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Abstract

Stellar evolution models calculate convective boundaries using either the Schwarzschild or Ledoux criterion, but
confusion remains regarding which criterion to use. Here we present a 3D hydrodynamical simulation of a
convection zone and adjacent radiative zone, including both thermal and compositional buoyancy forces. As
expected, regions that are unstable according to the Ledoux criterion are convective. Initially, the radiative zone
adjacent to the convection zone is Schwarzschild unstable but Ledoux stable due to a composition gradient. Over
many convective overturn timescales, the convection zone grows via entrainment. The convection zone saturates at
the size originally predicted by the Schwarzschild criterion, although in this final state the Schwarzschild and
Ledoux criteria agree. Therefore, the Schwarzschild criterion should be used to determine the size of stellar
convection zones, except possibly during short-lived evolutionary stages in which entrainment persists.

Unified Astronomy Thesaurus concepts: Stellar convective zones (301); Stellar physics (1621); Stellar evolutionary
models (2046)

Supporting material: animation

1. Introduction

The treatment of convective boundaries in stars is a long-
standing problem in modern astrophysics. Models and
observations disagree about the sizes of convective cores
(Claret & Torres 2018; Joyce & Chaboyer 2018; Viani &
Basu 2020; Johnston 2021; Pedersen et al. 2021), the depths of
convective envelopes (inferred from lithium abundances;
Pinsonneault 1997; Sestito & Randich 2005; Carlos et al.
2019; Dumont et al. 2021), and the sound speed at the base of
the Sun’s convection zone (see Basu 2016, Section 7.2.1).
Inaccurate convective boundary specification can have astro-
physical impacts by, e.g., affecting mass predictions of stellar
remnants (Farmer et al. 2019; Mehta et al. 2022) and the
inferred radii of exoplanets (Basu et al. 2012; Morrell 2020).
In order to resolve the many uncertainties involved in treating

convective boundaries, it is first crucial to determine the
boundary location. Some stellar evolution models determine
the location of the convection zone boundary using the
Schwarzschild criterion by comparing the radiative and adiabatic
temperature gradients. In other models, the convection zone
boundary is determined by using the Ledoux criterion, which
also accounts for compositional stratification (Salaris &
Cassisi 2017, Ch. 3, reviews these criteria). Recent work states
that these criteria should agree on the location of the convective
boundary (Gabriel et al. 2014; Paxton et al. 2018, 2019), but in
practice, they can disagree (see Kaiser et al. 2020, Ch. 2), which

can affect asteroseismic observations (Silva Aguirre et al. 2011).
Efforts to properly choose convective boundary locations have
produced a variety of algorithms in stellar evolution software
instruments (Paxton et al. 2018, 2019).
Multidimensional simulations can provide insight into the

treatment of convective boundaries. Such simulations show that
a convection zone adjacent to a Ledoux-stable region can expand
by entraining material from the stable region (Meakin &
Arnett 2007; Woodward et al. 2015; Jones et al. 2017; Cristini
et al. 2019; Andrassy et al. 2020; Fuentes & Cumming 2020;
Andrassy et al. 2021). However, past simulations have not
achieved a statistically stationary state, leading to uncertainty in
how to include entrainment in 1D models (Staritsin 2013; Scott
et al. 2021).
In this Letter, we present a 3D hydrodynamical simulation

with a convection zone that is adjacent to a Ledoux-stable but
Schwarzschild-unstable region. Convection entrains material
until the adjacent region is stable by both criteria. Our
simulation demonstrates that the Ledoux criterion instanta-
neously describes the size of a convection zone. However,
when the Ledoux and Schwarzschild criteria disagree, the
Schwarzschild criterion correctly predicts the size at which a
convection zone saturates. Therefore, when evolutionary
timescales are much larger than the convective overturn
timescale (e.g., on the main sequence; Georgy et al. 2021),
the Schwarzschild criterion properly predicts convective
boundary locations. When correctly implemented, the Ledoux
criterion should return the same result (Gabriel et al. 2014). We
discuss these criteria in Section 2, describe our simulation in
Section 3, and briefly discuss the implications of our results for
1D stellar evolution models in Section 4.

The Astrophysical Journal Letters, 928:L10 (6pp), 2022 March 20 https://doi.org/10.3847/2041-8213/ac5cb5
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-3433-4733
https://orcid.org/0000-0002-3433-4733
https://orcid.org/0000-0002-3433-4733
https://orcid.org/0000-0001-5048-9973
https://orcid.org/0000-0001-5048-9973
https://orcid.org/0000-0001-5048-9973
https://orcid.org/0000-0002-7635-9728
https://orcid.org/0000-0002-7635-9728
https://orcid.org/0000-0002-7635-9728
https://orcid.org/0000-0003-4323-2082
https://orcid.org/0000-0003-4323-2082
https://orcid.org/0000-0003-4323-2082
https://orcid.org/0000-0002-4538-7320
https://orcid.org/0000-0002-4538-7320
https://orcid.org/0000-0002-4538-7320
https://orcid.org/0000-0002-8717-127X
https://orcid.org/0000-0002-8717-127X
https://orcid.org/0000-0002-8717-127X
https://orcid.org/0000-0003-2124-9764
https://orcid.org/0000-0003-2124-9764
https://orcid.org/0000-0003-2124-9764
mailto:evan.anders@northwestern.edu
http://astrothesaurus.org/uat/301
http://astrothesaurus.org/uat/1621
http://astrothesaurus.org/uat/2046
http://astrothesaurus.org/uat/2046
https://doi.org/10.3847/2041-8213/ac5cb5
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac5cb5&domain=pdf&date_stamp=2022-03-25
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac5cb5&domain=pdf&date_stamp=2022-03-25
http://creativecommons.org/licenses/by/4.0/


2. Theory and Experiment

The Schwarzschild criterion for convective stability is

º  -  < 0, 1S rad ad ( )

whereas the Ledoux criterion for convective stability is

c

c
º +  <m

m 0. 2
T

L S ( ) 

The temperature gradient  º d P d Tln ln (pressure P and
temperature T) is ∇ad for an adiabatic stratification and ∇rad if
all the flux is carried radiatively. The Ledoux criterion includes
the effects of the composition gradient m =m d d Pln ln
(mean molecular weight μ), where c = r md P d Tln lnT ,( ) and
c m=m rd P dln ln T,( ) (density ρ).

Stellar structure software instruments assume that convective
boundaries coincide with sign changes of L or S (Paxton
et al. 2018, Section 2). The various stability regimes that can
occur in stars are described in Section 3 and Figure 3 of Salaris
& Cassisi (2017), but we note four important regimes here:

1. Convection zones (CZs): Regions with > 0L are
convectively unstable.

2. Radiative zones (RZs): Regions with < 0L S  are
always stable to convection. Other combinations of L
and S may also be stable RZs, as detailed below in #3
and #4.

3. “Semiconvection” zones (SZs): Regions with > 0S but
< 0L are stabilized by a composition gradient despite

an unstable thermal stratification. These regions can be
stable RZs or linearly unstable to oscillatory double-
diffusive convection (ODDC; see Garaud 2018, chapters
2 and 4).

4. “Thermohaline” zones: A stable thermal stratification can
overcome an unstable composition gradient in regions
with < < 0S L  . These regions can be stable RZs
or linearly unstable to thermohaline mixing (see
Garaud 2018, Ch. 2 and 3).

In this letter, we study a three-layer 3D simulation of
convection. The initial structure of the simulation is an unstable
CZ (bottom, #1), a compositionally stabilized SZ (middle,
#3), and a thermally stable RZ (top,#2). We examine how the
boundary of the CZ evolves through entrainment. In particular,
we are interested both in measuring the heights at which

= 0S and = 0L and in determining whether those heights
coincide after many convective overturn timescales.

Our simulation uses the Boussinesq approximation, which is
formally valid when motions occur on length scales much
smaller than the pressure scale height. This approximation fully
captures nonlinear advective mixing near the CZ–SZ boundary,
which is our primary focus. Our simulations use a height-
dependent ∇rad, and buoyancy is determined by a combination
of the composition and the temperature stratification, so S and
L are determined independently and self-consistently. Our

simulation length scales are formally much smaller than a scale
height, but a useful heuristic is to think of our 3D convection
zone depth (initially one-third of the simulation domain) as
being analogous to the mixing length in a 1D stellar evolution
model. For details on our model setup and Dedalus (Burns et al.
2020) simulations, we refer the reader to Appendices A and B.

While μ represents the mean molecular weight in stellar
modeling (e.g., Equation (2)), throughout the rest of this Letter

we will use μ to denote the composition field in our simulation.
In stellar modeling, the quantity that determines convective
stability (the B term in, e.g., Unno et al. 1989; Paxton et al.
2013) is obtained by accounting for the variation of pressure
with composition in the full equation of state. In our
simulation, we employ an ideal equation of state in which
compositional stability is determined by the gradient of μ.

3. Results

In Figure 1, we visualize the composition field in our
simulation near the initial state (left) and evolved state (right).
Thick horizontal lines denote the convective boundaries per the
Ledoux (orange, = 0L ) and Schwarzschild (purple, = 0S )
criteria. Initially, the bottom third of the domain is a CZ, the
middle third is an SZ, and the top third is an RZ. Convection
motions extend beyond = 0L at all times; we refer to these
motions as overshoot (which is discussed in Korre et al. 2019).
Overshoot occurs because the Ledoux boundary is not the
location where convective velocity is zero, but rather the
location where buoyant acceleration changes sign due to a sign
change in the entropy gradient.
The difference between the left and right panels demonstrates

that the CZ consumes the SZ. Overshooting convective motions
entrain low-composition material into the CZ, where it is
homogenized. This process increases the size of the CZ and
repeats over thousands of convective overturn times until the
Ledoux and Schwarzschild criteria predict the same convective
boundary. After this entrainment phase, the convective boundary
stops moving. The boundary is stationary because the radiative
flux renews the stable temperature gradient; there is no
analogous process to reinforce the composition gradient.9

In Figure 2, we visualize vertical profiles in the initial state
(left) and evolved state (right). Shown are the composition μ
(top), the discriminants L and S (middle), and two important
frequencies (bottom): the square Brunt–Väisälä frequency N2

and the square convective frequency,

=f
ℓ

u
, 3conv

2
2

conv
2

∣ ∣ ( )

with |u| the horizontally averaged velocity magnitude and ℓconv

the depth of the Ledoux-unstable layer.
The composition is initially uniform in the CZ (z 1) and

RZ (z 2) but varies linearly in the SZ (z ä [1, 2]). We have
» =z 1 0L( ) but » =z 2 0S( ) . An unstable boundary

layer at the base of the CZ drives the instability and has
negative N2. For z 1, we have positive N2, which is larger in
the RZ than in the SZ. We found similar results in simulations
where N2 was constant across the RZ and SZ.
In the evolved state (right panels), the composition (top) is

well mixed in the CZ and hashed overshoot zone but decreases
rapidly above the overshoot region. We take the height where
the horizontally averaged kinetic energy falls below 10% of its
bulk-CZ value to be the top of the overshoot zone. Rare
convective events provide turbulent diffusion above the
overshoot zone and smooth the profile’s transition from its
CZ value to its RZ value. In this evolved state, the Schwarzs-
child and Ledoux criteria agree upon the location of the
convective boundary (middle).

9 Nuclear timescales are generally much longer than dynamical timescales
and can be ignored as a source of composition.
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The rate at which the CZ entrains the SZ depends on the
stiffness of the radiative–convective interface,

=
N

f
, 4

2
RZ

conv
2

CZ

∣
∣

( )

which is related to the Richardson number =Ri  . The time
to entrain the SZ is roughly t d t~ r

-h ℓ Rentrain c
2 1

dyn( )  (per
Fuentes & Cumming 2020, Equation (3)), where δh is the depth
of the SZ, ℓc is the characteristic convective length scale,
Rρä [0, 1] is the density ratio (see Garaud 2018, Equation (7)),
and τdyn is the dynamical timescale, which in our simulation is
the convective overturn timescale. In Figure 2, bottom-right
panel, we have » ´ -f 3 10conv

2
CZ

3∣ and N2|RZ≈ 102, so
» ´3 104 . Convective boundaries in stars often have
 106 , so our simulation is in the same high- regime as

stars. The value of Rρ can vary greatly throughout the depth of
an SZ in a star; we use Rρ= 1/10. The relevant evolutionary
timescale during the main sequence is the nuclear time τnuc.
Because t t d rh ℓ Rnuc dyn c

2( )  even for ~ 106 , SZs
should be immediately entrained by bordering CZs on the main
sequence and during other evolutionary stages in which
convection reaches a steady state. Note that while values of
Rρ= 1 increase τentrain, they also support efficient mixing by
ODDC (see Section 4).

Finally, in Figure 3 we display a Kippenhahn-like diagram of
the simulation’s evolution. This diagram demonstrates how the

CZ, SZ, and RZ boundaries evolve. The convective boundary
measurements are shown as orange ( = 0L ) and purple
( = 0S ) lines. The CZ is colored orange and fills the region
below the Ledoux boundary, the RZ is colored purple and fills
the region above the Schwarzschild boundary, and the SZ is
colored green and fills the region between these boundaries.
Convective motions overshoot beyond the Ledoux boundary
into a hashed overshoot zone, which we define identically to
the one displayed in Figure 2. The top of the overshoot zone
(black line) corresponds with the edge of the well-mixed region
(Figure 2, upper right). While the Schwarzschild and Ledoux
boundaries start at different heights, 3D convective mixing
causes them to converge.
We briefly note that we performed additional simulations

with the same initial stratification as in Figure 2 (left), but with
lower values of  , higher and lower values of Rρ, and less
turbulence (lower Reynolds number), and the evolutionary
trends described here are present in all simulations.

4. Conclusions and Discussion

In this Letter, we present a 3D simulation of a convection
zone adjacent to a compositionally stable and weakly thermally
unstable region. This region is stable according to the Ledoux
criterion, but unstable according to the Schwarzschild criterion.
Overshooting convective motions entrain the entire Schwarzs-
child-unstable region until the Schwarzschild and Ledoux
criteria both predict the same boundary of the convection zone.

Figure 1. Volume renderings of the composition μ at early (left) and late (right) times. A stable composition gradient is denoted by the changing color from the top of
the box (white) to the top of the convection zone (dark purple). The convection zone is well mixed, so we expand the color-bar scaling there; black low-μ fluid is
mixed into the yellow high-μ convection zone. Orange and purple horizontal lines respectively denote the heights at which = 0L and = 0S . The Schwarzschild
and Ledoux criteria are equivalent in the right panel, so the orange line is not visible. The simulation domain spans z ä [0, 3], but we only plot z ä [0, 2.5] here. An
animation of this figure is available online in the published article. A version is also in the supplementary materials (Anders et al. 2022b). In the animation, the initial
Ledoux boundary height is denoted as a dotted orange line. The animation starts at t = 130 freefall time units and ends at t = 15,520. There are two important
timescales in this problem: the short convective overturn timescale and the long entrainment timescale of the composition gradient. At early times, the movie playback
speed is slow, and the evolution of convective structures can be observed over time. To show the much longer entrainment timescale, the animation speed increases by
a factor of 25 for t ä [400, 15,000], during which time the convective boundary advances. After t = 15,000, the movie returns to its original, slow playback speed and
focuses again on the convective structures. The total, real-time duration of the animation is 45 s.

(An animation of this figure is available in the HTML version of this article.)
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This simulation demonstrates that the Ledoux criterion
instantaneously predicts the location of the convective boundary,
but the Schwarzschild criterion correctly predicts its location on
evolutionary timescales (for d r

-t h ℓ tRevol c
2 1

dyn( )  , see
Section 3). Our 3D simulation supports the claim that logically
consistent implementations of mixing length theory (Gabriel
et al. 2014; Paxton et al. 2018, 2019) should have convective
boundaries that are Schwarzschild stable. For example, the
MESA software instrument’s “convective premixing” (CPM,
Paxton et al. 2019) is consistent with our simulation. Given our
results, the predictions made by 1D stellar evolution calculations
should not depend on the choice of stability criterion used if/
when convective boundary treatments are properly implemented
and d r

-t h ℓ tRevol c
2 1

dyn( )  .

In stars, SZs should often be unstable to ODDC. Mirouh et al.
(2012) show that convective layers often emerge from ODDC
and thus mix composition gradients more rapidly than entrain-
ment alone; ODDC is discussed thoroughly in Garaud (2018).
Moore & Garaud (2016) apply ODDC to SZs, which form
outside core convection zones in main-sequence stars, and their
results suggest that ODDC should rapidly mix these regions. Our
simulation demonstrates that entrainment should prevent SZs
from ever forming at convective boundaries.
For stages in stellar evolution where d~ r

-t h ℓ tRevol c
2 1

dyn( )  ,
time-dependent convection (TDC; Kuhfuss 1986) implementa-
tions can be used to improve accuracy. These implementations
should include time-dependent entrainment models to properly
advance convective boundaries (e.g., Turner 1968; Fuentes &
Cumming 2020).
Anders et al. (2022a) showed convective motions can extend

significantly into the radiative zones of stars via “penetrative
convection.” In this work, we used parameters that do not have
significant penetration. This can be seen in the right panels of
Figure 2 because the composition is well mixed above the
convective boundary, but the thermal structure is not.
We assume that the radiative conductivity and ∇rad do not

depend on μ for simplicity. The nonlinear feedback between
these effects should be studied in future work, but we expect
that our conclusions are robust.
In summary, we find that the Ledoux criterion provides the

instantaneous location of the convective boundary, and the
Schwarzschild criterion provides the location of the convective
boundary in a statistically stationary state; in this final state, the
Ledoux and Schwarzschild criteria agree.
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L and the square convective frequency fconv
2 ; see Equation (3)). Positive and negative values are respectively shown by the solid

and dashed lines. We show the initial (left) and evolved (right, time-averaged over 100 convective overturn times) states. There are no motions in the initial state, so
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2 and does not appear. The background color is orange in the CZ, green in the SZ, and purple in the RZ. The lightly hashed background region in the evolved
RZ is the mechanical overshoot zone.

Figure 3. A Kippenhahn-like diagram of the simulation evolution. The y-axis
is the simulation height, and the x-axis is the simulation time. The orange line
denotes the Ledoux convective boundary ( = 0L ); the CZ is below this and is
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convective boundary remains stationary.
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Appendix A
Model and Initial Conditions

We study incompressible Boussinesq convection in which
we evolve both temperature T and concentration μ. The
nondimensional equations of motion are

 =u 0 A1· ( )

v
m  ¶ + + = - +
r

u u u uT z
R

Pr

Pe
, A2t

2
⎜ ⎟
⎛
⎝

⎞
⎠

· ˆ ( )

k   ¶ + - ¶ = + ¢uT T z T T T
1

Pe
,

A3

t z Tad ,0
2· ( ˆ ) · [ ]

( )

m m
t

m
t

m  ¶ + = + ¢u
Pe Pe

, A4t
0 2 2· ¯ ( )

where u is velocity. Overbars denote horizontal averages and
primes denote fluctuations around that average such that
= + ¢T T T¯ . The adiabatic temperature gradient is ∂zTad and

the nondimensional control parameters are

k
a
b m

n
k

t
k
k

= =
D
D

= =

r

m

u h T
Pe , R ,

Pr , , A5

T

T T

ff conv ∣ ∣
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( )

where the nondimensional freefall velocity is =uff
a Dgh Tconv∣ ∣ (with gravitational acceleration g), hconv is the

initial depth of the convection zone, the constant Δμ is the initial
composition change across the Ledoux-stable region, the constant
ΔT= hconv(∂zTrad−∂zTad) is the initial superadiabatic temper-
ature scale of the convection zone, a rº ¶ ¶ mTln( )∣ and
b r mº ¶ ¶ln T( )∣ are, respectively, the coefficients of expansion
for T and μ, the viscosity is ν, kT is the thermal diffusivity, and kμ

is the compositional diffusivity. In stellar structure modeling,
=rR N Nstructure

2
composition
2∣ ∣ is the ratio of respectively the thermal

and compositional components of the Brunt–Väisälä frequency as
measured in a semiconvection zone or thermohaline zone.
Equations (A1)-(A4) are identical to Equations (2)–(5) in Garaud
(2018), except we modify the diffusion coefficients acting on
T̄ (kT,0) and m̄ (τ0). By doing this, we keep the turbulence (Pe)
uniform throughout the domain while also allowing the radiative
temperature gradient ∂zTrad=−Flux/kT,0 to vary with height. We

furthermore reduce diffusion on m̄ to ensure its evolution is due to
advection.
We define the Ledoux and Schwarzschild discriminants

m
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¶
¶

-
¶
¶
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L S
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⎞
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and in this nondimensional system, the square Brunt–Väisälä
frequency is = -N 2

L .
We study a three-layer model with z ä [0, 3],
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We set ¶ ¶ = - - r
-T z 1 10Rad
1( ) . The initial temperature

profile has ∂zT0= ∂zTrad everywhere except between z= [0.1,
1] where ∂zT0= ∂zTad. Step functions are not well represented
in pseudospectral codes, so we use smooth Heaviside functions
(Equation (B1)) to construct these piecewise functions. To
obtain T0, we numerically integrate the smooth ∂zT0 profile
with T0(z= 3)= 1. To obtain μ0, we numerically integrate the
smooth Equation (A8) with μ0(z= 0)= 0.
For boundary conditions, we hold ∂zT= ∂zT0 at z= 0, T= T0

at z= 3, and we set m¶ = =uz xz ˆ · ˆ· ¶ =u yz ˆ· ¶ =u 0z at
z= [0, 3]. The simulation in this work uses Pe=
3.2× 103, =r

-R 101 , Pr= τ= 0.5, τ0= 1.5× 10−3, and κT,0=
Pe−1[(∂T/∂z)rad|z=0]/(∂T/∂z)rad The convective cores of main-
sequence stars with 2MeM* 10Me have =Pe 106( ) ,
t » = -Pr 10 6( ) , and a stiffness of = -106 7( )  (see
Jermyn et al. 2022, “An Atlas of Convection in Main-Sequence
Stars,”2022, in preparation). Our simulation is as turbulent as
possible while also achieving the long-term entrainment of the
Ledoux boundary and is qualitatively in the same regime as stars
(Pe? 1, Pr< 1, 1 ). Unfortunately, stars are both more
turbulent and have stiffer boundaries than can be simulated with
current computational resources.

Appendix B
Simulation Details and Data Availability

We time-evolve Equations (A1)–(A4) using the Dedalus
pseudospectral solver (Burns et al. 2020, git commit 1339061)
using time-stepper SBDF2 (Wang & Ruuth 2008) and CFL
safety factor 0.3. All variables are represented using a
Chebyshev series with 512 terms for z ä [0, 2.25], another
Chebyshev series with 64 terms for z ä [2.25, 3], and Fourier
series in the periodic x and y directions with 192 terms each.
Our domain spans x ä [0, Lx], y ä [0, Ly], and z ä [0, Lz] with
Lx= Ly= 4 and Lz= 3. To avoid aliasing errors, we use the 3/
2 dealiasing rule in all directions. To start our simulations, we
add random noise temperature perturbations with a magnitude
of 10−6 to the initial temperature field.
Spectral methods with finite coefficient expansions cannot

capture true discontinuities. To approximate discontinuous
functions such as Equations (A7) & (A8), we define a smooth
Heaviside step function centered at z= z0,

= +
-

H z z d
z z

d
; ,

1

2
1 erf . B1w

w
0

0
⎜ ⎟
⎛
⎝
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⎤
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⎞
⎠

( ) ( )
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where erf is the error function, and we set dw= 0.05.
We produced Figures 2 and 3 using matplotlib (Hunter 2007;

Caswell et al. 2021). We produced Figure 1 using plotly (Plotly
Technologies Inc. 2015) and matplotlib. The Python scripts
used to run the simulation and to create the figures in this paper
are publicly available in a git repository (https://github.com/
evanhanders/schwarzschild_or_ledoux); the data in the figures
is available online in a Zenodo repository (Anders et al.
2022b).
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