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Visco-resistive magnetohydrodynamic turbulence, driven by a two-dimensional un-
stable shear layer that is maintained by an imposed body force, is examined by
decomposing it into dissipationless linear eigenmodes of the initial profiles. The
down-gradient momentum flux, as expected, originates from the large-scale insta-
bility. However, continual up-gradient momentum transport by large-scale linearly
stable but nonlinearly excited eigenmodes is identified, and found to nearly cancel
the down-gradient transport by unstable modes. The stable modes effectuate this by
depleting the large-scale turbulent fluctuations via energy transfer to the mean flow.
This establishes a physical mechanism underlying the long-known observation that
coherent vortices formed from nonlinear saturation of the instability reduce turbu-
lent transport and fluctuations, as such vortices are composed of both the stable and
unstable modes, which are nearly equal in their amplitudes. The impact of magnetic
fields on the nonlinearly excited stable modes is then quantified. Even when im-
posing a strong magnetic field that almost completely suppresses the instability, the
up-gradient transport by the stable modes is at least two-thirds of the down-gradient
transport by the unstable modes, whereas for weaker fields, this fraction reaches up
to 98%. These effects are persistent with variations in magnetic Prandtl number
and forcing strength. Finally, continuum modes are shown to be energetically less
important, but essential for capturing the magnetic fluctuations and Maxwell stress.
A simple analytical scaling law is derived for their saturated turbulent amplitudes. It
predicts the fall-off rate as the inverse of the Fourier wavenumber, a property which

is confirmed in numerical simulations.
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I. INTRODUCTION

1,23 and astrophysical environments,*™*

Owing to their ubiquity in laboratory,! geophysica
shear layers have been extensively studied.'®!! Observations and analyses from experiments
and direct numerical simulations have offered insights into the connection between large-
scale vortical structures formed from the instability of a shear layer and turbulent transport
across the layer.'> ' Properties like shape and scale of the nonlinearly saturated vortices,
which dominate the transport, are generally attributed to the linearly-unstable eigenmodes
or closely related nonlinear fluctuations.!®® The nonlinear saturation of the instability,
however, can be more complex than just the finite-amplitude modifications of unstable

modes, as emerging understanding in fusion plasma instability demonstrates.!” 3°

Already in the late 1960s, using one of the early numerical simulations of shear instability,3!
it was hinted that the nonlinear saturation of Kelvin-Helmholtz instability involves, con-
trary to finite-amplitude modifications of unstable modes, quasi-periodic oscillations in the
fluctuations. Later, an intuitive understanding of how such a phenomenon occurs in sheared
fluids®? has been reported by invoking vortex nutation:!® Fluctuation-amplitude oscillations
correlate with oscillations in the mean flow energy and lead to vortex nutation. Fluctua-
tions, however, are usually not decomposed into the complete set of linear eigenmodes, and
are commonly assumed!® to be due to unstable mode structures. But since unstable modes
always drive a down-gradient momentum transport, they cannot explain the increase of
kinetic energy in the mean flow.

Notably, occasional up-gradient momentum transport has been observed in several ex-
perimental and numerical studies where an unstable shear layer drives the turbulence.?? 37
Analyses of these transient events!?3*%! do not address the underlying conditions produc-
ing this dynamics—whether the transient up-gradient transport is a part of an ongoing
subdominant process with occasional breakthroughs, or simply spontaneous fluctuations.
The laboratory and prior numerical experiments alone are not sufficient to definitively an-
swer this question. One way to expose the underlying process is to examine the turbulent
fluctuations using a complete eigenmode decomposition, and assign roles and activities to
each mode in the transport phenomena. Indeed there can be modes other than the unstable
modes that are important in the turbulent phase, as an insightful study hints: the dominant

vortex in a turbulent background orients quasi-periodically against (or towards) the mean
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t.12 To understand

flow and drives the down-gradient (or up-gradient) momentum transpor
such behaviors in detail, it is instructive to also analyse how the instability saturates, a
question that has long been of interest*? but for which understanding remains incomplete.

When turbulence is sustained via continuous energy injection from a large-scale insta-
bility, there exist two primary candidates for instability saturation. A common (but not
necessarily justified) assumption is that energy injected by the instability is transferred
conservatively to increasingly smaller scales in a forward, Kolmogorov-like cascade, where
nonlinear interactions move energy between linearly unstable or marginal modes until a
dissipation range is reached at small scales. An alternative process involves linearly stable
eigenmodes at the large injection scales, which absorb and remove significant energy from
scales that launch the inertial cascade. In several studies of microturbulence in fusion plas-
mas, linearly stable modes have been found to be excited to significant levels via nonlinear
interactions and to drastically affect the saturated amplitudes and transport characteristics

of the system.!7 2226730

Stable modes in shear flow turbulence, however, have been studied only recently*34°
and more remains to be understood, e.g., their role in mixing and magnetic field evolution
and how they might affect reduced models of turbulence and transport. It was predicted in
Ref.*? that the Kelvin-Helmholtz instability in its nonlinear evolution excites a linearly-stable
conjugate-root?% of the inviscid instability, which affects the instability saturation even when
viscosity is finite. This was later verified in numerical simulations of freely evolving shear
layers.** However, the rapid relaxation of the layer towards a stable profile on a time scale
similar to that of stable-mode excitation prevented general conclusions from being reached,
regarding how the turbulence and transport are affected by the stable modes. The issue is
aggravated by the addition of a flow-aligned magnetic field, which causes the layer to relax
even more rapidly. To circumvent this challenge, one may drive the mean flow towards the
unstable profile and thus achieve a thorough statistical quantification of the stable modes.
Note that driven profiles are quite common in astrophysical shear flows, with forces like
gravity providing free energy for the drive. For these reasons, driven shear flow is studied
here.

The principal result of this study is that significant up-gradient momentum transport is
driven by nonlinearly excited (linearly-)stable modes, cancelling a substantial portion of the

down-gradient transport by unstable modes, and notably this transport is present not just
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during turbulent momentum flux reversals, but is continuously at work at a slightly lower
level than that of the unstable modes. This finding is robust even for variations of orders
of magnitude in background magnetic field strength, magnetic Prandtl number (or resistiv-
ity), and forcing strength of the mean flow. Note that the stronger background magnetic
field tends to suppress the instability*® and disrupt the large-scale vortices,*” while larger
magnetic Prandt]l number (weaker resistivity for a fixed viscosity) extends the scale range of
magnetic fluctuations, compared to the flow fluctuations.*® We also show, for astrophysical
applications, that a turbulent viscosity can be defined, with the addition of stable modes,
that can reliably capture the Reynolds stress: Without stable modes, however, the stresses
are greatly over-predicted by the unstable modes.

This article is organized in the following manner. Section II entails the magnetohydro-
dynamic (MHD) model of the shear flow and details the system set-up. In Sec. III, the
complete linear eigenspectrum is presented, along with a discussion on the roles of different
eigenmodes. Section IV shows the full nonlinear evolution of MHD Kelvin-Helmholtz in-
stability using direct numerical simulations. A decomposition of the turbulent fluctuations
onto linear eigenmodes is performed in Sec. V, where a detailed study of imprints of stable
modes in turbulence and transport is presented. Section VI summarizes the findings of this

work.

II. MODEL AND SIMULATION SET-UP

An incompressible magneto-fluid is considered in this study, and standard MHD equations

are adopted:

V-u=0, (la)

8tu+u'Vu:—VP+(VXB)XB+VV2u+f, (1b)
p dmp

V-B =0, (1c)

9B =V x (ux B) + V2B, (1d)

where u, B, P, p, v, n, and f respectively denote the fluid velocity, magnetic field, pres-
sure, fluid density, viscosity, ohmic diffusivity, and externally supplied acceleration to the

magneto-fluid.



A. Background flow, magnetic field, and forcing

A shear layer is examined on a two-dimensional (z,z) plane with the initial fluid ve-
locity given by u(z,z,t = 0) = Uptanh(z/a)x and a flow-aligned magnetic field, initially
uniform, as B(z,z,t = 0) = Byx. The parameters a, Uy, and By signify the half-width of
the flow-shear, maximum initial fluid velocity, and initial magnetic field, respectively. These
parameters are exploited to non-dimensionalize all the variables henceforth. Length, time,
and energy (per unit mass) are hereafter measured in units of a, a/Uy, and UZ, respectively.
Thus the initial (or reference) flow and magnetic field are represented by Use(z) = tanh(z)
and Byer(z) = 1 in the rest of this article. The ratio of the maximum fluid speed Uy to the
Alfvén speed can be written as the Alfvénic Mach number My = Uy\/4mp/By. The viscosity
and resistivity are quantified via fluid Reynolds number Re = Uya/v and magnetic Reynolds
number Rm = Uya/n, respectively.

In two dimensions, a more convenient formalism is available, using the streamfunction ¢
and flux function 1. Defining u =y x V¢ and B = § x V), the vorticity and the current
become V2¢y and V2y, respectively. Taking the curl of Eq. (1b), and rewriting Eq. (1d)

in terms of the stream- and flux-functions yields*’

OV + {V?0, ¢} = M{V?*, ¢} + Re™ 'V + 0. f (k,=0, 2, 1), (2a)
O = {¢, v} + Rm ™'V, (2b)

where the Poisson bracket is {P,Q} = 9, P - 0,Q — 0,P - 0,Q; e.g., {¢,¥} = —u- V1. Here,
k. is the Fourier wavenumber along the xz-axis. The parameters Re = Rm = 500 are chosen
for all simulations unless mentioned otherwise (where Rm is changed to 50 and 5000 in
different simulations). It should be emphasized that these Reynolds numbers are defined
using the initial scale a of the sharpest gradient in the flow as the characteristic length scale;
however, as the system evolves nonlinearly via vortex merging, despite the forced mean flow,
eddies of the size of the simulation box appear, which may be considered as the characteristic
length scale of motion.'! When choosing this normalization, non-dimensional numbers should
be scaled accordingly, e.g., Rm = 5000 becomes Rm = 5000 x L, ~ 1.5 x 10°, where
L, represents the box-size along the mean flow direction. The external body force, f =
f(kz=0, z,t)%, is applied to the mean flow only, which is highlighted in Eq. 2a using the

explicit mention of k,=0. As in a recent study,*> the forcing drives the instantaneous mean
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flow towards the initial unstable profile U,f(2). A similar forcing mechanism exists for geo-
and astrophysical flows where gravitation®® tends to build shear layers. We assume here

such a force, represented as a Krook operator,® 53 as

f = DKrOOk [Uref{z) - <U(ZL’, Zat)>ﬂc] + F0> (3)

where Di.ook, Sometimes also referred to as the profile relaxation rate,’* measures the forcing
strength (in units of Uy/a); and (U(x, z, 1)), represents the instantaneous x-averaged flow.
If Dxroox = 0, the shear layer evolves freely and decaying turbulence is realized as a result
of the Kelvin-Helmholtz instability and the turbulence it generates.

The time-independent force Fy is implemented only to balance the viscous diffusion of
the initial shear layer: Re™'V?U,e(2) + Fy = 0 ensures an initial equilibrium state to which

small-amplitude perturbations are added before the system is evolved.

B. Initial and boundary conditions

As in the unforced study,** a simulation box of L, = 107 is considered, but double the
size along the z-axis (L, = 207), given that the quasi-stationary turbulence simulated herein
is run for much longer time, which tends to create fully developed turbulent features that
are larger in size. Thus we adopt a larger domain to minimize their potential interactions
with the boundaries in the z-axis. Note the forcing applied to the mean flow prevents
profile relaxation and the turbulence remains mostly in the vicinity of the shear layer. The

numerical code Dedalus,”

a pseudospectral solver, is used in this study. Fourier modes
along the z-axis and Chebyshev polynomials along the z-axis are employed with (N, N,) =
(2048, 2048) spectral modes. We confirmed that the spectral energy density and dissipation
are converged at this resolution. Note also that these high resolutions benefit the eigenmode
projection of nonlinear data in the post-processing analysis. Only for the simulation with
magnetic Prandtl number of 10, the box size was changed to (L,, L,) = (67, 87) and the
resolution was increased to (N,, N,) = (4096, 4096); the same simulation was repeated with
(N, N.) = (4096, 8192), but only for early times due to computational cost, and found
to reproduce, among others, the energy evolution. All simulations use 3/2 dealiasing rule,
additionally. The boundary conditions used in all simulations are periodic along the x-axis;

and perfectly conducting, no-slip, co-moving (with the initial flow) at the top and bottom

boundaries, z = +L,/2.4445



The initial equilibrium state is seeded with small-amplitude perturbations (5, J) at all

Fourier wavenumbers, as**

kz#0
and
B, 2t =0) = Ay 3 heimollhe) =22/ gikes -
ko #0

Here, Ay and A, set the overall amplitudes of the perturbations that have a Gaussian width
controlled by ¢ and the rate at which they fall-off with the wavenumbers given by a. The
random phases 74(k;) and r4(k;), forming a uniform distribution in [0, 27), are issued for
each different k, using a pseudo-random number generator. Different choices of these initial

.4, motivating the choice here: a = —1, o = 2, and

conditions were investigated in Re
Ay = Ay = 1073, This set of parameters offers distinct linear and nonlinear phases of

evolution.

II1. LINEAR EIGENMODES

Aiming to understand the nonlinear excitation of linear eigenmodes in the turbulent
phase, first the nonlinear initial-value problem is solved to collect high-fidelity turbulent
data. Afterward, a separate eigenvalue problem is solved to obtain a complete linear eigen-
spectrum and eigenmodes, which are used to expand the nonlinear data on this basis to
track the amplitude of each eigenmode. Such a basis is obtained by linearizing the govern-
ing equations around the initial flow and magnetic field profiles, by dropping the dissipative
terms. The eigenmodes thus obtained are of a dissipationless linear operator. Of course,
the meaning and utility of this linear basis is a priori unknown. Nevertheless, when a basis
forms a complete set, one can always expand an arbitrary fluctuation on that basis. As the
non-dissipative equations of motion preserve Parity-Time (PT-)reversal symmetry, such a
system is theoretically guaranteed to yield a complete basis as established recently in PT-
symmetric quantum mechanics.’® Previous studies in gyrokinetic and MHD plasmas have
also revealed the usefulness of dissipationless linear eigenmodes in interpreting dissipative

nonlinear systems.?”44>7



A. Complete eigenspectrum

With the intent of obtaining dissipationless linear eigenmodes, the variables (¢, 1) in Egs.
(2a) and (2b) are decomposed into background and perturbations, (¢,v) = (¢ref, Yref) +

(gg, @Z) The linearized dissipationless equations for the evolution of perturbations are

8tv2;g - - [Urefa:cv2 - (agUref) : 8:0} Qfg [Brefa:vv2 - (azQBref) : a:v} 7;5’ (63)

+ m
at":; = - refa'cqz;‘{' Brefaxg- (Gb)

Fourier transforming along the z-axis and assuming time variation at each Fourier wavenum-

ber takes the form @(k,, z,w)e™®® =) Egs. (6a)-(6b) become

~ ~ 1 N
w (83 - ki) 925 _ka: [Uref (622 — ki) — (agUref)] 925 + mkx [Bref (822 — ki) - (agBrefﬂ ¢;

(7a)

(Mﬂ = _Ureszlz + Brekaé- (7b)

Solving Eqs. (7a)-(7b), the eigenvalues w are found to be real except when 0 < |k, | < 1,
where two of the real eigenvalues coalesce to produce imaginary eigenvalues,’® as complex
conjugate to each other. These are the growth rates of the unstable eigenmode and its
conjugate stable eigenmode, which evolve in time as e?*)* and e=7*=)t respectively. This
mode-pair is shown, for the first Fourier wavenumber k, = 27/L, = 0.2, in Fig. 1(a),
along with all the purely real eigenvalues. The latter constitute the eigenmode continuum®’
and are theoretically infinite in number, although numerical discretization always yields a
finite but very large number of modes (> 3,000 for each wavenumber in this study). These
eigenvalues are given by the relation w/k, + Uset(2) £ varer(2) = 0, where va ,ef(2) is the
Alfvén speed along the reference magnetic field at the vertical coordinate z.

The eigenfunctions, normalized to have unit total energy, are also shown in Fig. 1: along
the z-axis, see Figs. 1(b)—(d), and in (z, z) space, see Figs. 1(e)—(g). Note that complex
conjugation transforms the unstable mode ¢, (k,, z) into the stable mode ¢y(k,, z) and vice-
versa. This is a direct consequence of spontaneous PT-symmetry breaking in the ideal shear-
flow instability.”® (The spontaneous symmetry breaking does not imply that the equation
of motion or the associated Hamiltonian breaks PT-symmetry; it is rather some of the

eigenfunctions of such a PT-symmetry-preserving Hamiltonian that break PT-symmetry.)
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FIG. 1. (a) Linear eigenspectrum of the MHD shear-flow system (at k; = 0.2 with M = 10). The

unstable and stable modes are shown with thick (colored) crosses. Among the continuum modes

that form a vertical line, a zero-frequency continuum mode is displayed with a green-colored star.
(b)—(d) Eigenfunctions in z-space, with real (Re) and imaginary (Im) parts, for unstable (¢1),
stable (¢2), and one continuum (w = 0) mode. (e)—(g) Corresponding eigenmode structures in

(z,z) space. Note that the eigenmodes ¢; and ¢9 are complex conjugate to each other.

Imaginary parts in their eigenfunctions induce relative tilt between them in (z, z) space, which
will be consequential for momentum transport in Sec. III B. Each eigenmode is normalized to

have unit total energy [following which the maximum values of ¢ in (b)—(g) are chosen].

A representative eigenfunction of a continuum mode, shown in Fig. 1(d), exhibits sharp
and narrow structure. To what physics each type of eigenmode structure contributes will

be explored in this article.
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B. Competing roles of unstable and stable modes

Shown in Fig. 2 is a schematic diagram, illustrating how the relative tilts in the eddies can
transport momentum in opposite directions across the shear layer.'* It can be qualitatively
observed from Figs. 1(e) and (f) that the unstable and stable modes, drive down- and up-
gradient momentum transport, respectively. Precise quantative measures will be built and

computed later in Sec. V D.

(a) Unstable mode (b) Stable mode

Y
Y

A
A

FIG. 2. (a) The unstable mode of the flow transport momentum in the down-gradient direction:
—z-directed momentum at A is carried to A' and +z-directed momentum at B is carried to B'.
Fluxes A—A' and B—B' act to relax the mean flow gradient (shown with the long horizontal
arrows). (b) Oppositely tilted eddies, which correspond to a stable mode, transport momentum
in the up-gradient direction: —z-directed momentum at C is carried to C' and +z-directed mo-
mentum at D is carried to D'. Both of these fluxes replenish the mean flow. The direction of the
streamlines (shown with grey arrows on the elliptic eddies) does not alter these properties, but the

tilt does.

Since the unstable and stable modes compete with each other to transport momentum in
opposing directions, the excitation levels of these modes are crucial. In the linear phase of
instability evolution, the transport by the unstable modes dominates over the transport by
the stable modes. However, this need not be the case in the nonlinear phase, as nonlinear

processes can excite the stable modes to appreciable levels. Whenever the stable modes
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surpass the unstable modes in amplitudes, net momentum is transported in the up-gradient
direction.**% In extremely simplified models of transport, such as eddy viscosity models,
this contributes to negative eddy viscosity. Computing the amplitude of each eigenmode
in the nonlinear phase can thus be helpful to build improved reduced transport models.
A recent investigation also demonstrated that this kind of competition between the two

large-scale eigenmodes alters the magnetic cascade substantially.*?

IV. NONLINEAR EVOLUTION

Having provided a description of linear eigenmodes, we now turn to properties of the
nonlinear system, before discussing how expressions of linear modes may be identified in

turbulent fluctuations.

A. Finte-amplitude Kelvin-Helmholtz instability

Small-amplitude perturbations in the flow and magnetic field evolve exponentially fast
in the linear regime of the instability, giving rise to a chain of spiral vortices, as evident in
Figs. 3(a) and (d). These structures then interact nonlinearly with nearby vortices to yield
even larger turbulent structures as in Figs. 3(b) and (c). A contrast is to be made between
forced and unforced simulations. In the latter, the gradient of the mean flow flattens out
as the instability extracts energy. Decaying turbulence then ensues. Forcing the mean flow,
however, leads to a quasi-stationary turbulence, as the energy in the gradient is replenished
with the instability drawing on its energy. In the saturated stage, energy input through
the unstable modes is balanced by energy removal via stable modes as well as dissipative

channels.

B. Momentum transport

It is now timely to discuss the turbulent transport of momentum in nonlinear simulations.
To derive the turbulent stresses, the evolution equation of the mean flow can be written by

r-averaging the momentum equation,

0 0 1 0

&(U%& = e (Tu + 75) + Dikrook [Uret(2) — (U)z] + Re 022 [(U)z — Uret(2)] (8)
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FIG. 3. Time evolution of vorticity in (a)—(c) in a simulation with a forced background flow,
Dxrook = 2; and (d)—(f) in a simulation with a freely evolving shear layer, Dxyoox = 0; both
for Ma = 10. Panels (a)—(c) share the same colorbar, and (d)—(f) share another colorbar. The
instantaneous mean flow profile in each of the subplots is shown with a black dotted curve, where the
vertical axis represents the z-coordinate and the horizontal direction corresponds to the x-velocity
Uo(z,t), as exemplified in the inset of (a). Two arrows pointing in opposite directions show the
direction of the flow in the regions z > 0 and z < 0. The initial flow profile Up(z,¢ = 0) = tanh(z)
is shown with a red dashed curve in (a) and (d). Rapid profile flattening is evident in (d). While
the instability dies out in the unforced case, quasi-stationary turbulence is realized in the forced

case in (c).

where U = U(x, z,t) represents the instantaneous flow, (-), signifies x-averaging operation,
and 7, and 7, are the Reynolds and Maxwell stresses, arising from the correlations of tur-

bulent fluctuations of the flow and the magnetic fields, respectively. Note that in Fraser et
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FIG. 4. Time evolution of MHD stresses. (a) Reynolds stress 7,(t, z). (b) Reynolds stress 7, (¢, z =
0) at the middle of the layer, z = 0. (c¢) Maxwell stress 7,(z,t). (d) Maxwell stress 7(¢,z = 0)
at z = 0. All data shown are for a single simulation with Ma = 10, Dkyoox = 2. The Reynolds
stress in (b) reverses several times, in contrast to the Maxwell stress in (d), which is almost always

down-gradient.

al.**, a negative sign was typographically missed in front of the first term on the right-hand
side of Eq. (8). With the sign displayed in Eq. (8) above, the turbulent stresses are given
by

Tu = <ﬂzﬂz>r - _<az$' 8z$>z7 (9&)
1 ~~ 1~ .~

These stresses are evaluated from nonlinear simulations and shown in Fig. 4. Fluctuations
of Reynolds stress are concentrated in the shear layer, near z ~ 0. Time histories of the
Reynolds and Maxwell stresses, at z = 0, where they are largest in magnitude, are compared
in Figs. 4(b) and 4(d). Note the recurring dominant up-gradient transport via the Reynolds
stress. The Maxwell stress, however, is almost always down-gradient. Figures 4(a) and 4(c)
also convey that the Maxwell stress is generally broader along the z-axis than the Reynolds

stress, which is more localized near the shear layer.
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V. DECOMPOSITION OF NONLINEAR SIMULATION ONTO LINEAR
MODES

To probe the nonlinear simulation data, the turbulent fluctuations are expanded on the
linear eigenmode basis described in Sec. III. Consider an arbitrary turbulent fluctuation

%turb = (aturba Jturb)v WhICh iS eXpanded as

Neurb (2, 2,8) = > WZ@, ko )X (ke 2) (10)

k270

where the eigenmode basis x;(ks, z) is employed along the z-axis at each wavenumber k,
to decompose the fluctuations. The complex mode-amplitude f;(k,,t), defined for each
eigenmode 7, can then be computed using properties of the linear operator, described in the
Appendix A, even when the eigenmodes of the operator are non-orthogonal, as is the case
here.

Following earlier studies,?”2%:43-45

7 = 1,2 will be used to represent unstable and stable
modes, respectively. The computations herein resolve as many as 3109 eigenmodes at a

particular k..

A. Nonlinear excitation of stable modes

The amplitudes of the unstable and stable modes are tracked in the nonlinear simulations,
and their time series are plotted in Fig. 5(a). As expected, the unstable mode grows and the
stable mode decays exponentially in the early phase. However, as the fluctuations increase
due to the growth of the unstable modes, nonlinear interactions among them begin exciting
the linearly stable mode,®” causing it to rise to almost the same level as the unstable mode
at that wavenumber, see Fig. 5(a). Later, in the fully nonlinear stage, all eigenmodes can
participate in the energy redistribution.

The energy in individual eigenmodes |3;]?, averaged over a turbulent state (¢ = 150-1000),
is displayed in Fig. 5(b). It is evident that the unstable and stable eigenmode pair contains
a majority (> 70%) of the energy in the system. The remaining eigenmodes share a wide
spectrum of the remaining energy. This suggests that the turbulent system at hand may be
amenable to a substantial dimensionality reduction.!®2” For the cases of the weaker magnetic

fields, this finding is more prominent, as evidenced in the Appendix B. In addition, the
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weaker fields support more coherent amplitude-oscillations, unlike the large excursions in
the amplitudes observed with the stronger fields, e.g., M,y = 10 in Fig. 5(a). In the latter
case, the stronger Lorentz back-reaction acting on the large-scale turbulent flow cause strong

oscillations in the eigenmode amplitudes.
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FIG. 5. (a) Time traces of the eigenmode amplitudes are shown for k; = 0.2 for a simulation with
Ma = 10 and Dgyoox = 2. Note, in the inset, the nonlinear excitation of linearly stable mode
(|82]) in instability saturation (|5i1| is the unstable mode amplitude). (b) All 3109 eigenmodes
at k; = 0.2 are plotted with their squared excitation levels in the nonlinearly saturated phase,
which represent the energy in each eigenmode. The diameter of each circle shown corresponds
to the energy in each eigenmode, and modes with lower energy are plotted on top of more
highly excited modes, such that all data points are (partially) visible. Note that the total
fluctuation energy is composed of both the modal and non-modal energy because of the non-
orthogonal modes. Evaluating total energy at a wavenumber, E = [dz [[u]* 4+ [B|*/M3] /2 =
S 42 (S Brott) - (5 Batta)* + (o BuBra) - (5, BB /M3] 2 = Sy By where
(W, By,) represents the m-th eigenmode. When m and n belong to discrete (d) modes, Eqq is,
upon time-averaging (¢ = 150-1000), around 72% of the total energy, whereas when m and n

belong to continuum (c) modes, E¢. is ~ 22%; Eq. is =~ 6%.
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B. Reduced representation of the turbulent flow

To obtain a better understanding of turbulent dynamics, it is of interest to compare
different components of eigenmodes in the turbulent flow. An approximate (reduced) repre-
sentation of the turbulent flow gapprox can be constructed from a class of eigenmodes at each
wavenumber, e.g., (Eappmx(x, z,t) can be written as a sum of an unstable mode per wavenum-
ber ), e 3, (ky, 1)1 (ke 2), or as a sum of an unstable and a stable mode per wavenumber
>, €7 [B1 (kg t) 01 (kg 2) + Ba(kas t)da(ka, 2)]. Respective short-hand notations ¢y and
B1¢1 + Bapo will be used hereafter, i.e.,

Bipr= > €5k, t)p1 (ke 2), (11a)
0<|ksz|<1

Br1o1 + Bada = Z T [By (ks )1 (Kas 2) + Bo(k, t) o,y 2)] - (11b)
0<|ks|<1

The nonlinear fluctuations of the flow are compared in Fig. 6, viewed at different levels of
truncation in the eigenmode expansion. The leftmost panel, Fig. 6(a), shows the full turbu-
lent fluctuations in the Kelvin-Helmholtz (KH-)unstable wavenumbers k, = 0.2,0.4,0.6, 0.8,
which appear similar to the full turbulent fluctuations that include all wavenumbers in the
nonlinear simulation (not shown); Fig. 6(b) displays the sum of unstable eigenmodes at each
of these KH-unstable wavenumbers; and Fig. 6(c) presents the sum of unstable and stable
eigenmodes at the same wavenumbers, while omitting all continuum modes. Adding stable
modes produces a substantial improvement in the reconstruction. Note that such a recon-
struction was found to deteriorate quickly over time (i.e., a few instability e-folding times
where one e-folding time for the fastest growing mode k, = 0.4 is 7~ ~ 5) in the study of
unforced shear layers,* as the rapid relaxation of the layer towards a stable profile rendered
the unstable and stable eigenmodes of the system to be less representative of the decaying
turbulence. The turbulent fluctuation shown in Fig. 6 is at t = 702, which lies well within
the nonlinear phase (the linear phase ends around t ~ 30). In this respect, the forced shear

layer is markedly different from the freely evolving layer.

C. Performance of reduced representations

While the qualitative analysis of the turbulent-flow reconstruction in Sec. V B is instruc-

tive, a quantitative measurement is desirable. To this end, following Ref.**, the reconstruc-
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FIG. 6. (a) Full turbulent fluctuations in streamfunction in the Kelvin-Helmholtz-unstable
wavenumbers 0 < |k;| < 1 (thus called <Zﬁ1tered), observed in nonlinear simulations with M, = 30,
Dkrook = 2. The shown plot of fluctuations includes all types of eigenmodes—the unstable, sta-
ble and continuum modes. (b) Reconstruction of the turbulent fluctuations by summing only the
unstable modes at the same wavenumber range. (c¢) Reconstruction by adding stable and unstable
modes, while omitting all continuum modes. The reconstruction in (c) is clearly much alike the
turbulent fluctuations in (a), in contrast to the reconstruction in (b). Saturation theory of insta-
bility that considers the unstable modes only, at best, can produce (b), but with inclusion of the

stable modes, substantial improvement can be achieved.

tive capability of reduced representations is quantified, at each time step in the simulation,
using the standard energy norm that measures the fraction of kinetic energy lost when the
eigenmode basis is truncated, compared to the kinetic energy in the full turbulent flow
data—see the definition in Eq. (12). The energy norm is well-suited for studying large-scale
structures. Small-scale phenomena, however, may not be amenable to such analysis, al-
though one may be able to find ties between the small- and large-scale pheonomena in some
cases. This measure is also called a “truncation error.” Note that this error arises not in the
nonlinear simulations but merely in the reduced representations of turbulent fluctuations,

when truncating the eigenmode basis in post-processing analyses.

Using the energy norm, we define the relative truncation error, which may also be called
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FIG. 7. Time traces of residuals, i.e., the fraction of energy missed in truncated bases, normalized
to the total energy in the turbulent flow at each time step. The reconstruction uses truncated
bases with unstable modes alone, and unstable and stable modes together. The forcing strength
is varied in three different simulations with My = 10: (a) Dkrook = 1, (b) Dkrook = 0.1, and (c)
Dxrook = 0. The unforced shear layer in (c) rapidly flattens out, and thus instability no longer
drives the turbulence. As long as the turbulence is driven by the instability, the unstable and stable

modes together can reconstruct a large fraction of the turbulent flow features in (a) and (b).

a normalized residual, in the following manner:

[ dzdz [(896(%(113)2 + (az(gdiff) 21
||$exact||%<E N ||$exa0t||%<E B fdxdz [(ézgexact>2 + (az%gexact>2:| |

Residual = ||¢exact — (bapprOXH%{E _ H¢d1ﬁ||%(E

(12)

where (9,¢)? and (9,¢)? are the squared z- and z-components of velocities; ggdiff = (Eexact —
%appmx with gem and gappmx representing respectively the turbulent streamfunction from
nonlinear simulation and its reduced representation—either a summation over the unstable
modes alone or over the unstable and stable modes together—both spanning fluctuations
over a range of wavenumbers. Here, this range, taken to be the same for both, is considered
to be 0 < |k,| < 1, which corresponds to the wavenumber range of the instability. If the

residual is less than unity, the truncation in the eigenmode expansion may be considered as
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a representative of the full system and thus a candidate for reduced-order model building.
On the contrary, the residual being around unity or more signfies the failure of the reduced

representation in effectively capturing the overall nonlinear fluctuations.
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FIG. 8. Shown are the time-averaged residuals for simulations different M. Note the residuals
are the fractions of energy missed in the truncated bases, compared to the total energy in the
instantaneous full turbulent flow. Time-averaging is performed over a quasi-stationary state of
turbulence (¢ = 600-1000). The reconstruction uses truncated bases with unstable modes alone,
and unstable and stable modes together, leaving all the continuum modes. All simulations use
Dxrook = 2. Note the dramatic improvement with the inclusion of the stable modes. For My = 3,
the improvement is modest, as the stronger Lorentz force back-reacts on the large-scale turbulent

flow, producing more fluctuations in the continuum modes.

The time evolution of the residuals is compared in Fig. 7 for varying forcing strengths.
As expected, the unstable modes entirely capture the fluctuations in the linear phase (i.e.,
t < 30). In the nonlinear phase, however, the unstable modes capture only a rather limited
fraction of the turbulent fluctuations. This is greatly improved when the stable modes are
added. This suggests that the success of quasilinear models in capturing key properties of the
turbulence can crucially depend on whether stable modes are considered when constructing
such models.

It is also interesting to note that the turbulence in the unforced shear layer, see Fig. 7(c),
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is different from the forced cases. In the former, the shear layer quickly flattens out and
nearly shuts off the instability, leading to a decaying turbulence. Regardless of whether
the unstable and/or stable modes are considered, the corresponding reconstructions fail to
model the turbulence with any degree of accuracy. By contrast, when the shear layer is
forced, a reduced representation of the turbulent flow with two modes (per wavenumber) is

found to perform well, recovering a substantial fraction of the full nonlinear system.

A similar reconstruction is shown for various strengths of magnetic fields M, in Fig. 8,
where residuals are time-averaged over a quasi-stationary state of turbulence. With stronger
magnetic fields (lower My ), the vortices begin disrupting due to stronger Lorentz force and
consequently generate more fluctuations at scales beyond the Kelvin-Helmholtz-instability
(KHI) range.?” This accounts for an increase of the residual for low My, although it remains
below 0.2 for My = 10. For M, = 3, the improvement with the inclusion of the stable
modes is modest. Momentum transport by large-scale structures, formed from the unstable
and stable modes, within the KHI range, however, may still dominate over the transport
contributed by much smaller scales or the remaining continuum modes; hence, a quantitative

analysis of transport will be conducted next.

D. Competing up- and down-gradient momentum transport and their

reduced models

The Reynolds stress can be expressed in terms of the contribution from each wavenum-
ber, which can further be decomposed into the contribution from each eigenmode. At a

wavenumber k,, the Reynolds stress from all the fluctuations gzgkz read
7 (all modes) = 2 Tm(k, ¢y, - .0} ], (13)

whereas the contribution from an unstable mode alone, and from an unstable and a stable

mode alone, at that wavenumber are respectively given as

T, (unstable) = 2 Im[k,(S101k,) - 0-(B101k,)"]
= 2|51|2 Im[k:xél,kz : 8z¢>{7k;x]7 (14)
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and
Tu(stable) = 2|35|* Im[k, oy, - 0.03 . ]

= 2|62|2 Im[kxqbikl . angl,kz]
= =2|Bof® Tm[kpr s, - 0207, ], (15)

where ngx is the Fourier transform of the streamfunction at wavenumber £, and ¢, rep-
resents the z-dependent j-th complex eigenmode: j = 1,2 for unstable and stable modes,
respectively. The conjugate symmetry of unstable and stable modes, as shown in Figs. 1(b)
and 1(c), is used in Eq. (15), i.e., ¢ar,(2) = @7, (2). The negative sign of the last expression
in Eq. (15) corresponds to the up-gradient nature of momentum transport by stable modes,
which was physically analyzed in Sec. [II B and visually demonstrated in Fig. 2.

The summed contributions of unstable and stable modes in transport, however, can have
cross-terms—quadratic correlations between unstable and stable modes—that do not appear
in Egs. (14) and (15) where contribution from individual modes are shown. But the cross-
terms vanish when the unstable and stable modes are exactly complex conjugates of each
other, as is the case for the ideal Kelvin-Helmholtz instability (when this conjugate symmetry
is broken, e.g., in resistive tearing instability or in ion-temperature-gradient instability,° the

cross-terms can have non-zero contribution):

T.(unstable + stable) = 2 Im[k, (81014, + Badok,) - O-(P101k, + Bodor,)’]
=2 (|ﬁ1\2 — |62]2) Im[ky 1k, - 0-01 ] + cross-terms, (16)

where

cross-terms = 2 Im[k, (Bi1¢1k,) - 0:(B202,k,)"] + 2 Im[ky(Bagok, ) - 0:(B101,k,)"]
=2 Im[B1B5kz1,, - 0:05 4, + 2 Im[B2 87 ko, - 0207, ]
=2 Im[B1 85 ke, - O:054,] + 2 Im[Bafi kady , - O:02,]
= 2 Im(B B kark, - 0:03,, ] + 2 Tm[(B1 55 kuhr , - 0:05,) ]
= 0. (17)

Thus we obtain

T.(unstable + stable) = 2 (|ﬁ1|2 — \52|2) Im[k, 1k, - 0-01 4]
= 7, (unstable) + 7, (stable). (18)
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These relations inform us about the z-profile of the Reynolds stress, contributed by each
wavenumber and each eigenmode. As largest momentum transport happens in the region
with the largest flow-gradient, it is instructive to compute, in the forced shear layers, the
turbulent stresses at the middle of the layer at z = 0, and compare the stress contributions
from different eigenmodes at various wavenumbers.

The total Reynolds stress from all modes and all wavenumbers in the simulations is com-
pared in Fig. 9 with the stress contributions from the wavenumber range 0 < |k,| < 1,
which is decomposed further into eigenmodes to assess the contribution of the unstable
modes, stable modes, and their sum. The subplots demonstrate that the stable modes are
highly efficient in transporting momentum in the up-gradient direction, as compared to
the down-gradient transport by the unstable modes. Even for the strongest magnetic field
My = 3, close to the instability threshold, the stable modes contribute significantly to a
continuous reduction of the turbulent momentum flux. In addition, the occasional break-
throughs in stable-mode activity cause reversals of the transport direction. This reversal can
be observed when the total Reynolds stress in the system is computed, without decomposing
the stress into contributions by each eigenmode. However, when the stable modes are not
overtaking the unstable modes in transport, the resulting down-gradient transport observed
in simulations or experiments is difficult to interpret, in regards to the contributions of stable
modes in subdominantly reducing the transport. An eigenmode decomposition of turbulent
fluctuations, however, uncovers a complete picture, as is shown here.

Similar variations of momentum transport across the middle of the shear layer are com-
pared in Fig. 10 for different forcing strengths. Note the unforced case differs from the
forced cases, as the nearly-flattened shear layer has less momentum to be transported across
the layer. As reported in Ref.**, despite the profile relaxation, the two eigenmodes per
wavenumber describe well the temporal variation of the Reynolds stress across the shear
layer, although the stress itself is very low (note its vertical scale). In all cases, the stress
captured via the sum of unstable and stable modes almost completely follows the total stress
from all modes.

In Fig. 11, the momentum transport by the unstable and stable modes is presented as a
function of magnetic Prandtl number Pm = Rm/Re. All simulations until this point used
Rm = 500, which is now changed to Rm = 50 and Rm = 5000. In both cases of Pm = 0.1

and Pm = 10, the stable modes still substantially offset the turbulent momentum transport
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FIG. 9. Time variations of Reynolds stress at the middle of the shear layer, z = 0. The stress
contributions from unstable modes (blue), stable modes (orange), their sum (red), and full nonlinear
fluctuations, i.e., all modes and all wavenumbers in the simulations (black), are compared, for
varying strengths of magnetic fields: (a) My = 60, (b) M = 10, and (c) Ma = 3. Thin green lines
represent the zero level. All simulations use Dk ook = 2. Although, with stronger magnetic fields,
the up-gradient momentum transport by stable modes are reduced, the up- and down-gradient

transport nearly cancel each other throughout all cases.

of the unstable modes. The shorter time trace for Pm = 10 is due to the higher simulation
cost. It should be noted that the quasi-stationary state in this simulation is still undergoing
changes, unlike in the case of Pm = 0.1 in Fig. 11(a) or Pm = 1 in Fig. 9(b), all with the
same Mp = 10, Dok = 2 and Re = 500.

The efficiency of time-averaged up-gradient momentum transport due to stable modes is

compared in Fig. 12 with the time-averaged down-gradient transport due to unstable modes,
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FIG. 10. Time variations of Reynolds stress at the middle of the shear layer, z = 0. The stress
contributions from unstable modes (blue), stable modes (orange), their sum (red), and full nonlinear
fluctuations, i.e., all modes and all wavenumbers in the simulations (black), are compared, for
varying forcing strengths: (a) Dkrook = 25, (b) Dkrook = 1, and (¢) Dkroox = 0. All simulations
use Ma = 10. Thin green lines represent the zero level. Qualitative differences can be observed
in unforced (Dxkroox = 0) and forced cases (Dkroox # 0): as instability extracts energy from the
mean flow, the profile relaxation in the unforced layer leads to a decaying turbulence, and the
transport rates become very small [note the vertical axis labels in (c)]. However, in all cases, the
summed stable modes producing up-gradient transport nearly cancel the down-gradient transport
by unstable modes. The addition of these two contributions produces a stress that is almost

identical to the stress from all modes.

via a measure, defined below:

(Up-gradient transport by stable modes);
(Down-gradient transport by unstable modes);’

Transport reduction efficiency = (19)
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FIG. 11. Time variations of Reynolds stress at the middle of the shear layer, z = 0. The stress
contributions from unstable modes (blue), stable modes (orange), their sum (red), and full nonlinear
fluctuations, i.e., all modes and all wavenumbers in the simulations (black), are compared, for
varying magnetic Prandt]l numbers (resistivities): (a) Pm = 0.1 and (b) Pm = 10. All simulations
use Ma = 10, Dkrook = 2, and Re = 500. Thin green lines represent the zero level. It can be
observed that the stable modes begin driving up-gradient momentum transport at around t ~ 30
when the nonlinear phase of evolution begins. By varying Pm by two orders of magnitude, around
unity, the stable modes are found to substantially reduce the down-gradient transport; note the

case of Pm =1 is shown in Fig. 9(b).

where (A); represents a time-averaging operation on A.

Variations in magnetic field strength, forcing strength, and magnetic Prandtl number all
demonstrate that the stable modes cancel an appreciable amount of the turbulent momentum
flux associated with the unstable modes. On average, around 80% of the down-gradient flux
is offset in this manner.

A remark should be made now regarding the use of unstable and stable modes for building
a reliable reduced mode of transport for geo- and astro-physical problems. One approach
would be to relate the activity of these two modes with a coefficient of diffusive flux (although

the unstable and stable modes offer spatial profiles of transport as well, with both diffusive
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FIG. 12. Parameter dependence of transport reduction efficiency, which is defined as the ratio of
time-averaged up-gradient Reynolds stress due to stable modes and time-averaged down-gradient
Reynolds stress due to unstable modes. The stress is measured at the middle of the shear layer,
z = 0, where the momentum transport is at its maximum. (a) Variations in M = 3, 10, 30, 60, 120
with Dgrook = 2, Pm = 1, and linear z-scale. (b) Variations in Dy, ook = 0.1,1,2,6 with M = 10,
Pm = 1, and logarithmic z-scale. (c) Variations in Pm = 0.1,1,10 (or, equivalent changes in
resistivities) with My = 10, Dkrook = 2, and logarithmic a-scale. All plots have the same y-
axis. The time-average for (a) and (b) is taken over a long quasi-stationary state of turbulence
t = 350-900, while for (c), it is ¢ = 137237 where the quasi-stationary state is still undergoing
changes. In all cases, substantial reduction of transport by stable modes is evident, which cancel,
via their up-gradient transport, more than half of the down-gradient transport by unstable modes,

and this fraction reaches up to 98%, see (a), for M = 60 and M, = 120.

and non-diffusive fluxes, because they do not rely on an ad-hoc eddy-viscosity model, which
is an explicit diffusive-flux-based model). In the middle of the shear layer, the diffusive flux,
however, dominates because of the maximum in the flow-gradient. The ad-hoc turbulent
viscosity can thus be defined®”, more importantly without a “free-parameter,” using Eq. (18)

as

T.(unstable + stable .
gt = 2 ) - >0 2(1817 = 1B*) Tmfkadn, - 67,1 . (20)
(dUp/dz) 0<ky<1 #=0

z=

Note that the denominator is unity for the shear-flow that has a linear profile in the vicinity
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of 2 = 0. To assess the importance of stable modes in this construct, |3;]* — |52|> can be
written as |51|> (1 — |B2|?/]B1]%). Since |B2]? has been found to on the same order of |3;]?,
e.g., see Fig. 12, where |32|%/|81]* can range from = 0.8 to ~ 0.95, yielding (1 — |B5|?/|51]?) =~
0.05 to 0.2. Therefore, neglecting stable modes can overestimate the transport by a factor

of 5 to 20.

E. Reynolds vs. Maxwell stresses

With the above successful low-order representation of Reynolds stress above, we now
examine the fluctuations in the magnetic field that give rise of Maxwell stress. The stress

can be quantified as

7(all modes) = —iz Tm[kyt, - 02107, . (21)
M3}
2
Tp(unstable + stable) = e (|/61|2 — 52|2) Im k)1 g, -82%‘,;%], (22)
A

where 1, is the Fourier transform of the flux function at a wavenumber k, and t;, rep-
resents the z-dependent j-th complex eigenmode (j = 1,2 for unstable and stable modes,
respectively). Again, cross-terms arising from the correlation between the unstable and
modes can be shown to vanish, exactly as it was shown for the Reynolds stress in Eq. (17).

As can be seen in Fig. 13, the Reynolds stress is dominated by large scales while the
Maxwell stress involves a large number of different scales. Figure 13(a), using axes with
linear scales, shows the dominance of Reynolds stress in the entire system, which the two-
eigenmodes-per-wavenumber decomposition (unstable and stable modes) captures, not only
qualitatively, but also quantitatively with great accuracy. In Fig. 13(b), a logarithmic scale
is used to expose the range of small scales that contribute significantly to the magnetic
fluctuations. Wavenumbers k, < 10 have major contributions, as opposed to k, < 1 for the
fluctuations of the flow. The fact that a large amount of flow energy resides at large scales
suggests that the shear-flow turbulence may be amenable to some form of quasilinear mod-
eling. Homogeneous isotropic turbulence, on the other hand, would not be reliably captured
with such models, as no scale separation exists therein. Recent studies have highlighted that
improved quasilinear models such as the generalized quasilinear approximation are realizable

in systems with length- or time-scale separation.5!
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FIG. 13. Time-averaged turbulent stresses split into their contributions from different wavenum-
bers. (a) Stresses on a linear scale. (b) Log-log representation of the absolute value of the stresses.
Note that only the wavenumbers k, < 1 are Kelvin-Helmholtz-unstable. The simulation param-
eters are Ma = 60 and Dgyoox = 2; the time-average is taken over a quasi-stationary state of
turbulence, ¢ = 350-1000. The total turbulent stress is dominated by the range |k;| < 1, which is
captured by the unstable and stable modes at those wavenumbers to a high precision. The small
amount of stresses that are contributed by smaller scales of fluctuations span a broad range of

wavenumbers, due to the smaller scales in magnetic fields generated via straining by the flow.

The magnetic fluctuations, on the other hand, span a broad range of scales. This can
be physically interpreted as a result of the straining of the magnetic fields by the turbulent
flow, which generates small scales in the magnetic fields.*®626* The straining process by the
large-scale turbulent eddies converts the large-scale kinetic energy into the intermediate-
scale magnetic energy.%® Magnetic fluctuations at such scales can then, via Lorentz force,
feed back on the flow, although mostly at smaller scales. A comprehensive analysis of energy
transfer for the present system will be reported in a forthcoming publication where nonlinear
mode-coupling and energy transfer between fluctuations of discrete and continuum modes

of velocity and magnetic fields are also analyzed.

To model any aspect of magnetic fluctuations, one must thus rely on tools such as statis-
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tical theories to obtain scaling laws that can offer insights into these fluctuations. One such

approach is detailed next.

F. Scaling law for continuum modes

Until this point, the discrete modes—unstable and stable modes—which describe the
turbulent flow well, have been our focus. The magnetic fluctuations, on the other hand,
result from the straining of field lines by the flow, exciting the remaining continuum modes.
Hence these modes are necessary for a successful reconstruction of the magnetic fluctuations.
Thus, we seek a simple scaling law for the saturated turbulent amplitudes of the continuum

modes.

1. Analytical prediction for continuum mode amplitudes

It is instructive to write the nonlinear MHD equations in the eigenmode basis, arriving

at what is also referred to as the mode-amplitude evolution equation3%43:45.66:67

0uB(ks) = iwj(ka)Bi(ka) + D Chmnlkas k) B (K,) Ba (KL, (23)
g

where f3;(k;) represents the complex amplitude of an eigenmode j at wavenumber k, with w;
the associated mode-frequency; the nonlinear mode coupling coefficient C,,,, measures the
three-wave overlap, which dictates the strength of nonlinear beating between an eigenmode
m at wavenumber k! and an eigenmode n at wavenumber £, driving an eigenmode j at
wavenumber k, (with the constraint &k, + k7 = k).

For the continuum modes, as was mentioned in Sec. IIT A their frequencies depend linearly
on the wavenumber &, as® w/k, + User(2) £ va rer(2) = 0. This implies w; = w o k.

Heuristically, the scaling of the nonlinear mode coupling coefficient with wavenumber can
be obtained in the following manner: In Egs. (2a) and (2b), the separation of linear and

nonlinear terms arises in Poisson brackets. Consider a prototype equation,

P ={P,Q}+..
={P,Q} + {P,Qo} + {Po,Q} + .., (24)
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where P = P, + P and Q = Qo+ @ represent two fields (e.g., V2¢ or ¢ for the present
problem), with P, representing the z-averaged mean component of P, and P standing for
perturbations. The linear term, e.g., ik, P - 0,Qo which is in spectral space, contains only
one perturbed field, whereas the nonlinear term, e.g., zk‘;p’ . 8ZQ” , has two perturbed fields,
with P" and Q" representing the Fourier-transformed quantities at wavenumbers k., and k”,
respectively. It may be supposed that the derivative 0, on the perturbed quantities is roughly
on the scale of |0,| ~ k,. (This can be shown analytically for all the eigenmodes, where the
background flow is approximately uniform, see Ref.*3.) Notice, however, that this argument
applies only to the perturbations: the operator 0, acting on @ clearly does not produce
a factor of k., which is zero for the mean component );. We now use this distinction to
make a prediction for the amplitudes of perturbations, in particular the continuum mode-
amplitudes. The linear and nonlinear terms thus assume the forms ik, P - 0.0 and zk;ﬁ” .
ik’m’Q” , respectively.

In Eq. 24, expanding the perturbations in the eigenmode basis, e.g., P= > 8P, with P,
representing the [-th eigenmode, and diagonalizing the linear terms (operator), one finds an
equation of the form given in Eq. 23. We can now attempt to understand the behavior of the
nonlinear mode coupling coefficients that drive the continuum modes. Assuming nonlinear
interactions between the continuum modes are local in spectral space—interaction of three
wavenumbers of similar scales—the nonlinear term in Eq. 24 simplifies, e.g., zk;.ﬁ’ . ik;’@”
becomes —kiﬁ@; note the linear term has the form zkxf’ - 0,Qo.

In assuming local interaction between the continuum modes spectral space in k,, the in-
volvement of unstable and stable modes in nonlinear interactions is ignored, which otherwise
could bring in non-local effects. This may be a valid assumption for continuum modes at
scales much above the Kelvin-Helmholtz-unstable wavenumber range, i.e., k, > 1, as the
wavenumber convolution constraint of k, = k., + k! does not allow two (un-)stable modes
to beat together to drive a continuum mode at large k., e.g., k, > 2.

Continuing with the above assumption, the nonlinear term —k:ip@ has one extra k,
compared to the linear term ik, P - 0.Qo. This implies that, for the continuum modes, the

nonlinear mode coupling coefficients C' are expected to scale as
C o k2, (25)
because the linear term for the continuum modes in Eq. 23 has the eigenfrequency that
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depends linearly on k,, i.e.,

w o k. (26)

Such a property of nonlinear coupling coefficient is common in other turbulence calculations,
as well.26

In order to obtain a phenomenological scaling law, we now make no distinction between
different continuum modes, and thus balance the linear and nonlinear terms of Eq. 23 in
the quasi-stationary state as w3 ~ C%. Inserting their asymptotic dependences on k,, the

amplitudes of continuum modes is found to follow
Bkt (27)

Note that the assumptions made in arriving at this simple scaling law are crude. The next
step will be to determine from nonlinear simulations whether this scaling can be recovered

or whether a number of assumptions made above render the result inapplicable.

2. Numerical verification

Time-averaged eigenmode amplitudes from nonlinear simulations, after multiplying with
k., are plotted in Fig. 14(a) as functions of k, and eigenmode index j, arranged in order of
increasing real frequency of the eigenmodes. The appearance of vertical near-equicontour
lines signifies that eigenmodes are excited in a similar pattern across a large range of scales.

The eigenmodes that lie within the yellow bands are localized in space (z-axis), but
the band spans a range of heights, outside the shear layer |z| < 1. Empirically, we note
that the center of the rightmost [leftmost] band corresponds to w/k, = Uy [w/kz = —Ugo|
where Uy = 1. These thick bands represent all eigenmodes that have phase speeds w/k, =
Uogo + cvap [w/ky = —Ugo + cvap] where —1 < ¢ < 1 and vy = 1/Ma; note that || =1
is not included in these bands. All of these eigenmodes have peaks and oscillations in their
eigenfunctions outside of the shear layer. In the layer, the unstable and stable modes main-
tain their dominance and thus these two discrete modes alone almost completely regulate
the momentum transport across the layer, as was noted in Sec. V D.

It is of interest now to compute from numerical simulation data how the amplitude of
each eigenmode j falls off with £k, and construct a j-averaged spectral index. To this end,

we note the amplitude f;(k, = 0.2) for each mode j at k, = 0.2 (the first wavenumber in
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FIG. 14. (a) Dependence of time-averaged eigenmode amplitudes on k,. The indices js of the
eigenmodes are arranged in increasing order of their real frequencies. Vertical lines signify the
self-similar cascade of energy to small scales in k,. Mode amplitudes are averaged over a quasi-
stationary state of turbulence ¢ = 400-800 for a simulation with Ms = 120 and Dgyook = 2. (b) kg
spectra of mode amplitudes in a nonlinear simulation (shown with empty circles) in a log;, — log;
plot. Shown with a solid line is the analytical prediction, made for the wavenumbers that lie beyond
the Kelvin-Helmholtz-unstable range, i.e., for k; > 1. The spectral index, predicted based upon a

number of simple assumptions, can be seen to fit the data reasonably well.

the simulation) and compute a scaled mode-amplitude (;(k,) as

5 _ Bilks)
Bj(ks) = B (k=0.2)’ (28)

which is expected to fall-off with k, as ~ k. In principle, the spectral index o can depend

on the eigenmode index j, but a j-averaged spectral index is sought now, following the
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procedure
Bi(ky) o (kp/0.2)%,
IOg Bj(km) o 1Og kan

(log B (kz)); o (@);log k.. (29)

This j-averaged spectral distribution of the mode-amplitudes informs how, on average, each
eigenmode amplitude depend on k,.

A plot of (log 3;(k,)); vs. log k, is shown in Fig. 14(b), along with the analytical predic-
tion of inverse-in-wavenumber fall-off of the mode amplitudes, at scales above the Kelvin-
Helmholtz-unstable wavenumber range. It should be highlighted that the computation of all
the eigenmode amplitudes at each wavenumber at each simulation time is computationally
demanding, as the process requires the computation of modified left eigenmodes for each
right eigenmode at each wavenumber, apart from the mode projection calculation at each
time step. Therefore, only the first 24 Fourier modes in k, are shown in Fig. 14.

A finding in Fig. 14 is the identification of self-similar cascade of energy to smaller scales
(larger k,) in eigenmode space. This result also hints that the interaction involving the
continuum modes may be reasonably simplified, and potentially be valuable in estimating
the amplitudes of unstable and stable modes, using closure theories (see Ref.?% for a recent

example).

VI. CONCLUSIONS

We have investigated MHD turbulence in two-dimensions, driven by a forced unstable
shear flow, using a complete eigenmode decomposition of fluctuations in nonlinear simula-
tions, which exposes the nonlinearly saturated excitation level of each eigenmode and its
role. Intrinsic to linear instability, the unstable modes derive fluctuation energy from the
mean flow gradient. The linearly-decaying stable modes, however, contain almost the same
amount of energy as the unstable mode, which they receive via nonlinear excitation. This
truncated basis of two eigenmodes per wavenumber is found to reconstruct essential large-
scale features of turbulent flow and the associated momentum transport via Reynolds stress.
Quantifying transport due to unstable modes alone shows an overestimation up to an or-

der of magnitude higher relative to the actual flux. The reduction in the flux is identified
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to be due to the continuous up-gradient transport by the stable modes, which causes a
near-cancellation of down-gradient transport driven by unstable modes.

The continuum modes, on the other hand, describe small-scale fluctuations of the flow and
magnetic field, where the above large-scale unstable and stable modes manifest themselves
as a quasi-coherent vortex. To predict the mode amplitudes of the continuum, a simple
scaling law is derived from the governing nonlinear equations and the predicted inverse-in-
wavenumber fall-off rate is found reasonably agree with the simulation data.

Although both the momentum transport and fluctuation energy are largely described
by the discrete modes, the former is more efficiently captured [Figs. 9-13] as almost all
the momentum transport occurs near z = 0, which is the region where the discrete modes
dominate [Figs. 1(b) and 1(c)]. The fluctuation energy, on the other hand, is related to
fluctuations that are scattered in and around the large-scale eddies; a portion of this energy
is claimed by the continuum modes, although a large fraction still belongs to the discrete
modes [Figs. 5(b), 6-8].

Transport reduction by stable modes can also be used to improve phenomenological
constructs like eddy viscosity, which are generally agnostic as to the nonlinear excitation
of stable modes. By predicting the turbulent amplitudes of the unstable and stable modes,
for astrophysically relevant parameters, e.g., very large Rm, Re, Pm compared to unity,
the simple relation between turbulent viscosity and eigenmode amplitudes [in Eq.(20)] can
be exploited to reliably model transport processes in astrophysical objects, which otherwise
cannot be solved using current state-of-the-art direct numerical simulations. It should be
noted that such a prediction for the mode amplitudes |3;| and || was recently made for ion-

T using statistical closure theory.%

temperature-gradient-driven fusion plasma turbulence!
Undertaking such a task for the present system is interesting, but beyond the purview of
this work and will thus be left for future investigations.

The reduced representation of turbulent flow and transport presented here is also useful
for building sub-grid-scale models, which can allow performing nonlinear simulations at ex-
treme parameters with less-intensive computational demands. Progress can thus be made
in seeking models that reduce the number of degrees of freedom while capturing essential
features of the turbulent system. Techniques like proper orthogonal decomposition, dynamic

mode decomposition, etc., also exist for such purposes,® but they operate on output from

nonlinear simulations, and it can be difficult to assign intuitive physical meaning to the
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characteristic mode structures. Here, the truncated eigenmode basis, composed of the un-
stable and stable modes, has been demonstrated to reconstruct nonlinear fluctuations to an
appreciable degree, thus suggesting that they can be leveraged as a physically-motivated
basis for extreme parameter studies, without having to first perform a direct numerical sim-
ulation. These modes may also be useful for generating, via their nonlinear interactions
with continuum modes, fluctuations associated with the continuum modes. Such a test
could be performed to analyze magnetic fluctuations. The reduced basis, composed of un-
stable and stable mode alone, can also serve in direct statistical simulations,®® which have
shown promises towards simulating the slowly-evolving turbulent statistics, e.g., two-point
two-time correlations, three-point correlations between fluctuating fields, etc., rather than
the fast-evolving field variables themselves, e.g., flow velocities. Other improved forms of
quasilinear models like the generalized quasilinear approximation® may also benefit from
using this truncated basis. This possibility will be explored in a separate publication.

In the future, procedures similar to that employed here can be used to examine the prop-
erties of other forms of instability-driven turbulence, such as magneto-rotational-instability-
driven® and stratified-shear-flow-driven turbulence.™ Building nonlinear energy transfer di-
agnostics in shear-flow turbulence to study the physical processes and scales that impact the
difference in unstable- and stable-mode amplitudes is another possible avenue. Such investi-
gations constitute steps towards deployment in service to one-dimensional stellar transport
models.® Central to improved predictiveness are the stable modes, whose properties will

similarly require additional studies.
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APPENDIX A: ORTHOGONALITY OF RIGHT EIGENMODE AND
MODIFIED LEFT EIGENMODE

Due to the non-normality of the linear operator of the shear-flow instability, the eigen-
modes are not orthogonal. This presents a significant challenge in the computation of mode
amplitudes. An additional challenge is the generalized eigenvalue nature of the problem at
hand, when written in vorticity formalism, as in Eq. (6a). This differs from the standard
eigenvalue problem, L{; = A\;§;, where L is a linear operator whose j-th eigenmode is ¢;

with eigenvalue ;. The generalized eigenvalue problem that we encounter here is

where L is a linear operator, M is another linear operator containing the Laplacian operation
for our problem, X is the j-th (right) eigenmode with corresponding (right) eigenvalue w;.
[Often times, the distinction between left and right eigenmodes of a linear operator is not
made as they happen to be the same; however this is not the case here for the non-normal
operator.] The right eigenmodes, although non-orthogonal to each other, can be made
orthogonal with an appropriate weight factor to the left eigenmodes, which are solutions to

another eigenvalue problem:%6-67

V'L = o0;Y;" M. (A2)

Here, Y;-T is the transpose of the left eigenmode with its left eigenvalue o;. A slight refor-

mulation is possible to this equation by taking Hermitian-transpose:
v % Ty /%
LYy = oy MYy (A3)

In the eigenvalue solver in Dedalus, the matrices LT and M for each wavenumber are passed,
and their eigenmodes Y;" and eigenvalues o7 are found. It can be shown that the eigenvalues

o; and w; are the same (i.e., 0; = w;), by analyzing Eqgs. (Al) and (A2). A modified
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orthogonality relation between the left and right eigenmodes can now be derived:%6-:67

Y'D)X; = Y,'(LX;) = Y, (w; M X;)
= (0;Y," M) X; = V" (w; M X;)
— Y;TMXZ‘(O']' — wi) =0

= V" MX; 0, (A4)

which means the left and right eigenmodes are orthogonal to each other with a weight factor
M, as long as their eigenvalues differ (0; # w;). For numerical computation, it is convenient
to define Y}TM = (M'Y;)" = ZjT where Z; is the modified left eigenmode, which is—by
construct—orthogonal to the right eigenmode without any weight factor: Z]TXi o ;. Using
this relation the eigenmode coefficients (;(k,,t) in the eigenmode expansion of turbulent

fluctuations are computed at each wavenumber and at each time.

APPENDIX B: CYCLIC OSCILLATIONS IN MODE-AMPLITUDES FOR
WEAK MAGNETIC FIELDS
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