ∈ I ∗ and k ∈ S∗, respectively, is all-one, and
we have | I ∗ |� z∗ and | S∗ |≥ θK. The clique problem in line
10 of the algorithm (also see Formulation (B.1)) then takes
this D̄ r̄ as input to return its optimal solution v̄ r̄ � v∗ with
v̄r′e � z∗. Because z∗ is the maximum achievable value (it is
the optimal value of the exact MQIO problem), it satisfies
the condition in line 12 of Algorithm 2, and thus, we have
vAlg � v̄ r̄ � v∗ and zAlg � z∗.

Finally, we show that the stopping criterion is valid;
that is, the while loop condition is not violated before
vAlg � v∗ is observed. Consider a certain iteration r̄ ≤∑n

z�z∗ |Vz | and suppose we have vAlg ≠ v∗ and zAlg < z∗ at
the end of iteration r̄ (i.e., lines 13 and 14 of Algorithm 2).
For the while loop condition to be violated in the next it-
eration, that is, iteration r̄ + 1, we must have | Gr̄+1 |< zAlg <
z∗, which means e′v(r̄ ,1) < z∗. However, this cannot happen
because we show earlier in this proof that, for all
r ≤ ∑n

z�z∗ |Vz |, we have e′v(r,1) ≥ z∗. w

Proof of Proposition A.1. Proposition 2 implies that,
given a solution (c̄, {�̄k}k∈K, ȳ, S̄) feasible for (A.1), (c̃ �
aĩ , {�̄k}k∈K, ỹ � eĩ , S̄) is also feasible for any ĩ ∈ Ī � {i ∈ I |
ȳi > 0}. For an arbitrary ĩ ∈ Ī , consider the following for-
mulation defined for each k ∈K:

minimize
�k

{ ‖�k‖ℓ | A(x̂k − �k) ≥ b, aĩ
′(x̂k − �k) � bĩ}: (C.4)

Let �̃k be the optimal solution to (C.4) for each k ∈K (here,
we suppress the index ĩ for brevity). Note that a solution
constructed as (c̃ � aĩ , {�̃k}k∈K, ỹ � eĩ , S̄) is also feasible for
(A.1) because ‖�̃k‖ℓ ≤ ‖�̄k‖ℓ ≤ τ for each k ∈ S̄ . The objective
of (A.1), that is, minimizing τ, is equivalent to minimizing
maxk∈S̄ {‖�k‖ℓ}. Because ‖�̃k‖ℓ ≤ ‖�̄k‖ℓ ≤ τ for each k ∈ S̄ , we
have maxk∈S̄ {‖�̃k‖ℓ} ≤maxk∈S̄ {‖�̄k‖ℓ}. That is, for any given
feasible solution (c̄, {�̄k}k∈K, ȳ, S̄) for (A.1) in which c̄ is not
identical to ai for any i ∈ I , we can always construct another
feasible solution (c̃ � aĩ , {�̃k}k∈K, ỹ � eĩ , S̄) without increasing
the objective value of (A.1), which completes the proof. w

Proof of Lemma A.1. Let Î � {i ∈ I | ai ∈ Ĉ}. Given shifted
data X̃ , assume c � ai is not inverse-feasible for QIO(X̃ ,τ,θ)
for any i ∈ Î . We want to show that there is no c ∈ Ĉ that is

inverse-feasible for QIO(X̃ ,τ,θ). Suppose to the contrary
that there is c̄ ∈ Ĉ feasible for QIO(X̃ ,τ,θ) and let Ī be
such that c̄ ∈ cone({ai}i∈Ī ). Then, from Proposition 2, there
must be some ī ∈ Ī such that c � aī is also feasible for
QIO(X̃ ,τ,θ). Furthermore, because c̄ ∈ Ĉ , this means that
c � aī must be also feasible for QIO(X̂ ,τ,θ) (i.e., it must be
that ī ∈ Î ), which is a contradiction. w

Proof of Proposition A.2. Because c̄ is a strict conic com-
bination of the selected ai vectors, we have X ∗(c̄) � ∩i∈Ī X i.
For each k ∈ S̄ , let x̃k ∈ argminx∈∩i∈Ī X i

{‖x̂k − x‖ℓ}. Then, for all
k ∈ S̄ and i ∈ Ī , we have maxx∈X i{‖x̂k− x‖ℓ} ≤ ‖x̃k − x̂k‖ℓ+
maxx∈X i{‖x̃k − x‖ℓ} ≤ ‖x̃k − x̂k‖ℓ + ρi. Hence, for each k ∈ S̄ ,

max
x∈X ∗(c̄)

{‖x̂k − x‖ℓ} � max
x∈ ∩

i∈Ī
X i

{‖x̂k − x‖ℓ}

≤min
i∈Ī

max
x∈X i

{‖x̂k − x‖ℓ}
{ }

≤min
i∈Ī

{‖x̃k − x̂k‖ℓ + ρi}

�min
i∈Ī

min
x∈ ∩

i∈Ī
X i

{‖x̂k − x‖ℓ} + ρi

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭,

� min
x∈ ∩

i∈Ī
X i

{‖x̂k − x‖ℓ} +min
i∈Ī

{ρi}, (C.5)

where the first inequality holds because we have ∩i∈Ī X i ⊆
X i for all i ∈ Ī , which leads to maxx∈∩i∈Ī X i{‖x̂k − x‖ℓ} ≤
maxx∈X i{‖x̂k − x‖ℓ}, ∀i ∈ Ī . w

Proof of Lemma B.1. Because ᾱk
i � 0 for all i ∈ Ī and

(ᾱk, �̄k) is feasible for (B.2), we have ai
′ (x̂k − �̄k) � bi for all

i ∈ Ī , ai
′ (x̂k − �̄k) ≥ bi for all i ∈ I \ Ī , and ‖�̄k‖ℓ ≤ τ. Let v̄ki �

1− ᾱk
i for all i ∈ Ī and v̄ki � 0 otherwise. Clearly, (v̄k, �̄k)

satisfies all constraints of (10). w

Proof of Proposition B.1. Assume that D̄RP satisfies
(B.3) and has an all-one submatrix whose rows and col-
umns correspond to S̄ and Ā, respectively, and
S̄ ∈K, |S̄ |≥ θK, and Ā ∈ I . By definition, for each k ∈K,
there exists a feasible solution (ᾱk, �̄k) for (B.2) with re-
spect to x̂k, where ᾱk

i � 0 for all i ∈ Ā and k ∈ S̄ , and ᾱk
i > 0

otherwise. This means that, by Lemma B.1, for each k ∈K,
there exists a corresponding feasible solution (v̄k, �̄k) for
(10) with respect to x̂k, where v̄ki � 1 for all i ∈ Ā and k ∈ S̄ ,
and v̄ki � 0 otherwise. Construct a matrix D̄ ∈ {0,1}K×m such
that D̄ki � 1 if v̄ki � 1, and D̄ki � 0 otherwise. Note that D̄
satisfies (9) and has an all-one submatrix whose rows and
columns correspond to S̄ and Ā, respectively, and
S̄ ⊆K, | S̄ |≥ θK, and Ā ⊆ I . Thus, by Proposition 8, there
exists a solution (c̄, {�̄k}k∈K, ȳ, S̄) feasible for QIO(K,τ,θ),
where c̄ ∈ cone({ai}i∈Ā ). w
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Appendix D. Supplemental Materials for the
Numerical Results

D.1. The Diet Problem: Data
The data for the diet problem can be found in Table D.1.

D.2. The Transshipment Problem: Problem Descrip-
tion and Additional Numerical Results
Figure D.1 and the following formulation show the trans-
shipment problem we consider.

minimize
x(p), x(t)

∑
i∈N s

c(p)i x(p)i +∑
i∈N

∑
j∈N

c(t)ij x
(t)
ij (D.1a)

subject to
∑

j∈N \N s

x(t)ij � x(p)i , ∀i ∈ N s, (D.1b)

∑
i∈N \N d

x(t)ij � dj, ∀j ∈ N d, (D.1c)

∑
j∈N

x(t)ij −∑
j∈N

x(t)ji � 0, ∀i ∈ N t, (D.1d)

0≤ x(p)i ≤π
(p)
i , 0≤ x(t)ij ≤π(t)

ij , ∀i, j ∈N ,

(D.1e)

where N s, N d, and N t denote the set of supply, demand,
and transshipment nodes, respectively, and N denotes the
set of all nodes. Variables x(p) and x(t) denote the produc-
tion level at each supply node and transshipment flow on
each arc, respectively. Parameters π(t) and π(p) represent
the arc capacity and production capacity, respectively.

In addition to the numerical results presented in Section 5.4,
we also compare the objective function values achieved by our
forward solution x̄t (recall that x � [x(p);x(t)] and c � [c(p); c(t)])
and those from the given data. We adopt the metrics from the
previous study on online inverse LP (Bärmann et al. 2017); this

study assumes a single noiseless (i.e., optimal) decision at each
time point and shows that both (1=T)∑T

t�1c
true′(x̄t − x̂t) and

(1=T)∑T
t�1c

t′(x̄t − x̂t) converge to zero as T→∞. In our case,
because we consider batches of data at each time, we use the
following modified metrics: (1=T)[∑T

t�1
∑Kt

k�1c
true′(x̄t − x̂k)=Kt]

and (1=T)[∑T
t�1

∑Kt
k�1c

t′(x̄t − x̂k)=Kt]. Note that ct is a cost vec-
tor randomly selected from the inverse set at time t. Figure D.2
shows these metrics achieved by our algorithm with noisy
data sets at each iteration. Both metrics averaged over the data
points also converge; however, neither of them reaches zero
because of the noise in the data.

Table D.1. Food Items and Nutrient Data per Serving

Food type

Lower limit Upper limit1 2 3 4 5 6 7 8 9

Energy, KCAL 91.53 68.94 23.51 65.49 110.88 83.28 80.50 63.20 52.16 1,800.00 2,500.00
Total fat, g 4.95 0.71 1.80 3.48 6.84 4.41 5.80 0.94 0.18 44.00 78.00
Carbohydrate, g 6.89 12.16 0.25 0.00 5.44 4.68 0.56 11.42 13.59 220.00 330.00
Protein, g 4.90 3.68 1.59 7.99 6.80 5.93 6.27 2.40 0.41 56.00 NA
Fiber, g 0.00 0.06 0.00 0.00 0.28 0.29 0.00 1.19 1.81 20.00 30.00
Vitamin C, mg 0.01 1.76 0.00 0.00 0.17 0.16 0.00 0.02 11.19 90.00 2,000.00
Vitamin B6, mg 0.06 0.03 0.01 0.09 0.11 0.06 0.06 0.03 0.10 1.30 100.00
Vitamin B12, mcg 0.67 0.39 0.09 0.65 0.11 0.63 0.56 0.00 0.00 2.40 NA
Calcium, mg 172.09 125.72 46.24 2.21 5.90 15.03 29.00 27.21 6.14 1,000.00 2,500.00
Iron, mg 0.05 0.08 0.04 0.75 0.35 0.35 0.73 0.79 0.13 8.00 45.00
Copper, mg 0.02 0.04 0.01 0.03 0.03 0.03 0.04 0.05 0.06 0.90 10.00
Sodium, mg 61.02 48.24 65.08 72.32 211.05 128.27 223.50 125.62 1.42 1,500.00 2,300.00
Vitamin A, mcg 42.89 22.24 12.78 0.00 1.33 9.53 81.00 0.01 13.04 900.00 3,000.00
Max serving 4 8 4 5 5 5 4 4 8

Figure D.1. Network for the Transshipment Example (Dong
et al. 2018)
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Notes. Nodes 1 and 2 are supply nodes and 4 and 5 are demand no-
des. The capacity of each arc is 1.3, and production capacities are 3
and 1.5 for nodes 1 and 2, respectively. The true production costs are
c(p)1 � 0:2393 and c(p)2 � 0:1496, and the true transshipment costs are
c(t)13 � 0:0935, c(t)14 � 0:1232, c(t)23 � 0:1141, c(t)25 � 0:0320, c(t)34 � 0:1615, and
c(t)35 � 0:0867.
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Birge JR, Hortaçsu A, Pavlin JM (2017) Inverse optimization for the
recovery of market structure from market outcomes: An appli-
cation to the MISO electricity market. Oper. Res. 65(4):837–855.

Boutilier JJ, Lee T, Craig T, Sharpe MB, Chan TC (2015) Models for
predicting objective function weights in prostate cancer IMRT.
Medical Phys. 42(4):1586–1595.

Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by re-
weighted ℓ1 minimization. J. Fourier Anal. Appl. 14(5–6):877–905.

Chan TC, Lee T (2018) Trade-off preservation in inverse multi-
objective convex optimization. Eur. J. Oper. Res. 270(1):25–39.

Chan TC, Lee T, Terekhov D (2019) Inverse optimization: Closed-
form solutions, geometry and goodness of fit. Management Sci.
65(3):680–695.

Chan TC, Craig T, Lee T, Sharpe MB (2014) Generalized inverse
multiobjective optimization with application to cancer therapy.
Oper. Res. 62(3):680–695.

Darmon N, Ferguson EL, Briend A (2006) Impact of a cost constraint
on nutritionally adequate food choices for French women: An
analysis by linear programming. J. Nutrition Ed. Behav. 38(2):82–90.

Dawande M, Keskinocak P, Swaminathan JM, Tayur S (2001) On bi-
partite and multipartite clique problems. J. Algorithms 41(2):
388–403.

Dong C, Chen Y, Zeng B (2018) Generalized inverse optimization
through online learning. Proc. 32nd Conf. Neural Inform. Process-
ing Systems, 86–95.

Erkin Z, Bailey MD, Maillart LM, Schaefer AJ, Roberts MS (2010)
Eliciting patients’ revealed preferences: An inverse Markov de-
cision process approach. Decision Anal. 7(4):358–365.

Esfahani PM, Shafieezadeh-Abadeh S, Hanasusanto GA, Kuhn D
(2018) Data-driven inverse optimization with imperfect infor-
mation. Math. Programming 167(1):191–234.

Ghate A (2015) Inverse optimization in countably infinite linear pro-
grams. Oper. Res. Lett. 43(3):231–235.

Ghobadi K, Lee T, Mahmoudzadeh H, Terekhov D (2018) Robust in-
verse optimization. Oper. Res. Lett. 46(3):339–344.

Gurobi Optimization LLC (2020) Gurobi optimizer reference manu-
al. Accessed April 13, 2021, http://www.gurobi.com.

Heuberger C (2004) Inverse combinatorial optimization: A survey on
problems, methods, and results. J. Combin. Optim. 8(3):329–361.

Hubert M, Rousseeuw PJ, Van Aelst S (2008) High-breakdown ro-
bust multivariate methods. Statist. Sci. 23(1):92–119.

Iyengar G, Kang W (2005) Inverse conic programming with applica-
tions. Oper. Res. Lett. 33(3):319–330.

Keshavarz A,Wang Y, Boyd S (2011) Imputing a convex objective func-
tion. 2011 IEEE Internat. Sympos. Intelligent Control (IEEE), 613–619.

Koenker R, Hallock KF (2001) Quantile regression. J. Econom. Per-
spect. 15(4):143–156.

Lamperski JB, Schaefer AJ (2015) A polyhedral characterization of
the inverse-feasible region of a mixed-integer program. Oper.
Res. Lett. 43(6):575–578.

Lee T, Hammad M, Chan TC, Craig T, Sharpe MB (2013) Predicting
objective function weights from patient anatomy in prostate
IMRT treatment planning. Medical Phys. 40(12):121706.

Mangasarian O (1979) Uniqueness of solution in linear program-
ming. Linear Algebra Appl. 25(1):151–162.

Naghavi M, Foroughi AA, Zarepisheh M (2019) Inverse optimiza-
tion for multi-objective linear programming. Optim. Lett. 13(2):
281–294.

Figure D.2. (Color online) Convergence of Average Cumulative Objective Function Errors

0 100 200 300 400 500 600 700 800
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Per trial
Average

0 100 200 300 400 500 600 700 800
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Per trial
Average

(a) (b)

Notes. (a) Average cumulative error under ctrue. (b) Average cumulative error under ct ∈ Ct.

Shahmoradi and Lee: Quantile Inverse Optimization
Operations Research, 2022, vol. 70, no. 4, pp. 2538–2562, © 2021 INFORMS 2561

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

36
.1

42
.1

59
.2

1]
 o

n 
22

 A
ug

us
t 2

02
2,

 a
t 0

8:
55

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

http://www.gurobi.com


Perignon M, Masset G, Ferrari G, Barré T, Vieux F, Maillot M, Amiot
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