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Abstract 

Protein docking protocols typically involve global docking scan, followed by re-ranking of the scan 

predictions by more accurate scoring functions that are either computationally too expensive or 

algorithmically impossible to include in the global scan. Development and validation of scoring 

methodologies are often performed on scoring benchmark sets (docking decoys) which offer 

concise and nonredundant representation of the global docking scan output for a large and 

diverse set of protein-protein complexes. Two such protein-protein scoring benchmarks were built 

for the DOCKGROUND resource, which contains various datasets for the development and testing 

of protein docking methodologies. One set was generated based on the DOCKGROUND unbound 

docking benchmark 4, and the other based on protein models from the DOCKGROUND model-

model benchmark 2. The docking decoys were designed to reflect the reality of the real-case 

docking applications (e.g., correct docking predictions defined as near-native rather than native 

structures), and to minimize applicability of approaches not directly related to the development of 

scoring functions (reducing clustering of predictions in the binding funnel and disparity in structural 

quality of the near-native and non-native matches). The sets were further characterized by the 

source organism and the function of the protein-protein complexes. The sets, freely available to 

the research community on the DOCKGROUND webpage, present a unique, user-friendly resource 

for the developing and testing of protein-protein scoring approaches.  
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Introduction 

Proteins most often function by interacting with other proteins. Structural characterization of these 

interactions is important for our ability to understand and modulate them. Experimentally 

determined structures of protein-protein complexes constitute only a small fraction of the known 

interactome.1 Thus, computational techniques to model three-dimensional structures of protein-

protein complexes (protein-protein docking) are required to fill the gap. In recent years, such 

techniques have been rapidly developing.2 They can be roughly divided into free docking and 

template-based docking approaches. The free docking is performed without a priori knowledge of 

an experimentally determined structure of similar/homologous complexes, while the template-

based docking explicitly utilizes such knowledge.3 At the initial global search (scan) stage, both 

free and template-based docking produce putative docking models. The correct (near-native) 

model can be hidden among them with a relatively low rank. Thus, docking approaches routinely 

involve a scoring stage, at which protein-protein complexes output from the global scan are re-

scored (re-ranked) by more accurate functions that are either computationally too expensive or 

algorithmically impossible to include in the global scan. 

A number of scoring functions have been developed in order to distinguish near-native from 

incorrect docking predictions.4-6 These functions are often tested on non-redundant curated sets 

of experimentally determined structures of protein-protein complexes (docking benchmarks). 

Such sets consist of the native or near-native structures of protein-protein complexes composed 

from the unbound forms of the constituent proteins.7,8 Thus, generation of putative docking models 

is left to the researcher, which may lead to a bias in comparing performance of different scoring 

functions. To mitigate this problem by providing a standard and convenient testing ground for the 

community of scoring functions developers, one needs pre-generated sets of near-native and 

incorrect docking models (docking decoys) for each protein-protein complex in the docking 

benchmark. Several such sets (scoring benchmarks) already exist. The DOCKGROUND unbound 
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decoy set 1 consists of 61 protein-protein complexes, each with 100 docking poses of which at 

least one is a near-native and the others are decoys.9 Sternberg and co-workers built a decoy set 

for training FTDock program.10 CAPRI (Critical Assessment of Predicted Interactions)6 scoring 

benchmark consolidates predicted complexes from the CAPRI community-wide scoring 

experiment.11 Weng lab maintains extensive sets of decoys, based on their protein docking 

benchmarks,7,12-15 generated by ZDOCK16 and ZRANK17 programs. RosettaDock was used to 

generate docking decoys based on flexible docking.18  Some of these decoy sets do not have a 

near-native match. 

Existing decoy sets focus on experimentally determined structures. To address limited 

structural accuracy of protein models, especially in high-throughput (e.g. genome-wide) modeling, 

we developed docking benchmarks composed of models of the individual proteins. For each 

protein we generated several models of different accuracy assessed either by the model's RMSD 

from the native structures (DOCKGROUND model-model docking benchmarks 119 and 220) or by the 

rank from structure prediction software (model-model docking benchmarks Q1 and Q221). In this 

paper, we present two new large scoring benchmark sets (docking decoys), a decoy set of 

experimentally determined unbound structures from the docking benchmark 48 and a decoy set 

of protein models from the model-model docking benchmark 2. The decoy sets are publicly 

available in the DOCKGROUND resource at http://dockground.compbio.ku.edu. 

 

Results and Discussion 

Design principles 

Docking decoy sets (scoring benchmarks) should reflect the reality of the real case scenario 

docking applications. At the same time, they should be hardened agains simple ways to "defeat" 

them by trivial approaches not directly related for the development of scoring functions. Thus, we 

applied following general principles to the design of adequate scoring benchmarks. 

http://dockground.compbio.ku.edu/
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Near-native vs. native. A decoy set should contain a few correct docking poses and many 

incorrect ones. While it is tempting to define the correct pose as the native (i.e. experimentally 

determined) structure, in practice, actual native poses are almost never predicted by the docking 

procedures. Thus their inclusion into the decoy set is unrealistic, and the correct docking should 

be defined as a near-native pose. A docking pose can be determined as near-native according to 

establised in the community criteria (e.g. CAPRI criteria22). Also, importantly, since near-native 

prediction is not positioned at the very bottom of the intermolecular energy funnel,23 it is more 

difficult to distinguish from the non-native/incorrect ones, which again makes the set more 

adequate to the real-case docking scenario. 

Similar scores. In typical global docking scan output, the correct (near-native) prediction would be 

placed down the ranked list of predictions, below a number of the incorrect predictions. The 

number of the incorrect predictions can be large, especially in the free docking (e.g. tens of 

thousands, or more). This problem is the entire reason for the development of the scoring 

functions to improve the ranking of the predictions. A simple and thus tempting way to construct 

a decoy set is to select the top ranked incorrect matches (e.g., ranks 1-99), and combine them 

with the highest ranked near-native match (e.g., rank ~100,000), which was a common approach 

in earlier docking decoy sets. A trivial way to "defeat" such set is to ask the procedure to look for 

the worst (in terms of energy, interface area, etc.) rather than the best match. Not surprisingly, 

such approach almost always correctly identifies the near-native solution in such decoy sets. To 

avoid even an implicit influence of such line of inquiry, the incorrect docking matches need to 

have global scan scores similar to the ones of the near-native poses. 

Clustering. The intermolecular energy funnel can be detected by clustering of the low-energy 

docking matches.24 Such clustering is a strong indicator of the correct binding mode. However, to 

develop scoring functions, which are not based on this obvious and simple criterion (and thus can 
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complement it), the scoring benchmarks need to avoid clustering around near-native matches, 

spatially distributing the non-native poses as uniformly as possible. 

 

Unbound docking decoys 

One of the problems in protein-protein docking is the ability of a method to deal with 

conformational changes upon protein binding. To develop and test procedures capable of 

successfully addressing this problem, one needs docking decoys based on the unbound 

structures of the interacting proteins. We generated such set of docking decoys for each of the 

396 unbound-unbound complexes from the DOCKGROUND unbound docking benchmark 4. First, 

300,000 docking solutions for each complex were produced by GRAMM25,26 in rigid-body FFT-

based docking mode, with the default grid step 3.5 Å and 10° angular interval. To exclude 

interference from any post-processing scoring and/or structural refinement, docking poses were 

unscored, unrefined, and ranked only by the GRAMM’s global scan stage shape complementarity. 

Because of that, most near-native docking poses were outside top 100,000 predictions (Figure 

1). The  near-native complexes were defined as acceptable or better according to the CAPRI 

criteria22 calculated with respect to the reference complex of the unbound proteins aligned to the 

bound structures of the native complex.  

The set contains one near-native solution and 99 docking poses, which are incorrect by the 

CAPRI classification, selected from 300,000 docking predictions per complex. For each complex, 

we identified a near-native docking pose ranked highest by the global scan shape 

complementarity. If such near-native docking pose was absent in the 300,000 docking predictions, 

the complex was excluded from the set (in our docking experience, complexes without near-native 

solution in 300,000 predictions are not suitable for rigid-body docking). In order to have similar 

interface areas (assessed by the global scan shape complementarity) for all docking poses (see 

the above Design Principles), incorrect docking poses were appended to the decoy set initially 

from the sub-list containing incorrect docking poses within ±50 ranking positions from the near-
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native match. To reduce spatial clustering (according to the above Design Principles), a pose 

from that sub-list was added to the decoy set only if the angles between the vector connecting 

geometric centers of the receptor and the ligand and such vectors for the previosuly selected 

ligand poses were >5°. If this sub-list was exhausted and still less than 99 incorrect docking 

matches added to the decoy set, the sub-list was expanded by including another 50 lower and 50 

higher-ranked matches with the algorithm making another pass through the data. In addition, the 

minimum angle between poses was reduced by half with each iteration. The protocol iterated until 

the decoy set was full (containing one near-native and 99 incorrect docking poses). 

This decoy set is available for download from the DOCKGROUND resource 

http://dockground.compbio.ku.edu via the decoys page as either the entire set or as individual 

complexes (Figure 2). The page provides additional information on each decoy set: rank by 

GRAMM gloabl scan of the highest ranked near-native pose; C RMSD of the docked ligand; 

interface C RMSD; PDB code and chains ID of the bound and the unbound proteins; and 

bound/unbound C RMSD. 

 

Model docking decoys 

The model-model docking decoy set was built from the DOCKGROUND model-model docking 

benchmark set 220 which contains models of individual proteins from 165 protein-protein 

complexes at pre-determined structure accuracy levels from the experimentally determined 

structure. The accuracy was defined as C RMSD between protein in the experimentally 

determined structure of the complex and the model of that protein (optimally aligned on the native 

protein). The accuracy levels in the model benchmark set 2, and thus in the docking decoys set, 

are 1, 2, 3, 4, 5 and 6 Å. The complexes in the model benchmark set 2 have: (i) redundancy 

removed by the sequence identity 30% threshold between pairs of chains, (ii) buried solvent 

accessible surface area >250 Å2 per chain, and (iii) at least 10 interface residues in each chain.20 

http://dockground.compbio.ku.edu/
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Docking decoys were generated for each pair of the protein models. For simplicity, we 

considered only protein pairs with the same accuracy level. Similarly to the unbound docking 

decoys, we considered 300,000 low-resolution docking solutions produced by GRAMM. The pool 

consisted of such large amount of putative docking poses because for most protein-protein 

complexes in the set, the top near-native docking match in the global docking output ranked 

outside 100,000 solutions (Figure 3). Re-ranking of the docking poses by our AACE18 contact 

potential27,28 significantly improved the ranking of the near-native poses (Figure 3). However, 

similarly to the unbound decoy set, to avoid interference of the post-processing scoring, we did 

not use the re-scored improved ranking. Thus, for each level of model accuracy in a complex, the 

correct pose was designated as the near-native docking match that had the highest ranking 

according to the global docking output. The 99 incorrect docking poses were selected to have 

similar shape complementarity scores and spatial distribution avoiding clustering, according to 

the above approach for the generation of the unbound decoys. The procedure produced spatially 

well distributed docking poses, as illustrated in Figure 4, at all model accuracy levels. If the near-

native docking solution at a given accuracy level was absent in the 300,000 docking poses, the 

protein-protein complex was excluded from the set. 

Decoy sets were successfully generated for 164 of the original 165 experimentally 

determined protein-protein complexes. For 160 complexes, the decoy sets were generated at all 

accuracy levels of the individual proteins. For reference, we also generated decoy sets for the 

native protein-protein complexes. A full list of the successfully generated decoy sets, along with 

an interactive interface for customizable download, are available on the  decoys page of the 

DOCKGROUND resource http://dockground.compbio.ku.edu. An example of the download page is 

in Figure 5. On this page, one can select to download all decoys, all decoy sets at a specific level 

of structural accuracy, all levels of accuracy for a protein-protein complex, or a custom selection 

of the sets. 

 

http://dockground.compbio.ku.edu/
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Source organisms 

In the unbound docking decoy sets, the top three source organisms are: human (103 complexes 

or 26% of the set have at least one protein from human), Escherichia coli (25 complexes or 6%) 

and mouse (16 complexes or 4%). In the model decoy set, the top three organisms are the same 

as in the unbound set: at least one protein in 70 complexes (out of 164, or 43%) is from human, 

with the next two largest source species Escherichia coli (at least one protein in 14 complexes or 

9%) and mouse (13 complexes, or 8%). In the entire PDB, 25% of binary complexes have, at 

least, one protein from human, also followed by Escherichia coli (5%), and mouse (3%).  Due to 

computational constraints, in the entire PDB we considered only binary complexes, i.e. structures 

with two polypeptide chains in both asymmetric and biological units. Each of these organisms are 

commonly used as a test system for their respective phylogenic group and as such is expected 

to be well represented in PDB and its subsets. 

Within broader categories of the source organisms, most complexes in both unbound and 

model docking decoys sets have at least one protein from higher eucaryotes (162 and 104  

complexes from unbound and model sets, respectively), followed by bacteria (62 and 29 

complexes), lower eucaryotes (13 and 8 complexes), viruses (14 and 8 complexes) and archaea 

(4 and 6 complexes). This order is similar in the entire PDB with the exception of bacteria, which 

has greater representation in PDB than every other group (Figure 6). 

 

Functional annotations 

The docking decoys sets were further characterized by the function of the protein complexes. This 

was done using gene ontology (GO) terms, which are subdivided into three domains - molecular 

function, biological process and cellular component. The terms are organized in a directed acyclic 

graph with several types of connections between them (we considered only “is-a” type, i.e. 

“parent-child” relationship). To put complexes in categories large enough for statistical 

significance, but not characterized by GO terms that are too generic, we utilized GO terms at level 
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two of the molecular function graph. In the unbound docking decoy set, the most common GO 

term was hydrolase activity (61 protein-protein complexes). It was followed by organic cyclic 

compound binding and catalytic activity acting on a protein (19 complexes), protein binding (18 

complexes), and organic substance metabolic process (15 complexes;  Figure 7A). The most 

common GO terms in the model docking decoy set were hydrolase activity, organic substance 

metabolism and organic cyclic compound binding - each occurring at least once in 16 protein-

protein complexes, followed by catalytic activity acting on a protein (12 complexes), and protein 

binding (8 complexes; Figure 7B). Although the order is different in the unbound and the model 

sets, the top five most common functions are the same. GO terms were also determined for the 

binary complexes from the entire PDB (Figure 7C). Two of the top five most common GO terms 

from both decoy sets, hydrolase activity and catalytic activity acting on a protein, are also present 

in the top five categories in entire PDB binary set. The other three are all within the top 20 most 

common GO terms of the binary PDB set. 

 

Conclusions 

Scoring of protein-protein docking predictions generated by global docking scan is essential for 

docking methodologies. Development and validation of these methodologies are often performed 

on scoring benchmark sets (docking decoys), which are supposed to be concise and 

nonredundant representations of the global docking scan output for a large and diverse set of 

protein-protein complexes. Two such protein-protein scoring benchmarks were built for the 

DOCKGROUND resource containing various datasets for the development and testing of protein 

docking methodologies. One set was based on the DOCKGROUND unbound docking benchmark 

4, and the other set was based on protein models from the DOCKGROUND model-model 

benchmark 2. The decoys sets were designed to reflect the reality of the real-case scenario of 

docking applications (such as correct predictions as near-native rather than native structures), as 
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well as to minimize applicability of trivial approaches not directly relevant to the development of 

scoring functions (reducing clustering of predictions in the binding funnel and disparity in structural 

quality of the near-native and non-native matches). The sets were further characterized by the 

source organism and the function of the protein-protein complexes. The sets represent a unique, 

user-friendly tool for the developing and testing of protein-protein scoring functions, and are freely 

available to the research community in the DOCKGROUND resource. 
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Figures 

 

 

Figure 1. Distribution of unranked near-native poses in the unbound decoy set. 
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Figure 2. Web interface for the unbound decoy set. Users can download all decoys or a specific 

decoy set. 
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Figure 3. Distribution of docking poses in the model-model docking decoys set. The ranks of 

the top near-native solution are from the global docking search (open bars) and those scored by 

AACE18 potentials (hatched bars) for experimentally determined and modeled structures of 

individual proteins in 165 protein-protein complexes from the DOCKGROUND model set 2. The 

interface RMSD values on the right are the mean values for the near native poses. 
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Figure 4. Example of docking decoys set. The proteins are the ferredoxin thioredoxin reductase 

complex (PDB code 1dj7, chains A and B). The decoys are generated for the experimentally 

determined structure (0Å) and models of the individual proteins with pre-set accuracy levels 1-

6Å. The receptor (chain A) is in green. Incorrect matches are shown by the ligand (chain B) 

geometric center (blue spheres). The highest-ranking near-native match is shown by the model 

of the ligand (magenta) and its geometric center (orange sphere). 
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Figure 5. Web interface for model-model docking decoys. Users can select to download all 

decoys, all decoys at a specific level of accuracy, decoys at all levels of accuracy for a specific 

complex, any specific decoy set, or a custom selection. 
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Figure 6. Datasets source organisms. The statistics are for protein-protein complexes in (A) 

unbound and (B) model docking decoy sets, and (C) for all binary complexes in PDB.  
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Figure 7. Function of protein complexes in the sets. The distributions of GO terms at depth 2 on 

the Gene Ontology tree are for proteins in (A) unbound decoy set, (B) model decoy set and (C) 

entire PDB. 


