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Highlights
• Recent studies highlight the complexity of cellular responses to iron deficiency
• Simulation based inference (SBI) is a mathematical approach that can facilitate our 
understanding of stress responses by formally integrating prior knowledge and new 
observations, whether they be qualitative or quantitative.
• Collaborative application of SBI to biological phenomena requires effective communication, 

which is the cornerstone of inclusion in science and beyond
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Abstract
To ensure optimal utilization and bioavailability, iron uptake, transport, subcellular localization, 
and assimilation are tightly regulated in plants. Herein, we examine recent advances in our 
understanding of cellular responses to Fe deficiency. We then use intracellular mechanisms of 
Fe homeostasis to discuss how formalizing cell biology knowledge via a mathematical model 
can advance discovery even when quantitative data is limited. Using simulation based inference 
to identify plausible systems mechanisms that conform to known emergent phenotypes can 
yield novel, testable hypotheses to guide targeted experiments. However, this approach relies 
on accurate encoding of domain-expert knowledge in exploratory mathematical models. We 
argue that this would be facilitated by fostering more "systems thinking” life scientists, and that 
diversifying your research team may be a practical path to achieve that goal.

Introduction

Existing in multiple oxidation states and a wide redox potential range, iron (Fe) can readily 
donate and accept electrons, making it an excellent cofactor for primary metabolic processes 
including DNA synthesis and repair, respiration, and photosynthesis. In excess, Fe can react 
with oxygen, causing the formation of damaging reactive oxygen species.[1] However, 
deficiency in Fe availability, sensing, and response inhibit growth and development. Decreased 
Fe availability is perceived initially in the shoot and signaled to the root, inducing epigenetic 
regulation, and massive signaling, transcriptional, metabolic changes that lead to dynamic 
changes in Fe uptake and transport mechanisms within the root epidermis[2-6]. Herein, we 
discuss recent advances that shed light on these changes, and the ongoing challenges 
associated with making sense of these dynamic, multiscale physiological phenomena. We then 
address how a subset of relevant regulatory phenomena can be viewed through the lens of a 
formal modeling framework. This approach allows for leveraging of the powerful mathematical 
approach of simulation-based inference, which can be used to formally test and refine 
mechanistic hypotheses by integrating heterogeneous data. As this approach requires accurate 
encoding of domain-expert knowledge in exploratory mathematical models, we close by 
suggesting that this interdisciplinary work would be facilitated by intentional efforts to cultivate 
"systems thinking” amongst plant cell biologists. Systems thinking cell biologists are life 
scientists with an aptitude for translating biological knowledge into clearly delineated agents, 
organized into well-specified systems, with articulated interactions between parts of the whole. 
We propose that inclusive lab environments can provide opportunities for serendipitous cross- 
disciplinary conversations that foster systems-thinking outside the confines of didactic cross­
training.

I. Recent advances in the cell biology of plant Fe response

Fe deficiency prompts reprogramming of the leaves
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Iron deficiency (-Fe) alters chloroplast and thylakoid structure, resulting in decreased electron 
transport and reduced photosynthetic capacity - one of the most evident, and economically 
relevant, signs of -Fe [7-9]. Recently, Przybyla-Toscano et al. generated a manually curated 
gene atlas of over 1000 Fe-containing proteins in A. thaliana, categorized as Fe-S, Haem, and 
non-FeS/non-haem Fe proteins, which exhibit distinct subcellular localization patterns and 
evolution ages [10]. In response to Fe deficiency these, and other Fe-response proteins, as well 
as Fe itself, can relocalize within cells to facilitate Fe uptake and use efficiency [11,12]. By 
calculating the net CO2 assimilation rate to Fe content in barley, Saito et al. have recently shown 
that Fe is relocalized to the thylakoid membrane in barley leaves to increase Fe use efficiency 
[13]. Fe is a cofactor in all major photosynthetic protein complexes, and chloroplastic Fe 
accounts for 60-80% of Fe in photosynthetically active leaves [14]. Consequently, another -Fe 
response is to decrease photosynthesis and the synthesis of associated proteins while 
increasing photoprotective mechanisms [7] and / or repressing Fe assimilation into Fe-proteins 
[15,16]. One of the key enzymes involved in Fe-assimilation is Sulfur Utilization Factor B 
(SUFB), a critical component of the plastid iron-sulfur (Fe-S) assembly pathway that is down- 
regulated early after Fe deficiency. Using inducible SUFB RNAi lines as a tool to distinguish 
between the impact of -Fe versus the loss of Fe assimilation into critical photosynthesis 
machinery, Kroh and Pilon recently found surprisingly little similarity in transcriptomic response 
of sufb mutants under Fe sufficiency and WT plants under -Fe, despite similar photosynthetic 
response [17]. Decreased accumulation of Fe-S proteins in sulfb mutants suggests that -Fe 
causes a decrease in SUFB, which then coordinates decreased Fe-S clusters with decreased 
photosynthetic transport. Thus, it is the lack of Fe in leaves - not changes in Fe utilization - that 
triggers reprogramming of the leaf transcriptome [17].

Communicating Fe deficiency to and across the root
To trigger Fe uptake, leaves must also communicate the -Fe condition to the root. The phloem 
mobile signal IRON MAN (IMA), a family of Fe-binding peptides that is expressed in the phloem, 
may control this process [18]. However, many questions remain about how the shoot -Fe signal 
is perceived and transduced from the vasculature, through the endodermis and cortex, and into 
the epidermis. One possible mechanism is the activity of iron-responsive mobile transcription 
factors such as (POPEYE) PYE and (IAA-LEUCINE RESISTANT3) ILR3 [19,20]. PYE and 
ILR3 appear to form a heterodimer that negatively regulates -Fe response, which is disrupted by 
(BTS) BTS, a vasculature specific Fe-binding E3 ligase [21]. When ILR3 and PYE are mobilized 
to the epidermis and cortex, ILR3 interacts with close homologs to positively control expression 
of binding partners of the master bHLH regulator FER-like Iron-deficiency-induced Transcription 
factor (FIT) [22,23]. Once -Fe is perceived by the epidermis, FIT is activated to regulate the 
expression of Fe uptake genes such as membrane localized Ferric Reduction Oxidase2 
(FRO2), membrane localized Ferric reductase [24], and IRT1, a broad-spectrum transporter of a 
range of metals including ferrous Fe [25,26]. This process is facilitated by the membrane 
localized proton pump, Arabidopsis plasma membrane H+-ATPase isoform 2 (AHA2), which 
lowers the rhizosphere pH, increasing ferric Fe solubility, and secretion of Fe-mobilizing 
coumarins [27]. Together, FRO2, IRT1 and AHA activity constitute the Strategy 1 response, a 
conserved molecular mechanism in dicots that increases Fe content while resulting in excess 
non-Fe uptake [28]. IRT1, FRO2, and AHA2 actually form a complex in the outer plasma 
membrane of root epidermal cells to facilitate Fe uptake in the absence of Fe and presence of 
excess non-Fe metals [29]. IRT ubiquitination is strongly elevated by the presence of non-Fe 
metals, and IRT1 also appears to be subjected to endocytosis in the absence of Fe and 
presence of non-Fe metals. Phosphorylation of IRT results in the dissociation of the IRT1, FRO2 
and AHA complex, suggesting that this complex generates a region of Fe uptake at the root 
surface that is dissociated when IRT1 is phosphorylated in the presence of excess non-Fe 
metals [26]. Excess non-Fe metals, rather than Fe, control IRT1 by binding to IRT1 at specific
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histidine resides and triggering its phosphorylation by another kinase, CBL-Pnteracting Protein 
kKnase23 (CIPK23). IRT1 phosphorylation then creates a docking site for the E3 ligase IRT1 
Degradation Factor! (IDF1), which facilitates IRT1 ubiquitination. FYVE1, a Fab1, YOTB, Vac1 
and EEA1 (FYVE)-domain containing phosphatidylinositol-3-phosphate-binding protein then 
interacts with IRT1 and Ubiquitin and recruits them to the late endosomes for subsequent 
degradation within the lytic vacuole [25,26,30-32],

A FITting response to marshal the agents of Fe uptake

As a master regulator of Strategy I -Fe response, FIT has been the focus of intense study 
[33,34], When Fe is resupplied to the roots, FIT transcription is turned off, and degradation of 
FIT by BTSLike (BTSL) proteins in the epidermis results in decreased expression of Fe uptake 
genes [35], Consequently, both BTS and BTSL provide tight regulation of Fe uptake across the 
entire root [23], FIT has been recently shown to form a regulatory loop with General Regulatory 
Factor! 1 (GRF!!), a !4-3-3 regulatory protein that is controlled by Non-Response To Fe- 
Deficiency2 (NRF2) through Histone H3 Iysine4 trimethylation [5], FIT also interacts with CBL- 
Interacting Protein Kinase (CIPK!!), a serine-threonine protein kinase that interacts with 
calcineurin B-like (CBLs) calcium-binding proteins. In silico analyses followed by in vitro kinase 
assays indicate that CIPK!! phosphorylates FIT at Ser272. A non-phosphorylatable version of 
FIT shows increased nuclear localization compared to that of phosphomimicking FIT, decreased 
capacity for self-transcriptional regulation, and decreased -Fe response. Thus, FIT 
phosphorylation by CIPK!! facilitates nuclear localization and transcriptional regulatory 
function, likely in response to changes in Ca2+ fluctuations, which, as this study shows, occurs in 
the root vasculature in response to -Fe [36]. While the role of FIT in the vasculature was not
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Figure 1. Recent advances in our understanding of cellular responses to -Fe. A. Ca2+-dependent FIT 
phosphorylation and FIT presence in the nucleus are critical for bHLH39 accumulation in the nucleus. bHLH39 
heterodimerization with FIT is then required for FIT transcriptional activity. B. In the presence of Fe, IRT cycles 
between the endosome and the PM. However, in response to -Fe IRT1, FR02, and AHA2 form a poplar localized 
complex that generates a region of Fe uptake at the root rhizosphere. In the presence of excess non-Fe metals, 
IRT is phosphorylated, ubiquitinated, and endocytosed.
IRT is phosphorylated, ubiquitinated, and endocytosed.
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explored in this study, it will be critical to explore this further as we consider how -Fe signals are 
perpetrated across the various root cell types.

Phosphorylation is not the only phenomenon that impacts FIT activity. FIT activity also requires 
interaction with binding partners, such as basic helix-loop-helix transcription factor, bHLH39 
[37]. While both FIT and bHLH39 are cytosolic and nuclear localized, in WT plants, a recent 
study has shown that, in the absence of FIT, bHLH39 becomes primarily cytosolic [38]. A similar 
mechanism has been observed in rice, in which OsbHLH156, an -Fe responsive FIT ortholog, 
positively regulates -Fe response in rice and interacts with bHLH IB ortholog (IROn-related 
bHLH transcription factor 2) IRO2, which is also a master regulator of Fe response. OsbHLH156 
also requires the presence of IRO2 for nuclear localization [39]. Thus, Fe uptake in plants is 
tightly regulated by a myriad of conserved transcriptional, post-transcriptional, and cellular 
processes that we are only beginning to fully understand (Figure 1).

FITting together the puzzle pieces of Fe homeostasis: a role for formal modeling

Given the need to (i) sense Fe status in the leaves, (ii) mobilize a signal that communicates to 
root, and (iii) stimulate a response that is cell-type specific and cascades from the vasculature to 
the epidermis - in order to release Fe stores, increase Fe uptake and transport Fe to the shoot 
- much work remains in order to achieve a predictive understanding of the emergent 
phenomenon of Fe homeostasis. With dynamic regulatory events happening at the 
transcriptional and post-translational levels, and transcriptional regulators moving from between 
cells of differing phenotype and from shoot to root, multi-scale mathematical models could play 
a critical role in advancing our state of knowledge. These formal testable models can integrate 
in vivo and in vitro data on enzyme kinetics, protein stability and localization, emergent Fe 
response phenotypes, and -omics data to explore the dynamic implications of these findings.

Ideally, relevant modeling approaches should maximally leverage both extant and new data in 
the field - thereby allowing us to assess the limits of our current understanding and to 
progressively update that knowledge. The field of simulation-based inference offers just such a 
possibility. Unlike purely data-driven modeling, simulation-based inference explicitly invokes 
existing knowledge about regulatory mechanisms, along with hypothetical candidate 
mechanisms, to enable an efficient search for models and model parameters that plausibly 
match our biological observations. The first step in applying this approach is to adopt a 
simulatable knowledge representation for our current biological models. In the following section, 
we use the example of FIT/bHLH39 interactions to outline how the pictorial model shown in 
Figure 1 can be translated into a formal model representing the explicit logic of known and 
hypothetical mechanisms of FIT regulation. Expressing our domain expert knowledge in this 
way is the first step to leveraging extensive empirical observations within the complementary 
knowledge-discovery framework of mathematical modeling.

II. Outlining a FIT-for-purpose model

Figure 1 depicts currently understood FIT and bHLH39 interactions in pictorial form. Figure 2 
depicts a formal model of these same biological phenomena, with circles indicating pools of 
proteins of interest and squares indicating the biological events that impact each pool. In 
creating this diagram, we have made explicit the known and hypothesized mechanisms that 
contribute to the emergent phenomenon of bHLH39 nuclear accumulation - along with their 
explicit interdependencies. To begin with, FIT and BHLH39 are transcriptionally regulated in the 
nucleus, with synthesis of the proteins resulting in cytoplasmic accumulation. We chose to 
represent the combination of transcription and translation as a single event (numbers 1 and 2),
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a simplification that we are assuming is appropriate, given that the relevant literature does not 
indicate critical post-transcriptional regulatory phenomena. This kind of simplification is 
frequently made in the early stages of modeling, with the assumption being a candidate for 
rejection if the model fails to be adequately predictive.

FIT is known to be activated by phosphorylation (event 3), and the FITp form of the protein 
translocates into the nucleus (event 4). BHLH39 also translocates into the nucleus (event 5). 
While activated FIT and bHLH39 are known to form a heterodimer, the explicit representation of 
these proteins in both cytoplasmic and nuclear sub-compartments forces us to ask where the 
dimerization occurs. One possibility is that dimerization only occurs in the nucleus, where the 
proteins are known to co-regulate other Fe-deficiency response proteins. We produce a 
candidate regulatory model by incorporating that possibility in our diagram as event 6. As we 
have posited this event without direct empirical evidence, we must be conscious of it as an 
assumption that requires validation. FITp is known to augment its own transcription, modifying 
the likelihood of event 1. All proteins have their respective turnover events, preventing 
unrealistic unbounded accumulation of any one species.

bHLH39

CYTOSOL
NUCLEUS ]LR3:bHLH 

jGroup IV

FIT:bHLH39

Candidate model for FIT regulation of bHLH39 
nuclear accumulation
1 - FIT basal expression, augmented by self-activation (empirical; 
Lingam et al., 2011)
2- bHLH39 expression, activated by ILR3:bHLH dimers (empirical; 
Tissot et al., 2019)
3- FIT activation (empirical; Sivitz et al., 2011)
4 - FITp nuclear translocation (empirical; Gatz et al 2019)
5 - bFILH39 nuclear translocation (empirical; Trofimov et al., 2019)
6- FIT and bHLH39 interact (empirical; Yuan et al., 2008), 
heterodimerization occurs in the nucleus (assumption/hypothesis; 
Trofimov et al,, 2019)
7- bHLH nuclear export (assumption/hypothesis)

(^jspecies event ■ turnover
hypothetical
event

♦ event modifier

Figure 2. Model of biological phenomena associated with FIT/bHLH39 interaction

Finally, event 7 represents nuclear export of bHLH39. Trofimov et al. observed augmented 
accumulation of bHLH39 in the presence of active FIT. The authors offer a few possible 
mechanisms to explain this phenomenon, including the possibility that heterodimerization 
prevents nuclear export of bHLH39 [38]. We depict this possibility by allowing for export of the 
bHLH39 monomer. Thus, events 6 and 7, heterodimerization and nuclear export, compete for 
the available pool of nuclear bHLH39. Accumulation of FITp in the nucleus could shift that 
balance in favor of dimerization and, consequently, augment the nuclear retention of bHLH39. 
That will only happen if the overall system dynamics result in sufficient FITp accumulation. If this 
model fails to be predictive, one could consider alternative mechanisms such as dimerization 
being required prior to nuclear transport. Determining whether the model is predictive requires 
data and a suitable mathematical framework for estimating model parameters and evaluating 
model plausibility. While one might wish to leverage the sophisticated tools of modern 
biotechnology to directly observe the specific events captured in the model, it is important to 
recognize that we may be able to perform initial model selection just by combining candidate 
formal models with a clearly articulated set of expected emergent behaviors of the system. The 
set of computational approaches known as simulation-based inference (SBI) make this possible.
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Simulation based inference can guide you to the best FIT

SBI has been exploited in multiple biological fields. For example, in the last 2 years, the field of 
ecology and evolutionary biology has produced >40 publications leveraging these approaches 
[40-43]. While examples exist, [44-49] uptake in cell biology and related fields is comparatively 
limited. One challenge is that SBI is an evolving field in its own right - rarely providing an off- 
the-shelf solution for modeling needs [50-56]. For this reason, a technical description of SBI is 
beyond the scope of this review. We wish instead to highlight key features of the approach that 
can be leveraged to achieve model selection, model parameterization, and iterative integration 
of new data as part of a model-driven research strategy. SBI methods allow one to perform a 
search for models and parameters that are consistent with both prior knowledge and empirical 
data. This is achieved through a framework in which a candidate model is simulated (i.e., 
translating the formal model in Figure 2 into a system of differential equations, a stochastic rule- 
based model, or other appropriate mathematical formalism), and the resulting predictions are 
evaluated against empirical observations to determine their validity. Scored predictions inform 
an approximated likelihood of the observations, given the model. As scoring can encompass 
multiple objectives (quantitative data or qualitative constraints), this makes it possible to invoke 
heterogeneous data types in model evaluation. The commonly employed SBI approach of 
approximate Bayesian computation uses this framework in a cycle of sampling, simulating, 
evaluating, and updating to refine - or signal the need to reject - a candidate model 
[45,46,48,53]. More recent SBI implementations leverage developments in the field of machine 
learning to reduce performance trade-offs between efficiency and accuracy and adopt improved 
sampling strategies via active learning [50,51,54,55].

Applying SBI to a biological problem where data is limited or qualitative means making a mental 
shift from asking whether you can create the right model for the biological problem in question 
and toward asking whether you can computationally pre-screen candidate mechanisms for 
plausibility and then identify model predictions that would most readily discriminate between 
multiple plausible mechanisms. This computational pre-screening can point to non-heuristic, 
testable mechanistic hypotheses to guide a targeted experimental strategy. It can also provide a 
framework for iteratively incorporating new observations into model design and evaluation. All 
one needs to get started is a candidate model, sampled parameter values, and a solver to run 
the simulation. The diagram in Figure 2 is an ideal starting point for a modeling effort, as each 
square represents a single kinetic event that should be translated into a mathematical rate 
expression. Each arrow entering a square makes explicit that the rate expression should 
depend quantitatively on the abundance of the species serving as input. The diagram formally 
connects the biological possibilities to the elements of the mathematical formulation and visually 
connects the knowledge of the biologist to the language of a mathematical modeler.

For the next generation of scientists, the growing wealth of cross-training educational 
opportunities will continue to create individuals equipped to bridge the “modeler” and "biologist” 
perspectives with native facility. However, when each contributing discipline entails its own deep 
innovative discovery, we limit advances in the field if we expect these hybrid modes of discovery 
to be solely the domain of didactally cross-trained scientists. On the other hand, with human, 
financial, and time resources in the typical lab already stretched thin, it can be challenging for 
experimental scientists to identify a practical path to leveraging computational approaches in 
biological discovery. Likewise, to ensure their models adequately reflect current and emerging 
knowledge in the field, the computational scientist who has a desire to explore the wondrous 
complexity of biological systems faces the challenge of learning the fundamentals of each new 
biological problem they encounter. For a plant cell biologist, embarking on this kind of
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interdisciplinary journey, we would like to suggest that you can lay the groundwork for relevant 
collaborations by fostering “systems thinking” within your lab, and that diversifying your research 
team may be a practical path to achieving that goal.

III. Rethink who’s sitting at the bench: diversity can bring the FIT required to advance
systems-thinking in plant cell biology
Systems thinking cell biologists are life scientists with an aptitude for translating biological 
knowledge into clearly delineated agents, organized into well-specified systems, with articulated 
interactions between parts of the whole. Systems thinking also entails careful communication of 
whether agents and their interactions were drawn from empirical observations, domain 
expertise, assumptions, or the spectrum of biological possibilities presented by considering 
multiple model organisms. Creating the formal model in Figure 2 was a collaborative effort 
between the plant biologist, computational scientist, and cross-training postdoctoral scholar who 
have together authored this piece. A typical conversation within this team involves careful 
consideration of the nature and origin of the biological knowledge. The biologist may assert that 
one protein activates the other. In drafting the formal model, the computational scientist 
wonders what, precisely, does this mean? Do the proteins interact directly? Is this conclusion 
based on in vitro or in vivo data (impacting boundary conditions, initial conditions, or relevant 
mechanisms)? Was the interaction observed directly or inferred as an interpretation of a 
particular assay? Are the proteins expressed in the same cellular compartment or is trafficking 
required? Or is one protein required for transcription of another? Depending on the level of 
abstraction chosen, each of these mechanisms could map to a distinct model. Thus, the 
translation from biological observations to an appropriate formal model requires that a biologist 
and modeler engage in a conversation that addresses not just what they know but also how 
they know it and what the alternative interpretations could be. All parties involved must be 
conscious of communicating across cultures - in this case, bridging disciplinary and 
epistemological diversity [57].

While cross-training in relevant disciplines is a way to master both sides of such a conversation, 
we offer the suggestion that diversifying your research team may be a practical path to 
cultivating systems-thinking team members. These individuals would be primed to launch 
effective collaborations with similarly motivated computational colleagues. What is needed is not 
specific mathematical or computational skills, but rather individuals skilled in a particular type of 
communication. Indeed, systems-thinking can be viewed as a communication tool - one that is 
critical to discovery in settings of dynamic complexity and challenging interdependencies. 
Engaging with scholars outside your typical network is one way to stress-test your “systems” 
story-telling and engage with scholars who employ systems frameworks across multiple fields.

A scientist who only works with people who think, act, and look like themselves may encounter 
or create new ideas less frequently than someone who operates in a diverse context [58-65].
Nor would they encounter the challenge of explaining their own ideas to someone with a 
different set of conceptual priors. A new member of your research group does not simply 
increment your headcount by one. Bringing them in adds a constellation of first-degree contacts 
to the group (Figure 3), and it gives group members a chance to practice communicating their 
science with an outsider. If all members of a research group have similar disciplinary identity 
and personal backgrounds, they are likely to have a considerable overlap in the sets of 
individuals with whom they are acquainted, discussing science, and establishing collaborations. 
If new group members bring with them a breadth of personal and professional identities, then 
the research group’s set of leverageable connections quickly grows, and its shared skill at 
communicating across boundaries of knowledge is enhanced. As an example, 
underrepresented students on a university campus are likely to find communities with critical
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mass by engaging with societies that span multiple STEM disciplines. When such an individual 
joins a research group, in addition to their own talents and insights, they bring access to a new 
and distinct group of scholars and potential collaborators.

Out in STEMM

National Society of 
Black Engineers #

Society for the Advancement jy : --------
of Chicanos/Hispanics and /

Native Americans in Science '''vA

Plant Cell 
Biology Lab

Typical disciplinary 
research network

Figure 3. The extended network of a research group grows when diversity is amplified. A typical research group (grey 
circles around the cartoon table, center) often consists of several individuals with shared membership in professional 
organizations or institutions like academic departments (right side). However, as diversity in the primary members of a research 
group increases (left side), the network of professional relations associated with the group is effectively larger. Depicted are 
several example organizations, but the benefit of diversity is not exclusive to these examples.

Many have described the problems in recruitment, funding, and retention of diversity in science 
[66-71], This is to our detriment, as diversity brings new ideas together for conceptual 
recombination, and diversity is the whetstone on which our communication skills are honed. 
Moreover, as biology finds itself evolving toward a hybrid discipline [72] perfecting the 
communication between disciplines and communities will enable us to leverage our collective 
talents and solve grand challenges in science and beyond.
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