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Abstract

We study the properties of oscillatory double-diffusive convection (ODDC) in the presence of a uniform vertical
background magnetic field. ODDC takes place in stellar regions that are unstable according to the Schwarzschild
criterion and stable according to the Ledoux criterion (sometimes called semiconvective regions), which are often
predicted to reside just outside the core of intermediate-mass main-sequence stars. Previous hydrodynamic studies
of ODDC have shown that the basic instability saturates into a state of weak wave-like convection, but that a
secondary instability can sometimes transform it into a state of layered convection, where layers then rapidly merge
and grow until the entire region is fully convective. We find that magnetized ODDC has very similar properties
overall, with some important quantitative differences. A linear stability analysis reveals that the fastest-growing
modes are unaffected by the field, but that other modes are. Numerically, the magnetic field is seen to influence the
saturation of the basic instability, overall reducing the turbulent fluxes of temperature and composition. This in turn
affects layer formation, usually delaying it, and occasionally suppressing it entirely for sufficiently strong fields.
Further work will be needed, however, to determine the field strength above which layer formation is actually
suppressed in stars. Potential observational implications are briefly discussed.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Astrophysical fluid dynamics (101);
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Magnetohydrodynamical simulations (1966)

1. Introduction

Oscillatory double-diffusive convection (ODDC) takes place
in regions of stars or planets that have a destabilizing
temperature stratification and a stabilizing composition strati-
fication. These would be identified as convectively unstable
according to the Schwarzschild criterion, but convectively
stable according to the Ledoux criterion.! In stellar evolution
calculations that use the Ledoux criterion for convection,
regions with this type of stratification most commonly appear
just above the convective core of intermediate-mass and high-
mass stars. ODDC can in that case enhance the transport of
chemical species between the envelope and the core, which
provides additional fuel to the nuclear reactions and prolongs
the main-sequence phase (see, e.g., (Moore & Garaud 2016),
and references therein).

In its basic form, ODDC is a small-scale, wave-like type of
thermal convection. It was identified to be a double-diffusive
instability by Kato (1966), and was hence named ODDC by
Spiegel (1969). A key question is how much mixing ODDC
can cause. The answer turns out to be quite complicated
because it depends on whether the instability remains in its
basic small-scale form, or whether it transforms into a state of
large-scale layered convection, where mixing is much more
efficient. Layered convection had been postulated to exist in
giant planets and stars by Stevenson (1985) and Spruit (1992)
based on its presence in geophysical analogs of ODDC (e.g., in

They are also often referred to as semiconvective regions (Spiegel 1969;
Langer et al. 1983), but since the terminology is contentious, we hereafter
simply use ODDC, which refers to the fluid dynamical instability that takes
place in regions with this type of stratification.
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the polar oceans and volcanic lakes on Earth, see the review by
Radko 2013). But it was first clearly identified in direct
numerical simulations (DNS) of ODDC at astrophysically
relevant input parameters only recently by Rosenblum et al.
(2011).

In that work, Rosenblum et al. (2011) demonstrated that
layering (i.e., transition to layered convection) can sponta-
neously occur in ODDC, and that it is caused by a mean-field
instability first discovered by Radko (2003) in a related
oceanographic context. Mean-field instabilities are defined
mathematically as instabilities of the Reynolds-averaged
equations, rather than of the original Navier—Stokes equations.
Physically speaking, they can be viewed as secondary
instabilities that only develop after a particular primary
instability has saturated into a state of homogeneous turbu-
lence. In addition, mean-field instabilities have characteristic
length scales that are much larger than the typical turbulent
eddy scale. Understanding their development requires knowl-
edge (or modeling) of relevant turbulent fluxes such as the heat
and composition fluxes (and others as needed) as functions of
the large-scale properties of the fluid such as the background
temperature gradient, the background composition gradient,
and the mean local shear for instance. The specific mean-field
instability discovered by Radko (2003) is called the ~-
instability, and is triggered by a positive feedback loop
between the heat and composition fluxes (whose ratio is
traditionally called ), and the background stratification (see
reviews by, e.g., Radko 2013; Garaud 2018).

In subsequent investigations, Mirouh et al. (2012) ran and
analyzed a wide range of DNS, to model the turbulent heat and
composition fluxes associated with the basic weak form of
ODDC. With that information, they were able to construct a
quantitative model for the mean-field y-instability that can be
used to predict when layering is expected. A salient result of
their analysis is that layering is always expected in ODDC-
unstable regions located at the edge of the convective cores in
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intermediate-mass stars, suggesting that mixing in these regions
is very efficient indeed.

With this in mind, Wood et al. (2013) used DNS of layered
convection to quantify transport in that regime. They found that
both heat and composition fluxes increase with the mean layer
height in a way that is strongly reminiscent of (but not entirely
identical to) Rayleigh—Bénard convection (i.e., thermal con-
vection between plane parallel plates). But they also found that
the layers have a propensity to merge with one another, in such
a way that the ODDC-unstable region always eventually
evolves into one that is fully convective. This suggests that the
ODDC-unstable region is only expected to exist for a relatively
short period of the star’s life, and is rapidly replaced by a
standard convection zone.

Using their results, Moore & Garaud (2016) modeled the
evolution of ODDC-unstable regions in intermediate-mass stars
using MESA (Paxton et al. 2011), and found that mixing is so
efficient that these regions can be approximated as being fully
convective instead for simplicity. In other words, ignoring
ODDC altogether and using the Schwarzschild criterion to
identify convectively mixed regions satisfactorily predicts the
star’s evolution. A similar conclusion was recently reached by
Anders et al. (2022), albeit for different reasons.

However, it is important to note that almost all results on
ODDC so far have been obtained in the hydrodynamic limit
(although see Hughes & Brummell 2021, for a related
magnetized instability), but core convection in rotating stars
can drive a substantial dynamo (Augustson et al. 2016). The
magnetic field thus generated can diffuse out of the core and
would likely influence the initial development of the ODDC
instability, and/or its subsequent transition into layered
convection.

In this work, we are therefore interested in quantifying the
effects of magnetic fields on ODDC. For simplicity, we begin
by looking at a very simple model setup in which an ODDC-
unstable region is threaded by a uniform, vertical magnetic
field. Section 2 describes the governing equations for the
problem. Section 3 presents a linear stability analysis of ODDC
in the presence of this field, demonstrating that the fastest-
growing modes of instability are unaffected. Section 4 then
presents the nonlinear DNS of the system, where in this case
the magnetic field is seen to slow down, and sometimes even
suppress, the transition to layered convection. We interpret our
findings in the light of Radko’s ~-instability theory in
Section 5, and conclude in Section 6 with a discussion of the
impacts of our findings on stellar modeling.

2. Mathematical Model and Governing Equations

We consider a Cartesian domain in a small stellar region
with dimensions (L,, L,, L;) where gravity defines the vertical
direction e,. We assume that the vertical extent of the domain is
smaller than a pressure scale height, which allows us to use the
Boussinesq approximation (Spiegel & Veronis 1960). Within
this approximation, we assume that the temperature 7 and
composition C can be decomposed as a linear background plus
perturbations, namely,

dT; -
T(x,v,2. 1) =Ty, + zd—" + T(x, y, 2, 1), (1)
Z
dC ~
C(x,y,2,1) = Cy + zd—° +Cx, y, 2, 1), 2
Z
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where x, y, and z are the spatial coordinates and ¢ is time, T,
and C,, are constants that represent the mean values of
temperature and composition in the region considered, and
dTy/dz and dCy/dz are negative constant gradients of
temperature and composition, with L |dTy/dz| < T,, and
L |dCy/dz| < C,,. Consistent with the use of the Boussinesq

approximation, we assume that the density perturbations p
satisfy a linear equation of state:

L — _oF + 3¢, 3)
pﬂ’t
where p,, is the mean density of the domain, and o = —pig—;
and (= L9 are constants of thermal expansion and

e
compositional contraction, respectively.
With these assumptions, and neglecting magnetic buoyancy

effects, the governing equations are

V-u=0,
V-B=0,
Ou - .
Pl — +u-Vu|=-Vp — pge,
ot
+L(V X B) x B + p,vV?u,
Ho
8—T +u-VT+ uz(% — dz;d) = kr V2T,
ot dz dz

oc +u-VC+ uzﬁ = kcV2C,
t dz
%—I:=Vx(ux3)+nv23, 4)

where u = (u,, u,, u,) is the velocity of the fluid, B = (B,, B,,
B,) is the magnetic field, g is gravity, o is the vacuum
permeability, and p is the pressure perturbation away from
hydrostatic equilibrium. The diffusion coefficients, namely, the
kinematic viscosity v, the thermal diffusivity xz, the composi-
tional diffusivity k¢, and the magnetic diffusivity 7 are all
assumed to be constant. Finally, dT,q/dz=—g/c, is the
vertical adiabatic temperature gradient, where ¢, is the specific
heat at constant pressure of the fluid. To be considered
Schwarzschild unstable and Ledoux stable the region satisfies

dly  dly dly dby dCy

—_— = <0, and— — — —
dz dz dz dz dz

> 0. )

These equations must be complemented by boundary
conditions. Two options are possible: to run global simulations
in bounded domains with boundary conditions enforced on the
dynamical fields (e.g., Anders et al. 2022), or to run local
simulations where background gradients are fixed and periodic
boundary conditions are enforced for the perturbed fields T,C,
u, and B (e.g., Rosenblum et al. 2011; Mirouh et al. 2012;
Wood et al. 2013). The regions in stellar interiors where ODDC
might occur are far from boundaries; thus, to minimize their
effect on our results, we perform local simulations with
periodic boundary conditions. This numerical setup is mean-
ingful and valid as long as two conditions are met. First, the
domain size must be larger than the dominant eddy length
scales in the saturated state to ensure that the boundaries are not
unphysically influencing the turbulence. Second, we note that
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the periodic model implicitly maintains large-scale temperature
and composition jumps across the height of the domain, letting
the turbulence develop accordingly. This is only a good
approximation to the true physical problem if the timescale
over which the turbulence would in reality modify (and reduce)
both jumps is long compared with the timescale for the
development and nonlinear saturation of the instability. This
was shown to be the case for the related fingering instability by
Zemskova et al. (2014), and we assume that it holds here as
well for ODDC. This assumption is very likely justified in the
case where ODDC remains in its weak, small-scale, wave-like
form, but could be invalidated in the layered case (where
convective fluxes transport both heat and composition very
rapidly). Studying the transition to layered convection in a
different model setup is the subject of a forthcoming paper.

We non-dimensionalize the system using the expected width
of diffusive structures d given by Stern (1960),

1/4
1/4
RTV RTV
l = d = _— = —_— . 6
1] T W) ©)
dz dz

where N7 is the local buoyancy frequency associated only with
the temperature field. The corresponding choices for the other
units are

d2
M=, =",
RT d
[T]1=d dly  dLq ,
dz dz
[C]= Q4 % _ dLa @)
8 dz dz

Finally, we assume the existence of a constant background field
of amplitude By, so

B = Bpe, + b, (3
and we use this amplitude as the unit for the magnetic field

strength. With this, the nondimensional system of governing
equations is

V-#=0, V-B=0, 9)
08 | 4. Vi =—Vp + PV
o
+ Hg(V x B) x B + Pr(T — C)e,, (10)
.4 - v, (11)
ot
%—f +a@-VC — Ro i, = TV2C, (12)
%—B =V x (@t x B) + DyV?B, (13)
t

where hatted quantities, as well as time and space, are now
nondimensional. Several parameters appear, namely, the so-
called inverse density ratio, which measures the stratification of
the region,

o BldCy/dz)
aldly/dz — dTq/dz|’

(14)
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three diffusivity ratios that only depend on the properties of the
fluid,

pr="2, =€ andpDy =1L, (15)
RT RT RT

and a parameter controlling the magnetic field strength,
B; d?
Hp = —"—, (16)
PmbokT
which is the square of the ratio of the Alfvén velocity to the
anticipated ODDC velocity kr/d.

Note that in the hydrodynamic case, a region is linearly
unstable to ODDC provided

L<ril< 2t gy
Pr+ 71
linearly stable if R,' > R, and unstable to thermosolutal
convection if Ry ' < 1 (Baines & Gill 1969). In stellar interiors,
the diffusivity ratios are always quite small (see Garaud et al.
2015), so R.! is very large. Also note that an estimate for Hp
near the core of intermediate-mass stars is

2 2
= (155 ) (i)
10°G /) \103cm

pm Rr
X s 18
(lOOgcmS) (106 cm? sfl) (1%

showing that a magnetic field with amplitude of about 10* G
can in principle have a substantial impact on ODDC.

The system of Equations (9)—(13) is identical to the one used
by Harrington & Garaud (2019) to study magnetized fingering
convection, a related double-diffusive instability, except for the
negative signs in front of the terms 4. and R, 'd, in the
temperature and composition equations respectively (see their
Equations (14)—(18)).

7)

3. Linear Stability Analysis

We analyze the stability of the system (Equations (9)—(13))
to infinitesimal perturbations following standard procedures.
First, we explicitly write B = e, + b, where b are magnetic
field perturbations. The background state around which we
linearize is a steady state with & = b=T=¢C= p =0.We
assume the perturbations to be sufficiently small so that
nonlinearities can be ignored. Finally, we seek solutions of the
form ¢ =g¢q exp(lk X+ lkyy + lk Z+ ), where \ is the
growth rate of an unstable mode with wavenumber
k= (lgx, lgy, Igz). With these steps and assumed ansatz, the
governing equations become

k-u =0, k-b =0, (19)
A + Pkt = —ikp' + iHg(k

x b') x e, + Pr(T' — (e, (20)

A+ T =, @1

A+ EHC =Ry, (22)

A + DkHb' = ik x W' x e,), (23)

A2 A2 A2 A2 A2 A2 Ao .
where k™ =k, + k, + k, =k, + k, and k; is a horizontal
wavenumber. The linearized induction equation can be
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simplified as
ik,u'
b= ———3. (24)
A+ Dgk

while the temperature and composition equations can be

combined into
~1
T — C' = u’Z(A ! — — = Ro Az). (25)
A+ k A+ Tk

Substituting Equations (24) and (25) into the linearized
momentum equation, taking the dot product of the result with

k, and using incompressibility, yields an expression for p’.
After substituting it back into the z component of the
momentum equation, we finally obtain a quartic equation for A:

A2
PO o [« . Hgk
A+ A+ AN+ Pk +
\ + Dgk
2
=Pr((X+ 7E) —Ry'\A+ £ )) (26)

This quartic has several notable properties. We see that
setting Hz = 0 recovers the standard cubic associated with
hydrodynamic ODDC, see, e.g., Rosenblum et al. (2011). In
addition, the only difference with the quartic obtained by
Harrington & Garaud (2019) describing the linear stability of
magnetized fingering convection is the sign of the right-hand
side of this equation. As such, many of their results hold here as
well. For instance, the magnetic field has no effect on the
stability of modes with lgz = 0 (i.e., modes that are invariant
along both gravity and the background magnetic field). This is
expected, since magnetic fields only interact with flows
perpendicular to the field lines. However, since the k, = 0
modes are also the most rapidly growing modes when Hg = 0,
we conclude that the presence of a vertical magneuc field does
not change the stability of the most rapldly growmg modes

ertmg Equation (26) in the form A + a3)\ + az)\ +
A+ ayg=0 gives the following expressions for the
coefficients ay:

—PPr+ D+ 7+ 1),

— k2Hp + £ (Pr 4+ Dp)(1 + 7)
A2
+k PrDB+kT+Pr (RO - 1),
&

a1 =K + 7)k'DsPr + k> Hg) + k°(Pr + Dp)r
PR (DR — 1) + Ry — 7,
ao =Tk (&*DpPr + k2 Hg) + Pk B*DpR; " — 1),

where we have set k, = k, without loss of generality.
We solve this quartic for A for given input parameters (R, ',
Hp, Pr, 7, and Dp), and given values of the wavenumber k. Out

2 While k. =0 modes are somewhat unphysical in that they are only
permissible in local domains with periodic boundary conditions, they are
reasonable approximations of the fastest-growing modes that would actually be
realized in stellar interiors, where large-scale effects such as differential
rotation or radial structure variation set an effective minimum wavenumber so
small that it is effectively zero for all practical purposes.
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of the four complex roots, we select the one with the maximum
real part. From here on, we only discuss the properties of this
particular root. We present the results of the linear stability
analysis in Figure 1. Each row corresponds to a different
magnetic field strength, namely, Hgz = 0, 0.01, 1, and 100, from
top to bottom. From left to right in each column, we present (a)
the real part of X as a function of &, and lgz (b) the imaginary
part of X as a function of , and Igz (selecting for simplicity the
root with positive imaginary part), (c) the real part of Xasa
function of lgz, at k, = 0.417, and (d) the imaginary part of A as
a function of lgz, at lgx = 0.417. Note that the color scales on the
first and second columns are quite different, and that
ky = 0.417 is the fastest-growing mode at k, = 0 for the given
parameters. In the third column, we compare Re(}) to a purely

diffusive solution of the form —c(k, + k.), where ¢ is the
minirpum of Pr, 7, and Dg. In the last column, we compare
| Im(\)| to the oscillation frequency of a corresponding gravity

wave, namely,
N T )
Ve + & ky + k;

and to the frequency of a corresponding Alfvén waves, namely,

wi = JHzlk|. (28)

In general, and consistent with the discussion above, we see
in the leftmost column that the magnetic field partially or fully
stabilizes every mode except those with k, = 0. More
specifically, we see that at a given (nonzero) value of ky,
increasing the magnetic field strength reduces the range in I€Z of
unstable; modes, and reduces the growth rates of all modes
except k, = 0.

In the second column, we see that as the value of Hp
increases, the oscillation frequency of the unstable modes
becomes gradually influenced by the presence of the field.
Indeed, in the first two rows of the last column, the field is zero
or weak, and we find that the oscillation frequency of the
k, = 0 modes is related to (but not equal to) the oscillation
frequency of a pure gravity wave w,. For larger values of Hy
(third and fourth rows, where Hp > 1), the oscillation frequency
of the modes approaches the corresponding Alfvén frequency
wy instead, implying that the magnetic field now dominates the
dynamics of the instability.

A cursory examination of the decay rate of the decaying
modes in the third column reveals that the latter has a parabolic
dependence on k, for large enough k,. This can be explained by
noting that for large wavenumber, the quartic (Equation (26))
asymptotically tends to

we=N

MeBeEr+pg+ 7+ DY
L B'[(Pr + Dp)(1 + 1) + PrDg + T1A?
x k°[(Pr + Dg)T + DgPr(1 + 7] A
+ B (DgPr + 1) = 0. 29)
This can be factored as (5\ — Prlgz)()A\ — 7122)(3\ — DBIQZ)

(:\ — 122) = 0, which has roots = —6122, where ¢ can be 1,
Pr, 7, or Dg. The slowest decaying mode is therefore obtained

by taking ¢ = min(1, Pr, 7, Dg). The parabola A= —6122 is
shown in green in the third column, and we see that the actual
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Figure 1. Properties of the growth rate A of the ODDC instability for Pr = 7 = D = 0.3, Ry' = 1.2. Hg increases from 0 to 100 from the top row to the bottom row.
The first column shows Re(;\) as a function of IEZ and IQX. The second column similarly shows |lm(5\)|. The third and fourth columns show Re(}) and |1m(5\)|,
respectively, at fixed k, = 0.417 (the fastest-growing mode at lgz = 0). In the third column, Re(}) (blue solid line) is compared with the diffusive solution —ck? (green
dashed line), see the main text for details. In the fourth column, Im () (blue solid line) is compared with the oscillation frequencies of corresponding gravity waves w,

(brown dashed curve) and corresponding Alfvén waves w, (green dashed curve).

solution of the quartic (Equation (26)) (blue curve) tends to the
diffusive solution (green curve) at large values of Igz. In stars,
we expect ¢ =7, as we almost always have the ordering of
parameters 7 < Pr < Dp < 1.

To summarize, we have found that a vertical magnetic field
has no effect on the growth rate and nature of the fastest-
growing, z-invariant mode of instability in this model setup. It
does, however, affect both the growth rate and oscillation
frequency of inclined modes, which presumably play a role in
the saturation of the instability.

4. Numerical Simulations

To study the behavior of magnetized ODDC beyond the
initial growth of the instability, and determine whether
magnetic fields affect the processes by which convective layers
form (see Section 1), we now turn to DNS. Equations (9)—(13)
are evolved with time using the PADDIM code developed by
Harrington & Garaud (2019). PADDIM itself is based on the
original pseudo-spectral PADDI code (Traxler et al. 2011b;
Stellmach et al. 2011) used in our previous nonmagnetic
studies (Rosenblum et al. 2011; Mirouh et al. 2012; Wood et al.
2013).

We select a parameter regime where layers are known to
form in the absence of magnetic fields, namely, Pr=7=0.3
and R, ' = 1.2 (Mirouh et al. 2012), and run three simulations
with increasing background magnetic field strength: Hp =0
(hydrodynamic reference case), 0.03, and 0.1. The magnetic
diffusion coefficient is fixed and equal to Dz = 0.3. The initial

conditions in each simulation are

B,=B,=0,B,=1

x (for the magnetic simulations only),
i, =iy =1, =0, (30)
and both the temperature and composition fields are initialized
with small-amplitude white noise. In each case, the domain size
used has size 100d x 100d x 300d, and the resolution is
192 x 192 x 576 equivalent grid points.

Typical snapshots from the simulation with Hz = 0.03 are
shown in Figure 2, illustrating the evolution of the system.
Note that this would correspond to a weak-field case according
to linear theory. The left column shows the composition field
C, the middle column shows the vertical velocity field i, and
the right column shows the vertical magnetic field B.. The top
row shows the early evolution of the instability and the
emergence of the oscillating vertically invariant modes. These
modes quickly saturate in the second row into a state that is
dominated by weakly nonlinear waves, which is what is
commonly called homogeneous ODDC. Later in the simulation
(third row) a stack of convective layers emerge, and then
successively merge (fourth row), until a single layer remains
(not shown). The amplitude of the flow velocity and of the
magnetic field perturbations is much larger in the layered phase
than in the homogeneous phase, consistent with the findings of
Rosenblum et al. (2011) and Wood et al. (2013). Layers are
much more visible in the composition field than in the vertical
velocity and magnetic field. This is because the density contrast
across the interface is weak at the parameters selected, and is
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Figure 2. Snapshots of the composition field C, vertical velocity field #,, and vertical magnetic field l§z, in a simulation with parameters Pr=7=Dp=0.3
Ry' = 1.2, and Hg = 0.03. Each row corresponds to a different timestep, with time increasing (as marked in the figure) from top to bottom



THE ASTROPHYSICAL JOURNAL, 935:33 (14pp), 2022 August 10

5 . :

Energy

1t 1

i g e N )
e e - g -

1000 1500

t

2000

Energy

Sanghi et al.
40 . v T

35 | 1
30
25 ¢
20

I
15 L gl '|

10 |
51 Wﬁ”w‘

0 e e e e e e e 8

0 2000 4000 6000 8000
t

10000

Figure 3. Temporal evolution of the kinetic energy density (KE, solid line) and magnetic energy density (ME, dashed line) for three different values of the magnetic
field strength: Hg = O (red line), Hy = 0.03 (green line), and Hz = 0.1 (blue line), at fixed Pr = 7 = Dg = 0.3, R, I'— 1.2. The left panel shows the early-time
behavior, while the right panel shows the entire evolution. The horizontal black lines on the right panel show the kinetic energy density of the nonmagnetic simulation
measured, from bottom to top, in the four-layer phase, the three-layer phase, and the two-layer phase, to help compare it to that of the magnetized simulations.

therefore not a strong barrier to vertical fluid motions. Instead,
the interface is very turbulent and regularly pierced by strong
upflows or downflows (see, e.g., Wood et al. 2013).

A more quantitative way of looking at the evolution of the
flow, which allows us to compare the outcome of simulations
run at different magnetic field strengths, is presented in
Figure 3. This figure shows the temporal evolution of the
kinetic energy density KE and magnetic energy density ME,
defined as

1,. . o
KE®) = (i + ] + i),
Hg 2 2 o

where the angled brackets denote a volume average. The left-
side panel focuses on the early-time behavior of the energies,
while the right-side panel shows the entire time evolution.

For Hp = 0, the simulation behaves as described by Mirouh
et al. (2012). The primary ODDC instability develops rapidly,
as can be seen by the exponential growth of the kinetic energy,
and saturates at a low amplitude around ¢~ 250. The kinetic
energy grows again between ¢~ 250 and t ~ 500, as a result of
the excitation of larger-scale gravity waves that then saturate at
a fairly constant amplitude between ¢~ 500 and ¢ ~ 1000.
During that time, a stack of seven layers forms as the result of
an underlying mean-field 7-instability (see next section for
details). This is accompanied by a step-like increase in the
kinetic energy (around #~ 1000), which corresponds to the
onset of overturning convection in each layer. The seven layers
very quickly merge into five, which then more slowly merge
into four, three, and then two layers around times ¢~ 1200, ¢
=~ 1500 and r ~ 2000, respectively. Had the simulation been
carried out longer, we anticipate that the last two layers would
also eventually merge. Each successive merger is accompanied
by another strong step-wise increase in the kinetic energy. This
is consistent with the findings of Wood et al. (2013), who noted
that the efficiency of layered convection increases significantly
with the average layer height.

We find that the presence of a vertical magnetic field with
Hyz = 0.03 and 0.1, for the chosen parameters (Pr=
T=Dp=0.3, Ry ' = 1.2) has substantial quantitative effects

on both the initial saturated state of the instability and on the
development and evolution of layered convection, despite
being relatively weak from the perspective of linear theory.
More specifically, we see that the magnetic field can reduce the
kinetic energy in the flow prior to layer formation substantially
(e.g., comparing energy levels in the phase prior to layer
formation between the Hz = 0 case, where KE ~ 2.4 and the
Hp = 0.1 case, where KE ~ 1.8). Crucially, we also find that
layers take much longer to appear in the magnetic cases than
for Hg = 0, and that the first layered configuration has fewer
layers (see Section 5.4). For Hz = 0.03 for instance, layered
convection starts around ¢~ 4300 with four layers that rapidly
merge into three layers around #~4500. By #5000, they
have merged down to two layers and by the end of the
simulation are in the process of merging into a single layer. In
the case of Hg = 0.1, the system stays in a state of weak wave-
like convection for a very long time before layers start to
emerge. Layered convection does not start until around
t~8300, and again begins in a four-layer phase. It is
interesting to note that the rate at which the layers merge,
however, appears to be relatively independent of Hp.

Finally, we also see that the kinetic energy in the layered
phase depends on the magnetic field strength. Indeed, the black
horizontal lines in Figure 3 indicate, from top to bottom, the
average kinetic energy of the two, three, and four layered
phases in the nonmagnetic (Hg = 0) case, and help guide the
eye for comparison with the magnetic cases. We see that the
kinetic energy in each of the layered phases is lower for Hz =
0.03 and Hz = 0.1 than in the nonmagnetic case, and that the
effect becomes stronger as the magnetic field increases. This
suggests that a strong enough magnetic field can substantially
reduce the efficiency of layered convection. Meanwhile, we
also see that the magnetic energy increases not only with Hp (as
expected), but also with each merger during the layered phase,
demonstrating that some of the kinetic energy from the
convective motions is being converted into magnetic energy.

In summary, our DNS demonstrate that the presence of a
vertical magnetic field can both slow down (or suppress, in
some cases shown in the next sections) the formation of layers,
and reduce the kinetic energy of the flow in layered convection.
Given the likely importance of layer formation and mergers in
ODDC near the core of intermediate-mass stars (see Section 1
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and Moore & Garaud 2016), it is therefore crucial to establish
whether these statements still hold at stellar parameter values
(which would have significant consequences for stellar
evolution). To do so, we first need to determine how the
layer-forming ~-instability is affected by the magnetic field,
both qualitatively and quantitatively. The next section
investigates this question in detail. The reader merely interested
in the answer may skip to Section 6.

5. Layer Formation
5.1. Theory

As mentioned in Section 1, in the absence of magnetic fields,
the spontaneous emergence of convective layers from homo-
geneous ODDC has been attributed to the so-called ~-
instability (Radko 2003; Rosenblum et al. 2011). We now
demonstrate that a large-scale uniform magnetic field does not
directly influence the ~-instability mechanism, so the latter is
still expected to operate as before.

While most standard fluid instabilities are instabilities of the
original Navier—Stokes equations, and describe the evolution of
perturbations from an initial laminar state, the -instability is an
instability of the Reynolds-averaged equations (where in this
case, the average is simply a horizontal average) that model the
evolution of large-scale spatial modulations to a preexisting
turbulent state. It is caused by a positive feedback loop between
the vertical turbulent temperature and compositional fluxes
(that cause an evolution of the temperature and composition
gradients) and the local stratification (that controls these
turbulent fluxes), which is schematically illustrated, for
instance, in Figure 3 of Garaud (2018).

This feedback loop can be studied as follows (Radko 2003;
Mirouh et al. 2012). First, we take the horizontal average of
Equations (11) and (12), which results in

= 2 tot
8_T:3_T78ﬂ:78FT’ (32)
o 077 0z 0z
~ 2 A tot
oc _o°C Ok OFT (33)
ot 0z? 0z 0z

where T is the horizontal average of the fluctuations f, and
similarly for C. We have introduced the turbulent temperature
and composition fluxes Fr = .7 and Fr = i, C, as well as the
total temperature and composition fluxes

F'=1— or + Fr, (34)
0z
F'= 7Ry — T’Z—C + Fe. (35)
Z

Equations (32) and (33) describe the first part of the feedback
loop, namely, how spatial modulations of the fluxes cause a
temporal evolution of the temperature and composition
stratification. Note how the magnetic field does not appear in
their derivation explicitly—in fact, the same equations apply in
the hydrodynamic case. However, it does so implicitly since
the turbulence, and therefore the turbulent fluxes, are affected
by the field.

In a strictly homogeneous turbulent system, T ~ C ~ 0, and
the temperature and composition gradients are constant and equal
to the nondimensional background values of —1 and —R; ',
respectively. In that case the temperature and composition fluxes
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Ff* and F" are independent of height (z) in the domain. This is
the state illustrated in the second row of Figure 2.

A crucial ingredient for the second part of the feedback loop
in Radko’s vy-instability theory is the fact that, for a given fluid
(i.e., at fixed Pr, 7 and Dp) and a given background magnetic
field (i.e., fixed Hp), the intensity and properties of double-
diffusive turbulence depend on the local temperature and
composition gradients only via the local inverse density ratio
(Radko 2003), written by Mirouh et al. (2012) for ODDC as

R — Ry' —dC/dz (36)
1 —dT/d;

This quantity is the ratio of the local density gradient due to
composition stratification, to the local density gradient due to
temperature stratification, and is equal to R,' in the
homogeneous state.

To model the 7-instability mathematically, Radko (2003)
then introduced two important nondimensional quantities: the
thermal Nusselt number, which is the ratio of the total
temperature flux to the diffusive temperature flux

tot
T

Nuyp = ———,
1 —dT/dz

(37

and the (inverse) flux ratio

_ F[Ot
Vol = ﬁ (38)

which is the ratio of the total composition flux to the total
temperature flux. The key assumptions discussed above can be
expressed mathematically by requiring that both Nu; and 'y;):

should only be functions of R! (at fixed Pr, 7, Dg, and Hp).
With this assumption, we have

FPt = (l - d—T)NuT(Rl), and
dz
FO' =yt R FP (39)

If the functions NuT(Rfl) and 7;)1 (R~ are known, then
Equations (32), (33), (36), and (39) form a closed system
describing the evolution of large-scale spatial inhomogeneities
T(z,t) and C(z, t). These equations can then be linearized
around the previously introduced homogeneous turbulent state
(which has T = € = 0 and R = R, "), in the limit where T
and C are very small, to demonstrate that perturbations of the
kind T'(z, t) ~ e®+tAM and C(z, t) ~ e*®+M grow or decay
exponentially with time, with a growth rate

A = ok?, (40)
where o satisfies the quadratic equation
o> + ac+b = 0, (41)

and where the coefficients a and b depend on the properties of
the homogeneous state as

a = Axu(1 = Rovy") + Nug(l — A,Ry),
b = —A,Nu}Ry, (42)
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A detailed derivation of this result is presented in Rosenblum
et al. (2011) and Mirouh et al. (2012). Crucially, we see from
the steps outlined above that the presence of a magnetic field
does not explicitly appear in this theory. However, it does so
implicitly by influencing the functions Nux{R ') and 7;)% (R,
and therefore the coefficients a and b of the quadratic
Equation (41).

Equation (41) immediately shows that a necessary condition
for instability, i.e., the existence of solutions with o > 0, is

-1
b<0ﬂ%<0, (44)

i.e., that the inverse flux ratio should be a decreasing function
of the inverse density ratio (Radko 2003; Mirouh et al. 2012).
This ~-instability theory, and more specifically Equation (41),
was found to correctly predict the growth rate of large-scale
perturbations in both fingering convection in the ocean
(Radko 2003; Stellmach et al. 2011) and ODDC in stars
(Rosenblum et al. 2011; Mirouh et al. 2012). We now
investigate whether this remains true for magnetized ODDC.

5.2. Comparison with Numerical Experiments 1: Layering
versus No Layering

To test the v-instability theory derived above, we follow the
same steps as those in Mirouh et al. (2012) The first step
consists of measuring the functions Nup(R™ 1) and Vot "(R™)) in
homogeneous ODDC turbulence at fixed values of Pr T, Dg,
and Hp. To do so, we run and analyze a number of small-
domain DNS, each of which is performed in a triply periodic
cube of size 100d x 100d x 100d with a resolution of
384 x 384 x 384 equivalent grid points. Each simulation is
initialized as those of Section 4, with all fields set to zero
except for T and C, which are seeded with small random noise,
and BZ, which is set to 1. The equations are evolved either until
the first set of layers form, or until we have acquired enough
data to be certain that they do not. As in Mirouh et al. (2012),
we use the fact that

(a.T) =~ (IVTP?) and

(@.C) =~ Ro7 (IVCP) (45)
when the flow is in a statistically stationary state, to compute
Nuy = Fi*' = 1 + (|[VTP), (46)
tot R7 R
o= 2 - Tt Rer{VCP) 47)
Fy' 1+ (IVTP)

We then take a time average of Nuz and 'y;)ll
stationary homogeneous ODDC phase.
Note that our determination of the appropriate time interval
for this average deviates somewhat from the method used by
Mirouh et al. (2012, see their Appendix B), mostly for reasons
of simplicity (see below), but also because their method turns
out to be somewhat inconsistent with the assumptions of the

in the statistically
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~-instability theory outlined above. In what follows, we use the
same steps as Mirouh et al. (2012) to determine the averaging
start time, but set the averaging end time to be either when the
horizontally averaged density profile begins to deviate
substantially from the background linear profile (when layers
form), or at the end of the simulation (when no layers form).
Mirouh et al. (2012), by contrast, stopped the averaging either
when fully convective layers appear, or when large-scale
gravity waves begin to dominate the simulation, whichever
happens the soonest. As a result, their estimates for the
convective fluxes are systematically higher than ours in very
low R(fl simulations where layers form early because their
average includes times during which the layers have almost
(but not completely) overturned, while we stop before this
happens. Meanwhile, their estimates for the convective fluxes
are often lower than ours at moderate and high R, ' because the
large-scale gravity waves that eventually appear in that limit
(see Mirouh et al. 2012; Moll et al. 2016), which they discard
but we keep, cause a non-negligible amount of transport.

Figure 4 shows as solid curves the functions Nuz(R, ") (top)
and ygi(RO’ 1) (bottom) extracted using this new simplified
method, for Pr=7=Dz=0.3 (left) and Pr=7=Dp=0.1
(right), for three values of the field strength (Hp = 0, 0.03, and
0.1). The Hz = 0 data (red solid curve) is a re-analysis of the
hydrodynamic simulations from Mirouh et al. (2012) using the
new method, and the red dashed line shows, for comparison,
the values of Nuz (R, ") and 710[ (R0 1) reported in their Table 5,
which they had extracted using their method. The difference
between the solid and dashed red curves illustrates the fairly
substantial impact of choosing a different interval for the time
averages, as mentioned above. That impact is, however, smaller
than the impact of adding a magnetic field.

Indeed, and consistent with the results briefly discussed in
Section 4, we see that even a weak magnetic field (e.g., Hp =
0.03, green curves) can sometimes substantially reduce the
turbulent heat flux, decreasing Nuy. This in turn changes the
shape of the v t(R0 1) curve, which gradually tends toward the

diffusive flux ratio v (RO h = TRO (solid black lines). The
theory developed in the previous section, combined with these
results, therefore shows that a large-scale magnetic field has an
indirect impact on layer formation, by affecting Nuy and 7;)1,
which changes the values of the coefficients of the quadratic
equation (41), and in turn, the y-instability growth rate.

A rapid, qualitative way of testing the predictions of the ~-
instability theory is to verify that all simulations that were run
at parameters for which dyt ) /dRO <0 (see, e.g.,
Equation (44)) eventually transition into layered convection.
This is indeed almost always the case. In Figure 4 (bottom
row), simulations that ultimately become layered have an
additional open square surrounding the original symbol. We
see that the square is present whenever 7:01 is a rapidly
decreasing function of R ! as in Mirouh et al. (2012). We also
see that no layers ever form when v;’: increases with R, !,
consistent with the theory. The only simulations in which the
data disagrees with the theory are those for which 7;0%

decreases very slowly with Ry' (near the minimum of the
curve), where layering was not observed even though the ~-
instability ought to be active. This is possibly because the
growth rate of the ~-instability is too low in that limit, and other
effects that are not accounted for (such as the presence of large-
scale gravity waves in the system) further damp it (see, e.g.,
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Figure 4. In each panel, the solid curves show the functions Nuzy (R, D} (top) and v, (R0 ) (bottom) extracted from small-domain DNS as described in the main text,
for various input parameters. The dashed curves show the same quantities extracted using the method in Mirouh et al. (2012). The left column has Pr = 7= D = 0.3,
the right column has Pr = 7 = Dy = 0.1. Various magnetic field strengths are presented, as described in the legend. Symbols that are surrounded by an open square in
the bottom row denote simulations for which layers eventually appear. The black line in each panel shows the values of Nuy = 1 and 'y;{ = 7Ry ! corresponding to the

diffusive solution (when (i) =

(Traxler et al. 2011a), for related effects in oceanic fingering
convection).

Notwithstanding this minor discrepancy, we now also see
that a sufficiently strong magnetic field can, in some cases,
completely suppress layer formation. Indeed, consider the case
with Pr=7=Dg=0.1. At these parameters, Figure 4 (bottom
right panel) shows that layers form at Ry ' = 1.4 in the
nonmagnetic case, and in the Hz = 0.03 case, but not for Hpz =
0.1. At the same time it provides a tentative explanation of
why, namely, by moving the minimum of the vt’oz Ry curve
slightly to the left, which eventually stabilizes the system to the
~-instability at these parameters.

5.3. Comparison with Numerical Experiments 2: Growth Rate
of the Layering Modes in Small Domains

Even when layers eventually form, we have seen in
Section 4 that a weak magnetic field can significantly delay
the onset of layered convection. The same was found to be true
in all of the small-domain simulations discussed in Section 5.2.
The theory presented in Section 5.1 suggests a possible

10

(ﬁz@ = 0). All curves asymptote to this solution as R ! approaches the threshold R = (Pr + 1) /(Pr 4 7).

explanation for this delay, namely, that the magnetic field
reduces the turbulent temperature and composition fluxes,
which in turn reduces the growth rate of the ~-instability. We
now test this idea more quantitatively.

We begin by comparing the v-instability theory predictions
against data from small-domain simulations. This turns out to
be easier than starting with the large-domain simulations of
Section 4 because the latter have many modes growing
simultaneously (layering modes and sometimes large-scale
gravity waves). Their presence can obfuscate the dynamics of
the ~-instability, as discussed below. We therefore focus on
four available small-domain layer-forming simulations, whose
parameters are presented in Table 1. The table also shows the
extracted values of Nuy, 7; ANy, and A, for these simulations.
The derivative terms Ay, and A, are computed using second-
order finite differences using simulations at values of R, ! on
both sides of the target one. With this information, we can then
evaluate the quadratic coefficients a and b using Equation (42),
and solve Equation (41) for o (also shown in Table 1). Finally,
to compute the growth rate A, of a particular layering mode
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Table 1
Values of Nuy, 7;’1', ANy, A Extracted from DNS at RU’l = 1.15, Pr=7=Dg = 0.3 (Top Two Lines) and RJ] = 1.3, Pr=7= Dz = 0.1 (Bottom Two Lines)
Pr=7=Dy Ry! Hp Nuy Yk Anu A, o
0.3 1.15 0.03 2.97 +0.20 0.56 + 0.01 55.4 1.53 0.75
0.3 1.15 0.1 24+0.2 0.52 +0.01 50 1.39 0.51
0.1 1.3 0.03 1.94 +0.2 0.31 + 0.01 12.7 0.29 0.40
0.1 1.3 0.1 1.5+0.15 0.27 +0.01 10.7 0.57 0.27

Note. The derivatives An, and A, are computed using finite differencing with
with n layers, we use the fact that

2nm

A, = ok? with k, = =—— (48)

Z

We can immediately see from Table 1 that o decreases
substantially when Hp increases from 0.03 to 0.1 with all other
parameters fixed. This confirms our above hypothesis that the
magnetic field can reduce the growth rate of layers.

For a more direct test of the 7-instability theory against the
data, we now compare the growth rates of the layering modes
observed in the simulations to those predicted by the theory.
We extract the time-dependent amplitude of these modes from
the DNS by computing the Fourier expansion of the
horizontally averaged density perturbations, namely,

pa.t)=—-T@ 1)+ C =) p,)ek.

n

(49)

The quantity | ,0,,|2(t), called the density spectral power here-
after, is plotted in Figure 5 for the four simulations presented in
Table 1, for modes leading to n = {1, 2} layers in each case.
Modes with n>2 are not usually found to grow in small-
domain simulations.

The ~-instability theory predicts that |p,[* () o €M, with A,
given by Equation (48) for a given Fourier mode (equivalently,
number of layers), n. We compare these predictions (colored
solid lines) to the data for each mode in Figure 5. We see that in
all cases, the model is appropriate for the n =2 mode at very
early times, but overestimates its growth rate by a factor of
about 2 at later times (after ¢ ~ 600). Predictions made with half
the growth rate (dashed lines) appear to fit the data better then.
The situation is not as clear for the » =1 mode (in some cases,
the above statements hold, and in some others, they do not),
which is perhaps not too surprising because the latter is
growing intrinsically slowly, in a fairly turbulent environment.

The fact that some layering modes grow slower than
expected at later times can already be seen in some of the
hydrodynamic simulations of Mirouh et al. (2012) but was not
discussed in that paper. However, we now see that this is a
relatively systematic effect. Inspection of the total density
profile before, during, and after the time where the mode
growth rate starts decreasing reveals that this corresponds to the
point where the total density profile is no longer linear. At this
point, the linearization procedure that leads to the derivation of
the quadratic growth rate, Equation (41), is no longer valid, and
it is therefore not surprising to see that the model no longer fits
the data at the quantitative level. We do see, however, that the
mode continues to grow, albeit at a smaller rate.

data at neighboring values of Ry !
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5.4. Comparison with Numerical Experiments 3: Growth Rate
of The Layering Modes in Large Domains

To conclude this analysis, we now compare the predictions
of the ~-instability theory with the layering mode data for the
three large-domain simulations presented in Section 4, which
have Pr=7=Dp=0.3, R, ' = 1.2. The results are presented
in Figure 6. Each row in Figure 6 corresponds to a different
magnetic field strength, from top to bottom Hpz = 0, 0.03, and
0.1. The density spectral power of the first n; layering modes is
shown in each case, where n; is the number of layers of the
mode that dominates at early times. As discussed in Section 4,
n;, =7 for Hp = 0 (pink curve), while n; = 4 for Hz = 0.03
and 0.1 (red curve). Modes with n > n; (not shown) are not
found to grow in the simulation. It is worth noting that it is not
clear why n, is smaller in the magnetized cases than in the
hydrodynamic case, and whether this is a systematic result, or a
coincidence. We discuss this issue in Section 6.

Table 2 shows Nuy, 7;){, Anus A+, and o extracted from the
small-domain simulations, this time for the parameter values
used here. All the quantities are computed as in Table 1. The
predicted growth rates, calculated as in the previous section for
each dominant mode (i.e., a mode whose amplitude is much
larger than the others), are shown in Figure 6 as solid lines.
Dashed lines show how these modes would grow at half the
predicted growth rates. As before, we find that most modes
grow at the predicted rate at early times (before ¢ ~ 600), but
then later continue at about half the predicted rate. The
strongest field case (Hg = 0.1) is a little different, however, as
discussed below.

For the nonmagnetic case, we see that the seven-layer mode
clearly dominates at early times until 7~ 1000. It grows
roughly at the predicted rate until #~ 600, at which point it
begins to grow at about half the predicted rate. Around ¢~ 900,
we saw in Figure 3 that the kinetic energy of the flow increases
substantially. Inspection of the total density profile at that time
(see the right-hand panel, solid black line) shows that it is no
longer linear, but instead, clearly exhibits the presence of a
seven-layer mode, with some of the layers already being fully
convective (i.e., with a density that increases with height). It is
therefore not surprising to see that the mode stops growing
shortly after # = 900.

Note that the amplitude above which a single mode with n
layers causes an inversion in the total density profile
Pot(@ 1) = (1 — Ry Yz + p(z, t) was given by Rosenblum
et al. (2011) to be

Ry'—1

2k, G0

|pn|CI‘it - ‘

This threshold, computed for n = n;, is shown as a horizontal
black line in each panel of Figure 6. We see that in the
nonmagnetic calculation, the time at which the kinetic energy
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Figure 5. Density spectral power of layering modes as a function of time, for the four simulations analyzed in Table 1 (see the text for the details). In each panel, the
colored curves show |p,()|* for n = 2 (blue) and n = 1 (green), and the solid line of the same color shows the predicted exponential growth of the mode according to
the 7-instability theory. The dashed line of the same color shows the same with half the growth rate, which appears to fit the data much better overall.

of the flow begins to increase (=900, vertical black line)
corresponds to the time at which the seven-layer mode
amplitude reaches |p,|.i- Beyond that point, and as discussed
in Section 4, convective layers appear and rapidly begin to
merge. We see, accordingly, that the dominant mode changes
with time. A second density profile is shown at = 2200 (black
dashed line), showing two convective layers separated by thin
interfaces.

In the weak magnetic field case (middle row) the situation is
overall similar—a dominant layering mode grows from the ~-
instability, and layers eventually appear. This mode has fewer
layers (n; = 4) than in the nonmagnetic case, but its growth
rate continues to be reasonably well predicted using half the
theoretical growth rate after r=600. In contrast to the
nonmagnetic case, however, it does not remain dominant until
it overturns, but instead, appears to somehow aid the growth of
larger-scale layering modes (n=3 and 2) around #= 1800.
Inspection of the density profile at that time reveals the
presence of a single, shallow convective layer in the lower half
of the domain, which may have been created earlier than
expected by a large-scale gravity wave breaking in a region of
the domain whose stratification was already weakened by the
presence of the layering modes. This convective layer remains
in place for the rest of the simulation, and therefore couples the
n=2, 3, and 4 layering modes. All three modes then continue
to grow at a slower rate, until the convective layers are fully
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established around = 3800 (see the right-side panel with two
layers, one centered around z=80 and another centered
around z=0.)

Finally, the situation for the stronger field case Hz = 0.1 is
once again a little different. The n; = 4 mode is dominant at
early times, but seems to couple with both » =3 and 2 modes
around t=2000. In contrast to the Hz = 0.03 simulation,
however, there is no evidence for a convective layer at that
point, and the total density profile remains close to being linear
until 7~ 6000. All three modes nevertheless continue to grow
at a rate that is consistent with half the predicted growth rate of
the n =2 mode. Overturning convection is again triggered a
little earlier than the time at which the amplitude of any of the
modes reaches the critical threshold |p,, e

6. Summary and Discussion

In the previous section, we have demonstrated that the ~-
instability theory of Radko (2003) continues to be a good
model for layer formation in magnetized ODDC, at least
qualitatively, correctly predicting whether layers form or not. It
can sometimes overestimate the growth rate of layer-forming
modes by a factor of order unity, but this is not too much of a
concern. Indeed, being driven by turbulent mixing processes,
the timescale for layer formation is much shorter than any
evolutionary timescale (regardless of the magnetic field
strength). This suggests that layers would appear almost
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Figure 6. Left: density spectral power | p,,\z as a function of time for various layering modes for the simulations discussed in Section 4 with Pr = 7= Dz = 0.3, and
Ry! = 1.2. The magnetic field increases from top to bottom. The matching colored solid lines show the predicted growth of the layering mode according to the ~-
instability theory, and the dashed colored lines show the same with half that growth rate. The horizontal black line shows the overturning threshold for the mode with
ny, layers, with n; = 7 in the nonmagnetic case (top), and n; = 4 in the other cases (middle and bottom). The solid and dashed vertical lines mark the times at which
density profiles are shown (right). The solid vertical line also marks the time at which the kinetic energy first increases in Figure 3. Right: horizontally averaged total

density profiles shown at selected times in the same simulations.

Table 2
Values of Nuy, 'y;: Anu, and A, Extracted from DNS at Ry =12,
Pr=7=Dz=0.3
Hp Nur 7:01 Anu A, o
0 328 £0.15 0.575 £ 0.01 19.3 0.72 0.53
0.03 2.57 +£0.20 0.50 +0.01 25.3 0.99 0.35
0.1 2.27 +0.09 0.475 £ 0.01 19.7 0.76 0.25

Note. The derivatives Ax, and A, are computed using finite differencing with
data at nearby values of Ry .
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instantaneously from the perspective of stellar evolution
whenever the v-instability is excited. We have also seen that
layers rapidly merge once they form, ultimately leading (in
stars) to a fully mixed convective layer. This merger process
does not appear to be affected by the magnetic field, at least for
the parameters achievable in the DNS.

These results, when combined, suggest that there are two
possible outcomes for ODDC-unstable regions in stars: either
the +-instability is excited (i.e., has a positive growth rate), in
which case the region rapidly becomes fully convective, or the
~-instability is not excited (i.e., has a negative growth rate), in
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which case the region remains in a state of weakly turbulent
ODDC. This conclusion is not new (Moore & Garaud 2016),
but we now confirm that it remains true for magnetized ODDC.

In Section 5.1, we recalled that a sufficient criterion for the
~-instability to occur is that the inverse flux ratio V;i (i.e., the
ratio of the total composition flux to the total temperature flux
caused by the basic ODDC instability) should be a decreasing
function of the inverse density ratio Ry '. This criterion still
applies in magnetized ODDC. But in Section 5.3 we also found
that even a relatively weak magnetic field can change the shape
of the fy;): (Ry ") curve and move the position of its minimum,
thereby shrinking the region of parameter space unstable to
layering. As a result, systems whose stratification is unstable to
the y-instability in the absence of magnetic fields can be
stabilized when the field exceeds a certain threshold.

Unfortunately, the threshold magnetic field that was relevant
to our DNS is not directly applicable to stars. This is because
stellar fluids generally have much smaller diffusivity ratios Pr,
T, and Dg than what can be achieved numerically, which means
that we cannot directly compute the V;O: (Ry ) curve relevant
for stars (at least, not with currently available supercomputing
power). Future theoretical work will therefore need to identify
the mechanism responsible for the saturation of magnetized
ODDOC, to better predict the dependence of the turbulent fluxes
on all input parameters, especially the field strength Hg. With
that information, we might then be able to predict the shape of
7:0: (Ry 1y at stellar values of Pr, 7, and Dp, for varying Hp
(similar to the model of Mirouh et al. 2012, for the
nonmagnetic case). The position of the minimum of that curve,
and its dependence on the magnetic field strength, then
determines whether a particular ODDC-unstable region in the
star, with a given stratification characterized by R, ', is unstable
to layering.

In the event the new model reveals that ODDC in stars can
indeed be stabilized against the 7-instability by a sufficiently
strong (but still realistic) magnetic field, this could lead to
interesting observational predictions. Indeed, Moore & Garaud
(2016) showed the ODDC-unstable region surrounding the
Ledoux-sized core of intermediate-mass stars rapidly becomes
fully convective (as a result of the ~-instability) in the
nonmagnetic case. These stars therefore have a larger-than-
expected convective core whose size is appropriately computed
using the Schwarzschild criterion instead. Intermediate-mass
stars with a sufficiently strong magnetic field would, by
contrast, remain in a state that has a smaller convective core,
surrounded by a region of weak ODDC. Asteroseismic
observations of Ledoux-sized cores, should they arise, would
therefore point to the presence of a strong magnetic field.

Finally, it is worth noting that other authors have also argued
that the boundaries of convective cores are best described by
the Schwarzschild criterion on grounds that are entirely distinct
from the existence of the ODDC instability. As demonstrated
by Anders et al. (2022), convective entrainment gradually
pushes the location of the boundary predicted by the Ledoux
criterion outward until it agrees with the Schwarzschild
criterion, on a timescale that is fast compared to stellar
evolutionary timescales (see also Gabriel et al. 2014; Paxton
et al. 2018, 2019, where issues stemming from miscalculations
of convective boundaries are discussed, and where the
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appropriateness of the Schwarzschild criterion is also argued).
Thus, there are several distinct physical arguments for using the
Schwarzschild criterion over the Ledoux criterion in stellar
evolution models, in the absence of magnetic fields. In this
paper, we have proposed that there may be magnetic fields of
sufficient strength to stop the weak form of ODDC from
spontaneously evolving into standard convection in these
regions that are Schwarzschild unstable but Ledoux stable. This
does not address whether the other arguments for using the
Schwarzschild criterion over the Ledoux criterion still hold in
MHD—to address this question, further studies on convective
entrainment in MHD are necessary.
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which is supported by the National Science Foundation grant
number ACI-1548562. We thank Evan Anders and Adam
Jermyn for their useful discussions.
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