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Abstract
Molecular simulations generally require fermionic encoding in which fermion statistics are
encoded into the qubit representation of the wave function. Recent calculations suggest that
fermionic encoding of the wave function can be bypassed, leading to more efficient quantum
computations. Here we show that the two-electron reduced density matrix (2-RDM) can be
expressed as a unique functional of the unencoded N-qubit-particle wave function without
approximation, and hence, the energy can be expressed as a functional of the 2-RDM without
fermionic encoding of the wave function. In contrast to current hardware-efficient methods, the
derived functional has a unique, one-to-one (and onto) mapping between the qubit-particle wave
functions and 2-RDMs, which avoids the over-parametrization that can lead to optimization
difficulties such as barren plateaus. An application to computing the ground-state energy and
2-RDM of H4 is presented.

Introduction: Quantum computers have the potential to revolutionize the computational sciences
through an exponential advantage in certain classes of computations over their classical counterparts [1–3].
One of the most promising areas of application is the molecular sciences, especially molecular simulations
of strongly correlated matter in which the electronic energies and properties of strongly correlated
molecules are determined [4–17]. A molecule or material is strongly correlated when a substantial number
of orbitals are statistically dependent or in other words entangled [18]. While the complexity of strongly
correlated electronic calculations grows exponentially with the number of electrons on classical computers
in the most difficult cases, the same calculations can in principle be performed without exponential cost on
quantum computers. Many-electron computations on quantum computers generally encode the particle
statistics of electrons which are fermions into quantum bits or qubits in a process known as fermionic
encoding [16, 19]. While such encoding increases the complexity of the calculations, recent calculations
suggest that fermionic encoding of the wave function can be bypassed for potentially more efficient
quantum computations [20–24].

In this paper we examine molecular simulations without fermionic encoding of the wave function
within the framework of reduced density matrix theory [25–30]. Because electrons are indistinguishable
with pairwise interactions, the energy can be expressed as a functional of the two-electron reduced density
matrix (2-RDM) [31–41]. In contrast to the classical theory, the quantum version of the variational 2-RDM
theory measures the 2-RDM directly from the N-electron wave function with potentially non-exponential
scaling in N. It generally requires fermionic encoding for both the wave function and the 2-RDM [42–44]
but not the Hamiltonian as in the conventional formulation of the variational quantum eigenvalue solver
[43, 45–52]. Here we show that the 2-RDM can be expressed as a unique functional of the unencoded
N-qubit-particle wave function. Significantly, the mapping preserves the entanglement complexity of the
wave functions, and hence, the preparation of either wave function type should have similar classical
computational complexity, leading to potentially greater efficiency for the unencoded wave functions on a
quantum computer. To demonstrate the uniqueness of the functional, we prove that there exists an
isomorphic mapping between the sets of N-fermion wave functions and N-qubit-particle wave functions.
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Contrasts are made with current hardware-efficient methods [49, 50, 53, 54] as well as recent qubit-particle
calculations [20–24]. We also present an application of the theory to computing the ground-state energy
and 2-RDM of H4.

Theory: Each spin orbital in the calculation is represented by a qubit with the |1〉 and |0〉 states
indicating that the orbitals are occupied and unoccupied, respectively [12, 17]. An N-electron calculation
with r spin orbitals will have r qubits with N excited qubits in each configuration. The N excited qubits can
be considered N paraparticles [55–58], particles with paranormal statistics in contrast to the normal
statistics of fermions or bosons. For the N qubit paraparticles to represent fermions, the occupation of each
orbital, however, must be complemented by information about the requisite anti-symmetry of the fermions,
a process known as fermionic encoding of the qubits [16, 19].

In the variational 2-RDM calculation of the energy on a quantum computer, the wave function is
prepared and its 2-RDM is measured at non-exponential cost [42–44]. Both the preparation and
measurement phases typically use fermionic encoding of the wave function. Once the 2-RDM is
determined, that energy can be computed on the classical computer from the equation [31–41]

E = Tr (2K 2D ) , (1)

where 2K is the reduced Hamiltonian matrix, representing the reduced Hamiltonian operator

2
K̂ =

N

2

(
ĥ(1) + ĥ(2)

)
+

N(N − 1)

2
û(12) (2)

in which ĥ(1) denotes the kinetic and nuclear-attraction energies of electron 1 and û(12) denotes the
electron-electron repulsion, and 2D is the 2-RDM. Additional details can be found in references
[35, 38–41]. On an ideal quantum computer with zero noise and unlimited statistical sampling, the 2-RDM
will be pure-state N-representable, meaning that it derives from at least one pure-state density matrix
[59–64]. Because current quantum computers have several sources of noise, however, the measured 2-RDM
may require corrections in the form of error mitigation which can include the use of pure-state and
ensemble N-representability conditions [25–30].

Here we show that the non-degenerate ground-state fermionic 2-RDM can be written as a unique
functional of the N-qubit-particle wave function. To establish uniqueness, that the functional is bijective
(one-to-one and onto), we prove that there is an isomorphic mapping between the sets of fermionic wave
functions and qubit-particle wave functions. Importantly, the mapping is not only isomorphic (bijective
while preserving the structure of the vector space) but also particle-number conserving. Consider the wave
function for N fermions in r orbitals

ψF(1, 2, . . . , N) =
∑

j1<...<jN

cF
j1j2...jN

BF
j1j2 ...jN

, (3)

where cF
j1j2...j3

are expansion coefficients, BF
j1 j2...jN

are the N-fermion basis functions

BF
j1 j2...jN

=
√

N!φj1 (1) ∧ φj2 (2) ∧ . . . ∧ φjN (N), (4)

φj is the jth orbital, roman numbers denote the spatial and spin coordinates of the particles, and the ∧
indicates the Grassmann wedge product [65, 66]. The wedge product, which is rigorously defined in
appendix A of reference [66], antisymmetrizes the product of orbitals with respect to the particle numbers,
by adding (subtracting) the even (odd) permutations of the N particles and dividing by the square root of
the total number of permutations N!. The indices in the sums are restricted to range from lowest to highest,
that is j1 < j2 < . . . < jN. The indices cannot be equal; otherwise, the wedge product vanishes in accord
with the Pauli exclusion principle [67] in which the orbital occupations are constrained to lie between zero
and one.

Second, consider the wave function for N qubit particles in r qubits. The qubit particles can be
understood as paraparticles because they obey neither fermionic nor bosonic statistics. Like fermions they
are restricted to no more than one particle per site, but like bosons they are symmetric in the exchange of
two particles

ψQ(1, 2, . . . , N) =
∑

j1<...<jN

cQ
j1j2 ...jN

BQ
j1 j2...jN

, (5)

where BQ
j1j2...jN

are the N-qubit-particle basis functions

BQ
j1j2 ...jN

=
√

N!φj1 (1) ∨ φj2 (2) ∨ . . . ∨ φjN (N). (6)
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The qubit wave function ψQ(1, 2, . . . , N) is identical to the fermionic wave function ψF(1, 2, . . . , N) except
for the replacement of the antisymmetric (Grassmann) wedge products ∧ with the symmetric wedge
products ∨ [65, 66]. The symmetric wedge products symmetrize the product of orbitals with respect to the
particle numbers by adding all permutations of the N particles and dividing the terms in the sum by N!.

Importantly, because the number of qubit particles is restricted by the qubit statistics to one per orbital
like fermions, the expansion coefficients of both ψQ(1, 2, . . . , N) and ψF(1, 2, . . . , N)—cQ

j1j2...jN
and

cF
j1j2 ...jN

—span exactly the same vector space of complex numbers of dimension r choose N. Therefore, there
is an isomorphic mapping between the Hilbert space of N-fermion wave functions and the Hilbert space of
N-qubit-particle wave functions. Moreover, because of the folded indices (j1 < j2 < . . . < jN), the
expansion coefficients, cQ

j1j2...jN
and cF

j1j2...jN
, are also independent of the particle statistics and hence,

interchangeable. It follows that we can select the coefficients cF
j1j2 ...jN

from the set of possible qubit-particle

coefficients {cQ
j1j2...jN

} without any approximation. Therefore, the wave function of N fermion can be written
as a functional of the wave function of N qubit particles

ψF[ψQ](1, 2, . . . , N) =
∑

j1<...<jN

cQ
j1j2...jN

BF
j1j2 ...jN

(7)

which is identical to the fermion wave function in equation (3) except for the replacement of the fermion
coefficients cF

j1j2...jN
by the qubit coefficients cQ

j1j2 ...jN
. The antisymmetrized basis functions BF

j1j2...jN
cause the

qubit coefficients cQ
j1j2...jN

to be interpreted as fermions. Integration of the density matrix associated with the
ψF[ψQ](1, 2, .., N) over the coordinates of all fermions except 1 and 2 yields the fermionic
N-representable 2-RDM

2D[ψQ]12
1̄2̄ =

∫
ψF[ψQ](1 . . .N)ψ∗

F[ψQ](1̄ . . .N)d3..dN (8)

as a functional of the N-qubit-particle wave function. It is known by Rosina’s theorem [66] that the
N-electron wave function of a non-degenerate N-electron ground state is a bijective functional of the
N-representable 2-RDM. Therefore, for a non-degenerate N-electron ground state the functional
connecting the N-representable 2-RDM and the N-qubit-particle wave function is also bijective.

The above argument establishes the result, but practical application on a quantum computer requires us
to develop the result in second quantization. In first quantization the symmetry of the particles—bosons,
fermions, or paraparticles—is contained in the wave function, but in second quantization the symmetry of
the particles is contained in the second-quantized operators and the anti-commutation (or commutation)
relations that govern them [68]. Hence, the state of the wave function in second quantization is agnostic to
the particle statistics

|ψ〉 =
∑

j1<j2<...<jN

cj1j2 ...jN |φj1φj2 . . . φjN 〉, (9)

where the cj1j2 ...jN are the same expansion coefficients as in first quantization while each of the N-particle
basis functions |φj1φj2 . . . φjN 〉 denotes an ordered product of orbitals that is independent of the particle
statistics. For convenience, we introduce fermion and qubit-particle labeled wave functions to indicate how
the wave functions are prepared. The fermionic wave function

|ψF〉 =
∑

j1<j2<...<jN

cF
j1 j2...jN

|φj1φj2 . . . φjN 〉 (10)

is prepared with fermion second-quantized operators and the qubit-particle wave function

|ψQ〉 =
∑

j1<j2<...<jN

cQ
j1j2 ...jN

|φj1φj2 . . . φjN 〉 (11)

is prepared with qubit second-quantized operators. Importantly, because in second quantization the particle
statistics are not contained in the wave function, the two wave functions |ψF〉 and |ψQ〉 in equations (10)
and (11) are mathematically equivalent to each other as well as the wave function |ψ〉 in equation (9);
however, the labels F and Q are important because they indicate the particle statistics with which these
states are prepared on the quantum computer where these preparations are inequivalent in terms of gate
sequence and computational complexity.

Typically, on a quantum computer the 2-RDM is computed from a wave function prepared with
fermion second-quantized operators [44]

2Dpq
st = 〈ψF|â†pâ†qât âs|ψF〉, (12)

3
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where â†p and âp are the creation and annihilation operators for a fermion in orbital p. However, because the

coefficients in the fermion and qubit-particle wave functions—cQ
j1j2...jN

and cF
j1j2 ...jN

—span the same vector
space of complex numbers of dimension r choose N and are identical to their definitions in first
quantization, we can uncouple the particle statistics of the preparation from the measurement and express
the fermionic 2-RDM in terms of the qubit-particle wave function ψQ(1, 2, .., N) without any
approximation

2Dpq
st = 〈ψQ|â†pâ†qât âs|ψQ〉. (13)

The second-quantized operators with their fermionic anti-commutation relations cause the qubit wave
function |ψQ〉 and its coefficients cQ

j1 j2...jN
to be interpreted as fermionic in generation of the 2-RDM. As in

first quantization, we have demonstrated that the fermionic pure-state N-representable 2-RDM is
expressible as a unique functional of the N-qubit-particle wave function. Again by Rosina’s theorem [66]
the functional is bijective for non-degenerate ground states. Both the first and second-quantized results are
immediately generalizable to show that the fermionic pure-state N-representable p-RDM is expressible as a
unique functional of the N-qubit-particle wave function for any p � N.

To implement the measurement of the 2-RDM elements in equation (13) on a quantum computer, we
express the fermionic operators in terms of qubit-particle operators through a Klein transformation
[69–71] known as the Jordan–Wigner transformation [19]

â†p = σ̂†
pχ̂

†
p (14)

âp = χ̂pσ̂p (15)

to obtain
2Dpq

st = 〈ψQ|σ̂†
pχ̂

†
pσ̂

†
qχ̂

†
qχ̂tσ̂tχ̂sσ̂s|ψQ〉, (16)

where the σ̂†
p and σ̂p are the creation and annihilation operators for a qubit particle in orbital p and the

unitary Klein operator is

χ̂p = eiπ
∑p−1

q=1 σ̂
†
qσ̂q . (17)

The operator χ̂p introduces the necessary phase changes to convert the commutation relations of qubits into
the anti-commutation relations of fermions [69–71]. The use of a Klein transformation to make qubit
second-quantized operators represent fermion second-quantized operators is known as fermionic encoding
of the qubits. By decoupling of the particle statistics of the preparation from the measurement, we can
prepare the wave function with qubit-particle operators and measure the 2-RDM with fermionic-encoding
qubit operators. Hence, we can replace the computationally more expensive fermionic encoding of the wave
function with the fermionic encoding of just the 2-RDM. Use of the encoding 2-RDM in equation (1) to
compute the energy as in the variational 2-RDM method [31–41] is similar to the encoding of the
Hamiltonian in the hardware-efficient methods [49, 50, 53]. However, unlike the hardware-efficient
methods where the implicit 2-RDM may not be N-representable due to a lack of particle-number
conservation, the N-qubit-particle wave function formally generates an N-representable 2-RDM.

The results of this section, while discussed in detail for the Jordan Wigner transformation, are also true
for other fermionic encodings such as the parity or Bravyi–Kitaev encodings [16, 72]. Other encodings
merely store the occupation numbers of the orbitals in a different fashion that requires a different
translation of the fermion and qubit-particle second-quantized operators into qubit operators. By changing
(i) the qubit storage of the orbital occupations and (ii) the qubit translation of the fermion and
qubit-particle second-quantized operators, according to the desired encoding, we can directly extend our
results to the parity, Bravyi–Kitaev, or another encoding. In each case the strictly fermionic
N-representable 2-RDM can be measured without preparing a fermionic wave function.

Results: The mean-field wave functions can be readily prepared by applying N-qubit-particle creation
operators to excite the qubits corresponding to the N energetically lowest orbitals [73]. Correlated
qubit-particle wave functions can be generated by applying two-or-more-qubit-particle unitary
transformations to the mean-field reference wave function by an adiabatic construction [74], an
imaginary-time evolution [48, 75], or a variational quantum eigensolver (VQE) [43, 45–52]. Based on the
present result, in a VQE the p-body anti-Hermitian fermionic operators in the unitary coupled cluster
(UCC) ansatz can be replaced by p-body anti-Hermitian qubit-particle excitation operators without
fermionic encoding. This replacement is computationally significant because fermionic encoding causes a
p-body operator to become an r-body operator whose exponentiation yields an O(r) number of two-qubit
CNOT gates where r is the rank of the orbital basis set such that r � p (in contrast, exponentiation of the
p-qubit-body operator generates a circuit of CNOT gates that scales independently of system size O(1)).

4
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Figure 1. The accuracy and computational cost of using fermionic and qubit-particle wave functions are compared. The
log-base-10 error in the ground-state energy of H4 reveals nearly identical convergence for both types of wave functions.
Moreover, the cumulative number of CNOT gates increases more slowly for the qubit-particle wave function. The unfilled (open)
symbols correspond to energy errors on the left axis, and the filled (solid) symbols correspond to the number of CNOT gates on
the right axis.

Recent results by Xia and Kais [20] and Ryabinkin et al [23, 24] show that accurate results can be obtained
from a qubit-particle UCC ansatz at a reduced computational cost.

Two general classes of fermionic unitary transformations include: (i) the UCC ansatz [76–78] and (ii)
the anti-Hermitian contracted Schrödinger equation (ACSE) ansatz [44, 66, 79–81]. While the degree of
excitations must equal N to become exact in the UCC ansatz, in the ACSE ansatz the wave function is
expressed as a product of general two-body unitary transformations (see reference [79] for details):

|ψ〉 = eÂn . . . eÂ2 eÂ1 |ψ0〉, (18)

where Âk are fermionic two-body anti-Hermitian operators and |ψ0〉 is the Hartree–Fock reference wave
function. It has been shown that the product of general two-body unitary transformations is an exact ansatz
for the N-electron wave function [82–84]. As in the UCC ansatz, the exponentiation of general two-body
anti-Hermitian fermionic operators in the ACSE ansatz [44] can be replaced by the exponentiation of
general two-body anti-Hermitian qubit-particle operators with potentially significant computational
savings. Qubit excitations have recently been implemented in an ACSE-related theory, known as
ADAPT-VQE, on a quantum simulator for small molecules [21] with similar accuracy as the fermionic
methods.

Here we compute the ground-state energy and 2-RDM of H4 by a quantum solution of the
ACSE presented in reference [44]. The quantum solution of the ACSE is a contracted quantum eigensolver
(CQE). In contrast to VQE, a CQE minimizes the residual of a contraction (projection) of the Schrödinger
equation to solve for the energy and 2-RDM of a ground or excited state. The residual of the ACSE allows us
to define the two-body anti-Hermitian operators in the wave function preparation in equation (18)
iteratively without a complicated gradient calculation. Additional details are given in reference [85]. The
geometry of H4 is taken to be a linear chain with equally spaced bonds of 0.88821 Å. We use a minimal
Slater-type orbital with three Gaussian functions [86]. The simulation is performed without stochastic
error. Each iteration of the ACSE applies a two-body unitary transformation based on the residual of the
ACSE. In figure 1 we compare the accuracy and computational cost of using fermionic and qubit-particle
wave functions where the fermionic wave functions are prepared from fermionic two-body anti-Hermitian
operators while the qubit-particle wave functions are prepared from qubit-particle two-body
anti-Hermitian operators. The log-base-10 error in the ground-state energy of H4, relative to the energy
from full configuration interaction, reveals nearly identical convergence—decreases in energy with iteration
number—of the fermionic and qubit-particle wave functions. We also show in figure 1 that the cumulative
number of CNOT gates increases more slowly for the qubit-particle wave function than the fermionic wave
function. The lower qubit-particle CNOT count results from the omission of the exponentiated Klein
operators. Further details and examples will be presented elsewhere.

Discussion and Conclusions: While a 2-RDM can always be parameterized by its wave function to be
N-representable, the N-representability conditions are typically formulated in terms of the 2-RDM to avoid
the exponential computational scaling of the N-electron wave function [25–30]. With a quantum computer,

5
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however, the N-fermion wave function can be prepared and the 2-RDM measured at non-exponential cost,
and hence, the 2-RDM can be kept N-representable by its measurement from its fermionic wave function.
Here we have shown that the set of fermionic 2-RDMs can be expressed as a unique functional of the
N-qubit-particle wave function and hence, the requirement that the prepared wave function be fermionic
can be relaxed. The functional shows that the fermionic encoding of the wave function is not necessary for
generating a strictly N-representable 2-RDM as long as the encoding is employed in the measurement of the
2-RDM. Previous work has recognized the N-representability conditions as an important resource for the
mitigation of noise-related errors [42, 85, 87, 88]. In particular, the measured 2-RDM can be corrected for
errors due to noise by a process known as purification in which the 2-RDM is adjusted to satisfy known
necessary N-representability conditions [85, 89]. The purification is typically performed by finding the
N-representable 2-RDM that is nearest to the measured 2-RDM (by Euclidean distance) [85, 88] through a
special type of optimization known as semidefinite programming [35, 90]. The present result emphasizes
that the N-representability of the 2-RDM has a central role in quantum computing.

Variational algorithms for molecular simulation on quantum computers prepare the wave function and
measure the fermionic 2-RDM. With knowledge of the 2-RDM the energy can be inexpensively computed
on the classical computer by equation (1). Both the wave function preparation and the 2-RDM
measurement typically use fermionic encoding of the qubits in which the qubit-particle operators are
transformed to restore fermionic statistics [16, 19]. Here we have shown that there is an isomorphic
mapping between N-fermion and N-qubit-particle wave functions, allowing us to express the 2-RDM as a
functional of the N-qubit-particle wave function with the functional being unique (bijective) for a
non-degenerate ground state. Because the mapping preserves the entanglement complexity of the wave
functions, both wave function types should have a similar classical complexity with the qubit-particle wave
functions being potentially more efficient on qubit-based quantum computers. In contrast, the
hardware-efficient algorithms [49, 50, 53] have a many-to-one mapping between the generic qubit wave
functions and an implicit 2-RDM with the generic qubit wave functions displaying fermionic, bosonic, and
mixed-particle statistics. Such a many-to-one mapping as well as a lack of particle-number conservation can
lead to observed optimization difficulties due to over-parametrization such as barren plateaus [54]. The
theory also provides an explanation for the promising results recently obtained by Xia and Kais [20],
Yordanov et al [21], Tang et al [22], and Ryabinkin et al [23, 24] on quantum simulators from the use of
qubit-excitation wave functions. While additional research is needed to assess the full potential of
qubit-particle wave functions, the recent and present results indicate that they represent a promising
direction for more efficient molecular quantum simulations.
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